EP3485979B1 - Procédé de détection de l'état de fonctionnement d'une centrifugeuse - Google Patents

Procédé de détection de l'état de fonctionnement d'une centrifugeuse Download PDF

Info

Publication number
EP3485979B1
EP3485979B1 EP18204116.0A EP18204116A EP3485979B1 EP 3485979 B1 EP3485979 B1 EP 3485979B1 EP 18204116 A EP18204116 A EP 18204116A EP 3485979 B1 EP3485979 B1 EP 3485979B1
Authority
EP
European Patent Office
Prior art keywords
centrifuge
drum
operating state
borne sound
recognition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18204116.0A
Other languages
German (de)
English (en)
Other versions
EP3485979A1 (fr
Inventor
Thomas Bathelt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Mechanical Equipment GmbH
Original Assignee
GEA Mechanical Equipment GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEA Mechanical Equipment GmbH filed Critical GEA Mechanical Equipment GmbH
Publication of EP3485979A1 publication Critical patent/EP3485979A1/fr
Application granted granted Critical
Publication of EP3485979B1 publication Critical patent/EP3485979B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B13/00Control arrangements specially designed for centrifuges; Programme control of centrifuges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/10Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with discharging outlets in the plane of the maximum diameter of the bowl
    • B04B1/14Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with discharging outlets in the plane of the maximum diameter of the bowl with periodical discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/02Continuous feeding or discharging; Control arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/04Periodical feeding or discharging; Control arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/02Casings; Lids
    • B04B7/06Safety devices ; Regulating

Definitions

  • the invention relates to a method according to the preamble of claim 1.
  • a suspension to be processed with a centrifuge drum and separated into one or more phases is exposed to a high centripetal acceleration, which in a separator with a vertical axis of rotation can be more than 10,000 times the acceleration due to gravity (more than 10,000 g).
  • the invention solves this problem by the method of claim 1.
  • An advantageous possibility of the invention is therefore the detection of a specific operating state (e.g. drum overflow) of the centrifuge - in particular a disc separator or a solid bowl screw centrifuge - by means of a structure-borne sound measurement or a corresponding vibration measurement during a time interval and by carrying out the transformation - for example a Fourier transformation - possible Analysis of the measurement signals by comparing the resulting spectrum with previously known spectra.
  • a specific operating state e.g. drum overflow
  • the transformation - for example a Fourier transformation - possible Analysis of the measurement signals by comparing the resulting spectrum with previously known spectra.
  • These previously known spectra were preferably determined through experiments and then saved. However, it is also conceivable that they were determined through simulation calculations.
  • the previously known and pre-stored “reference spectra” can include both those spectra that correspond to a problem or malfunction those that indicate trouble-free operation, which can be described as “normal operating patterns”.
  • Electrodynamic speed sensors When measuring structure-borne sound or vibration in the context of this invention, both the measurement of the vibration speed and acceleration can be used.
  • Electrodynamic speed sensors laser Doppler sensors, capacitive acceleration sensors, piezoelectric acceleration sensors or piezoresistive acceleration sensors can therefore be used.
  • one or more actions can be initiated depending on the recognition of the operating state according to step 400, whereby initiating the one or more actions can include issuing a warning message or where initiating one or more actions can include issuing a control signal for changing the operation of the centrifuge.
  • control of the machine can optionally trigger predetermined reactions in step 400.
  • a structure-borne sound sensor arranged on a component of the centrifuge that does not rotate during operation of the centrifuge in particular a structure-borne sound sensor arranged on a component that does not rotate during operation of the centrifuge in the area of the centrifuge drum, can be used. Because it has surprisingly turned out that directly on such a part - on which the respective sensor is relatively easy to attach and can be read easily via a wired cable or wirelessly - characteristic vibrations also occur to a sufficient extent in the rotating system and with the structure-borne noise sensor can be detected in order to record and distinguish between different or multiple operating states of the centrifuge to be able to.
  • a structure-borne sound sensor arranged on an inlet pipe that does not rotate during operation of the centrifuge and/or on a start-up, in particular on a gripper can be used.
  • a suitable structure-borne sound sensor near this component.
  • step 300 it is advantageous if in step 300 at least one of the pre-stored spectra corresponds to an operating state "current or impending overflow of the drum" and if step 300 possibly includes recognition of this operating state.
  • This operating state can be recorded particularly well with the method according to the invention, which allows the operation of the centrifuge to be optimized in a simple manner.
  • step 300 it is also expedient if in step 300 at least one of the pre-stored spectra corresponds to an operating state “current or impending cavitation on the gripper of the centripetal pump” and that step 300 further includes recognizing this operating state.
  • Fig. 1 shows a centrifuge - here designed as a separator - for clarifying solids-containing, flowable starting products P from solids with a rotatable drum 1 with a vertical axis of rotation.
  • the starting product P is processed in continuous operation.
  • the separator is a self-draining separator.
  • the drum 1 of the centrifuge in the design as a self-emptying separator, has a discontinuous solids outlet, whereby the solid separated from the starting product P by clarification is removed at intervals by opening and re-closing outlet nozzles or outlet openings 5.
  • Each of the phases resulting from this separation can - but does not necessarily have to - form a valuable material phase to be recovered.
  • the invention can also be used on nozzle separators or on separators without a solids outlet. It can also be used on separators that do not work continuously in batch operation.
  • the drum 1 has a drum base 10 and a drum cover 11. It is also preferably surrounded by a hood 12.
  • the drum 1 is also placed on a drive spindle 2, which is rotatably mounted and can be driven by a drive motor.
  • the drum 1 itself is rotatable or forms an essential part of the rotating system of the centrifuge, but it also has individual elements protruding into it that do not rotate during operation.
  • the drum 1 has a product inlet 4 through which the starting product P is passed into the drum 1.
  • the product inlet 4 opens into an inlet pipe 40, which is designed here as a tube that does not rotate with the rotating system - i.e. does not rotate during operation - and which projects into the drum from above and is aligned coaxially with the axis of rotation D.
  • the inlet pipe 40 it would also be conceivable for the inlet pipe 40 to protrude into the drum from below (with a correspondingly different design - not shown here).
  • the drum 1 also has at least one drain 13 - which is designed here as a peeling disk or as a gripper - which serves to derive a clear phase L from the drum 1.
  • the gripper acts like or forms a centripetal pump.
  • the process 13 can also be carried out constructively in a different way or with other means. It is also conceivable, as an alternative or in addition to the clarification of solids, to separate the starting product P into two liquid phases of different densities. For this purpose, another liquid drain - for example another gripper - is required.
  • the gripper 13 thus also forms a component of the centrifuge that does not rotate with the actual drum 1 during operation but is stationary.
  • the drum 1 preferably has a plate pack 14 made of axially spaced separating plates.
  • a solids collecting space 8 is formed between the outer circumference of the plate pack 14 and the inner circumference of the drum 1 in the area of its largest inner diameter. Solids, which are separated from the clear phase in the area of the plate stack 14, collect in the solids collecting space 8, from which the solids can be discharged from the drum 1 via outlet openings 5.
  • the outlet openings 5 can be opened and closed here by means of a piston slide 6, which is arranged in the lower drum part 10 and can be displaced parallel to the axis of rotation (in particular vertically).
  • a piston slide 6 which is arranged in the lower drum part 10 and can be displaced parallel to the axis of rotation (in particular vertically).
  • the solid S is discharged from the drum 1 into a solids catcher 7.
  • the solids collection space 8 in the drum 1 has a defined solids space volume.
  • the drum 1 has an actuation mechanism for moving the piston slide 6.
  • this includes at least one supply line 15 for a control fluid such as water and a valve arrangement 16 in the drum 1 and further elements outside the drum 1.
  • the inflow of the control fluid such as water is made possible via a metering arrangement 17 arranged outside the drum 1, which is one outside the drum 1 arranged hydraulic line 19 for the control fluid is assigned, so that for a solids emptying of the solids by releasing the valve arrangement 16, the control fluid can be introduced into the drum 1 or, conversely, the inflow of control fluid can be interrupted in order to move the piston slide 6 accordingly, to release the outlet openings 5.
  • At least one structure-borne sound sensor 22 is arranged on a component of the drum - for example on the inlet pipe 40 - and is designed to record a vibration spectrum.
  • This structure-borne noise sensor 22 is designed as a sensor device for measuring structure-borne noise.
  • the structure-borne sound to be measured or sensed is the sound that propagates in the component on which the structure-borne sound sensor 22 is arranged.
  • Acceleration sensors can be used as structure-borne sound sensors, which use an effect, for example the piezoelectric effect, to convert the acceleration that occurs as a result of structure-borne sound on the component on which they are arranged into electrically processable signals.
  • sensors such as electrodynamic speed sensors, laser Doppler sensors, capacitive acceleration sensors or piezoresistive acceleration sensors can also be used.
  • the at least one structure-borne noise sensor 22 on a component of the centrifuge drum 1 that does not rotate during operation, in particular on the inlet pipe 40 (illustrated here) and/or on the gripper 13 (not shown here).
  • Additional sensor devices can optionally be provided, such as a sensor device 3 for determining the flow rate volume/time or one or more parameters, such as mass/time, of the starting product P to be conducted into the drum 1. This is advantageous, but not mandatory.
  • the structure-borne sound sensor 22 either has evaluation electronics itself or is connected to one.
  • the structure-borne noise sensor 22 is connected, for example, via a data connection 23 to the control and evaluation device 9 (preferably a control computer of the centrifuge), which evaluates the measured values determined.
  • the system of the drum 1, which rotates during operation, generates structure-borne sound waves both on the components of the drum 1 that rotate during operation and on the components of the drum 1 that do not rotate during operation.
  • Fig. 2 illustrates by way of example the time signal curve of a structure-borne noise measurement recorded during the operation of an exemplary centrifuge.
  • Fig. 3 shows a frequency spectrum obtained through a transformation. Resonance frequencies known in the system (here around 100 Hz) are clearly visible.
  • the structure-borne noise sensor 22 can preferably be arranged on the surface of one of the components. But it can also be inserted into a hole or the like in the component.
  • the structure-borne sound sensor 22 is preferably designed to be broadband and designed to measure a relatively wide frequency spectrum, for example between 0Hz and 1 MHz. However, it is also conceivable to tune it relatively precisely to a smaller frequency range to be measured.
  • the analog signal recorded by the structure-borne sound sensor 22 is digitized by the evaluation electronics 9 and stored as a signal curve.
  • the evaluation electronics 9 Through appropriate filtering, transformation and subsequent analysis of the recorded signal, conclusions can be drawn about the operating status of the centrifuge. This is made possible in particular by making a comparison with previously known spectra that correspond to different operating states.
  • the control and evaluation device 9 can also serve to control the movement of the piston slide 6 and thus also the time interval until the outlet openings 5 are opened.
  • the actuating mechanism for the piston slide 6 - here in particular the metering arrangement 17 - can be connected to the evaluation and control and evaluation device 9 via a data connection 18.
  • the control and evaluation device has a computer program with a program routine for monitoring and/or controlling and/or regulating the operation.
  • the metering arrangement 17 can, for example, have a piston and one or more valves. It can also be of the type DE 10 2005 049 941 A1 be designed to be able to carry out a variable dosage of the amount of fluid to control and change the duration of the solids emptying and thus the current solids emptying volume.
  • the solids emptying volume can be varied, so that, for example, if the solids content in the inlet increases, the solids emptying volume can be increased.
  • a controllable device - for example a controllable valve - can be connected to the inlet, with which the volume flow in the inlet can be changed in order to change the inlet quantity or the current inlet volume V AP of output product P to be processed per unit of time.
  • This controllable device can be connected to the control and evaluation device 9 via a data connection (not shown here).
  • the aforementioned data connections enable data transmission from or to the control and evaluation device 9. They can each be designed as lines or as wireless connections.
  • the signal recorded by the structure-borne sound sensor 22 and the vibration spectrum determined from this now enables a particularly simple and well-functioning determination of the operating state of the centrifuge. This in turn can be used, for example, to monitor and/or control and/or regulate the centrifuge.
  • the structure-borne sound sensor 22 on the stationary inlet pipe 40 is an example of at least one structure-borne sound sensor which is arranged outside, on or in the drum 1, in particular on a part of the drum 1 that does not rotate during operation.
  • the comparison with the known spectrums, in particular frequency spectra can include including a tolerance range in order to obtain matches to recognize. Accordingly, the output of information in step 400, for example a warning and/or control signal, would only occur if a signal lying outside an expected tolerance range is detected.
  • the structure-borne sound sensor 22 and the signal processing associated with it of the evaluation and control and evaluation device 9 should be designed and therefore suitable for detecting and processing signals with a high sampling rate.
  • This high sampling rate should preferably be greater than 50 kHz and particularly preferably greater than 100 kHz.
  • the vibration signal recorded in each case is digitized and the spectrum of the vibration signal is generated from the recorded vibration signal using a suitable algorithm for carrying out the mathematical transformation.
  • This spectrum is compared with various known spectra stored in a database, which preferably correspond to different machine states, product states or process states.
  • various states - for example normal states that indicate trouble-free operation - and/or deviations from such states can be recognized in step 300.
  • one or more actions can be initiated in a further step 400, with which, for example, a desired state is achieved again.
  • Spectra can be pre-stored which correspond to the operating states “current or impending overflow of the drum” or “current or impending cavitation on the gripper” so that these can be based on the ongoing structure-borne sound measurements and the ongoing comparisons of the recorded spectra with the known spectra can be detected.
  • the machine control can trigger predefined reactions, such as "Detected operating state of overflow of the drum” - reaction: “Reduction of the inlet quantity and/or reduction of the outlet pressure” or “Detected operating state of cavitation on the gripper”
  • Action “Increase drain pressure and thus increase the immersion depth of the gripper”.
  • the frequency spectrum can not only detect certain machine states, but can also detect deviations from previously defined product and/or process parameters. If, for example, the viscosity or the flow rate of the suspension to be processed changes in such a way that the permissible value range for the centrifuge is exceeded or fallen below, this can also be recognized by the vibration spectrum determined on the inlet pipe.

Landscapes

  • Centrifugal Separators (AREA)

Claims (11)

  1. Procédé de détection de l'état de fonctionnement d'une centrifugeuse qui présente au moins un tambour rotatif (1) avec un tuyau d'arrivée (40) et avec au moins une sortie de liquide (13) et/ou une sortie de matières solides, avec laquelle, en fonctionnement, un produit de départ (P) fluide est séparé en différentes phases de liquide et/ou de matières solides dans le champ centrifuge du tambour rotatif (1), comprenant au moins les étapes suivantes pour détecter l'état de fonctionnement : 100 détection d'une courbe temporelle d'un signal de bruit de structure avec au moins un capteur de bruit de structure (22, 20) disposé sur un composant du tambour ou à proximité d'un composant du tambour (1), en particulier à une fréquence d'échantillonnage prédéfinie ; 200 transformation du signal de bruit de structure enregistré en un spectre d'oscillations ou de fréquences ; 300 comparaison du spectre actuellement déterminé avec au moins un ou plusieurs spectres connus, en particulier préenregistrés, pour détecter des concordances,
    caractérisé en ce que,
    à l'étape 300, une conclusion est tirée sur l'état du produit de départ (P) à partir de la comparaison et de la détection de concordances de l'étape 300.
  2. Procédé selon la revendication 1, caractérisé en ce qu'à l'étape 100, on utilise un capteur de bruit de structure (22) disposé sur un composant de la centrifugeuse qui ne tourne pas pendant le fonctionnement de la centrifugeuse.
  3. Procédé selon la revendication 2, caractérisé en ce qu'à l'étape 100, on utilise un capteur de bruit de structure (22) disposé sur un composant du tambour centrifuge (1) qui ne tourne pas pendant le fonctionnement de la centrifugeuse, en particulier à l'intérieur du tambour centrifuge (1).
  4. Procédé selon la revendication 3, caractérisé en ce qu'à l'étape 100, on utilise un capteur de bruit de structure (22) disposé sur un tuyau d'arrivée (40) qui ne tourne pas pendant le fonctionnement de la centrifugeuse et/ou sur une sortie, en particulier sur un préhenseur (13).
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'à l'étape 300, au moins l'un des spectres préenregistrés correspond à un état de fonctionnement "fonctionnement sans incident" et en ce que l'étape 300 comprend, le cas échéant, une détection de cet état de fonctionnement.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'à l'étape 300, au moins l'un des spectres préenregistrés correspond à un état de fonctionnement "débordement actuel ou imminent du tambour" et en ce que l'étape 300 comprend, le cas échéant, une détection de cet état de fonctionnement.
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'à l'étape 300, au moins l'un des spectres préenregistrés correspond à un état de fonctionnement "cavitation actuelle ou imminente sur le préhenseur" et en ce que l'étape 300 comprend, le cas échéant, une détection de cet état de fonctionnement.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'à l'étape 300, une conclusion est tirée sur l'état du processus technique à partir de la comparaison et de la détection de concordances de l'étape 300.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce que, en fonction de la détection de l'état de fonctionnement ou de l'état du produit de départ (P) ou de l'état du processus technique selon l'étape 300, une ou plusieurs actions sont initiées dans une étape supplémentaire 400.
  10. Procédé selon la revendication 9, caractérisé en ce que l'initiation d'une ou plusieurs action(s) selon l'étape 400 comprend l'émission d'un message d'alerte.
  11. Procédé selon l'une des revendications 9 ou 10 précédentes, caractérisé en ce que l'initiation d'une ou plusieurs action(s) selon l'étape 400 comprend l'émission d'un signal de commande pour modifier le fonctionnement de la centrifugeuse.
EP18204116.0A 2017-11-16 2018-11-02 Procédé de détection de l'état de fonctionnement d'une centrifugeuse Active EP3485979B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017126973.8A DE102017126973A1 (de) 2017-11-16 2017-11-16 Verfahren zum Erkennen des Betriebszustands einer Zentrifuge

Publications (2)

Publication Number Publication Date
EP3485979A1 EP3485979A1 (fr) 2019-05-22
EP3485979B1 true EP3485979B1 (fr) 2024-01-17

Family

ID=64172271

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18204116.0A Active EP3485979B1 (fr) 2017-11-16 2018-11-02 Procédé de détection de l'état de fonctionnement d'une centrifugeuse

Country Status (3)

Country Link
EP (1) EP3485979B1 (fr)
DE (1) DE102017126973A1 (fr)
PL (1) PL3485979T3 (fr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4004584A1 (de) * 1990-02-15 1991-08-22 Krauss Maffei Ag Verfahren und vorrichtung zum betrieb einer filterzentrifuge
DE4327291C2 (de) * 1993-08-13 1997-07-31 Krauss Maffei Ag Verfahren und Vorrichtung zur Bestimmung von Meßgrößen einer Zentrifuge
JP2002343763A (ja) * 2001-05-16 2002-11-29 Oomiya Kogyo Kk 半導体ウエハ用遠心分離機
DE102005049941A1 (de) 2005-10-19 2007-04-26 Westfalia Separator Ag Selbstentleerender Separator und Verfahren zu dessen Betrieb
WO2011123371A1 (fr) * 2010-04-02 2011-10-06 Pneumatic Scale Corporation Système et procédé de centrifugation
FR3018462B1 (fr) * 2014-03-11 2019-11-29 Optimisation De Procedes D'essorage Identification des balourds liquides dans une centrifugeuse
US10639649B2 (en) * 2014-07-17 2020-05-05 Gea Mechanical Equipment Gmbh Feedback control method for the operation of a centrifuge

Also Published As

Publication number Publication date
DE102017126973A1 (de) 2019-05-16
PL3485979T3 (pl) 2024-05-13
EP3485979A1 (fr) 2019-05-22

Similar Documents

Publication Publication Date Title
EP3060350B1 (fr) Procédé de clarification d'un produit fluide avec une centrifugeuse
EP3218114B1 (fr) Procédé de surveillance et/ou de régulation du fonctionnement d'une centrifugeuse
EP3060352B1 (fr) Procédé de clarification d'un produit fluide au moyen d'une centrifugeuse
WO2015059089A1 (fr) Procédé d'épuration en continu d'une suspension fluide à l'aide d'une centrifugeuse
EP3600680B1 (fr) Procédé servant à purger de manière automatisée des matières solides de centrifugeuses
DE102008062055B4 (de) Verfahren zur Überwachung der automatisierten Entleerung einer Zentrifuge
DE19849870C2 (de) Hydrozyklonanordnung
DE4327291C2 (de) Verfahren und Vorrichtung zur Bestimmung von Meßgrößen einer Zentrifuge
EP3169440A1 (fr) Procédé de régulation du fonctionnement d'une centrifugeuse
EP3485979B1 (fr) Procédé de détection de l'état de fonctionnement d'une centrifugeuse
DE102005055373A1 (de) Verfahren zur Ermittlung mindestens eines Betriebszustandes und Vorrichtung hierzu
EP3085452B1 (fr) Centrifugeuse discontinue doté d'un dispositif de commande destiné à commander le fonctionnement de la centrifugeuse et procédé de fonctionnement de la centrifugeuse
EP2825318B1 (fr) Dispositif comportant une centrifugeuse travaillant en discontinu, destiné à séparer un sirop de masses cuites de sucrerie, et procédé pour la commande d'un tel dispositif
DE102015119165B4 (de) Verfahren zur Klärung eines fließfähigen Produktes mit einer Zentrifuge, insbesondere einem Separator
EP3634642B1 (fr) Procédé de vidange de matière solide d'une centrifugeuse
DE102006027893A1 (de) Separator mit einer doppelt konischen Trommel aus Metall
DE10323516B3 (de) Vorrichtung zur Entfeuchtungsmessung zur Steuerung einer Filterzentrifuge
EP2188029B1 (fr) Procédé pour commander la séparation d'un mélange
EP2643092B1 (fr) Procédé de traitement d'un produit dans le champ centrifuge
EP4251328A1 (fr) Procédé de détermination de l'étendue de la contamination à l'intérieur d'un bol d'un séparateur, et séparateur
DE10355000B3 (de) Filterzentrifuge mit Sensor zur Massenbestimmung von Filtrationsrückständen
WO2024033325A1 (fr) Appareil de séparation pour séparer une suspension
EP4008420A1 (fr) Procédé et appareil de lavage d'un gâteau de filtration sur un moyen de filtration
WO2011110285A1 (fr) Dispositif et procédé pour la séparation de fractions de particules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191120

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200930

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230711

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230809

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20231207

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018013990

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240117