EP3489602B1 - Chargenofen für glühgut und verfahren zur wärmebehandlung eines ofengutes - Google Patents

Chargenofen für glühgut und verfahren zur wärmebehandlung eines ofengutes Download PDF

Info

Publication number
EP3489602B1
EP3489602B1 EP18208226.3A EP18208226A EP3489602B1 EP 3489602 B1 EP3489602 B1 EP 3489602B1 EP 18208226 A EP18208226 A EP 18208226A EP 3489602 B1 EP3489602 B1 EP 3489602B1
Authority
EP
European Patent Office
Prior art keywords
fan
heat transfer
furnace
nozzle
transfer medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18208226.3A
Other languages
English (en)
French (fr)
Other versions
EP3489602A1 (de
Inventor
Rainer Ehmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gautschi Engineering GmbH
Original Assignee
Gautschi Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gautschi Engineering GmbH filed Critical Gautschi Engineering GmbH
Publication of EP3489602A1 publication Critical patent/EP3489602A1/de
Application granted granted Critical
Publication of EP3489602B1 publication Critical patent/EP3489602B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0083Chamber type furnaces with means for circulating the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0043Muffle furnaces; Retort furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B11/00Bell-type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/16Arrangements of air or gas supply devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0024Charging; Discharging; Manipulation of charge of metallic workpieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/16Arrangements of air or gas supply devices
    • F27B2005/166Means to circulate the atmosphere
    • F27B2005/167Means to circulate the atmosphere the atmosphere being recirculated through the treatment chamber by a turbine
    • F27B2005/168Means to circulate the atmosphere the atmosphere being recirculated through the treatment chamber by a turbine by more than one turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/16Arrangements of air or gas supply devices
    • F27B2005/166Means to circulate the atmosphere
    • F27B2005/169Means to circulate the atmosphere the atmosphere being continuously renewed by exterior means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means
    • F27D2007/045Fans

Definitions

  • the invention relates to a batch furnace for annealing material and a method for the heat treatment of furnace material.
  • a batch furnace according to the preamble of claim 1 is for example from DE 42 43 127 A1 known.
  • Batch furnaces have a closed furnace space in which a single batch is heat treated.
  • Examples of batch furnaces are single-coil furnaces, which enable flexible and individual heat treatment of individual coils.
  • Another example of a batch furnace are so-called chamber furnaces, which are used for the heat treatment of coils, extrusion billets and rolling bars.
  • the one from the aforementioned DE 42 43 127 A1 known batch furnace essentially has a fan, a heating unit, nozzle boxes for guiding the hot gas flow and hot gas nozzles.
  • the hot gas nozzles are combined in nozzle plates for heating the coil.
  • the coil and hot gas flow are moved relative to one another. The relative movement of the coil and the hot gas flow takes place outside the Rotatable bearing blocks arranged in the furnace or by a pendulum oscillation system in which the coil and / or the nozzle plates can also be connected.
  • the known chamber ovens and single-coil ovens are complex and relatively large, which leads to correspondingly large energy losses and requires correspondingly extensive thermal insulation measures.
  • CN 202 709 720 U describes a bell-type furnace for annealing a copper cake.
  • the hood furnace comprises a receiving space, a fan and several loading trays for the copper cake.
  • the loading trays have a central circulation opening which is arranged on the suction side of the fan. Furthermore, the loading tray has a large number of ventilation pipes in order to achieve uniform heating of the copper cake placed on it.
  • a convection oven with a fan and turbo-flow air nozzles in which one or more workpieces are heated in the oven chamber by air circulation.
  • the air nozzles are arranged on a nozzle channel which is connected to the fan. During the heating process, heated air is blown through the air nozzles into a mixing section in which the furnace chamber air mixes with the heated air and is then circulated to the workpieces.
  • the invention is based on the object of specifying a batch furnace for annealing material which enables a compact furnace size due to an improved structure and which reduces energy losses due to an increased efficiency of the heat treatment.
  • the invention is also based on the object of specifying a method for the heat treatment of furnace items.
  • this object is achieved with regard to the batch furnace by the subject matter of claim 1.
  • the above-mentioned object is achieved by the subject matter of claim 19.
  • the invention is based on the idea of specifying a batch furnace for annealing material with a furnace housing which has a closable loading opening, has a receiving space for furnace material and a device for convective heat transfer to the furnace material through a heat transfer medium.
  • the device for convective heat transfer comprises at least one heating device and at least one fan which is arranged in the furnace housing.
  • the receiving space is arranged on the suction side of the fan and at least one nozzle field is arranged on the pressure side of the fan.
  • the nozzle field has a central opening which forms an intake duct of the fan.
  • the nozzle field projects radially over the fan so that a pressure channel is formed.
  • the nozzle field has nozzles through which the pressure side of the fan and the pressure channel are fluidly connected to the receiving space in order to flow directly to the furnace material in the receiving space for heat transfer with the heat transfer medium.
  • the heat transfer medium is directed specifically to the furnace material or to a coil.
  • the nozzle field protrudes radially over the fan, so that a pressure channel is formed on the pressure side of the fan.
  • the heat transfer medium accelerated by the fan is compressed in the pressure channel.
  • the heat transfer medium then flows at high speed through the nozzle field into the receiving space directly onto the furnace material or coil.
  • the nozzle field includes the suction channel, which is arranged on the suction side of the fan. Furthermore, the nozzle field delimits the pressure channel on a side of the pressure channel facing the receiving space.
  • the nozzle field has nozzles through which the pressure side of the fan and thus the pressure channel are fluidly connected to the receiving space.
  • the nozzle field is thus arranged on the suction side of the fan and arranged on the pressure side of the fan.
  • hot air, exhaust gas or protective gas are used as the heat transfer medium.
  • the batch furnace according to the invention is particularly suitable for the heat treatment of annealed aluminum, in particular aluminum coils.
  • the heating device can be assigned to the fan.
  • the heating device is arranged directly behind the pressure side of the fan.
  • the heating device can also be arranged in front of the suction side of the fan. It is also possible for a heating device, in particular a first heating device, to be arranged directly in front of the suction side of the fan and / or for a heating device, in particular a second heating device, to be arranged directly behind the pressure side of the fan.
  • the heating device is arranged in the furnace housing.
  • the cool heat transfer medium flows through the suction channel of the nozzle field into the fan and exits the fan again on the pressure side.
  • the heat transfer medium is then passed to the heating device and absorbs heat.
  • the heat transfer medium then flows through the nozzle field into the receiving space.
  • the nozzle field is designed in such a way that the heated heat transfer medium is directed onto the furnace material located in the receiving space.
  • the fan arranged in the furnace housing means that, compared to the known nozzle systems, shorter flow paths and thus lower pressure losses are realized in the furnace housing.
  • the fan and the nozzle field are arranged concentrically to one another. This has the advantage that a uniform volume distribution of the heat transfer medium is made possible on the pressure side of the fan. The heat transfer medium is thus conducted evenly through the nozzle field onto the furnace material, resulting in a homogeneous heat treatment.
  • the heating device is arranged concentrically to the fan in a pressure channel between the fan and the furnace housing.
  • the heating device for the heat transfer medium is arranged directly behind the pressure side of the fan in the furnace housing.
  • the pressure channel is thus formed on the pressure side of the fan.
  • the heat transfer medium is advantageously passed directly to the heating device through the fan. This reduces pressure losses and increases the efficiency of the heat absorption of the heat transfer medium.
  • the nozzle field preferably closes off in a fluid-tight manner on an inner wall of the furnace housing.
  • the pressure channel thus forms a closed area on the pressure side of the fan, which enables high compression of the heat transfer medium.
  • the nozzle field is also preferably arranged directly in front of the suction side of the fan. This enables a compact design of the batch furnace, whereby the space requirement and the outer surface of the furnace to be insulated is reduced.
  • the nozzle field has a funnel-shaped nozzle plate. Due to the funnel-shaped design of the nozzle plate, the accelerated heat transfer medium is guided from the pressure side of the fan in a focused manner onto the furnace material. The nozzle field is therefore also arranged on the pressure side of the fan. This advantageously enables targeted heat treatment of the furnace material or coil.
  • the nozzle plate is preferably designed in the shape of a circular ring.
  • the nozzle plate encompasses the central opening which forms an intake duct of the fan.
  • the nozzle plate has a plurality of tubular and / or slot-shaped nozzles, which are arranged in a circle around a center of the nozzle plate on an inside in at least one nozzle area.
  • the inside of the nozzle plate faces the receiving space.
  • the tubular and slot-shaped nozzles have the advantage that each nozzle bundles and increases the speed of the heat transfer medium. This enables targeted heat treatment of the furnace and increases the efficiency of convective heat transfer.
  • the pressure side of the fan is preferably fluidly connected to the receiving space through the tubular and / or slot-shaped nozzles.
  • the connection of the pressure side of the fan to the receiving space enables the furnace material to flow through the heat transfer medium and also enables the heat transfer medium to circulate in the furnace housing.
  • the suction channel of the nozzle field is arranged directly opposite the suction side of the fan. This has the advantage that a compact and straight design of the intake channel is made possible. This reduces the pressure losses when the heat transfer medium is sucked in.
  • the intake duct is between the fan and the receiving space for the circulation of the Heat transfer medium formed. The heat transfer medium is sucked in by the fan through the suction channel.
  • the central design of the suction channel advantageously improves the flow guidance of the heat transfer medium during the heat treatment of the furnace material in the furnace housing.
  • At least two fans are arranged opposite one another on both sides of the receiving space.
  • At least one heating device and / or at least one inlet for an externally heated heat transfer medium is assigned to each fan.
  • the heating device or the inlet for the externally heated heat transfer medium and the respectively associated fan form a unit which forms the device for convective heat transfer.
  • This embodiment has the advantage that the oven material is heated evenly from two sides.
  • the embodiment is particularly suitable for heating coils, in particular aluminum coils, and also for other furnace goods.
  • Each fan preferably has at least one flow channel which is arranged on the pressure side of the fan.
  • the flow channel guides the heat transfer medium to at least one heating device.
  • the fan can also have a plurality of flow channels which are arranged around the fan radially.
  • the heat transfer medium accelerated by the fan is guided or conducted in a targeted manner to the heating device through the flow channels. This increases the efficiency of the heat absorption of the heat transfer medium from the heating device.
  • At least one fan is formed by a radial fan.
  • This enables the heat transfer medium to be sucked out of the receiving space by the radial fan and to be released again by the fan radially to the suction direction.
  • the radial fan can thus be arranged at one end of the furnace housing, since the heat transfer medium is sucked in from the receiving space or from the front. This advantageously results in a compact design of the device for convective heat transfer and thus of the batch furnace.
  • At least one fan has a drive which is arranged outside the furnace housing. This has the advantage that the fan drive is exposed to a relatively low thermal load. No special thermal insulation or heat dissipating measures are required for the drive.
  • the receiving space is designed essentially as a hollow cylinder, the fans being arranged on the end faces of the receiving space. This achieves a particularly compact design of the batch furnace, which enables the furnace material to be heated quickly, efficiently and homogeneously.
  • the furnace housing has at least one inlet for an externally heated heat transfer medium.
  • the position of the inlet for the externally heated heat transfer medium can be at any point in the furnace.
  • the inlet enables access to the interior of the furnace or to the receiving space for the furnace material, so that the externally heated heat transfer medium can get into the receiving space.
  • exhaust gases from another furnace system are used as the externally heated heat transfer medium.
  • the inlet for the externally heated heat transfer medium is preferably arranged directly behind the pressure side of the fan. The invention is not restricted to this arrangement.
  • a heat transfer medium preferably hot air and / or hot protective gas and / or, if a radiant tube is used, also hot exhaust gases can be fed into the batch furnace through the inlet, which is externally, i.e. is heated outside the oven. It is possible to combine one or more inlets for the externally heated heat transfer medium with one or more heating devices, e.g. to bring a preheated heat transfer medium in the furnace to the desired final temperature through the heating device.
  • the heating device has a heating line for a gaseous heating medium.
  • the heating line can be formed by a steel pipe, in particular by a segment pipe.
  • the heating line can be arranged around the fan in the pressure channel.
  • the heating line is preferably arranged on the pressure side of the fan.
  • the externally heated heat transfer medium can advantageously be passed through the heating line, whereby the heating line is heated.
  • the heat transfer medium circulating in the furnace housing is also heated by the heated heating line.
  • the furnace material is arranged in a receiving space of the batch furnace.
  • a heat transfer medium is conducted to a heating device by a fan, in particular a radial fan.
  • the heat transfer medium is heated by the heating device.
  • the heated heat transfer medium is then passed through a nozzle field onto the furnace material for convective heat transfer.
  • the method for the heat treatment of a furnace material with a batch furnace according to the invention, reference is made to the advantages explained in connection with the batch furnace.
  • the method can alternatively or additionally have individual features or a combination of several features mentioned above with regard to the batch furnace.
  • a batch furnace with a housing part 10a of the furnace housing according to FIG Fig. 1 is preferably used for the heat treatment of annealed aluminum, for example aluminum coils.
  • the batch furnace can generally be used for coils (independent of material) or other annealing material.
  • the batch furnace is a single-coil furnace that is adapted for the heat treatment of individual coils.
  • the invention can also be applied to single-chamber furnaces which are suitable for the heat treatment of extrusion billets, rolling bars or coils.
  • the batch furnace has a furnace housing 10 which essentially comprises a receiving space 11, a closable loading opening (not shown) and one or more devices for convective heat transfer 20 to the furnace material by a heat transfer medium.
  • the respective device for convective heat transfer 20 has a heating device 21 and a fan 22. The device for convective heat transfer 20 will be discussed in greater detail later.
  • the furnace housing 10 is designed as a hollow cylinder, a housing part 10a according to FIG Fig. 1 is arranged in each case at one axial end of the furnace housing 10. Furthermore, the furnace housing 10 can also be formed by a different furnace shape. For example, the furnace housing 10 has a cuboid furnace shape, in particular a box-shaped furnace shape. The furnace housing 10 can also have only one housing part 10 a, for example at one axial end of the furnace housing 10.
  • the furnace housing 10 comprises a steel construction for housing stiffening, which is arranged on an outer surface of the furnace housing 10.
  • the housing part 10a has a circumferential shape contour in a peripheral region on an end face of the housing part 10a.
  • the shaped contour engages in a complementary shaped contour of a further housing part (not shown), in particular a housing middle part.
  • the circumferential contour enables a tight connection, for example, of the housing part 10a with the housing middle part.
  • the housing part 10a has two cylinders on the contour to secure the tight connection between the housing part 10a and the housing middle part.
  • the housing part 10a can also be on the shape contour have multiple cylinders.
  • the cylinders can each be formed by a securing cylinder, in particular a locking cylinder and / or a locking cylinder.
  • the housing part 10a has an inlet for an externally heated heat transfer medium.
  • the housing part 10a also includes an outlet 12 for discharging burner gases into an exhaust line.
  • the furnace housing 10 has a thermal insulation which is arranged on the inside of the furnace housing 10.
  • the thermal insulation protects the furnace housing 10 from damage due to impermissible temperature effects during the heat treatment of the furnace material. Furthermore, the thermal insulation reduces energy losses during the heat treatment.
  • the furnace housing 10 can be designed in different variants, not shown.
  • the furnace housing 10 can be designed in three parts with an exchangeable housing middle part, in particular a middle piece.
  • the middle part of the housing is separated from the two lateral housing parts 10a, so that the middle part can be exchanged.
  • the length of the batch furnace can therefore be adapted to different items to be annealed, in particular different coils.
  • the furnace housing 10 can also be designed in three parts.
  • the middle part of the housing in the second variant can be formed by a base piece.
  • the base piece can have a transport means, in particular rollers, so that a movement of the middle part of the housing is possible transversely to the longitudinal direction of the batch furnace.
  • the lateral housing parts 10a each have a housing extension in the longitudinal direction of the batch furnace.
  • the housing extensions extend in the direction of the receiving space 11. In the closed state of the batch furnace, the housing extensions form the receiving space 11 with the bottom piece, the receiving space 11 being laterally bounded by the housing parts 10a.
  • the furnace housing 10 can also be divided in another variant or formed in one piece.
  • the furnace housing 10 therefore delimits the receiving space 11 in which the furnace material or the annealing material is arranged during operation of the batch furnace. There it is a single receiving space 11.
  • the receiving space 11 can be charged with a coil, in particular an aluminum coil.
  • the receiving space 11 can have a storage device for the furnace material, in particular for the aluminum coil.
  • the bearing device is formed by a bearing block or a bearing linkage.
  • the storage device can be connected to the floor of the receiving space 11.
  • the coil can also be placed on its outer surface. The coil can also be stored differently in the receiving space 11.
  • the receiving space 11 is designed essentially as a hollow cylinder and is thus approximately adapted to the shape of the coil to be heated.
  • the receiving space 11 forms an empty space in the unloaded state of the batch furnace.
  • the receiving space 11 is accessible through a lockable loading opening, not shown.
  • the loading opening can be opened or closed by a cover which can be pivoted about a longitudinal axis of rotation running in the longitudinal direction of the furnace housing 10.
  • a bobbin gripper can be used for charging the receiving space 11.
  • This version is particularly suitable for cylindrical furnace housings.
  • the loading opening can be opened or closed by axially displacing the lateral housing parts 10a, so that the receiving space 11 can be loaded by a C-hook or a forklift.
  • a lateral housing part 10a or both lateral housing parts 10a can each be pivoted about a transverse axis of rotation extending transversely to the longitudinal direction of the furnace housing 10.
  • the loading opening can also be opened or closed by a further design of a cover or a housing element not mentioned.
  • the fan 22 of the device for convective heat transfer 20 and a nozzle field 30 are also shown.
  • the nozzle field 30 is arranged on a pressure side 24, not shown, of the fan 22.
  • the nozzle field 30 has a central opening which forms an intake channel 31 of the fan 22.
  • the fan 22 and the nozzle field 30 are arranged concentrically to one another.
  • the intake channel 31 is thus between the fan 22 and the receiving space 11 for the Circulation of the heat transfer medium formed.
  • the suction channel 31 can also be formed by an opening which is formed at any position, in particular a decentralized position, in the nozzle field 30.
  • the fan 22 and the nozzle field 30 can also be arranged eccentrically to one another.
  • the nozzle field 30 projects radially above the fan 22.
  • the nozzle field 30 is designed in such a way that the nozzle field 30 seals off the inner wall of the furnace housing 10 in a fluid-tight manner.
  • the nozzle field 30 is designed such that a distance is formed between a radial outer side, in particular a circumference, of the nozzle field 30 and the inner wall of the furnace housing 10.
  • the distance between the nozzle field 30 and the inner wall of the furnace housing 10 can be formed by an annular gap.
  • the nozzle field 30 is arranged directly in front of the suction side 23 of the fan 22. This enables a compact structural design of the fan 22 with the nozzle field 30 in the furnace housing 10. This advantageously allows the receiving space 11 to be enlarged or the dimensions of the furnace housing 10 to be reduced while the furnace housing 10 has the same dimensions. Thus, the overall size of the batch furnace can be reduced.
  • the fan 22 is fluidly connected to the receiving space 11 of the furnace material through the suction channel 31 of the nozzle field 30.
  • the suction channel 31 of the nozzle field 30 is thus arranged directly opposite the suction side 23 of the fan 22.
  • the nozzle field 30 according to Fig. 1 has a funnel-shaped nozzle plate 32.
  • the nozzle plate 32 is designed in the shape of a circular ring.
  • the nozzle plate 32 can also be formed by other geometric shapes.
  • the nozzle plate 32 further comprises a plurality of tubular nozzles 33.
  • the tubular nozzles 33 are arranged around a center on an inner side of the nozzle plate 32.
  • the nozzles 33 also have a square or polygonal cross-sectional shape.
  • the nozzles 33 can also be designed in the form of slits.
  • the nozzles 33 can also have other cross-sectional shapes.
  • the nozzles 33 can be tapered towards one side.
  • the nozzle plate 32 has nozzles 33 with different cross-sectional shapes and / or nozzle lengths.
  • nozzle circles 34a, 34b, 34c are referred to as nozzle circles 34 with identical or approximately identical properties.
  • a plurality of tubular nozzles 33 are arranged in a plurality of circular nozzle areas 35 on the inside of the nozzle plate 32.
  • the nozzle areas 35 can also have a different shape.
  • the nozzle areas 35 are star-shaped.
  • the nozzle areas 35 can also be formed parallel to one another.
  • the respective nozzles 33 can therefore also be arranged at different positions on the nozzle plate 32.
  • the nozzle areas 35 are, as in FIG Fig. 1 can be seen, formed by an inner nozzle circle 34a, a middle nozzle circle 34b and an outer nozzle circle 34c.
  • the inner nozzle circle 34a is arranged on the nozzle plate 32 adjacent to the intake channel 31 of the fan 22.
  • the outer nozzle circle 34c is arranged on the nozzle plate 32 adjacent to the inner wall of the furnace housing 10.
  • the middle nozzle circle 34b is arranged between the inner nozzle circle 34a and the outer nozzle circle 34c on the nozzle plate 32 therebetween.
  • the nozzle circles 34 each have a spacing from one another. In other words, the nozzle circles 34 have different diameters.
  • the inside of the nozzle plate 32 faces the receiving space 11.
  • an outside of the nozzle plate 32 faces the pressure side of the fan 22.
  • the nozzle plate 32 is funnel-shaped in such a way that during the heat treatment of the furnace material, the nozzles 33 in each case of a nozzle area 35 are directed directly at the furnace material.
  • the respective nozzle circles 34 have nozzles 33 with an identical nozzle length.
  • the nozzles 33 of the inner nozzle circle 34a are made longer than the nozzles 33 of the middle nozzle circle 34b.
  • the nozzles 33 of the central nozzle circle 34b are made longer than the nozzles 33 of the outer nozzle circle 34c.
  • the length of the nozzles 33 is reduced from the center of the nozzle plate 32 outwards towards the circumference of the nozzle plate 32 30 are formed with their free nozzle ends vertically aligned with one another.
  • the respective free ends of the nozzles 33 form a side view vertical escape.
  • the respective nozzle circles 34 can also have nozzles 33 with different nozzle lengths.
  • FIG. 10 is a perspective longitudinal sectional view of the housing part 10a according to FIG Fig. 1 shown.
  • the furnace housing 10, the housing part 10a and the nozzle field 30 are as in FIG Fig. 1 executed as described above.
  • the arrangement of the nozzle field 30 and of the fan 22 in the furnace housing 10 or housing part 10a also corresponds to FIG Fig. 2 the arrangement of the nozzle field 30 and the fan 22 as in FIG Fig. 1 described above.
  • the housing part 10a has a device for convective heat transfer 20.
  • the device for convective heat transfer 20 comprises a heating device 21 and a fan 22.
  • the device for convective heat transfer 20 also comprises a plurality of heating devices 21 and / or a plurality of fans 22.
  • the fan 22 has a drive, in particular an electric motor, which is arranged outside the furnace housing 10.
  • the drive is coupled directly to the fan 22 in a known manner.
  • the drive is connected to the fan 22 by means of a belt drive or a transmission.
  • a rotor of the fan 22 is arranged in the furnace housing 10.
  • the fan 22 is formed by a radial fan 27.
  • the radial fan 27 has several flow channels 26 which are arranged on the pressure side 24 of the radial fan 27.
  • the flow channels 26 are arranged radially circumferentially directly on the radial fan 27.
  • the flow channels 26 on the radial fan 27 are arranged completely radially circumferentially.
  • the flow channels 26 can also be arranged on the radial fan 27 in a partially radial manner.
  • the heating device 21 is assigned to the radial fan 27.
  • a plurality of heating devices 21 can be assigned to the radial fan 27.
  • the heating device 21 is arranged concentrically to the radial fan 27 in a pressure channel 25 between the furnace housing 10 and the radial fan 27.
  • the heating device 21 is on the pressure side 24 of the radial fan 27 is arranged in the pressure channel 25 directly behind the flow channels 26.
  • the heating device 21 is formed by a heating line 28 for a gaseous heating medium.
  • the heating line 28 is arranged around the radial fan 27 in the pressure channel.
  • the heating line 28 is formed by a pipe, in particular by a steel pipe.
  • the tube can be designed as a segment pipeline.
  • the heating line 28 can also be formed by a hose, in particular a flexible steel hose.
  • the heating line 28 can also be formed by a different design and from different materials.
  • the heating line 28 is connected to an inlet (not shown) for an externally heated heat transfer medium, in particular that for gaseous heating medium, which heats the heating line 28.
  • an externally heated heat transfer medium in particular that for gaseous heating medium, which heats the heating line 28.
  • hot air and / or hot protective gas and / or hot exhaust gases are used as the externally heated heat transfer medium.
  • the pressure channel 25 is formed on the pressure side 24 of the radial fan 27.
  • the pressure channel 25 is formed by a rear wall, a radially circumferential side wall and the nozzle field 30. Furthermore, the pressure channel 25 is fluidly connected to the receiving space 11 through the nozzles 33 of the nozzle field 30. The pressure channel 25 is thus delimited on the side facing the receiving space 11 by the nozzle plate 32 of the nozzle field 30.
  • the nozzle field 30 is therefore also arranged on the pressure side 24 of the fan 27.
  • the heat transfer medium is sucked in through the suction channel 31 of the nozzle array 30 from the receiving space 11 by the radial fan 27.
  • One end of the radial fan 27 forms the suction side 23.
  • the heat transfer medium is then deflected and accelerated in a radial direction to the suction direction of the heat transfer medium by the radial fan 27.
  • the heat transfer medium is passed through the flow channels 26 directly to the heating device 21. This advantageously increases the efficiency of the heat absorption of the heat transfer medium from the heating device 21.
  • the heat transfer medium is thus in the pressure channel 25 through the Heating device 21 heated.
  • the heat transfer medium is also compressed by the radial fan 27 in the pressure channel 25.
  • the heated heat transfer medium is then passed through the nozzles 33 of the nozzle field 30 for convective heat transfer to the furnace material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

  • Die Erfindung betrifft einen Chargenofen für Glühgut und ein Verfahren zur Wärmebehandlung eines Ofengutes. Ein Chargenofen gemäß dem Oberbegriff des Patentanspruchs 1 ist beispielsweise aus DE 42 43 127 A1 bekannt.
  • Im Industrieofenbau wird zwischen Durchlauföfen und Chargenöfen unterschieden. Chargenöfen weisen einen abgeschlossenen Ofenraum auf, in dem eine einzelne Charge wärmebehandelt wird. Beispiele für Chargenöfen sind Ein-Coil-Öfen, die eine flexible und individuelle Wärmebehandlung einzelner Coils ermöglichen. Ein weiteres Beispiel für einen Chargenofen sind sogenannte Kammeröfen, die zur Wärmebehandlung von Coils, Pressbolzen und Walzbarren eingesetzt werden.
  • Der aus der eingangs genannten DE 42 43 127 A1 bekannte Chargenofen weist im Wesentlichen einen Ventilator, ein Heizaggregat, Düsenkästen zur Führung des Heißgasstromes sowie Heißgasdüsen auf. Die Heißgasdüsen sind dabei in Düsenplatten zur Erwärmung des Coils zusammengefasst. Um eine gleichmäßige Temperaturverteilung am Coil zu ermöglichen und lokale Übertemperaturen am Coil zu vermeiden, werden Coil und Heißgasstrom relativ zueinander bewegt. Die Relativbewegung von Coil und dem Heißgasstrom erfolgt durch außerhalb des Ofens angeordneter drehbarer Lagerböcke oder durch ein Pendelschwingungssystem, bei dem das Coil und/oder die Düsenplatten mit angeschlossen werden können.
  • Generell sind die bekannten Kammeröfen und Ein-Coil-Öfen aufwändig aufgebaut und relativ groß, was zu entsprechend großen Energieverlusten führt bzw. entsprechend umfangreiche Wärmedämmmaßnahmen erfordert.
  • CN 202 709 720 U beschreibt einen Haubenofen zum Glühen eines Kupferkuchens. Der Haubenofen umfasst einen Aufnahmeraum, einen Ventilator und mehrere Beladeschalen für den Kupferkuchen. Die Beladeschalen weisen eine zentrale Zirkulationsöffnung, die auf der Saugseite des Ventilators angeordnet ist. Des Weiteren weist die Beladeschale eine Vielzahl von Belüftungsrohren auf, um eine gleichmäßige Erwärmung des darauf gesetzten Kupferkuchens zu erreichen.
  • Aus der US 7 264 467 B1 ein Konvektionsofen mit einem Ventilator und Turboströmungs-Luftdüsen bekannt, bei dem durch Luftumwälzung ein oder mehrere Werkstücke im Ofenraum erwärmt werden. Die Luftdüsen sind an einem Düsenkanal angeordnet, der mit dem Ventilator verbunden ist. Bei der Erwärmung wird erwärmte Luft über die Luftdüsen in einen Mischabschnitt geblasen, in dem sich die Ofenraumluft mit der erwärmten Luft vermischt, und anschließend durch eine Umwälzung an die Werkstücke geführt wird.
  • Der Erfindung liegt die Aufgabe zu Grunde, einen Chargenofen für Glühgut anzugeben, der durch einen verbesserten Aufbau eine kompakte Ofengröße ermöglicht und durch eine erhöhte Effizienz der Wärmebehandlung Energieverluste reduziert. Der Erfindung liegt ferner die Aufgabe zu Grunde ein Verfahren zur Wärmebehandlung eines Ofengutes anzugeben.
  • Erfindungsgemäß wird diese Aufgabe im Hinblick auf den Chargenofen durch den Gegenstand des Anspruchs 1 gelöst. Hinsichtlich des Verfahrens zur Wärmebehandlung wird die vorstehend genannte Aufgabe durch den Gegenstand des Anspruchs 19 gelöst.
  • Die Erfindung beruht auf dem Gedanken einen Chargenofen für Glühgut mit einem Ofengehäuse anzugeben, das eine verschließbare Beschickungsöffnung, einen Aufnahmeraum für Ofengut und eine Einrichtung zur konvektiven Wärmeübertragung auf das Ofengut durch ein Wärmeübertragungsmedium aufweist. Die Einrichtung zur konvektiven Wärmeübertragung umfasst wenigstens eine Beheizungseinrichtung und wenigstens einen Ventilator, der im Ofengehäuse angeordnet ist. Der Aufnahmeraum ist auf der Saugseite des Ventilators angeordnet und wenigstens ein Düsenfeld ist auf der Druckseite des Ventilators angeordnet. Dabei weist das Düsenfeld eine zentrale Öffnung auf, die einen Ansaugkanal des Ventilators bildet. Das Düsenfeld steht radial über den Ventilator vor, sodass ein Druckkanal ausgebildet ist. Das Düsenfeld weist Düsen auf, durch die die Druckseite des Ventilators und der Druckkanal mit dem Aufnahmeraum fluidverbunden sind, um das Ofengut im Aufnahmeraum zur Wärmeübertragung mit dem Wärmeübertragungsmedium direkt anzuströmen.
  • Die Erfindung hat verschiedene Vorteile:
    Durch das Düsenfeld auf der Druckseite des Ventilators wird das Wärmeübertragungsmedium gezielt auf das Ofengut bzw. auf ein Coil geleitet. Das Düsenfeld steht dabei über den Ventilator radial vor, sodass auf der Druckseite des Ventilators ein Druckkanal ausgebildet ist. In dem Druckkanal wird das durch den Ventilator beschleunigte Wärmeübertragungsmedium verdichtet. Das Wärmeübertragungsmedium strömt anschließend mit hoher Geschwindigkeit durch das Düsenfeld in den Aufnahmeraum direkt auf das Ofengut bzw. Coil. Durch die Erhöhung der Geschwindigkeit des Wärmeübertragungsmediums steigt der Wirkungsgrad der Einrichtung zur konvektiven Wärmeübertragung auf das Ofengut. Somit wird die Effizienz des Chargenofens bei der Wärmebehandlung maßgeblich erhöht. Dies ermöglicht ferner eine Reduzierung der benötigten Energie für die Wärmebehandlung.
  • Das Düsenfeld umfasst den Ansaugkanal, der auf der Saugseite des Ventilators angeordnet ist. Ferner begrenzt das Düsenfeld den Druckkanal auf einer dem Aufnahmeraum zugewandten Seite des Druckkanals. Das Düsenfeld weist Düsen auf, durch die die Druckseite des Ventilators und somit der Druckkanal mit dem Aufnahmeraum fluidverbunden sind. Das Düsenfeld ist somit auf der Saugseite des Ventilators angeordnet und auf der Druckseite des Ventilators angeordnet. Dadurch wird vorteilhafterweise eine kompakte Bauweise des Chargenofens ermöglicht, wodurch sich der Platzbedarf des Ofens und die zu isolierende Außenfläche des Ofens verringert. Damit werden Wärmeverluste bzw. Energieverluste ohne zusätzliche Wärmedämmmaßnahmen gesenkt. Ferner werden aufgrund des effizient genutzten Ofenvolumens anfallende Spülverluste bei der Verwendung einer Schutzgasatmosphäre verringert.
  • Als Wärmeübertragungsmedium kommen in Abhängigkeit vom Ofengut bspw. Heißluft, Abgas oder Schutzgas zum Einsatz.
  • Der erfindungsgemäße Chargenofen eignet sich besonders gut zur Wärmebehandlung von Aluminiumglühgut, insbesondere Aluminiumcoils.
  • Die Beheizungseinrichtung kann dabei dem Ventilator zugeordnet sein. Beispielsweise ist die Beheizungseinrichtung direkt hinter der Druckseite des Ventilators angeordnet. Die Beheizungseinrichtung kann auch vor der Saugseite des Ventilators angeordnet sein. Es ist auch möglich, dass eine Beheizungseinrichtung, insbesondere eine erste Beheizungseinrichtung, direkt vor der Saugseite des Ventilators und/oder eine Beheizungseinrichtung, insbesondere eine zweite Beheizungseinrichtung, direkt hinter der Druckseite des Ventilators angeordnet sind. Die Beheizungseinrichtung ist ebenso wie der Ventilator im Ofengehäuse angeordnet.
  • Ist die Beheizungseinrichtung direkt hinter der Druckseite des Ventilators angeordnet, strömt das kühle Wärmeübertragungsmedium durch den Ansaugkanal des Düsenfeldes in den Ventilator und tritt auf der Druckseite aus dem Ventilator wieder aus. Anschließend wird das Wärmeübertragungsmedium an die Beheizungseinrichtung geleitet und nimmt Wärme auf. Das Wärmeübertragungsmedium strömt danach durch das Düsenfeld in den Aufnahmeraum. Das Düsenfeld ist dabei derart ausgebildet, dass das erwärmte Wärmeübertragungsmedium auf das im Aufnahmeraum befindliche Ofengut geleitet wird.
  • Bei gasbeheizten Ofenanlagen wird prinzipiell zwischen zwei möglichen Beheizungsarten unterschieden. Bei einer Beheizungsart feuert der Brenner direkt in den Ofen. Hierbei spricht man von einer direkten Beheizungseinrichtung, da die Abgase das Wärmeübertragungsmedium darstellen. Bei der indirekten Beheizungseinrichtung feuert der Brenner innerhalb eines geschlossenen Kreislaufs in ein Rohr, insbesondere ein Stahlrohr. Dabei überträgt das heiße Rohr die Wärme auf das Wärmeübertragungsmedium. Das bedeutet, dass kein Abgas ins Ofeninnere gelangt. Im Aluminiumsektor sind beide Arten vertreten.
  • Der im Ofengehäuse angeordnete Ventilator führt dazu, dass im Vergleich zu den bekannten Düsensystemen kürzere Strömungswege und damit geringere Druckverluste im Ofengehäuse realisiert werden.
  • Bevorzugte Ausführungsformen der Erfindung sind in den Unteransprüchen angegeben.
  • Bei einer besonders bevorzugten Ausführungsform sind der Ventilator und das Düsenfeld konzentrisch zueinander angeordnet. Dies hat den Vorteil, dass eine gleichmäßige Volumenverteilung des Wärmeübertragungsmediums auf der Druckseite des Ventilators ermöglicht wird. Das Wärmeübertragungsmedium wird somit gleichmäßig durch das Düsenfeld auf das Ofengut geleitet, wodurch eine homogene Wärmebehandlung erfolgt.
  • Bei einer bevorzugten Ausführungsform ist die Beheizungseinrichtung konzentrisch zu dem Ventilator in einem Druckkanal zwischen dem Ventilator und dem Ofengehäuse angeordnet. Die Beheizungseinrichtung für das Wärmeübertragungsmedium ist dabei direkt hinter der Druckseite des Ventilators im Ofengehäuse angeordnet. Der Druckkanal ist somit auf der Druckseite des Ventilators ausgebildet. Hierbei wird vorteilhafterweise das Wärmeübertragungsmedium durch den Ventilator direkt an die Beheizungseinrichtung geleitet. Dadurch werden Druckverluste verringert und die Effizienz der Wärmeaufnahme des Wärmeübertragungsmediums erhöht.
  • Vorzugsweise schließt das Düsenfeld an einer Innenwand des Ofengehäuses fluiddicht ab. Der Druckkanal bildet somit einen geschlossenen Bereich auf der Druckseite des Ventilators, wodurch eine hohe Verdichtung des Wärmeübertragungsmediums ermöglicht wird. Dies hat den Vorteil, dass das Wärmeübertragungsmedium unter hohem Druck und somit mit hoher Geschwindigkeit durch das Düsenfeld in den Aufnahmeraum auf das Ofengut bzw. Coil geleitet wird. Der Effizienz der konvektiven Wärmeübertragung wird dadurch erhöht.
  • Weiter vorzugsweise ist das Düsenfeld direkt vor der Saugseite des Ventilators angeordnet. Dies ermöglicht eine kompakte Bauweise des Chargenofens, wodurch der Platzbedarf und die zu isolierende Außenfläche des Ofens reduziert wird.
  • Das Düsenfeld weist eine trichterförmige Düsenplatte auf. Durch die trichterförmige Ausbildung der Düsenplatte wird das beschleunigte Wärmeübertragungsmedium von der Druckseite des Ventilators auf das Ofengut fokussiert geleitet. Das Düsenfeld ist somit auch auf der Druckseite des Ventilators angeordnet. Vorteilhaft wird dadurch eine gezielte Wärmebehandlung des Ofenguts bzw. Coils ermöglicht.
  • Die Düsenplatte ist vorzugsweise kreisringförmig ausgebildet. Die Düsenplatte umfasst dabei die zentrale Öffnung, die einen Ansaugkanal des Ventilators bildet.
  • Bei einer bevorzugten Ausführungsform weist die Düsenplatte mehrere rohrförmige und/oder schlitzförmige Düsen auf, die um eine Mitte der Düsenplatte auf einer Innenseite in wenigstens einem Düsenbereich kreisförmig angeordnet sind. Die Innenseite der Düsenplatte ist dabei dem Aufnahmeraum zugewandt. Die rohrförmigen und schlitzförmigen Düsen haben den Vorteil, dass durch jede Düse eine Bündelung und eine Erhöhung der Geschwindigkeit des Wärmeübertragungsmediums erfolgt. Somit wird eine gezielte Wärmebehandlung des Ofengutes ermöglicht und die Effizienz der konvektiven Wärmeübertragung erhöht.
  • Vorzugsweise ist die Druckseite des Ventilators durch die rohrförmigen und/oder schlitzförmigen Düsen mit dem Aufnahmeraum fluidverbunden. Durch die Verbindung der Druckseite des Ventilators mit dem Aufnahmeraum wird eine Anströmung des Ofengutes durch das Wärmeübertragungsmedium und gleichermaßen eine Zirkulation des Wärmeübertragungsmediums im Ofengehäuse ermöglicht.
  • Der Ansaugkanal des Düsenfeldes ist der Saugseite des Ventilators direkt gegenüber angeordnet. Dies hat den Vorteil, dass eine kompakte und geradlinige Bauform des Ansaugkanals ermöglicht wird. Somit werden die Druckverluste beim Ansaugen des Wärmeübertragungsmediums verringert. Der Ansaugkanal ist zwischen dem Ventilator und dem Aufnahmeraum für die Zirkulation des Wärmeübertragungsmediums ausgebildet. Durch den Ansaugkanal wird das Wärmeübertragungsmedium durch den Ventilator angesaugt. Durch die zentrale Ausbildung des Ansaugkanals wird vorteilhafterweise eine Strömungsführung des Wärmeübertragungsmediums bei der Wärmebehandlung des Ofengutes im Ofengehäuse verbessert.
  • Bei einer besonders bevorzugten Ausführungsform sind wenigstens zwei Ventilatoren in Gegenüberstellung auf beiden Seiten des Aufnahmeraumes angeordnet. Jedem Ventilator ist wenigstens eine Beheizungseinrichtung und/oder wenigstens ein Einlass für ein extern erwärmtes Wärmeübertragungsmedium zugeordnet. Die Beheizungseinrichtung bzw. der Einlass für das extern erwärmte Wärmeübertragungsmedium und der jeweils zugeordnete Ventilator bilden eine Einheit, die die Einrichtung zur konvektiven Wärmeübertragung bildet. Diese Ausführungsform hat den Vorteil, dass das Ofengut von zwei Seiten gleichmäßig erwärmt wird. Die Ausführungsform eignet sich besonders zum Erwärmen von Coils, insbesondere Aluminiumcoils, sowie ferner für andere Ofengüter.
  • Vorzugsweise weist jeweils ein Ventilator wenigstens einen Strömungskanal auf, der auf der Druckseite des Ventilators angeordnet ist. Der Strömungskanal leitet das Wärmeübertragungsmedium an wenigstens eine Beheizungseinrichtung. Der Ventilator kann auch mehrere Strömungskanäle aufweisen, die am Ventilator radial umlaufend angeordnet sind. Vorteilhafterweise wird das durch den Ventilator beschleunigte Wärmeübertragungsmedium durch die Strömungskanäle gezielt an die Beheizungseinrichtung geführt bzw. geleitet. Dadurch wird die Effizienz der Wärmeaufnahme des Wärmeübertragungsmediums von der Beheizungseinrichtung erhöht.
  • Weiter vorzugsweise ist wenigstens ein Ventilator durch einen Radialventilator gebildet ist. Dadurch wird ermöglicht, dass durch den Radialventilator das Wärmeübertragungsmedium aus dem Aufnahmeraum gesaugt und radial zur Ansaugrichtung durch den Ventilator wieder abgegeben wird. Der Radialventilator kann somit an einem Gehäuseende des Ofengehäuses angeordnet werden, da das Wärmeübertragungsmedium aus dem Aufnahmeraum bzw. von vorne angesaugt wird. Vorteilhafterweise resultiert daraus ein kompakter Aufbau der Einrichtung zur konvektiven Wärmübertragung und somit des Chargenofens.
  • Wenigstens ein Ventilator weist einen Antrieb auf, der außerhalb des Ofengehäuses angeordnet ist. Dies hat den Vorteil, dass der Ventilatorantrieb einer verhältnismäßig geringen Wärmebelastung ausgesetzt ist. Für den Antrieb sind somit keine besonderen wärmedämmtechnischen oder wärmeabführenden Maßnahmen erforderlich.
  • Der Aufnahmeraum ist im Wesentlichen hohlzylindrisch ausgebildet, wobei die Ventilatoren an den Stirnseiten des Aufnahmeraumes angeordnet sind. Dadurch wird eine besondere kompakte Bauweise des Chargenofens erreicht, die eine schnelle, effiziente und homogene Erwärmung des Ofengutes ermöglicht.
  • Bei einer weiteren bevorzugten Ausführungsform weist das Ofengehäuse wenigstens einen Einlass für ein extern erwärmtes Wärmeübertragungsmedium auf. Die Position des Einlasses für das extern erwärmte Wärmeübertragungsmedium kann sich an einer beliebigen Stelle des Ofens befinden. Der Einlass ermöglicht dabei den Zugang zum Ofeninneren bzw. zum Aufnahmeraum für das Ofengut, so dass das extern erwärmte Wärmeübertragungsmedium in den Aufnahmeraum gelangen kann. Beispielsweise werden als extern erwärmtes Wärmeübertragungsmedium Abgase einer anderen Ofenanlage verwendet. Vorzugsweise ist der Einlass für das extern erwärmte Wärmeübertragungsmedium direkt hinter der Druckseite des Ventilators angeordnet. Die Erfindung ist dabei nicht auf diese Anordnung eingeschränkt.
  • Durch den Einlass kann ein Wärmeübertragungsmedium, vorzugsweise Heißluft und/oder heißes Schutzgas und/oder bei Verwendung eines Strahlrohres auch heiße Abgase dem Chargenofen zugeführt werden, dass extern, d.h. außerhalb des Ofens erwärmt wird. Es ist möglich, einen oder mehrere Einlässe für das extern erwärmte Wärmeübertragungsmedium mit einer oder mehreren Beheizungseinrichtungen zu kombinieren, bspw. um ein vorgewärmtes Wärmeübertragungsmedium im Ofen durch die Beheizungseinrichtung auf die gewünschte Endtemperatur zu bringen.
  • Bei einer bevorzugten Ausführungsform weist die Beheizungseinrichtung eine Heizleitung für eine gasförmiges Heizmedium auf. Die Heizleitung kann durch ein Stahlrohr, insbesondere durch ein Segmentrohr gebildet sein. Die Heizleitung kann dabei im Druckkanal den Ventilator umlaufend angeordnet sein. Die Heizleitung ist vorzugsweise auf der Druckseite des Ventilators angeordnet. Durch die Heizleitung kann vorteilhafterweise das extern erwärmte Wärmeübertragungsmedium geführt werden, wodurch die Heizleitung erwärmt wird. Durch die erwärmte Heizleitung wird ferner das im Ofengehäuse zirkulierende Wärmeübertragungsmedium erwärmt.
  • Bei einem erfindungsgemäßen Verfahren zur Wärmebehandlung eines Ofengutes mit einem Chargenofen wird das Ofengut in einem Aufnahmeraum des Chargenofens angeordnet. Ein Wärmeübertragungsmedium wird durch einen Ventilator, insbesondere einen Radialventilator, an eine Beheizungseinrichtung geleitet. Dabei wird das Wärmeübertragungsmedium durch die Beheizungseinrichtung erwärmt. Anschließend wird das erwärmte Wärmeübertragungsmedium durch ein Düsenfeld auf das Ofengut zur konvektiven Wärmeübertragung geleitet.
  • Zu den Vorteilen des Verfahrens zur Wärmebehandlung eines Ofengutes mit einem erfindungsgemäßen Chargenofen wird auf die im Zusammenhang mit dem Chargenofen erläuterten Vorteile verwiesen. Darüber hinaus kann das Verfahren alternativ oder zusätzlich einzelne oder eine Kombination mehrerer zuvor in Bezug auf den Chargenofen genannte Merkmale aufweisen.
  • Die Erfindung wird nachstehend mit weiteren Einzelheiten unter Bezug auf die beigefügten Zeichnungen näher erläutert. Die dargestellten Ausführungsformen stellen Beispiele dar, wie der erfindungsgemäße Chargenofen ausgestaltet sein kann.
  • In diesen zeigen,
  • Fig. 1
    eine perspektivische Ansicht eines Gehäuseteils eines Chargenofens mit einem Düsenfeld nach einem erfindungsgemäßen Ausführungsbeispiel, und
    Fig. 2
    eine perspektivische Längsschnittansicht durch das Gehäuseteil des Chargenofens nach Fig. 1.
  • Ein Chargenofen mit einem Gehäuseteil 10a des Ofengehäuses gemäß Fig. 1 wird vorzugsweise für die Wärmebehandlung von Aluminiumglühgut, beispielsweise von Aluminiumcoils eingesetzt. Der Chargenofen ist allgemein für Coils (materialunabhängig) oder anderes Glühgut einsetzbar. Bei dem Chargenofen handelt es sich konkret um einen Ein-Coil-Ofen, der zur Wärmebehandlung einzelner Coils angepasst ist. Die Erfindung ist auch auf Einkammeröfen anwendbar, die zur Wärmebehandlung von Pressbolzen, Walzbarren oder Coils geeignet sind.
  • Der Chargenofen weist ein Ofengehäuse 10 auf, das im Wesentlichen einen Aufnahmeraum 11, eine nicht dargestellte verschließbare Beschickungsöffnung und eine oder mehrere Einrichtungen zur konvektiven Wärmeübertragung 20 auf das Ofengut durch ein Wärmeübertragungsmedium umfasst. Die jeweilige Einrichtung zur konvektiven Wärmeübertragung 20 weist dabei eine Beheizungseinrichtung 21 und einen Ventilator 22 auf. Auf die Einrichtung zur konvektiven Wärmeübertragung 20 wird später näher eingegangen.
  • Das Ofengehäuse 10 ist hohlzylinderförmig ausgebildet, wobei ein Gehäuseteil 10a gemäß Fig. 1 jeweils an einem axialen Ende des Ofengehäuses 10 angeordnet ist. Ferner kann das Ofengehäuse 10 auch durch eine andere Ofenform gebildet sein. Beispielsweise weist dabei das Ofengehäuse 10 eine quaderförmige Ofenform, insbesondere eine kastenförmige Ofenform auf. Das Ofengehäuse 10 kann auch nur ein Gehäuseteil 10a bspw. an einem axialen Ende des Ofengehäuses 10 aufweisen. Das Ofengehäuse 10 umfasst eine Stahlbaukonstruktion zur Gehäuseversteifung, die an einer Außenfläche des Ofengehäuses 10 angeordnet ist.
  • Das Gehäuseteil 10a weist in einem Umfangsbereich an einer Stirnseite des Gehäuseteils 10a eine umlaufende Formkontur auf. Die Formkontur greift im geschlossenen Zustand des Ofengehäuses 10, insbesondere im Betrieb des Chargenofens, in eine komplementäre Formkontur eines nicht dargestellten weiteren Gehäuseteils, insbesondere eines Gehäusemittelteils ein. Die umlaufende Formkontur ermöglicht eine dichte Verbindung bspw. des Gehäuseteils 10a mit dem Gehäusemittelteil. Das Gehäuseteil 10a weist an der Formkontur zwei Zylinder zur Sicherung der dichten Verbindung zwischen dem Gehäuseteil 10a und dem Gehäusemittelteil auf. Das Gehäuseteil 10a kann an der Formkontur auch mehrere Zylinder aufweisen. Die Zylinder können dabei jeweils durch einen Sicherungszylinder, insbesondere Verschlusszylinder und/oder Verriegelungszylinder gebildet sein. Des Weiteren weist das Gehäuseteil 10a einen Einlass für ein extern erwärmtes Wärmübertragungsmedium auf. Ebenso umfasst das Gehäuseteil 10a einen Austritt 12 für eine Abführung von Brennergasen in eine Abgasleitung.
  • Ferner weist das Ofengehäuse 10 eine Wärmedämmung auf, die innen am Ofengehäuse 10 angeordnet ist. Die Wärmedämmung schützt das Ofengehäuse 10 vor Beschädigung durch unzulässige Temperatureinwirkung bei der Wärmebehandlung des Ofengutes. Des Weiteren werden durch die Wärmedämmung Energieverluste bei der Wärmebehandlung reduziert.
  • Das Ofengehäuse 10 kann in unterschiedlichen nicht dargestellten Varianten ausgebildet sein. Bei einer ersten Variante kann das Ofengehäuse 10 dreigeteilt mit einem auswechselbaren Gehäusemittelteil, insbesondere einem Mittelstück, ausgebildet sein. Dabei ist das Gehäusemittelteil von den beiden seitlichen Gehäuseteilen 10a abgetrennt, sodass das Gehäusemittelteil ausgetauscht werden kann. Der Chargenofen kann daher an unterschiedliche Glühgutteile, insbesondere unterschiedliche Coils, der Länge nach angepasst werden.
  • Bei einer zweiten Variante kann das Ofengehäuse 10 ebenso dreiteilig ausgebildet sein. Im Unterschied zur ersten Variante kann bei der zweiten Variante das Gehäusemittelteil durch ein Bodenstück gebildet sein. Das Bodenstück kann dabei ein Transportmittel, insbesondere Rollen aufweisen, sodass eine Bewegung des Gehäusemittelteils quer zur Längsrichtung des Chargenofens möglich ist. Die seitlichen Gehäuseteile 10a weisen dabei jeweils eine Gehäuseverlängerung in Längsrichtung des Chargenofens auf. Die Gehäuseverlängerungen erstrecken sich dabei in Richtung des Aufnahmeraums 11. Im geschlossenen Zustand des Chargenofens bilden die Gehäuseverlängerungen mit dem Bodenstück den Aufnahmeraum 11, wobei der Aufnahmeraum 11 seitlich durch die Gehäuseteile 10a begrenzt ist. Das Ofengehäuse 10 kann ferner auch in einer anderen Variante geteilt oder einteilig ausgebildet sein.
  • Das Ofengehäuse 10 gemäß Fig. 1 begrenzt daher den Aufnahmeraum 11, in dem im Betrieb des Chargenofens das Ofengut bzw. das Glühgut angeordnet ist. Dabei handelt es sich um einen einzelnen Aufnahmeraum 11. Der Aufnahmeraum 11 kann bei dem Chargenofen mit dem Ofengehäuse 10 mit einem Coil, insbesondere einem Aluminiumcoil beschickt werden. Dazu kann der Aufnahmeraum 11 eine Lagereinrichtung für das Ofengut, insbesondere für das Aluminiumcoil aufweisen. Beispielsweise ist die Lagereinrichtung durch einen Lagerbock oder ein Lagergestänge gebildet. Die Lagereinrichtung kann dabei mit dem Boden des Aufnahmeraums 11 verbunden sein. Beispielsweise ist das Coil auch auf dessen Mantelfläche ablegbar. Das Coil kann auch anders im Aufnahmeraum 11 gelagert sein. Der Aufnahmeraum 11 ist im Wesentlichen hohlzylindrisch ausgebildet und damit in etwa an die Form des zu erwärmenden Coils angepasst. Der Aufnahmeraum 11 bildet im unbeladenen Zustand des Chargenofens einen leeren Freiraum. Der Aufnahmeraum 11 ist dabei durch eine nicht dargestellte verschließbare Beschickungsöffnung zugänglich.
  • Die Beschickungsöffnung kann dabei durch einen Deckel geöffnet bzw. verschlossen werden, der um eine in Längsrichtung des Ofengehäuses 10 verlaufende Längsdrehachse verschwenkt werden kann. Hierbei kann ein Spulengreifer zum Chargieren des Aufnahmeraums 11 zum Einsatz kommen. Diese Ausführung ist besonders für zylindrische Ofengehäuse geeignet. Des Weiteren kann die Beschickungsöffnung durch ein axiales Verschieben der seitlichen Gehäuseteile 10a geöffnet bzw. geschlossen werden, sodass der Aufnahmeraum 11 durch einen C-Haken oder einen Stapler chargiert werden kann. Beispielsweise ist bei einer weiteren Ausführung des Ofengehäuses 10 ein seitliches Gehäuseteil 10a oder beide seitlichen Gehäuseteile 10a um jeweils eine quer zur Längsrichtung des Ofengehäuses 10 verlaufende Querdrehachse verschwenkbar. Die Beschickungsöffnung kann auch durch eine weitere nicht genannte Ausführung eines Deckels oder eines Gehäuseelements geöffnet bzw. geschlossen werden.
  • In der perspektivischen Ansicht gemäß Fig. 1 ist ferner der Ventilator 22 der Einrichtung zur konvektiven Wärmeübertragung 20 und ein Düsenfeld 30 gezeigt. Das Düsenfeld 30 ist auf einer nicht dargestellten Druckseite 24 des Ventilators 22 angeordnet. Des Weiteren weist das Düsenfeld 30 eine zentrale Öffnung auf, die einen Ansaugkanal 31 des Ventilators 22 bildet. Dabei sind der Ventilator 22 und das Düsenfeld 30 konzentrisch zueinander angeordnet. Der Ansaugkanal 31 ist somit zwischen dem Ventilator 22 und dem Aufnahmeraum 11 für die Zirkulation des Wärmeübertragungsmediums ausgebildet. Ferner kann der Ansaugkanal 31 auch durch eine Öffnung gebildet sein, die an einer beliebigen Position, insbesondere einer dezentralen Position, in dem Düsenfeld 30 ausgebildet ist. Ferner können der Ventilator 22 und das Düsenfeld 30 auch exzentrisch zueinander angeordnet sein. Das Düsenfeld 30 steht radial über den Ventilator 22 vor. Das Düsenfeld 30 ist dabei derart ausgebildet, dass das Düsenfeld 30 an der Innenwand des Ofengehäuses 10 fluiddicht abschließt. Beispielsweise ist das Düsenfeld 30 derart ausgebildet, dass ein Abstand zwischen einer radialen Außenseite, insbesondere einem Umfang, des Düsenfeldes 30 und der Innenwand des Ofengehäuses 10 ausgebildet ist. Der Abstand zwischen dem Düsenfeld 30 und der Innenwand des Ofengehäuses 10 kann durch einen Ringspalt gebildet sein.
  • Das Düsenfeld 30 ist direkt vor der Saugseite 23 des Ventilators 22 angeordnet. Dies ermöglicht einen kompakten konstruktiven Aufbau des Ventilators 22 mit dem Düsenfeld 30 im Ofengehäuse 10. Vorteilhafterweise kann dadurch der Aufnahmeraum 11 bei gleichen Abmessungen des Ofengehäuses 10 vergrößert oder die Abmessungen des Ofengehäuses 10 reduziert werden. Somit kann der Chargenofen in seiner Gesamtgröße verkleinert werden.
  • Der Ventilator 22 ist durch den Ansaugkanal 31 des Düsenfeldes 30 mit dem Aufnahmeraum 11 des Ofengutes fluidverbunden. Der Ansaugkanal 31 des Düsenfeldes 30 ist somit der Saugseite 23 des Ventilators 22 direkt gegenüber angeordnet. Das Düsenfeld 30 gemäß Fig. 1 weist eine trichterförmige Düsenplatte 32 auf. Die Düsenplatte 32 ist dabei kreisringförmig ausgebildet. Die Düsenplatte 32 kann auch durch andere geometrische Formen gebildet sein. Ferner umfasst die Düsenplatte 32 mehrere rohrförmige Düsen 33. Die rohrförmigen Düsen 33 sind dabei um eine Mitte auf einer Innenseite der Düsenplatte 32 angeordnet. Beispielsweise weisen die Düsen 33 auch eine viereckige oder mehreckige Querschnittsform auf. Insbesondere können die Düsen 33 auch schlitzförmig ausgebildet sein. Die Düsen 33 können auch andere Querschnittsformen aufweisen. Des Weiteren können die Düsen 33 zu einer Seite hin verjüngt ausgebildet sein. Beispielsweise weist die Düsenplatte 32 Düsen 33 mit unterschiedlichen Querschnittsformen und/oder Düsenlängen auf.
  • In der nachfolgenden Beschreibung werden die Düsenkreise 34a, 34b, 34c bei identischen oder annähernd identischen Eigenschaften als Düsenkreise 34 bezeichnet.
  • Gemäß Fig. 1 sind eine Vielzahl von rohrförmigen Düsen 33 in mehreren kreisförmigen Düsenbereichen 35 auf der Innenseite der Düsenplatte 32 angeordnet. Die Düsenbereiche 35 können dabei auch andersförmig ausgebildet sein. Beispielsweise sind die Düsenbereiche 35 sternförmig ausgebildet. Insbesondere können die Düsenbereiche 35 auch parallel zueinander ausgebildet sein. Die jeweiligen Düsen 33 können daher auch an unterschiedlichen Positionen auf der Düsenplatte 32 angeordnet sein. Die Düsenbereiche 35 sind, wie in Fig. 1 ersichtlich, durch einen inneren Düsenkreis 34a, einen mittlere Düsenkreis 34b und einen äußeren Düsenkreis 34c gebildet. Der innere Düsenkreis 34a ist dabei auf der Düsenplatte 32 an den Ansaugkanal 31 des Ventilators 22 angrenzend angeordnet. Der äußere Düsenkreis 34c ist auf der Düsenplatte 32 zur Innenwand des Ofengehäuses 10 angrenzend angeordnet. Der mittlere Düsenkreis 34b ist zwischen dem inneren Düsenkreis 34a und dem äußeren Düsenkreis 34c dazwischenliegend auf der Düsenplatte 32 angeordnet. Die Düsenkreise 34 weisen dabei jeweils einem Abstand zueinander auf. Mit anderen Worten weisen die Düsenkreise 34 unterschiedliche Durchmesser auf.
  • Die Innenseite der Düsenplatte 32 ist dem Aufnahmeraum 11 zugewandt. Somit ist eine Außenseite der Düsenplatte 32 der Druckseite des Ventilators 22 zugewandt. Die Düsenplatte 32 ist derart trichterförmig ausgebildet, dass bei der Wärmebehandlung des Ofengutes die Düsen 33 jeweils eines Düsenbereichs 35 direkt auf das Ofengut gerichtet sind. Die jeweiligen Düsenkreise 34 weisen Düsen 33 mit einer identischen Düsenlänge auf. Die Düsen 33 des inneren Düsenkreises 34a sind dabei länger ausgebildet als die Düsen 33 des mittleren Düsenkreises 34b. Die Düsen 33 des mittleren Düsenkreises 34b sind dabei länger ausgebildet als die Düsen 33 des äußeren Düsenkreises 34c. Mit anderen Worten verringert sich die Länge der Düsen 33 von der Mitte der Düsenplatte 32 ausgehend nach außen hin zum Umfang der Düsenplatte 32. Die Längen der Düsen 33 der Düsenkreise 34 sind dabei derart ausgebildet, dass die Düsen 33 in einer nicht dargestellten Seitenansicht des Düsenfeldes 30 mit deren freien Düsenenden vertikal fluchtend zueinander ausgebildet sind. Mit anderen Worten bilden die jeweiligen freien Enden der Düsen 33 in der Seitenansicht eine vertikale Flucht. Die jeweiligen Düsenkreise 34 können auch Düsen 33 mit unterschiedlich Düsenlängen aufweisen.
  • Gemäß Fig. 2 ist eine perspektivische Längsschnittansicht des Gehäuseteils 10a gemäß Fig. 1 gezeigt. Das Ofengehäuse 10, das Gehäuseteil 10a sowie das Düsenfeld 30 ist dabei wie in Fig. 1 vorstehend beschrieben ausgeführt. Ebenso entspricht die Anordnung des Düsenfeldes 30 sowie des Ventilators 22 im Ofengehäuse 10 bzw. Gehäuseteil 10a gemäß Fig. 2 der Anordnung des Düsenfeldes 30 und des Ventilators 22 wie in Fig. 1 vorstehend beschrieben.
  • Wie in Fig. 2 gezeigt, weist das Gehäuseteil 10a eine Einrichtung zur konvektiven Wärmeübertragung 20 auf. Die Einrichtung zur konvektiven Wärmeübertragung 20 umfasst dabei eine Beheizungseinrichtung 21 und einen Ventilator 22. Beispielsweise umfasst die Einrichtung zur konvektiven Wärmeübertragung 20 auch mehrere Beheizungseinrichtungen 21 und/oder mehrere Ventilatoren 22.
  • Bei dem Gehäuseteil 10a gemäß Fig. 2 weist der Ventilator 22 einen Antrieb, insbesondere einen Elektromotor auf, der außerhalb des Ofengehäuses 10 angeordnet ist. Der Antrieb ist in bekannter Weise direkt mit dem Ventilator 22 gekoppelt. Beispielsweise ist der Antrieb durch einen Riementrieb oder durch ein Getriebe mit dem Ventilator 22 verbunden. Ein Rotor des Ventilators 22 ist dabei im Ofengehäuse 10 angeordnet. Gemäß Fig. 2 ist der Ventilator 22 durch einen Radialventilator 27 gebildet. Der Radialventilator 27 weist mehrere Strömungskanäle 26 auf, die auf der Druckseite 24 des Radialventilators 27 angeordnet sind. Die Strömungskanäle 26 sind dabei direkt am Radialventilator 27 radial umlaufend angeordnet. Beispielsweise sind die Strömungskanäle 26 am Radialventilator 27 vollständig radial umlaufend angeordnet. Die Strömungskanäle 26 können auch am Radialventilator 27 teilweise radial umlaufend angeordnet sein.
  • Dem Radialventilator 27 ist die Beheizungseinrichtung 21 zugeordnet. Dem Radialventilator 27 können dabei mehrere Beheizungseinrichtungen 21 zugeordnet sein. Die Beheizungseinrichtung 21 ist konzentrisch zum Radialventilator 27 in einem Druckkanal 25 zwischen dem Ofengehäuse 10 und dem Radialventilator 27 angeordnet. Die Beheizungseinrichtung 21 ist dabei auf der Druckseite 24 des Radialventilators 27 im Druckkanal 25 direkt hinter den Strömungskanälen 26 angeordnet.
  • Wie in Fig. 2 ersichtlich, ist die Beheizungseinrichtung 21 durch eine Heizleitung 28 für ein gasförmiges Heizmedium gebildet. Die Heizleitung 28 ist dabei im Druckkanal den Radialventilator 27 umlaufend angeordnet. Des Weiteren ist die Heizleitung 28 durch ein Rohr, insbesondere durch ein Stahlrohr gebildet. Das Rohr kann dabei als eine Segmentrohrleitung ausgebildet sein. Die Heizleitung 28 kann auch durch einen Schlauch, insbesondere einen flexiblen Stahlschlauch gebildet sein. Ferner kann die Heizleitung 28 auch durch eine andere Bauform und aus anderen Materialien gebildet sein. Die Heizleitung 28 ist mit einem nicht dargestellten Einlass für ein extern erwärmtes Wärmeübertragungsmedium, insbesondere das für gasförmige Heizmedium verbunden, das die Heizleitung 28 erwärmt. Beispielsweise kommen als extern erwärmtes Wärmeübertragungsmedium Heißluft und/oder heißes Schutzgas und/oder auch heiße Abgase zum Einsatz.
  • Der Druckkanal 25 ist auf der Druckseite 24 des Radialventilators 27 ausgebildet. Der Druckkanal 25 ist durch eine Rückwand, eine radial umlaufende Seitenwand und das Düsenfeld 30 gebildet. Ferner ist der Druckkanal 25 durch die Düsen 33 des Düsenfeldes 30 mit dem Aufnahmeraum 11 fluidverbunden. Der Druckkanal 25 ist somit auf der dem Aufnahmeraum 11 zugewandten Seite durch die Düsenplatte 32 des Düsenfeldes 30 begrenzt. Das Düsenfeld 30 ist daher auch auf der Druckseite 24 des Ventilators 27 angeordnet.
  • Dabei wird im Betrieb des Chargenofens bei der Wärmebehandlung des Ofengutes das Wärmeübertragungsmedium durch den Ansaugkanal 31 des Düsenfeldes 30 aus dem Aufnahmeraum 11 durch den Radialventilator 27 angesaugt. Eine Stirnseite des Radialventilators 27 bildet dabei die Saugseite 23. Anschließend wird das Wärmeübertragungsmedium in eine radiale Richtung zur Ansaugrichtung des Wärmeübertragungsmediums durch den Radialventilator 27 umgelenkt und beschleunigt. Abschließend wird das Wärmeübertragungsmedium durch die Strömungskanäle 26 direkt an die Beheizungseinrichtung 21 geleitet. Vorteilhafterweise wird dadurch die Effizienz der Wärmeaufnahme des Wärmeübertragungsmediums von der Beheizungseinrichtung 21 erhöht. Das Wärmeübertragungsmedium wird somit im Druckkanal 25 durch die Beheizungseinrichtung 21 erwärmt. Ebenso wird das Wärmeübertragungsmedium durch den Radialventilator 27 im Druckkanal 25 verdichtet. Durch die Düsen 33 des Düsenfeldes 30 wird danach das erwärmte Wärmeübertragungsmedium zur konvektiven Wärmeübertragung auf das Ofengut geleitet.
  • Bezugszeichenliste
  • 10
    Ofengehäuse
    11
    Aufnahmeraum
    12
    Austritt zur Abführung von Brennergasen
    20
    Einrichtung zur konvektiven Wärmeübertragung
    21
    Beheizungseinrichtung
    22
    Ventilator
    23
    Saugseite
    24
    Druckseite
    25
    Druckkanal
    26
    Strömungskanal
    27
    Radialventilator
    28
    Heizleitung
    30
    Düsenfeld
    31
    Ansaugkanal
    32
    Düsenplatte
    33
    Düse
    34
    Düsenkreis
    34a
    innerer Düsenkreis
    34b
    mittlerer Düsenkreis
    34c
    äußerer Düsenkreis
    35
    Düsenbereich

Claims (19)

  1. Chargenofen für Glühgut mit einem Ofengehäuse (10), das eine verschließbare Beschickungsöffnung, einen Aufnahmeraum (11) für Ofengut und eine Einrichtung zur konvektiven Wärmeübertragung (20) auf das Ofengut durch ein Wärmeübertragungsmedium aufweist, wobei die Einrichtung zur konvektiven Wärmeübertragung (20) wenigstens eine Beheizungseinrichtung (21) und wenigstens einen Ventilator (22) umfasst, der im Ofengehäuse (10) angeordnet ist, wobei der Aufnahmeraum (11) auf der Saugseite (23) des Ventilators (22) angeordnet ist und wenigstens ein Düsenfeld (30) auf der Druckseite (24) des Ventilators (22) angeordnet ist, wobei das Düsenfeld (30) eine zentrale Öffnung aufweist, die einen Ansaugkanal (31) des Ventilators (22) bildet,
    dadurch gekennzeichnet, dass
    das Düsenfeld (30) radial über den Ventilator (22) vorsteht, sodass ein Druckkanal (25) gebildet ist, und das Düsenfeld (30) Düsen (33) aufweist, durch die die Druckseite (24) des Ventilators (22) und der Druckkanal (25) mit dem Aufnahmeraum (11) fluidverbunden sind, um das Ofengut im Aufnahmeraum (11) zur Wärmeübertragung mit dem Wärmeübertragungsmedium direkt anzuströmen.
  2. Chargenofen nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Ventilator (22) und das Düsenfeld (30) konzentrisch zueinander angeordnet sind.
  3. Chargenofen nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Beheizungseinrichtung (21) konzentrisch zu dem Ventilator (22) in einem Druckkanal (25) zwischen dem Ventilator (22) und dem Ofengehäuse (10) angeordnet ist.
  4. Chargenofen nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Düsenfeld (30) an einer Innenwand des Ofengehäuses (10) fluiddicht abschließt.
  5. Chargenofen nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Düsenfeld (30) direkt vor der Saugseite (23) des Ventilators (22) angeordnet ist.
  6. Chargenofen nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Düsenfeld (30) eine trichterförmige Düsenplatte (32) aufweist.
  7. Chargenofen nach Anspruch 6,
    dadurch gekennzeichnet, dass
    die Düsenplatte (32) kreisringförmig ausgebildet ist.
  8. Chargenofen nach Anspruch 6 oder 7,
    dadurch gekennzeichnet, dass
    die Düsenplatte (32) mehrere rohrförmige und/oder schlitzförmige Düsen (33) aufweist, die um eine Mitte der Düsenplatte (32) auf einer Innenseite in wenigstens einem Düsenbereich (34) kreisförmig angeordnet sind.
  9. Chargenofen nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Druckseite (24) des Ventilators (22) durch die rohrförmigen und/oder schlitzförmigen Düsen (33) mit dem Aufnahmeraum (11) fluidverbunden ist.
  10. Chargenofen nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Ansaugkanal (31) des Düsenfeldes (30) der Saugseite (23) des Ventilators (22) direkt gegenüber angeordnet ist.
  11. Chargenofen nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Ansaugkanal (31) zwischen dem Ventilator (22) und dem Aufnahmeraum (11) für die Zirkulation des Wärmeübertragungsmediums ausgebildet ist.
  12. Chargenofen nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    wenigstens zwei Ventilatoren (22) in Gegenüberstellung auf beiden Seiten des Aufnahmeraumes (11) angeordnet sind, wobei jedem Ventilator (22) wenigstens eine Beheizungseinrichtung (21) und/oder wenigstens ein Einlass für ein extern erwärmtes Wärmeübertragungsmedium zugeordnet ist.
  13. Chargenofen nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    jeweils ein Ventilator (22) wenigstens einen Strömungskanal (26) aufweist, der auf der Druckseite (24) des Ventilators (22) angeordnet ist und der Strömungskanal (26) das Wärmeübertragungsmedium an wenigstens eine Beheizungseinrichtung (21) leitet.
  14. Chargenofen nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    wenigstens ein Ventilator (22) durch einen Radialventilator (27) gebildet ist.
  15. Chargenofen nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    wenigstens ein Ventilator (22) einen Antrieb aufweist, der außerhalb des Ofengehäuses (10) angeordnet ist.
  16. Chargenofen nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Aufnahmeraum (11) im Wesentlichen hohlzylindrisch ausgebildet ist, wobei die Ventilatoren (22) an den Stirnseiten des Aufnahmeraumes (11) angeordnet sind.
  17. Chargenofen nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Ofengehäuse (10) wenigstens einen Einlass für ein extern erwärmtes Wärmeübertragungsmedium aufweist.
  18. Chargenofen nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Beheizungseinrichtung (21) eine Heizleitung (28) für ein gasförmiges Heizmedium aufweist.
  19. Verfahren zur Wärmebehandlung eines Ofengutes mit einem Chargenofen nach Anspruch 1, bei dem
    - das Ofengut in einem Aufnahmeraum (11) des Chargenofens angeordnet wird;
    - ein Wärmeübertragungsmedium durch einen Ventilator (22), insbesondere einen Radialventilator (27), an eine Beheizungseinrichtung (21) geleitet wird;
    - das Wärmeübertragungsmedium durch die Beheizungseinrichtung (21) erwärmt wird, und
    - das erwärmte Wärmeübertragungsmedium durch ein Düsenfeld (30) auf das Ofengut zur konvektiven Wärmeübertragung geleitet wird.
EP18208226.3A 2017-11-28 2018-11-26 Chargenofen für glühgut und verfahren zur wärmebehandlung eines ofengutes Active EP3489602B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017128076.6A DE102017128076A1 (de) 2017-11-28 2017-11-28 Chargenofen für Glühgut und Verfahren zur Wärmebehandlung eines Ofengutes

Publications (2)

Publication Number Publication Date
EP3489602A1 EP3489602A1 (de) 2019-05-29
EP3489602B1 true EP3489602B1 (de) 2020-09-09

Family

ID=64476971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18208226.3A Active EP3489602B1 (de) 2017-11-28 2018-11-26 Chargenofen für glühgut und verfahren zur wärmebehandlung eines ofengutes

Country Status (5)

Country Link
US (1) US11060793B2 (de)
EP (1) EP3489602B1 (de)
KR (1) KR102132799B1 (de)
CN (1) CN109837369B (de)
DE (1) DE102017128076A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018112934A1 (de) * 2018-05-30 2019-12-05 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Kraftfahrzeugbauteils aus einer höchstfesten Stahllegierung mit duktilen Eigenschaften sowie Kraftfahrzeugbauteil
PL242460B1 (pl) * 2020-12-31 2023-02-27 Seco/Warwick Spolka Akcyjna Modułowe urządzenie do nadmuchu gazu na powierzchnię obrabianego cieplnie wsadu

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3019006A (en) * 1958-07-28 1962-01-30 Lindberg Eng Co Multiple zone heating furnace
US3708156A (en) 1971-03-31 1973-01-02 Super Steel Treating Co Heat treat furnace
US4310302A (en) * 1980-03-28 1982-01-12 Midland-Ross Corporation Batch coil annealing furnace baseplate
US4755236A (en) * 1983-01-10 1988-07-05 Coble Gary L Method of annealing using diffuser system for annealing furnace with water cooled base
DE3736502C1 (de) 1987-10-28 1988-06-09 Degussa Vakuumofen zur Waermebehandlung metallischer Werkstuecke
US4789333A (en) * 1987-12-02 1988-12-06 Gas Research Institute Convective heat transfer within an industrial heat treating furnace
US4963091A (en) * 1989-10-23 1990-10-16 Surface Combustion, Inc. Method and apparatus for effecting convective heat transfer in a cylindrical, industrial heat treat furnace
DE4243127A1 (de) 1992-12-19 1994-06-23 Gautschi Electro Fours Sa Verfahren und Vorrichtung zur Wärmebehandlung von Wärmgut in einem Industrieofen
US7264467B1 (en) * 2005-06-22 2007-09-04 International Thermal Systems, Llc Convection oven with turbo flow air nozzle to increase air flow and method of using same
CN202709720U (zh) 2012-07-26 2013-01-30 山西春雷铜材有限责任公司 钟罩炉的铜饼放置装置
DE102012023430A1 (de) 2012-11-30 2014-06-05 Bilstein Gmbh & Co. Kg Haubenglühofen sowie Verfahren zum Betreiben eines solchen
KR101658877B1 (ko) 2016-06-20 2016-09-23 (주) 광암스틸 소둔로용 디퓨저

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20190162474A1 (en) 2019-05-30
CN109837369B (zh) 2022-01-07
DE102017128076A1 (de) 2019-05-29
CN109837369A (zh) 2019-06-04
EP3489602A1 (de) 2019-05-29
BR102018074451A2 (pt) 2019-06-25
BR102018074451A8 (pt) 2023-03-07
US11060793B2 (en) 2021-07-13
KR20190062297A (ko) 2019-06-05
KR102132799B1 (ko) 2020-07-22

Similar Documents

Publication Publication Date Title
EP3282024B1 (de) Chargenofen für glühgut und verfahren zur wärmebehandlung
EP0313889B1 (de) Vakuumofen zur Wärmebehandlung metallischer Werkstücke
EP3489602B1 (de) Chargenofen für glühgut und verfahren zur wärmebehandlung eines ofengutes
DE102008012594B4 (de) Vakuumkarburierungsverfahren und Vakuumkarburierungsvorrichtung
DE3035032C1 (de) Verfahren zum Waermebehandeln von Drahtbunden und Durchlaufofen zur Durchfuehrung des Verfahrens
EP3397782B1 (de) Vorrichtung zur behandlung von metallischen werkstücken mit kühlgas
EP2791606B1 (de) Geschlossenes transportfluidsystem zum ofeninternen wärmeaustausch zwischen glühgasen
DD299673A5 (de) Vorrichtung zur steuerung von gasstroemen in vakuumoefen
EP2330372B1 (de) Elektrisch beheizter Retortenofen zur Wärmebehandlung von metallischen Werkstücken
EP1361287B1 (de) Vorrichtung zur Behandlung von metallischen Werkstücken mit Kühlgas
EP1154024A1 (de) Verfahren und Vorrichtung zur Wärmebehandlung metallischer Werkstücke
EP2601467B1 (de) Vorrichtung zur wärmebehandlung einer textilen warenbahn
DE3321554C1 (de) Industrieofen zur Wärmebehandlung metallischer Werkstücke
WO2012037905A1 (de) Verfahren und einrichtung zur leitung der strömung in industrieöfen für die wärmebehandlung von metallischen werkstoffen/werkstücken
DE19538364C5 (de) Vorrichtung zur Schnellerwärmung von Metall-Preßbolzen
DE19628383A1 (de) Ofen zur Wärmebehandlung von Chargen metallischer Werkstücke
DE10038782C1 (de) Verfahren und Vorrichtung zum Abkühlen, insbesondere zum Abschrecken und Härten von metallischen Werkstücken
WO2013087646A1 (de) Haubenofen mit innerhalb einer schutzhaube positioniertem wärmeabgabegerät, insbesondere gespeist von einer ofenraumexternen energiequelle, zum abgeben von wärme an glühgas
DE590083C (de) Gasturbine
DE4437683C2 (de) Verfahren und Ofenanlage zur Wärmebehandlung von Drahtbunden
WO2012080249A1 (de) Verfahren und vorrichtung zum anwärmen von coils
DE2050713A1 (de) Eintrittsverteiler für Kreiselgebläse
EP0008388A2 (de) Vorrichtung zum Fördern und/oder Behandeln von heissen Gasen
DE102007058053B4 (de) Diffusionsofen und Verfahren zur Erzeugung einer Gasströmung
DE1758524B1 (de) Ofen zum gluehen von ringfoermigem gut

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191127

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 9/00 20060101ALI20200311BHEP

Ipc: F27B 11/00 20060101AFI20200311BHEP

Ipc: C21D 1/767 20060101ALI20200311BHEP

Ipc: C22F 1/04 20060101ALI20200311BHEP

Ipc: F27B 5/14 20060101ALI20200311BHEP

Ipc: F27B 5/16 20060101ALI20200311BHEP

Ipc: F27D 3/00 20060101ALI20200311BHEP

Ipc: F27D 7/04 20060101ALI20200311BHEP

INTG Intention to grant announced

Effective date: 20200327

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1312092

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018002394

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200909

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018002394

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201126

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1312092

Country of ref document: AT

Kind code of ref document: T

Owner name: GAUTSCHI ENGINEERING GMBH, AT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502018002394

Country of ref document: DE

Owner name: GAUTSCHI ENGINEERING GMBH, AT

Free format text: FORMER OWNER: GAUTSCHI ENGINEERING GMBH, BERG, THURGAU, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502018002394

Country of ref document: DE

Representative=s name: ABP BURGER RECHTSANWALTSGESELLSCHAFT MBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230928

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230928

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20231024

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231026

Year of fee payment: 6

Ref country code: NO

Payment date: 20230929

Year of fee payment: 6

Ref country code: IT

Payment date: 20231115

Year of fee payment: 6

Ref country code: FR

Payment date: 20231009

Year of fee payment: 6

Ref country code: DE

Payment date: 20231017

Year of fee payment: 6

Ref country code: CZ

Payment date: 20231024

Year of fee payment: 6

Ref country code: CH

Payment date: 20231201

Year of fee payment: 6

Ref country code: AT

Payment date: 20231004

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231114

Year of fee payment: 6

Ref country code: BE

Payment date: 20231009

Year of fee payment: 6