EP3475344A1 - Destillative abtrennung von ketazin aus polyurethandispersionen - Google Patents

Destillative abtrennung von ketazin aus polyurethandispersionen

Info

Publication number
EP3475344A1
EP3475344A1 EP17733818.3A EP17733818A EP3475344A1 EP 3475344 A1 EP3475344 A1 EP 3475344A1 EP 17733818 A EP17733818 A EP 17733818A EP 3475344 A1 EP3475344 A1 EP 3475344A1
Authority
EP
European Patent Office
Prior art keywords
acid
distillation
ketazine
polyols
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17733818.3A
Other languages
English (en)
French (fr)
Inventor
Hans Georg GRABLOWITZ
Alfred Zastrow
Olaf Fleck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Covestro Deutschland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Deutschland AG filed Critical Covestro Deutschland AG
Publication of EP3475344A1 publication Critical patent/EP3475344A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0828Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing sulfonate groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • C08G18/3231Hydrazine or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/82Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G85/00General processes for preparing compounds provided for in this subclass
    • C08G85/002Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C243/00Compounds containing chains of nitrogen atoms singly-bound to each other, e.g. hydrazines, triazanes
    • C07C243/10Hydrazines
    • C07C243/12Hydrazines having nitrogen atoms of hydrazine groups bound to acyclic carbon atoms
    • C07C243/16Hydrazines having nitrogen atoms of hydrazine groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/04Polyurethanes

Definitions

  • the present invention relates to a process for the removal of ketazine from polyurethane dispersions by distillation below the boiling point of ketazine.
  • Aqueous polyurethane dispersions play an important role in coatings because of their special properties.
  • aqueous PU dispersions are advantageous because they contain little or no organic solvent and thus contribute to sustainable and environmentally friendly coatings.
  • PUDs are mainly produced by two different methods. In the so-called melt dispersing process, an isocyanate-functional, hydrophilic prepolymer is first prepared in the melt or frequently with the aid of a small proportion of a mostly high-boiling solvent. In the next step, the prepolymer is dispersed in water and then chain-extending with polyamines or polyhydrazides in water is often carried out to build up the molecular weight.
  • the solvent used often has a high boiling point, it can not subsequently be removed and remains in the dispersion.
  • an isocyanate-functional prepolymer is also first prepared which is then dissolved in acetone.
  • the subsequent chain extension is then carried out in the acetone solution of the prepolymer and the associated increase in the viscosity can be controlled by the added amount of acetone.
  • the dispersion is carried out with water and the acetone can be finally removed by distillation. Since the acetone process does not employ any further and frequently high-boiling solvent, the resulting dispersions are substantially free of organic solvents.
  • the compounds for chain extension are often polyamines or polyhydrazides and as common compound has u.a.
  • Hydrazine proven because the thus reacted dispersions have a significantly higher color stability under thermal stress. If hydrazine is added to such an acetone prepolymer solution, a by-product is formed in which acetone and hydrazine react to form ketazine (or acetone azine) (see also EC Gilbert, Journal of the American Chemical Society, 51, 3394-3409, 1929 ). The ketazine formed remains because of its relatively high boiling point (134 ° C at atmospheric pressure) in the dispersion and can, depending on the processing, hydrolyze again to hydrazine, which is a major drawback due to the carcinogenic effect of hydrazine.
  • Broth temperature is the temperature of the vapor phase
  • the bottom temperature is the temperature of the liquid phase.
  • the present invention relates to a process for removing ketazine from a polyurethane dispersion comprising the step of distilling the polyurethane dispersion, wherein the broth temperature permanently exceeds the temperature at which removal of the acetone is reached by a maximum of 10%.
  • the temperature at which the acetone is removed can be determined experimentally very easily.
  • the bottom of the distillation unit is heated to the boiling point of acetone.
  • the Brüdentemperatur will initially be below the bottom temperature, since the first evaporate the low-boiling compounds. In the course of the distillation, the Brüdentemperatur continues to increase, as increasingly boiling compounds evaporate. By analyzing samples taken when defined temperatures are reached, the residual concentration of acetone present in the polyurethane dispersion at a given broth temperature is easily determined.
  • removal of the acetone refers to a state of the polyurethane dispersion in which the acetone content is less than 1% by weight.
  • the broth temperature is at least 15 ° C below the boiling point of ketazine at the pressure prevailing in the distillation unit.
  • the abovementioned temperature limit is preferably only exceeded for a short time, particularly preferably not at all.
  • the ketazine can be removed by distillation without raising the temperature in the bottom of the distillation unit or in the vapor to the boiling point of ketazine. Since at the pressure prevailing in the plant of 120 mbar, the acetone completely removed when reaching a Brüdentemperatur of 48 ° C. While ketazine has a boiling point of about 70 ° C under these conditions, it was unexpected that by continuing the distillation to a broth temperature of 51 ° C, more than 90% of the originally present ketazine could be removed.
  • the term "removal of the ketazine” refers to a state of polyurethane dispersion in which the residual concentration of ketazine is preferably less than 1000 ppm, more preferably less than 500 ppm, even more preferably less than 300 ppm, even more preferably less than 200 ppm and most preferably less than 100 ppm It is further preferred that at least 90% of the ketazine originally present in the polyurethane dispersion be removed by the process according to the invention.
  • the distillation is carried out at a pressure of at most 140 mbar, particularly preferably at most 125 mbar. Even more preferably, the distillation is carried out at a pressure between 115 mbar and 125 mbar. Here, a Brüdentemperatur of 53 ° C is not permanently exceeded. More preferably, the distillation is carried out at a pressure between 115 mbar and 125 mbar.
  • the distillation process can be started according to the invention at ambient pressure and then continued at continuously or stepwise lowered pressure. In this context, short-term pressure increases are harmless if they do not affect the distillation process.
  • a bottom temperature of 53 ° C is not permanently exceeded.
  • the distillation is preferably started at a bottom temperature of 45 ° C.
  • a "permanent" exceeding of a temperature limit means that during the entire distillation operation the specified temperature limit is exceeded for at most 15 minutes, more preferably at most 10 minutes, and most preferably at most 5 minutes short-term exceeding of a temperature limit that said temperature limit is exceeded during the entire distillation process for at most 15 minutes, more preferably at most 10 minutes, and most preferably at most 5 minutes.
  • the abovementioned periods relate to the total duration of the continuous or divided into at least two separate phases temperature exceeded.
  • the distillation after reaching a Brüdentemperatur at which removal of the acetone is achieved preferably for at least 120 minutes, more preferably for 30 minutes to 180 minutes, even more preferably for 60 minutes to 150 minutes, and most preferably continued for 90 minutes to 150 minutes.
  • the polyurethane dispersion from which the ketazine is removed by the process according to the invention is preferably prepared by the acetone process described in the introduction.
  • the polyurethane dispersions to be purified by the process according to the invention are prepared by chain extension from the prepolymers suitable for the preparation of polyurethane dispersions.
  • the prepolymers useful in the invention are typically the reaction products of one or more polyisocyanates with one or more isocyanate-reactive compounds wherein the polyisocyanate or polyisocyanates are used in stoichiometric excess such that the prepolymer has terminal isocyanate groups.
  • the suitable prepolymers can furthermore be distinguished into hydrophobic and hydrophilic prepolymers.
  • Hydrophobic prepolymers are those compounds which have no hydrophilic groups and thus can not be dissolved or dispersed in water.
  • Hydrophilic prepolymers refer to those compounds which have covalently bonded hydrophilic groups which make it possible to dissolve or disperse the prepolymer in water.
  • Suitable polyisocyanates are aromatic, araliphatic, aliphatic or cycloaliphatic polyisocyanates. It is also possible to use mixtures of such polyisocyanates.
  • suitable polyisocyanates are butylene diisocyanate, hexamethylene diisocyanate (HDI), 1,5-pentamethylene diisocyanate, isophorone diisocyanate (IPDI), 2,2,4 and / or 2,4,4-trimethylhexa-methylene diiso-cyanate , the isomeric bis (4,4'-isocyanatocyclo-'hexyl) - 'methanes or mixtures thereof any isomer content, isocyanato-methyl-l ⁇ octane diisocyanate, 1,4-cyclohexylene diisocyanate, 1,4-phenylene diisocyanate, 2,4- and or 2,6-tolylene diisocyanate, 1,5-naphthylene diis
  • the isocyanate-reactive polyol is a compound which has 1 to 4 isocyanate-reactive groups, preferably 1.5 to 2.5 and very particularly preferably 1.9 to 2.1.
  • Suitable isocyanate-reactive groups are the groups known to the person skilled in the art, for example hydroxyl groups, amine groups, hydrazide groups or thiol groups, preferably hydroxy groups or amine groups, very particularly preferably hydroxyl groups.
  • the molecular weight of the suitable polyols is between 40 g / mol - 13000 g / mol and suitable as polyols are low molecular weight, discrete compounds and / or higher molecular weight, polydisperse compounds.
  • the low molecular weight compounds are usually discrete compounds in the molar mass range between 40 and 499 g / mol.
  • the higher molecular weight compounds are compounds which have a molecular weight distribution and whose average number average molecular weight is between 500 and 13000, preferably between 700 g / mol and 4000 g / mol, very particularly preferably between 1000 g / mol and 3000 g / mol.
  • Suitable low molecular weight polyols are short-chain, ie containing 2 to 20 carbon atoms aliphatic, araliphatic or cycloaliphatic Verbindugnen.
  • diols are ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 2-ethyl-2-butylpropanediol, trimethylpentanediol, positionally isomeric diethyloctanediols, 1'-butylene glycol, cyclohexanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, 1,2- and 1,4-cyclohexanediol, hydrogenated bisphenol A (2,2-
  • 1,4-butanediol 1,4-cyclohexanedimethanol and 1,6-hexanediol.
  • suitable triols are trimethylolethane, trimethylolpropane or glycerol, trimethylopropane is preferred.
  • diamines are 1,2-ethylenediamine, 1,6-hexamethylenediamine, 1,4-butanediamine and isophoronediamine, particularly preferred are 1,2-ethylenediamine and isophoronediamine.
  • dihydrazides are oxalic dihydrazide, carbohydrazide and adipic dihydrazide, particularly preferred are carbohydrazide and adipic dihydrazide.
  • dithiols are 1,2-ethanedithiol, 1,3-propanedithiol, 1,4-butanedithiol and 1,6-hexanedithiol. Besodners preferred are 1,2-ethanedithiol and 1,6-hexanedithiol.
  • the higher molecular weight compounds are compounds which in turn are composed of monomers and which, in addition to the usually terminal isocyanate-reactive end groups, have further functional groups along the main chain.
  • Suitable higher molecular weight polyols are poly-ester-poly-ole, poly-acrylate-polyols, poly-urethane-poly-ole, polycarbonate-polyols, poly-ether-polyols, polyester-poly-''-acrylate-polyols, poly-urethane. poly-acrylate-polyols, poly-urethane-poly-ester-polyols, poly-urethane-poly-ether-polyols, poly-urethane-poly-carbonate-polyols and
  • Polyester-poly-carbo-nat-polyols, polyether polyamines and polyamidopolyamines particularly preferred are polyester polyols, polyether polyols and polycarbonate polyols, particularly preferred are polyester polyols.
  • the suitable polyester polyols are often composed of one or more aliphatic and / or aromatic and / or araliphatic dicarboxylic acids with one or more aliphatic and / or aromatic and / or araliphatic diols and are prepared via a polycondensation process.
  • polyester polyols are the known polycondensates of di- and optionally tri - and tetraols and di- and optionally tri- and tetra) carboxylic acids or hydroxycarboxylic acids or lactones.
  • free polycarboxylic acids it is also possible to use the corresponding polycarboxylic acid anhydrides or corresponding polycarboxylic acid esters of lower alcohols for the preparation of the polyesters.
  • diols examples include ethylene glycol, butylene glycol, diethylene glycol, triethylene glycol, polyalkylene glycols such as polyethylene glycol, furthermore 1,2-propanediol, 1,3-propanediol, butanediol (1,3), butanediol (1,4), hexanediol (1,6) and isomers, neopentyl glycol or hydroxypivalic acid neopentyl glycol esters, the latter three compounds being preferred.
  • polyalkylene glycols such as polyethylene glycol, furthermore 1,2-propanediol, 1,3-propanediol, butanediol (1,3), butanediol (1,4), hexanediol (1,6) and isomers, neopentyl glycol or hydroxypivalic acid neopentyl glycol esters, the latter three compounds being preferred.
  • polyols with a functionality of 3 may optionally be used proportionally, for example trimethylolpropane, glycerol, erythritol, pentaerythritol, trimethylolbenzene or trishydroxyethyl isocyanurate.
  • Suitable dicarboxylic acids are, for example, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid, sebacic acid, glutaric acid, tetrachlorophthalic acid, maleic acid, fumaric acid, itaconic acid, malonic acid, suberic acid, 2-methylsuccinic acid, succinic acid, 3,3-diethylglutaric acid, 2,2-dimethyl succinate.
  • Anhydrides of these acids are also useful, as far as they exist.
  • anhydrides are encompassed by the term "acid”.
  • Monocarboxylic acids such as benzoic acid and hexanecarboxylic acid may also be used, provided that the average functionality of the polyol is 132.
  • Saturated aliphatic or aromatic acids are preferred, such as adipic acid or isophthalic acid.
  • trimellitic acid may be mentioned here.
  • Hydroxycarboxylic acids which may be co-used as reactants in the preparation of a hydroxyl-terminated polyester polyol include hydroxycaproic acid, hydroxybutyric acid, hydroxydecanoic acid, hydroxystearic acid, and the like.
  • Useful lactones include. ⁇ -caprolactone, butyrolactone and homologs.
  • polyester polyols b) Preference is given to polyester polyols b) based on butanediol and / or neopentyl glycol and / or hexanediol and / or ethylene glycol and / or diethylene glycol with adipic acid and / or phthalic acid and / or isophthalic acid.
  • Particularly preferred are polyester polyols b) based on butanediol and / or neopentyl glycol and / or hexanediol with adipic acid and / or phthal
  • polyether polyols e.g. the polyaddition of the styrene oxides, ethylene oxide, propylene oxide, tetrahydrofuran, butylene oxide, epichlorohydrin, and their Mischadditions- and graft products, as well as by condensation of polyhydric alcohols or mixtures thereof and obtained by alkoxylation of polyhydric alcohols, amines and amino alcohols obtained polyether polyols.
  • Suitable hydroxy-functional polyethers have OH functionalities of from 1.5 to 6.0, preferably from 1.8 to 3.0, OH numbers of from 50 to 700, preferably from 100 to 600 mg KOH / g solids and molecular weights Mn of from 106 to 4 000 g / mol, preferably from 200 to 3500, such as Alkoxylation products of hydroxy-functional starter molecules such as ethylene glycol, propylene glycol, butanediol, hexanediol, trimethylolpropane, glycerol, pentaerythritol, sorbitol or mixtures of these and other hydroxy-functional compounds with propylene oxide or butylene oxide.
  • hydroxy-functional starter molecules such as ethylene glycol, propylene glycol, butanediol, hexanediol, trimethylolpropane, glycerol, pentaerythritol, sorbitol or mixtures of these
  • Preferred polyether component b) are polypropylene oxide polyols and polytetramethylene oxide polyols having a molecular weight of from 300 to 4000 g / mol.
  • the particularly low molecular weight polyether polyols can be water-soluble at correspondingly high OH contents.
  • water-insoluble polypropylene oxide polyols and polytetramethylene oxide polyols having a molecular weight of 500-3000 g / mol and mixtures thereof are particularly preferred.
  • the polycarbonate polyols in question are obtainable by reaction of carbonic acid derivatives, for example diphenyl carbonate, dimethyl carbonate or phosgene with diols.
  • diols are ethylene glycol, 1,2- and 1,3-propanediol, 1,3- and 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, neopentyl glycol, 1,4-bis-hydroxymethylcyclohexane, 2 Methyl-l, 3-propanediol, 2,2,4-trimethylpentanediol-1,3, dipropylene glycol, polypropylene glycols, dibutylene glycol, polybutylene glycols, bisphenol A, tetrabromobisphenol A, but also lactone-modified diols in question.
  • the diol component preferably contains from 40 to 100% by weight of 1,6-hexanediol and / or hexanediol derivatives, preferably those which, in addition to terminal OH groups, contain ether or ester groups, for example products which have been reacted by reacting 1 mol of hexanediol with at least 1 mole, preferably 1 to 2 moles of ⁇ -caprolactone or by etherification of hexanediol with itself to give di- or trihexylenglycol.
  • Polyether-polycarbonate polyols can also be used.
  • polycarbonate polyols b) based on dimethyl carbonate and hexanediol and / or butanediol and / or ⁇ -caprolactone Preference is given to polycarbonate polyols based on dimethyl carbonate and hexanediol and / or ⁇ -caprolactone. Very particular preference is given to polycarbonate polyols based on dimethyl carbonate and hexanediol and / or ⁇ -caprolactone.
  • the hydrophilic prepolymers further contain ionic groups and / or non-ionic, hydrophilic groups in order to ensure adequate dispersion of the resulting polyurethane dispersion in water.
  • the ionic groups may be either cationic or anionic in nature.
  • Cationic, anionic or nonionic dispersing compounds are those which, for example, sulfonium, ammonium, phosphonium, carboxylate, sulfonate, phosphonate groups or the groups which can be converted into the abovementioned groups by salt formation (potentially ionic groups) or contain polyether groups and can be incorporated by existing isocyanate-reactive groups in the macromolecules.
  • the neutralizing agents necessary for salt formation can be added either stoichiometrically or in excess in relation to the salt-forming group.
  • organic bases such as tertiary amines or inorganic bases such as alkali metal hydroxides or ammonia are added.
  • Tertiary amines such as triethylamine, triethanolamine or dimethylethanolamine are preferably used.
  • Preferred suitable isocyanate-reactive groups are hydroxyl and amine groups.
  • Suitable ionic or potential ionic compounds are e.g. Mono- and dihydroxycarboxylic acids, dihydrohxydicarboxylic acids, mono- and diaminocarboxylic acids, mono- and dihydroxy-sulfonic acids, mono- and diaminosulfonic acids, and also mono- and dihydroxy-phospho-phonic acids or mono- and diaminophosphonic acids and their Salts such as dimethyl propionic acid, dimethylol butyric acid, hydroxy-pivalic acid, N-aminoethyl) alanine, 2- (2-aminoethylamino) ethane-sulfonic acid, ethylene-diamine-propyl- or butylsulfonic acid, 1, 2- or 1-propylenediamine-ethylenesulfonic acid, malic acid, citric acid, glycolic acid, lactic acid, glycine, alanine, taurine, lysine, 3,5-diaminobenzoic acid
  • ionic or potential ionic compounds are those which have carboxy or carboxylate and / or sulfonate groups and / or ammonium groups.
  • Preferred compounds are polyethersulfonate, dimethlyolpropionic acid, tartaric acid and
  • Dimethylolbutyric acid particularly preferred are polyethersulfonate and dimethylolpropionic acid.
  • suitable nonionically hydrophilicizing compounds are polyoxyalkylene ethers which contain at least one hydroxy or amino group. These polyethers contain from 30% to 100% by weight of building blocks derived from ethylene oxide. In question are linear polyethers of a functionality between 1 and 3, but also compounds of the general formula (I),
  • R 1 and R 2 independently of one another each denote a divalent aliphatic, cycloaliphatic or aromatic radical having 1 to 18 C atoms, which may be interrupted by oxygen and / or nitrogen atoms, and
  • R3 is an alkoxy-terminated polyethylene oxide radical.
  • Nonionic hydrophilizing compounds are, for example, monohydric, on average 5 to 70, preferably 7 to 55 ethylene oxide units per molecule having Polyalkylenoxidpolyetheralkohole as they are accessible in a conventional manner by alkoxylation of suitable starter molecules (eg in Ul man's Encyclopedia of Industrial Chemistry 4th Edition, Volume 19, Verlag Chemie, Weinheim pp. 31-38).
  • Suitable starter molecules are, for example, saturated monoalcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, the isomers pentanols, hexanols, octanols and nonanols, n-decanol, n-dodecanol, n-tetradecanol , n-hexadecanol, n-octadecanol, cyclohexanol, the isomeric methylcyclohexanols or hydroxymethylcyclohexane, 3-ethyl-3-hydroxymethyloxetane or tetrahydrofurfuryl alcohol, diethylene glycol monoalkyl ethers such as diethylene glycol monobutyl ether, unsaturated alcohols such as allyl alcohol, 1,1-dimethyl-allyl
  • Alkylene oxides suitable for the alkoxylation reaction are, in particular, ethylene oxide and propylene oxide, which can be used in any desired order or also as a mixture in the alkoxylation reaction.
  • the polyalkylene oxide polyether alcohols are either pure polyethylene oxide polyethers or mixed polyalkylene oxide polyethers whose alkylene oxide units consist of at least 30 mol%, preferably at least 40 mol%, of ethylene oxide units.
  • Preferred nonionic compounds are monofunctional mixed polyalkylene oxide polyethers which have at least 40 mol% of ethylene oxide and not more than 60 mol% of propylene oxide units.
  • the molar ratio of NCO to isocyanate-reactive groups may vary from 1.05 to 4.00, preferably from 1.2 to 3.0, particularly preferably from 1.4 to 2.5.
  • the prepolymers are prepared by initially charging the corresponding polyol or a mixture of different polyols in a reaction vessel and then adding the polyisocyanate or the mixture of polyisocyanates at elevated temperature. If mixtures of polyols and / or polyisocyanates are used, then the individual reactants can also be added at different times in order to achieve a specific structure of the prepolymer.
  • the reaction may be carried out either in the melt or in suitable inert solvents such as acetone or butanone.
  • the reaction temperature is between 50 ° C and 130 ° C and the reaction time is 1 h - 24 h.
  • the urethanization reaction can be accelerated by using suitable catalysts. These are known to the expert catalysts such. As triethylamine, l, 4-diazabicyclo [2,2,2] octane, tin dioctoate, dibutyltin dilaurate or bismuth dioctoate, which are submitted with or added later. Preference is given to dibutyltin dilaurate.
  • the reaction is usually terminated when The NCO content no longer changes, a reaction control is usually carried out by titration.
  • the prepolymer dissolved in a suitable solvent.
  • low-viscosity prepolymers or prepolymer solutions are those systems whose viscosity is at a shear rate of 40 s-1 ⁇ 104 mPas.
  • the prepolymer solution preferably has a solids content of> 40% and acetone is preferred as the solvent.
  • the crude dispersion was prepared as follows: In a polymerization reactor, a polyester polyol and other polyols having a molar mass ⁇ 400 g / mol were introduced and heated to 70 ° C. Thereafter, a polyisocyanate mixture was metered into the meter and the internal temperature of the reactor was raised to 100.degree. The reaction mixture was stirred at 100 ° C until the theoretical NCO value of 4.47 wt% was reached. Thereafter, the resulting isocyanate-functional prepolymer was cooled to 60 ° C and dissolved in acetone.
  • the prepolymer solution was transferred to the distillation reactor and at 40 ° C, the aqueous solution of a mixture of the sodium salt of aminoethylaminoethanesulfonic acid with hydrazine supplied to the chain extension with stirring Rlick and then another 15 min. stirred. Finally, the dispersion was carried out with water.
  • the slightly milky raw polyurethane dispersion had a pH of 6.9 and a solids content of 23.8% by weight.
  • the crude dispersion was heated to 40 ° C. in a distillation reactor. Subsequently, a vacuum was applied, which was gradually lowered to 120 mbar. After reaching 120 mbar, the bottom temperature rose as well as the Brüdentemperatur continuously. When reaching a Brüdentemperatur of 48.5 ° C, the acetone content of the dispersion was below 1 wt .-% and the distillation was stopped.
  • the content of ketazine at the distillation end was 1100 ppm.
  • the crude dispersion was heated to 40 ° C. in a distillation reactor. Subsequently, a vacuum was applied, which was gradually lowered to 120 mbar. After reaching 120 mbar, the bottom temperature rose as well as the Brüdentemperatur continuously. After reaching a Brüdentemperatur of 48.5 ° C, the bottom temperature was increased over a period of two hours at an unchanged pressure of 120 mbar to 51 ° C.
  • the content of ketazine was 65 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Entfernung von Ketazin aus Polyurethandispersionen mittels Destillation unterhalb des Siedepunktes von Ketazin.

Description

Destillative Abtrennung von Ketazin aus Polvurethandispersionen
Die vorliegende Erfindung betrifft ein Verfahren zur Entfernung von Ketazin aus Polyurethandispersionen mittels Destillation unterhalb des Siedepunktes von Ketazin.
Wässrige Polyurethandispersionen (PUDs) spielen aufgrund ihrer besonderen Eigenschaften eine wichtige Rolle bei Beschichtungen. Neben den technischen Vorteilen von Polyurethanen sind wässrige PU-Dispersionen vorteilhaft, da sie nur wenig oder kein organisches Lösungsmittel enthalten und damit einen Beitrag zu nachhaltigen u nd umweltfreundlichen Beschichtungen liefern. PUDs werden hauptsächlich mittels zwei unterschiedlicher Verfahren hergestellt. Im sog. Schmelz- Dispergierverfahren wird zunächst ein isocyanatfunktionelles, hydrophiles Präpolymer in der Schmelze oder häufig unter Zuhilfenahme eines kleinen Anteils eines zumeist hochsiedenden Lösungsmittels hergestellt. Im nächsten Schritt wird das Präpolymer in Wasser dispergiert und zum Aufbau der Molmasse wird anschließend häufig eine Kettenverlängerung mit Polyaminen oder Polyhydraziden in Wasser durchgeführt. Da das verwendete Lösungsmittel häufig einen hohen Siedepunkt aufweist kann es anschließend nicht entfernt werden und verbleibt in der Dispersion. Im sog. Acetonverfahren wird ebenfalls zunächst ein isocyanatfunktionelles Präpolymer hergestellt welches anschließend in Aceton gelöst wird. Die anschließende Kettenverlängerung erfolgt dann in der acetonischen Lösung des Präpolymeren und die damit verbundene Erhöhung der Viskosität kann über die zugegebene Menge an Aceton kontrolliert werden. Danach erfolgt die Dispergierung mit Wasser und das Aceton kann abschließend destillativ entfernt werden. Da beim Acetonverfahren kein weiteres und häufig hochsiedendes Lösungsmittel eingesetzt wird, sind die resultierenden Dispersionen im Wesentlichen frei von organischen Lösungsmitteln. Bei den Verbindungen zur Kettenverlängerung handelt es sich häufig um Polyamine oder Polyhydrazide und als gängige Verbindung hat sich dabei u.a. Hydrazin bewährt, da die damit umgesetzten Dispersionen eine signifikant höhere Farbstabilität bei thermischer Belastung aufweisen. Setzt man nun Hydrazin zu einer solchen acetonischen Präpolymerlösung hinzu, dann kommt es zur Bildung eines Nebenprodukts indem Aceton und Hydrazin zum Ketazin (oder Acetonazin) reagieren (vgl. auch E.C. Gilbert, Journal of the American Chemical Society, 51, 3394-3409, 1929). Das gebildete Ketazin verbleibt aufgrund seines verhältnismäßig hohen Siedepunkts (134 °C bei Normaldruck) in der Dispersion und kann, je nach Verarbeitungsprozess, wieder zum Hydrazin hydrolysieren, was aufgrund der krebserregenden Wirkung des Hydrazins einen großen Nachteil darstellt.
Aus diesem Grund besteht ein großer Bedarf für ein Verfahren, mit dem das als Nebenprodukt gebildete Ketazin mit geringerem Aufwand und ohne Beeinträchtigung der Qualität der Polyurethandispersion aus der Dispersion entfernt werden kann. Diese Aufgabe wird durch die in den Patentansprüchen und in der Beschreibung charakterisierten Ausführungsformen der vorliegenden Erfindung gelöst.
Als Brüdentemperatur bezeichnet man die Temperatur der Dampfphase, als Sumpftemperatur bezeichnet man die Temperatur der Flüssigphase.
In einer ersten Ausführungsform betrifft die vorliegende Erfindung ein Verfahren zur Entfernung von Ketazin aus einer Polyurethandispersion enthaltend den Schritt der Destillation der Polyurethandispersion, wobei die Brüdentemperatur die Temperatur, bei der eine Entfernung des Acetons erreicht ist, dauerhaft maximal um 10 % überschreitet.
Die Brüdentemperatur, bei der eine Entfernung des Acetons erreicht wird, kann experimentell sehr einfach bestimmt werden. Der Sumpf der Destillationsanlage wird auf den Siedepunkt von Azeton aufgeheizt. Die Brüdentemperatur wird zunächst unter der Sumpftemperatur liegen, da als erstes die niedrigsiedenden Verbindungen verdampfen. Im Verlauf der Destillation steigt die Brüdentemperatur immer weiter an, da immer höher siedende Verbindungen verdampfen. Durch die Analyse von Proben, welche beim Erreichen definierter Brüdentemperaturen entnommen werden, lässt sich die bei einer gegebenen Brüdentemperatur in der Polyurethandispersion vorliegende Restkonzentration von Aceton einfach bestimmen.
Der Begriff„Entfernung des Acetons" bezeichnet einen Zustand der Polyurethandispersion, bei dem der Acetongehalt geringer als 1 Gew.-% ist.
Es ist weiterhin bevorzugt, dass zusätzlich zu der oben genannten Bedingung die Brüdentemperatur wenigstens um 15 °C unter dem Siedepunkt von Ketazin bei dem in der Destillationsanlage herrschenden Druck liegt. Die vorgenannte Temperaturgrenze wird vorzugsweise nur kurzzeitig, besonders bevorzugt überhaupt nicht, überschritten.
In der Studie, auf der die vorliegende Erfindung basiert, wurde überraschend gefunden, dass das Ketazin destillativ entfernt werden kann, ohne die Temperatur im Sumpf der Destillationsanlage oder im Brüden auf den Siedepunkt von Ketazin anzuheben. Da bei dem in der Anlage herrschenden Druck von 120 mbar das Aceton beim Erreichen einer Brüdentemperatur von 48 °C vollständig entfernt war, während Ketazin unter diesen Bedingungen einen Siedepunkt von ca. 70 °C hat, war es unerwartet, dass eine durch eine Weiterführung der Destillation bis zu einer Brüdentemperatur von 51 °C bereits mehr als 90 % des ursprünglich vorhandenen Ketazins entfernt werden konnte.
Der Begriff„Entfernung des Ketazins" bezieht sich auf einen Zustand der Polyurethandispersion, bei dem die Restkonzentration von Ketazin vorzugsweise weniger als 1000 ppm, stärker bevorzugt weniger als 500 ppm, noch stärker bevorzugt weniger als 300 ppm, noch stärker bevorzugt weniger als 200 ppm und am stärksten bevorzugt weniger als 100 ppm beträgt. Weiterhin ist bevorzugt, dass wenigstens 90 % des ursprünglich in der Polyurethandispersion vorliegenden Ketazins durch das erfindungsgemäße Verfahren entfernt werden.
Dem Fachmann ist die Abhängigkeit des Siedepunktes einer Flüssigkeit vom Umgebungsdruck gut bekannt, so dass er ohne weiteres in der Lage ist, die oben definierten Temperaturgrenzen für verschiedene Drücke in der Destillationsanlage zu bestimmen. Tabelle 1 führt die Siedepunkte von Ketazin für einige Drücke exemplarisch auf.
Tabelle 1:
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird die Destillation bei einem Druck von höchstens 140 mbar, besonders bevorzugt höchstens 125 mbar, durchgeführt. Noch stärker bevorzugt wird die Destillation bei einem Druck zwischen 115 mbar und 125 mbar durchgeführt. Hierbei wird eine Brüdentemperatur von 53 °C nicht dauerhaft überschritten. Stärker bevorzugt wird die Destillation bei einem Druck zwischen 115 mbar und 125 mbar durchgeführt.
Der Fachmann weiß, dass der Druck in der Destillationsanlage nicht während des ganzen Destillationsprozesses in den oben angegebenen Grenzen liegen muss. Der Destillationsprozess kann erfindungsgemäß bei Umgebungsdruck begonnen werden und dann bei kontinuierlich oder schrittweise abgesenktem Druck weitergeführt werden. In diesem Zusammenhang sind kurzzeitige Druckanstiege unschädlich, wenn sie den Destillationsprozess nicht beeinträchtigen. In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird hierbei eine Sumpftemperatur von 53 °C nicht dauerhaft überschritten. Die Destillation wird vorzugsweise bei einer Sumpftemperatur von 45 °C begonnen.
Eine „dauerhafte" Überschreitung einer Temperaturgrenze, wie in der vorliegenden Patentanmeldung verstanden, bedeutet, dass während des gesamten Destillationsvorgangs die angegebene Temperaturgrenze für höchstens 15 Minuten, stärker bevorzugt höchstens 10 Minuten und am stärksten bevorzugt höchstens 5 Minuten überschritten wird. Spiegelbildlich bedeutet eine „nur kurzeitige" Überschreitung einer Temperaturgrenze, dass besagte Temperaturgrenze während des gesamten Destillationsvorgangs für höchstens 15 Minuten, stärker bevorzugt höchstens 10 Minuten und am stärksten bevorzugt höchstens 5 Minuten überschritten wird. Die vorgenannten Zeiträume beziehen sich auf die Gesamtdauer der kontinuierlichen oder in wenigstens zwei getrennte Phasen geteilten Temperaturüberschreitung.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird die Destillation nach Erreichen einer Brüdentemperatur, bei der eine Entfernung des Acetons erreicht ist, bevorzugt für wenigstens 120 Minuten, stärker bevorzugt für 30 Minuten bis 180 Minuten, noch stärker bevorzugt für 60 Minuten bis 150 Minuten, und am stärksten bevorzugt für 90 Minuten bis 150 Minuten fortgesetzt.
Die Polyurethandispersion, aus der das Ketazin mit dem erfindungsgemäßen Verfahren entfernt wird, wird vorzugsweise nach dem in der Einleitung beschriebenen Acetonverfahren hergestellt.
Die nach dem erfindungsgemäßen Verfahren zu reinigenden Polyurethandispersionen werden aus den für die Herstellung von Polyurethandispersionen geeigneten Präpolymeren durch Kettenverlängerung hergestellt.
Bei den für die Erfindung geeigneten Präpolymeren handelt es sich typischerweise um die Reaktionsprodukte eines oder mehrerer Polyisocyanate mit einem oder mehreren isocyanatreaktiven Verbindungen, wobei das Polyisocyanat oder die Polyisocyanate im stöchiometrischen Überschuss eingesetzt wird so dass das Präpolymer endständige Isocyanatgruppen aufweist. Die geeigneten Präpolymere können weiterhin in hydrophobe und hydrophile Präpolymere unterschieden werden. Als hydrophobe Präpolymere werden solche Verbindungen bezeichnet, die keine hydrophilen Gruppen aufweisen und somit nicht in Wasser gelöst oder dispergiert werden können. Als hydrophile Präpolymere werden solche Verbindungen bezeichnet, die kovalent gebundene hydrophile Gruppen aufweisen, die es ermöglichen, das Präpolymer in Wasser zu lösen oder zu dispergieren.
Geeignete Polyisocyanate sind aromatische, araliphatische, aliphatische oder cycloaliphatische Polyisocyanate. Es können auch Mischungen solcher Polyisocyanate eingesetzt werden. Beispiele geeigneter Polyisocyanate sind Butylendiisocyanat, Hexamethylendiisocyanat (HDI), 1,5- Pentamethylendiisocyanat, Isophorondiisocyanat (IPDI), 2,2,4 und/oder 2,4,4- Trimethy hexa-'methy-'len--diiso-'Cyanat, die isomeren Bis(4,4'-isocyanatocyclo-'hexyl)-'methane oder deren Mischungen beliebigen Isomerengehalts, Isocyanato-methyl-l^-octandiisocyanat, 1,4- Cyclohexylendiisocyanat, 1,4-Phenylendiisocyanat, 2,4- und/oder 2,6-Toluylendiisocyanat, 1,5- Naphthylen-diisocyanat, 2,4'- oder 4,4'-Diphenylmethandiisocyanat, Triphenylmethan-4,4',4"- triisocyanat oder deren Derivate mit Urethan-, Isocyanurat-, Allophanat-, Biuret-, Uretdion-, Iminooxadiazindionstruktur und Mischungen derselben. Bevorzugt sind Hexamethylendiisocyanat, Isophorondiisocyanat und die isomeren Bis(4,4'-iso-'Cyanato-cyclohexyl)methane sowie deren Mischungen.
Als isocyanatreaktives Polyol im Sinne der vorliegenden Erfindung wird eine Verbindung bezeichnet die 1 - 4 isocyanatreaktive Gruppen aufweist, bevorzugt 1,5 - 2,5 und ganz besonders bevorzugt 1,9 - 2,1. Als isocyanatreaktive Gruppen eignen sich die dem Fachmann bekannten Gruppen wie beispielsweise Hydroxygruppen, Amingruppen, Hydrazidgruppen oder Thiolgruppen, bevorzugt Hydroxygruppen oder Amingruppen, ganz besonders bevorzugt Hydroxygruppen.
Die Molmasse der geeigneten Polyole liegt zwischen 40 g/mol - 13000 g/mol und als Polyole eignen sich niedermolekulare, diskrete Verbindungen und/oder höhermolekulare, polydisperse Verbindungen. Bei den niedermolekularen Verbindungen handelt es sich üblicherweise um diskrete Verbindungen im Molmassenbereich zwischen 40 und 499 g/mol. Bei den höhermolekularen Verbindungen handelt es sich um Verbindungen die eine Molekulargewichtsverteilung aufweisen und deren mittleres zahlengemitteltes Molgewicht zwischen 500 und 13000 liegt, bevorzugt zwischen 700 g/mol und 4000 g/mol, ganz besonders bevorzugt zwischen 1000 g/mol und 3000 g/mol. Geeignete niedermolekulare Polyole sind kurzkettige, d.h. 2 bis 20 Kohlenstoff-atome enthaltende aliphatische, araliphatische oder cycloaliphatische Verbindugnen. Beispiele für Diole sind Ethy- englykol, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Dipropylenglykol, Tripropylenglykol, 1,2-Propandiol, 1,3-Propandiol, 1,4-Butandiol, Neopentylglykol, 2-Ethyl-2- butylpropandiol, Trimethyl-pentandiol, stellungsisomere Diethyloctandiole, l^-Bu-tylen-glykol, Cyclohexandiol, 1,4-Cyclohexandimethanol, 1,6-Hexandiol, 1,2- und 1,4-Cyclohexandiol, hydriertes Bisphenol A (2,2-Bis(4-hy-'droxy-'Cyclohexyl)propan); 2,2-Dimethyl-3-hydroxy-'propion-'Säure-(2,2- dimethyl-3-hydroxypropylester). Bevorzugt sind 1,4-Butandiol, 1,4-Cyclohexandimethanol und 1,6- Hexandiol. Beispiele geeigneter Triole sind Trimethylolethan, Trimethylolpropan oder Glycerin, bevorzugt ist Trimethylo propan.
Beispiele für Diamine sind 1,2-Ethylendiamin, 1,6-Hexamethylendiamin, 1,4-Butandiamin und Isophorondiamin, besonders bevorzugt sind 1,2-Ethylendiamin und Isophorondiamin. Beispiele für Dihydrazide sind Oxalsäuredihydrazid, Carbohydrazid und Adipinsäuredihydrazid, besonders bevorzugt sind Carbohydrazid und Adipinsäuredihydrazid. Beispiele für Dithiole sind 1,2-Ethandithiol, 1,3-Propandithiol, 1,4-Butandithiol und 1,6-Hexandithiol. Besodners bevorzugt sind 1,2-Ethandithiol und 1,6-Hexandithiol.
Als niedermolekulare Verbindungen werden bevorzugt Diole verwendet.
Bei den höhermolekularen Verbindungen handelt es sich um Verbindungen die ihrerseits aus Monomeren aufgebaut sind und die neben den meist terminalen Isocyanat-reaktiven Endgruppen weitere funktionelle Gruppen entlang der Hauptkette aufweisen.
Geeignete höhermolekulare Polyole sind Poly-ester-poly-Ole, Poly-acrylatpolyole, Poly-urethan-poly-Ole, Polycarbonat-polyole, Poly-ether-polyole, Polyester-poly-'-'acrylat-'polyole, Poly-urethan-poly-acrylat-polyole, Poly-urethan-poly-ester-polyole, Poly-urethan-poly-etherpolyole, Poly-urethan-poly-carbonat-polyole und
Polyester-poly-car-bo-nat-polyole, Polyetherpolyamine und Polyamidopolyamine besonders bevorzugt sind Polyesterpolyole, Polyetherpolyole und Polycarbonatpolyole, besonders bevorzugt sind Polyesterpolyole. Die geeigneten Polyesterpolyole sind häufig aus ein oder mehreren aliphatischen und/oder aromatischen und/oder araliphatischen Dicarbonsäuren mit ein oder mehreren aliphatischen und/oder aromatischen und/oder araliphatischen Diolen aufgebaut und werden über einen Polykondensationsprozess hergestellt.
Gut geeignete Beispiele für Polyesterpolyole sind die bekannten Polykondensate aus Di- sowie gegebenenfalls Tri,- und Tetraolen und Di- sowie gegebenenfalls Tri- und Tetra)carbonsäuren oder Hydroxycarbonsäuren oder Lactonen. Anstelle der freien Polycarbonsäuren können auch die entsprechenden Polycarbonsäureanhydride oder entsprechende Polycarbonsäureester von niederen Alkoholen zur Herstellung der Polyester verwendet werden. Beispiele für geeignete Diole sind Ethylenglykol, Butylenglykol, Diethylenglykol, Triethylenglykol, Polyalkylenglykole wie Polyethylenglykol, weiterhin 1,2-Propandiol, 1,3-Propandiol, Butandiol(l,3), Butandiol(l,4), Hexandiol(l,6) und Isomere, Neopentylglykol oder Hydroxypivalinsäureneopenthylglykolester, wobei die drei letztgenannten Verbindungen bevorzugt sind. Um eine Funktionalität < 2 zu erzielen können gegebenenfalls Polyole mit einer Funktionalität von 3 anteilig verwendet werden, beispiels-weise Trimethylolpropan, Glycerin, Erythrit, Pentaerythrit, Triemthylolbenzol oder Trishydroxyethylisocyanurat zu nennen.
Als Dicarbonsäuren kommen beispielsweise in Frage Phthalsäure, Isophthalsäure, Terephthalsäure, Tetrahydrophthalsäure, Hexahydrophthalsäure, Cyclohexandicarbonsäure, Adipinsäure, Azelainsäure, Sebacinsäure, Glutarsäure, Tetrachlorphthalsäure, Maleinsäure, Fumarsäure, Itaconsäure, Malonsäure, Korksäure, 2-Methylbernsteinsäure, Bernsteinsäure, 3,3- Diethylglutarsäure, 2,2-Dimethylbernsteinsäure. Anhydride dieser Säuren sind ebenfalls brauchbar, soweit sie existieren. Für die Belange der vorliegenden Erfindung werden die Anhydride infolgedessen durch den Ausdruck "Säure" umfasst. Es können auch Monocarbonsäuren, wie Benzoesäure und Hexancarbonsäure verwendet werden, vorausgesetzt, dass die mittlere Funktionalität des Polyols 132 ist. Gesättigte aliphatische oder aromatische Säuren sind bevorzugt, wie Adipinsäure oder Isophthalsäure. Als gegebenenfalls in kleineren Mengen mitzuverwendende Polycarbonsäure sei hier Trimellitsäure genannt.
Hydroxycarbonsäuren, die als Reaktionsteilnehmer bei der Herstellung eines Polyesterpolyols mit endständigen Hydroxylgruppen mitverwendet werden können sind beispielsweise Hydroxycapronsäure, Hydroxybuttersäure, Hydroxydecansäure, Hydroxystearinsäure und dergleichen. Brauchbare Lactone sind u .a. ε-Caprolacton, Butyrolacton und Homologe. Bevorzugt sind Polyesterpolyole b) auf Basis von Butandiol und/oder Neopentylglykol und/oder Hexandiol und/oder Ethylenglykol und/oder Diethylenglykol mit Adipinsäure und/oder Phthalsäure und/oder Isophthalsäure. Besonders bevorzugt sind Polyesterpolyole b) auf Basis von Butandiol und/oder Neopentylglykol und/oder Hexandiol mit Adipinsäure und/oder Phthalsäure.
Als Polyetherpolyole seien z.B. die Polyadditionsprodukte der Styroloxide, des Ethylenoxid, Propylenoxid, Tetrahydrofuran, Butylenoxid, Epichlorhydrins, sowie ihre Mischadditions- und Pfropfprodukte, sowie die durch Kondensation von mehrwertigen Alkoholen oder Mischungen derselben und die durch Alkoxylierung von mehrwertigen Alkoholen, Aminen und Aminoalkoholen gewonnenen Polyetherpolyole genannt.
Geeignete hydroxyfunktionelle Polyether weisen OH-Funktionalitäten von 1,5 bis 6,0, bevorzugt 1,8 bis 3,0, OH-Zahlen von 50 bis 700, bevorzugt von 100 bis 600 mg KOH/g Feststoff und Molekulargewichte Mn von 106 bis 4 000 g/mol, bevorzugt von 200 bis 3500 auf, wie z.B. Alkoxylierungsprodukte hydroxyfunktioneller Startermolekuele wie Ethylenglykol, Propylenglykol, Butandiol, Hexandiol, Trimethylolpropan, Glycerin, Pentaerythrit, Sorbit oder Gemische dieser und auch anderer hydroxyfunktioneller Verbindungen mit Propylenoxid oder Butylenoxid. Bevorzugt als Polyetherkomponente b) sind Polypropylenoxidpolyole und Polytetramethylenoxidpolyole mit einem Molekulargewicht von 300 bis 4000 g/mol. Hierbei können die besonders niedermolekularen Polyetherpolyole bei entsprechend hohen OH-Gehalten wasserlöslich sein. Besonders bevorzugt sind jedoch wasserunlösliche Polypropylenoxidpolyole und Polytetramethylenoxidpolyole mit einem Molgewicht von 500 - 3000 g/mol sowie deren Mischungen.
Die in Frage kommenden Polycarbonatpolyole sind durch Reaktion von Kohlensäurederivaten, z.B. Diphenylcarbonat, Dimethylcarbonat oder Phosgen mit Diolen erhältlich. Als derartige Diole kommen z.B. Ethylenglykol, 1,2- und 1,3-Propandiol, 1,3- und 1,4-Butandiol, 1,6-Hexandiol, 1,8-Octandiol, Neopentylglykol, 1,4-Bishydroxymethylcyclohexan, 2-Methyl-l,3-propandiol, 2,2,4- Trimethylpentandiol-1,3, Dipropylenglykol, Polypropylenglykole, Dibutlyenglykol, Polybutylenglykole, Bisphenol A, Tetrabrombisphenol A, aber auch Lacton modifizierte Diole in Frage. Bevorzugt enthält die Diolkomponente 40 bis 100 Gew.-% 1,6-Hexandiol und/oder Hexandiol-Derivate, vorzugsweise solche, die neben endständigen OH-Gruppen Ether- oder Estergruppen aufweisen, z.B. Produkte, die durch Umsetzung von 1 Mol Hexandiol mit mindestens 1 Mol, bevorzugt 1 bis 2 Mol ε-Caprolacton oder durch Veretherung von Hexandiol mit sich selbst zum Di- oder Trihexylenglykol erhalten werden. Auch Polyether-Polycarbonatpolyole können eingesetzt werden. Bevorzugt sind Polycarbonatpolyole b) auf Basis von Dimethylcarbonat und Hexandiol und/oder Butandiol und/oder ε-Caprolacton. Ganz besonders bevorzugt sind Polycarbonatpolyole auf Basis von Dimethylcarbonat und Hexandiol und/oder ε-Caprolacton.
Die hydrophilen Präpolymere enthalten weiterhin ion ische Gruppen und/oder nicht-ionische, hydrophile Gruppen, um eine ausreichende Dispergierung der resultierenden Polyurethandispersion in Wasser zu gewährleisten. Die Ionischen Gruppen können dabei entweder kationischer oder anionischer Natur sein. Kationisch, anionisch oder nichtionisch dispergierend wirkende Verbindungen sind solche, die beispielsweise Sulfonium-, Ammonium-, Phosphonium-, Carboxylat-, Sulfonat-, Phosphonat-Gruppen oder die Gruppen, die durch Salzbildung in die vorgenannten Gruppen überführt werden können (potentiell ionische Gruppen) oder Polyethergruppen enthalten und durch vorhandene isocyanatreaktive Gruppen in die Makromoleküle eingebaut werden können. Die zur Salzbildung notwendigen Neutralisationsmittel können im Verhältnis zur salzbildenden Gruppe entweder stöchiometrisch oder im Unterschuss hinzu gegeben werden. Zur Erzeugung von anionischen Gruppen werden organische Basen , wie tertiäre Amine, oder anorganische Basen, wie Alkalimetallhydroxide oder Ammoniak hinzu gegeben. Bevorzugt werden dabei tertiäre Amine wie das Triethylamin, Triethanolamin oder Dimethylethanolamin eingesetzt. Bevorzugte geeignete isocyanatreaktive Gruppen sind Hydroxyl- und Amingruppen.
Geeignete ionische oder poten-tiell ionische Verbindungen sind z.B. Mono- und Dihydroxy-carbon- säuren, Dihydrohxydicarbonsäuren, Mono- und Diaminocarbonsäuren, Mono- und Dihydroxy-sulfon- säuren, Mono- und Diaminosulfonsäuren sowie Mono- und Dihydroxy-'phos-'phon-'Säuren oder Mono- und Diaminophosphonsäuren und ihre Salze wie Dimethylo propionsäure, Dimethylolbuttersäure, Hydroxy-pivalinsäure, N- -Amino-ethyl) -alanin, 2-(2-Amino-ethylamino)- ethan-'Sulfon-'Säure, Ethylen-diamin-propyl- oder butylsulfonsäure, 1,2- oder l^-Propylen-diamin- ethy sulfonsäure, Äpfelsäure, Zitronen-säure, Glykolsäure, Milchsäure, Glycin, Alanin, Taurin, Lysin, 3,5-Diamino-'benzoesäure, ein Additionsprodukt von IPDI und Acrylsäure (EP-A 0 916 647, Beispiel 1) und dessen Alkali- und/oder Ammonium-salze; das Addukt von Natrium-bisulfit an Buten-2-diol-l,4, Polyether-sulfonat, das propoxylierte Addukt aus 2-Butendiol und NaHS03, z.B. beschrieben in der DE-A 2 446 440 (Seite 5-9, Formel l-lll) sowie in kationische Gruppen überführbare Bau-steine wie N- Methyl-diethano amin als hydrophile Aufbaukomponenten. Bevorzugte ionische oder potentielle ionische Verbind ungen sind solche, die über Carboxy- oder Carboxylat- und/oder Sulfonatgruppen und/oder Ammonium-gruppen verfügen.
Bevorzugte Verbindungen sind Polyethersulfonat, Dimethlyolpropionsäure, Weinsäure und
Dimethylolbuttersäure, besonders bevorzugt sind Polyethersulfonat und Dimethylolpropionsäure. Geeignete nichtionisch hydrophilierend wirkende Verbindungen sind z.B. Poly-Oxyalkylenether, die mindestens eine Hydroxy- oder Aminogruppe enthalten. Diese Polyether enthalten einen Anteil von 30 Gew.-% bis 100 Gew.-% an Bausteinen, die vom Ethylenoxid abgeleitet sind. In Frage kommen linear aufgebaute Polyether einer Funktionalität zwischen 1 und 3, aber auch Verbindungen der allgemeinen Formel (I),
(I)
in welcher
Rl und R2 unabhängig voneinander jeweils einen zweiwertigen aliphatischen, cycloaliphatischen oder aromatischen Rest mit 1 bis 18 C-Atomen, die durch Sauerstoff und/oder Stickstoffatome unterbrochen sein können, bedeuten und
R3 für einen alkoxyterminierten Polyethylenoxidrest steht.
Nichtionisch hydrophilierend wirkende Verbindungen sind beispielsweise auch ein-wertige, im statistischen Mittel 5 bis 70, bevorzugt 7 bis 55 Ethylenoxideinheiten pro Molekül aufweisende Polyalkylenoxidpolyetheralkohole, wie sie in an sich bekannter Weise durch Alkoxylierung geeigneter Startermoleküle zugänglich sind (z.B. in Ul manns Encyclopädie der technischen Chemie, 4. Auflage, Band 19, Verlag Chemie, Weinheim S. 31-38).
Geeignete Startermoleküle sind beispielsweise gesättigte Monoalkohole wie Metha-nol, Ethanol, n- Propanol, Isopropanol, n-Butanol, Isobutanol, sec-Butanol, die Isomeren Pentanole, Hexanole, Octanole und Nonanole, n-Decanol, n-Dodecanol, n-Tetradecanol, n-Hexadecanol, n-Octadecanol, Cyclohexanol, die isomeren Methy cyclohexanole oder Hydroxymethylcyclohexan, 3 Ethyl-3- hydroxymethyloxetan oder Tetrahydrofurfurylalkohol, Diethylenglykol-monoalkylether wie beispielsweise Diethylen-glykolmonobutylether, ungesättigte Alkohole wie Allylalkohol, 1,1- D methyl-allylal kohol oder Oleinalkohol, aromatische Alkohole wie Phenol, die iso-meren Kresole oder Methoxyphenole, araliphatische Alkohole wie Benzylalkohol, Anis-alkohol oder Zimtalkohol, sekundäre Monoamine wie Dimethylamin, Diethy amin, Dipropylamin, Diisopropylamin, Dibutylamin, Bis-(2-ethylhexyl)-amin, N-Methyl- und N-Ethylcyclohexylamin oder Dicyclohexylamin sowie heterocyclische sekundäre Amine wie Morpholin, Pyrrolidin, Piperidin oder lH-Pyrazol. Bevorzugte Startermoleküle sind gesättigte Monoalkohole. Besonders bevorzugt wird Diethylen-glykolmonobutylether als Startermolekül verwendet.
Für die Alkoxylierungsreaktion geeignete Alkylenoxide sind insbesondere Ethylen-Oxid und Propylenoxid, die in beliebiger Reihenfolge oder auch im Gemisch bei der Alkoxylierungsreaktion eingesetzt werden können.
Bei den Polyalkylenoxidpolyetheralkoholen handelt es sich entweder um reine Polyethylenoxidpolyether oder gemischte Polyal kylenoxidpolyether, deren Alkylen-Oxid-einheiten zu mindestens 30 mol-% bevorzugt zu mindestens 40 mol-% aus Ethylen-Oxideinheiten bestehen. Bevorzugte nichtionische Verbindungen sind mono-fun k-tionelle gemischte Polyalkylenoxidpolyether, die mindestens 40 mol-% Ethylen-oxid- und maximal 60 mol-% Propylenoxideinheiten aufweisen.
Besonders bevorzugt werden monohydroxyfunktionelle Alkoxypolyethylenglykole wie z.B. MPEG 750 (Dow Chemical) und LB 25 (Bayer) und dihydroxyfunktionelle Verbindungen mit lateralen Polyethylenoxid-Einheiten wie z.B. Ymer N 120 (Perstorp) oder Tegomer D 3404.
Das molare Verhältnis von NCO- zu isocyanatreaktiven-Gruppen kann dabei von 1,05 - 4,00 variieren, bevorzugt von 1,2 - 3,0, besonders bevorzugt von 1,4 - 2,5. Die Herstellung der Präpolymere erfolgt indem das entsprechende Polyol oder eine Mischung verschiedener Polyole in einem Reaktionsgefäß vorgelegt wird und anschließend das Polyisocyanat oder die Mischung von Polyisocyanaten bei erhöhter Temperatur zugegeben wird. Wenn Mischungen von Polyolen und/oder Polyisocyanaten verwendet werden, dann können die einzelnen Reaktionspartner auch zu unterschiedlichen Zeitpunkten hinzu gegeben werden um einen gezielten Aufbau des Präpolymeren zu erreichen. Dabei kann die Reaktion entweder in der Schmelze erfolgen oder auch in geeigneten, inerten Lösungsmitteln wie z.B. Aceton oder Butanon. Die Reaktionstemperatur liegt dabei zwischen 50 °C und 130 °C und die Reaktionsdauer beträgt 1 h - 24 h. Die Urethanisierungsreaktion kann durch Verwendung von geeigneten Katalysatoren beschleunigt werden. Dazu eignen sich die dem Fachmann bekannten Katalysatoren wie z. B. Triethy amin, l,4-Diazabicyclo-[2,2,2]-octan, Zinndioktoat, Dibutylzinndilaurat oder Wismutdioktoat, die mit vorgelegt oder später zudosiert werden. Bevorzugt ist Dibutylzinndilaurat. Die Reaktion ist üblicherweise dann beendet, wenn sich der NCO-Gehalt nicht mehr ändert, eine Reaktionskontrolle erfolgt dabei üblicherweise durch Titration. Um die weitere Verarbeitung des Präpolymeren zu gewährleisten sind generell niedrig viskose Präpolymere von Vorteil, dazu wird, falls nicht während der Herstellung geschehen, das Präpolymer in einem geeigneten Lösungsmittel gelöst. Als niedrig viskose Präpolymere oder der Präpolymer- Lösungen werden solche Systeme bezeichnet deren Viskosität bei einer Scherrate von 40 s-1 < 104 mPas liegt. Die Präpolymerlösung hat dabei bevorzugt einen Feststoffanteil von > 40% und als Lösungsmittel wird Aceton bevorzugt.
Für das erfindungsgemäße Verfahren sind vorzugsweise solche Polyurethandispersionen geeignet, bei denen die Kettenverlängerung durch Hydrazin erfolgt, da hier durch Ketazin als Nebenprodukt entstehen kann.
Die folgenden Beispiele dienen nur dazu, die Erfindung zu illustrieren. Sie sollen den Schutzbereich der Patentansprüche in keiner Weise beschränken.
Beispiel 1: Herstellung einer Rohdispersion
Die Rohdispersion wurde wie folgt hergestellt: In einem Polymerisationsreaktor wurden ein Polyesterpolyol sowie weitere Polyole mit einer Mol masse < 400 g/mol vorgelegt und auf 70 °C erwärmt. Anschließend wurde eine Polyisocyanatmischung h inzu dosiert und die Reaktorinnentemperatur auf 100 °C erhöht. Die Reaktionsmischung wurde so lange bei 100 °C gerührt, bis der theoretische NCO-Wert von 4,47 Gew.-% erreicht war. Danach wurde das entstandene isocyanatfunktionelle Präpolymer auf 60 °C abgekühlt und in Aceton gelöst. Nach vollständiger Lösung in Aceton wurde die Präpolymerlösung in den Destillationsreaktor überführt und bei 40 °C die wässrige Lösung einer Mischung aus dem Natriumsalz der Aminoethyl- aminoethansulfonsäure mit Hydrazin zur Kettenverlängerung unter Rü hren zugeführt und anschließend weitere 15 min. nachgerührt. Abschließend erfolgte die Dispergierung mit Wasser. Die leicht milchige Polyurethan-Rohdispersion wies einen pH-Wert von 6,9 und einen Feststoffgehalt von 23,8 Gew% auf.
Beispiel 2 (Vergleich): Konventionelle Destillation der Rohdispersion
Die Rohdispersion wurde im Destillationsreaktor auf 40 °C aufgeheizt. Anschließend wurde ein Vakuum angelegt, das schrittweise auf 120 mbar abgesenkt wurde. Nach Erreichen von 120 mbar stieg die Sumpftemperatur ebenso wie die Brüdentemperatur kontinuierlich an. Beim Erreichen einer Brüdentemperatur von 48,5 °C lag der Acetongehalt der Dispersion unter 1 Gew.-% und die Destillation wurde beendet.
Der Gehalt an Ketazin lag am Destillationsende bei 1100 ppm.
Beispiel 3: Erfindungsgemäßes Destillationsverfahren
Die Rohdispersion wurde im Destillationsreaktor auf 40 °C aufgeheizt. Anschließend wurde ein Vakuum angelegt, das schrittweise auf 120 mbar abgesenkt wurde. Nach Erreichen von 120 mbar stieg die Sumpftemperatur ebenso wie die Brüdentemperatur kontinuierlich an. Nach dem Erreichen einer Brüdentemperatur von 48,5 °C wurde die Sumpftemperatur über einen Zeitraum von zwei Stunden bei unverändertem Druck von 120 mbar auf 51 °C erhöht.
Am Ende des erfindungsgemäßen Destillationsprozesses lag der Gehalt an Ketazin bei 65 ppm.

Claims

Patentansprüche
1. Verfahren zur Entfernung von Ketazin aus einer Polyurethandispersion enthaltend den Schritt der Destillation der Polyurethandispersion, wobei die Brüdentemperatur die Temperatur, bei der eine Entfernung des Acetons erreicht ist, maximal um 10 % überschreitet.
2. Das Verfahren nach Anspruch 1, wobei die Destillation bei einem Druck von mindestens 120 mbar und einer Brüdentemperatur von höchstens 53 °C durchgeführt wird.
3. Das Verfahren nach Anspruch 2, wobei die Temperatur im Sumpf höchstens 53 °C beträgt.
4. Das Verfahren nach Anspruch 2 oder 3, wobei die Destillation bei einer Temperatur im Sumpf von höchstens 45 °C begonnen wird und so lange fortgesetzt wird, bis die Temperatur im Sumpf bei maximal 53 °C liegt.
Das Verfahren nach einem der Ansprüche 1 bis 4, wobei die Destillation nach Erreichen Temperatur im Sumpf von 48 °C für wenigstens zwei Stunden fortgesetzt wird.
6. Das Verfahren nach einem der Ansprüche 2 bis 5, wobei der Druck 140 mbar nicht übersteigt.
7. Das Verfahren nach einem der Ansprüche 1 bis 6, wobei die Polyurethandispersion Aceton und Wasser enthält.
8. Das Verfahren nach einem der Ansprüche 1 bis 7, wobei das Polyurethan durch
Kettenverlängerung eines Präpolymers mit Hydrazin aufgebaut wurde.
9. Das Verfahren nach einem der Ansprüche 1 bis 8, wobei der Ketazingehalt der
Polyurethandispersion nach dem Ende der Destillation unter 1000 ppm liegt.
EP17733818.3A 2016-06-28 2017-06-27 Destillative abtrennung von ketazin aus polyurethandispersionen Withdrawn EP3475344A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16176762.9A EP3263627B1 (de) 2016-06-28 2016-06-28 Destillative abtrennung von ketazin aus polyurethandispersionen
PCT/EP2017/065880 WO2018002067A1 (de) 2016-06-28 2017-06-27 Destillative abtrennung von ketazin aus polyurethandispersionen

Publications (1)

Publication Number Publication Date
EP3475344A1 true EP3475344A1 (de) 2019-05-01

Family

ID=56321765

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16176762.9A Active EP3263627B1 (de) 2016-06-28 2016-06-28 Destillative abtrennung von ketazin aus polyurethandispersionen
EP17733818.3A Withdrawn EP3475344A1 (de) 2016-06-28 2017-06-27 Destillative abtrennung von ketazin aus polyurethandispersionen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16176762.9A Active EP3263627B1 (de) 2016-06-28 2016-06-28 Destillative abtrennung von ketazin aus polyurethandispersionen

Country Status (8)

Country Link
US (1) US11511211B2 (de)
EP (2) EP3263627B1 (de)
JP (1) JP7098540B2 (de)
KR (1) KR102422483B1 (de)
CN (1) CN109312078B (de)
ES (1) ES2828359T3 (de)
TW (1) TWI758299B (de)
WO (1) WO2018002067A1 (de)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2446440C3 (de) 1974-09-28 1981-04-30 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von wäßrigen Dispersionen von Sulfonatgruppen aufweisenden Polyurethanen
DE19750186A1 (de) 1997-11-13 1999-05-20 Bayer Ag Hydrophilierungsmittel, ein Verfahren zu dessen Herstellung sowie dessen Verwendung als Dispergator für wäßrige Polyurethan-Dispersionen
DE10138765A1 (de) * 2001-08-07 2003-02-20 Bayer Ag Wässrige Dispersionen hydrophiler Polyurethanharze
DE10254119A1 (de) * 2001-12-03 2003-06-18 Bayer Ag Verfahren zur Extraktion von Ketazinlösungen
ES2666893T3 (es) * 2005-02-07 2018-05-08 Lubrizol Advanced Materials, Inc. Dispersiones acuosas de composiciones de poliuretano
DE102005019397A1 (de) * 2005-04-25 2006-10-26 Bayer Materialscience Ag Polyurethan-Dispersionen mit verbesserten Verfilmungseigenschaften
WO2006129804A1 (ja) * 2005-06-03 2006-12-07 Mitsubishi Chemical Corporation 水性樹脂分散体及びその製造方法、塗料、並びに積層体
DE102006002156A1 (de) * 2006-01-17 2007-07-19 Bayer Materialscience Ag Polyurethan-Polyharnstoff-Dispersionen auf Basis von Polyether-Polycarbonat-Polyolen
CN101565494B (zh) 2009-06-05 2011-07-20 天津博苑高新材料有限公司 水性阳离子聚氨酯热熔胶预聚体及其乳液的生产方法
EP2377895A1 (de) * 2010-04-14 2011-10-19 Bayer MaterialScience AG Wässrige Polyurethanpolyharnstoff-Dispersionen
JP5614105B2 (ja) * 2010-05-28 2014-10-29 三菱瓦斯化学株式会社 ケタジン及び水加ヒドラジンの製造方法
EP2632965B1 (de) * 2010-10-29 2017-04-26 Lubrizol Advanced Materials, Inc. Wässrige kationische polyurethandispersionen
CN102070768B (zh) * 2010-12-06 2012-10-03 安徽好思家涂料有限公司 一种木器漆用水性聚氨酯及其制备方法
WO2014128031A1 (de) * 2013-02-22 2014-08-28 Basf Se Verfahren zur herstellung von wässrigen polyurethanzubereitungen
JP6164456B2 (ja) * 2013-03-28 2017-07-19 Dic株式会社 ウレタン樹脂組成物、プライマー、積層体及び画像表示装置
CN105399067B (zh) * 2015-10-27 2017-12-15 宜宾海丰和锐有限公司 一种提高酮连氮法水合肼蒸馏过程中酮连氮收率的方法
CN105347319B (zh) * 2015-11-17 2017-09-26 宜宾海丰和锐有限公司 一种去除酮连氮法水合肼有机杂质的方法

Also Published As

Publication number Publication date
EP3263627B1 (de) 2020-08-12
JP2019519654A (ja) 2019-07-11
JP7098540B2 (ja) 2022-07-11
ES2828359T3 (es) 2021-05-26
EP3263627A1 (de) 2018-01-03
CN109312078B (zh) 2022-03-01
TW201819478A (zh) 2018-06-01
TWI758299B (zh) 2022-03-21
KR20190022555A (ko) 2019-03-06
US20200306660A1 (en) 2020-10-01
KR102422483B1 (ko) 2022-07-20
US11511211B2 (en) 2022-11-29
WO2018002067A1 (de) 2018-01-04
CN109312078A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
EP0668881B1 (de) Polyurethan-dispersionen und ihre verwendung als bindemittel in einbrennlacken
EP1237970B1 (de) Verfahren zur herstellung von selbstemulgierbaren wässrigen polyurethan-harzen mit verbesserten eigenschaften
EP0994136B1 (de) Wässrige Polyurethandispersionen
EP2268691B1 (de) Wässrige polyurethanlösungen für polyurethan-systeme
EP1354902B1 (de) Wässrige Polysiloxan-Polyurethan-Dispersion, ihre Herstellung und Verwendung in Beschichtungsmitteln
EP3545025B1 (de) Verfahren zur herstellung eines zumindest teilweise beschichteten gegenstands
EP1862486B1 (de) Lösemittelarme oder lösemittelfreie Vernetzer-Dispersionen mit Pyrazol-blockierten Isocyanatgruppen
EP2398835B1 (de) Funktionalisierte polyurethanpolyharnstoff-dispersionen
EP1910437B1 (de) Selbstvernetzende pur-dispersionen
EP0807650B1 (de) Beschichtungsmittel für Glas
AT412648B (de) Wasserverdünnbare polyurethandispersionen
EP1418192A1 (de) Polyurethanharz mit hohem Carbonatgruppengehalt
EP1669382A2 (de) Festkörperreiche Polyurethanpolyharnstoff-Dispersionen
EP0546375B1 (de) Wässrige Polyurethandispersionen
WO2007022885A1 (de) Polyurethanpolyharnstoff-dispersionen
EP3109269B1 (de) Harnstofffreie polyurethan-dispersionen
EP1845120A1 (de) Wässrige polyurethan-Dispersionen mit verbesserter Lagerstabilität
EP1578837A1 (de) Hydrophile polyurethan-polyharnstoff-dispersionen
EP1065228A2 (de) Bindemittelkombination für wässrige Beschichtungen
EP3263627B1 (de) Destillative abtrennung von ketazin aus polyurethandispersionen
EP1403300B1 (de) Polyisocyanatharze
EP2319876A1 (de) Aromatsiche Polyurethanharnstoffdispersionen
EP3818091A1 (de) Verfahren und vorrichtung zur herstellung einer polyurethan-dispersion mit verringerter schaumbildung
EP3590989A1 (de) Verfahren zur herstellung einer polyurethan-dispersion mit verringerter schaumbildung
EP3985043A1 (de) Verfahren zur herstellung von wässrigen polyurethandispersionen mit aromatischen tri- oder tetracarbonsäuren als hydrophilierungsmittel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190820