EP3467852B1 - Dispositif magnétique pourvu de cryostat et de système de bobines magnétiques, d'accumulateurs de froid sur les alimentations en courant - Google Patents
Dispositif magnétique pourvu de cryostat et de système de bobines magnétiques, d'accumulateurs de froid sur les alimentations en courant Download PDFInfo
- Publication number
- EP3467852B1 EP3467852B1 EP18198875.9A EP18198875A EP3467852B1 EP 3467852 B1 EP3467852 B1 EP 3467852B1 EP 18198875 A EP18198875 A EP 18198875A EP 3467852 B1 EP3467852 B1 EP 3467852B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cold
- magnet assembly
- current leads
- cryostat
- coil system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003860 storage Methods 0.000 title description 7
- 238000001816 cooling Methods 0.000 claims description 82
- 230000005855 radiation Effects 0.000 claims description 32
- 230000008878 coupling Effects 0.000 claims description 18
- 238000010168 coupling process Methods 0.000 claims description 18
- 238000005859 coupling reaction Methods 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 18
- 230000007423 decrease Effects 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 7
- 230000007704 transition Effects 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 2
- 238000011161 development Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 239000001307 helium Substances 0.000 description 6
- 229910052734 helium Inorganic materials 0.000 description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000005338 heat storage Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000002085 persistent effect Effects 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 239000011232 storage material Substances 0.000 description 3
- 239000002887 superconductor Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 108020005351 Isochores Proteins 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 239000002984 plastic foam Substances 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
- H01F6/065—Feed-through bushings, terminals and joints
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
Definitions
- the invention relates to a magnet arrangement comprising a cryostat, a superconducting magnet coil system, an active cooling device for the magnet coil system and power supply lines for charging the magnet coil system in the cryostat, wherein the power supply lines comprise at least one normally conducting area, in particular wherein the power supply lines also include an HTS area, wherein a plurality of cold stores are thermally coupled to the power supply lines along the normally conductive area of the power supply lines in order to absorb heat generated in the normally conductive area when the magnetic coil system is charged.
- Such a magnet arrangement is from the JP H04 23305 A known.
- the superconducting magnetic coil systems can carry large electrical currents without loss, with which the strong magnetic field strengths are generated.
- cooling to cryogenic temperatures below the transition temperature of the superconducting material in the magnet coil system is necessary for the superconducting state.
- the superconducting magnetic coil systems are therefore arranged in a cryostat.
- active cooling devices are used in some cases, e.g. Pulse tube cooler with which a cryogenic temperature can be maintained permanently and inexpensively.
- the thermal load during charging is due to several effects (eg operation of the "persistent mode switch" or ohmic dissipation in the Power supply) significantly larger than in normal operation.
- the active cooling device can be dimensioned so large that the heat load of the charging also takes into account the cooling device can be compensated.
- this leads to high production costs and high maintenance costs, to a large size and to requirements for cooling and power supply, which must be based on the peak performance required for charging. Since charging typically only takes a few hours, but normal operation usually takes many weeks or months, most of the time the active cooling device is not used to capacity.
- cryogenic containers of the cryostat filled with a liquid cryogen such as liquid helium
- a high consumption of coolant can simply be accepted during charging, but this entails high costs.
- Power supplies for a superconducting magnet system are known, on which heat storage material is arranged.
- the power supply lines are tubular and the heat storage material is arranged in the tube, the heat storage material being divided inside the tube by layers of a thermally insulating material.
- the power supplies are cooled with a stream of helium gas.
- the invention has for its object to provide a magnet arrangement in which a reduced cooling capacity is required during charging of the superconducting magnet coil system, and a heat input into the superconducting magnet coil system is reduced during normal operation.
- a magnet arrangement of the type mentioned at the outset which is characterized in that the current leads in the normally conductive region have a variable cross-sectional area B along their direction of extension, whereby the cross-sectional area B decreases from a cold end to a warm end over at least a predominant part of the total length of the current leads in the normally conductive region.
- the power supply lines in their normally conductive area with a special geometry in order to optimize the power supply lines for charging requirements on the one hand and in normal operation on the other hand, with several cold stores on the power supply lines thermally along the normally conductive area of the power supply lines are coupled.
- the invention therefore provides for the cross-sectional area to be increased towards the cold end (perpendicular to the longitudinal extension or current flow direction), so that the ohmic resistance towards the cold end is reduced insofar as it is caused by the cross-sectional area. This also reduces heat generation near the cold end.
- the cross-sectional area of the power supply lines is reduced towards the end at room temperature, which increases the heat conduction resistance, insofar as it is caused by the cross-sectional area.
- the simultaneous distribution of several cold stores along the power supply lines in the normally conductive area ensures that the local limitations in the heat development and heat input achieved by the geometry of the power supply lines can be used over a long period of time, and in particular are not quickly compensated for by heat conduction along the power supply lines can.
- the cold stores slow down the compensation processes;
- the duration of a complete charging process can be buffered by suitable dimensioning of the cold storage (and suitable geometry of the power supply lines).
- the power supply lines in the normally conductive area typically run from a connection at room temperature (warm end) to the magnet coil system or up to an HTS area (or HTS section) of the power supply lines (cold end); the power supply in the HTS area then continues to the solenoid system.
- the magnetic coil system typically has a superconducting short-circuit switch for setting up continuous current operation (persistent mode).
- the short-circuit switch can preferably be operated with a low heating current or a low heating power, for example with 50 mW or less.
- LTS low-temperature superconductor
- the operating current of the magnetic coil system is advantageously low in normal operation, approximately 100 A or less, preferably 70 A or lower.
- the magnet coil system can preferably be charged with high charging voltages, for example with 5 V or more.
- the active cooling device can in particular be a pulse tube cooler or a Gifford-McMahon cooler.
- a preferred power consumption of the active cooling device is 2 kW or less, in particular 1.5 kW or less.
- the active cooling device is preferably operated without cooling water or air-cooled.
- the cross-sectional area B of the current leads in the normally conductive region typically decreases over the entire length of the normally conductive region from the cold end to the warm end, but at least over a predominant proportion of the total length of the current leads in the normally conductive region.
- the reduction in cross-section can take place continuously or in stages or in a mixed form.
- connection points usually have a smaller cross-sectional area B ("soldering point"), less frequently a larger cross-sectional area (“soldering bead”) than the surrounding power supply parts.
- the cross-sectional area B preferably decreases from the cold end to the warm end over a proportion of at least 95%, preferably at least 98%, of the total length of the current leads in the normally conductive area within the cryostat.
- the active cooling device is preferably arranged within a tube which is filled with gas during operation (in particular during charging and normal operation); then the active cooling device can be removed or replaced without breaking the insulation vacuum of the cryostat.
- this tube can be provided for one of the power supplies; this is there anyway and therefore the heat load does not increase further during normal operation.
- This tube can also be the neck tube of the cryostat, in particular one of the current leads also running in the neck tube. Any excess cooling capacity that is available on a regenerator of the active cooling device can be used for cooling the power supply by thermal contact via the gas in the tube.
- a preferred embodiment of the magnet arrangement according to the invention provides that the current leads in the normally conductive region each have N consecutive sections, with N ⁇ 2, in particular 3 ⁇ N ⁇ 7, the sections each having a constant cross-sectional area Bi within a section, and that the cross-sectional areas Bi decrease from the cold end to the warm end.
- This embodiment is structurally simple to implement;
- the thermal behavior during a charging process can be simulated relatively easily and the geometry of the power supply lines can be optimized accordingly. With a large number of sections, heat flow and heat development or the temperature distribution in the power supply lines can be adjusted more precisely.
- this setting can also be further optimized via the Bi / Hi ratios, with Hi: length of the section i (along the longitudinal direction / current flow direction).
- N ⁇ 3 or N ⁇ 4 also applies.
- at least one coupled cold store is provided for each section.
- different sections are thermally coupled to different cold stores.
- the cold stores only have a (direct) coupling to one of the sections; a connection to other sections is only made indirectly via the former section. This facilitates the formation of a strong temperature gradient in the power supply lines.
- the cold stores can contact the subareas, for example, approximately in the middle (with respect to the direction of extension).
- At least one cold accumulator is thermally coupled to a transition from two subsections, in particular wherein at least one cold accumulator is also thermally coupled to the cold end of the power supply in the normally conductive area is.
- This is usually structurally particularly simple.
- One or more cold stores at the cold end provide particularly good protection for the superconducting magnetic coil system (or an HTS area of the power supply lines).
- K stages of the thermal coupling are set up along the current leads in the normally conductive region, at least one cold store being thermally coupled to the current leads at each stage, with K ⁇ 2, especially 3 ⁇ K ⁇ 7.
- K ⁇ 3 or K ⁇ 4 is also advantageous.
- the heat flow or the temperature distribution in the power supply lines can be adjusted more precisely by a larger number of stages of the thermal coupling.
- the cold stores are used more thermodynamically efficiently.
- a stage of the thermal coupling corresponds to contacting a power supply through one or more cold stores at a specific length position along the power supply; Different levels of thermal coupling contact a power supply in the normally conductive area, i.e. at different length positions.
- a further development of this embodiment is advantageous, in which a heavy mass Mi of cold-storing material in the at least one cold store of a respective stage of the thermal coupling decreases over the stages from the cold end to the warm end.
- the specific heat capacity of most cold-storing materials increases sharply with higher temperatures (in the cryogenic area), so that such large (absolute) heavy masses are not required towards the warm end.
- the concept of the "heavy” (ie weight-generating) mass of a cold store is used here in order to avoid confusion with the "thermal mass” (ie the absolute heat capacity).
- cryostat is designed as a cryogen-free cryostat.
- an increased heat load during charging cannot be compensated for by accepting an increased cryogen consumption during charging.
- the invention enables the use of an active cooling device with a low cooling capacity, which is inexpensive and compact.
- a cryostat is considered to be cryogen-free if cryogens cannot escape from the system in any operating condition to be expected (i.e. not even when loading or during a quench).
- the magnet coil system is typically arranged directly in the vacuum of the vacuum container (and in particular not in a cryogen tank with liquid cryogen, in which the magnet coil system is immersed).
- An embodiment is also preferred in which at least some of the cold stores are designed as gas-tight containers, with some of the volume of the gas-tight containers being filled with an evaporable substance.
- thermal energy can be bound by evaporating the substance which can be evaporated (at the temperatures prevailing during operation).
- the vaporizable substance can be, for example, nitrogen, krypton or argon, and in a colder area it can also be neon or helium.
- the evaporable (mostly liquid) substance essentially provides the "heavy mass" of the respective cold store.
- the container is typically made of a poorly heat-conductive material, such as stainless steel or titanium alloy 15-3-3-3. Typically, several containers are connected in series along the power supply lines.
- At least some of the containers are thermally coupled with a lower end to a heat sink of the active cooling device via a heat-conducting element, and the boiling point of the substance contained in the container is above the temperature of the heat sink.
- Heat can be slowly removed from the container (after loading) via the heat-conducting element in order to recondense the vaporized substance, typically slowly over several hours or even several days.
- two containers can be used in series, which are coupled to two different cooling stages of the active cooling device (such as a pulse tube cooler).
- An embodiment is also preferred in which at least some of the cold stores are designed as metallic bodies. This design is particularly simple and robust. Good thermal contact between the (metallic) power supply lines in the normally conductive area and the metallic bodies is easy to set up directly.
- An embodiment is advantageous in which a plurality of cold stores designed as metallic bodies are arranged spaced apart from one another in a vacuum region of the cryostat. This easily avoids thermal short-circuits of the cold stores, in particular between cold stores of different stages of the thermal coupling.
- An embodiment is particularly preferred in which there is also an active auxiliary cooling device which is thermally coupled to a part (section) of the power supply lines in the normally conductive region, in particular where a lowest working temperature AT helps Auxiliary cooling device is higher than a lowest working temperature AT mss of the active cooling device for the magnet coil system.
- auxiliary cooling device With the auxiliary cooling device, additional heat energy can be extracted from the power supply lines, particularly when charging; this can relieve the load on the active cooling device (which is primarily intended to cool the magnetic coil system).
- the auxiliary cooling means typically has a AT Helpful in a range of -70 ° C to -30 ° C, usually from -60 ° C to -50 ° C, which is relatively easy to achieve (especially low-power); however, AT mss is usually 4 K to 10 K (-269 ° C to -263 ° C).
- An auxiliary cooling device or a corresponding cooling coil (associated heat exchanger) is typically arranged in the vacuum container (in a vacuum).
- auxiliary cooling device is furthermore thermally coupled to a radiation shield of the cryostat and / or a vacuum container of the cryostat and / or a temperature control device for a sample to be examined.
- the active cooling device is additionally relieved, in particular in normal operation.
- the auxiliary cooling device is used to cool the vacuum container of the cryostat below the ambient temperature, it is advantageous to thermally insulate the vacuum container. For this, e.g. Plastic foams. With this e.g. Condensation can be prevented.
- the cross-sectional area B changes from the cold end to the warm end by at least a factor 3.
- a factor of 3 or more can already significantly reduce the load on the active cooling device with regard to the heat load during charging.
- a magnet arrangement also falls within the scope of the present invention, wherein the magnet coil system is charged via the power supply lines and a charging current is selected and the variable cross-sectional area B and / or the cold storage devices are set up in such a way that they charge for a heat load WL which has a maximum effect on a coldest stage of the power supply lines in the normally conductive area during charging , and for a heat load WL gg to this coldest stage in an equilibrium state with charged solenoid system: WL load ⁇ 5 * WL gg, especially WL load ⁇ 2 * WL gg.
- the coldest level (or level of thermal coupling) is the area of the power supply to which the cold end next cold storage (or cold storage set at the same length position on the power supply lines ) is thermally coupled.
- the specified ratios are easy to achieve within the scope of the invention and enable the use of active cooling devices (cryocoolers) with low cooling capacity, which is inexpensive, enables a compact construction of the magnet arrangement and contributes to the integration of the system in a customer laboratory as easily as possible possible.
- the Fig. 1 shows schematically a first embodiment of a magnet arrangement 1 according to the invention.
- This comprises a cryostat 2, a magnet coil system 3, an active cooling device 4 and here two current leads 5a, 5b for charging the magnet coil system 3.
- the cryostat 3 is designed here with a vacuum container 11, an outer radiation shield 6, a middle radiation shield 7 and an inner radiation shield 8.
- the vacuum container 11, which simultaneously forms the outer wall of the cryostat 2 is at room temperature (approx. 20 ° C.).
- the outer radiation shield 6 is at approx. 213 K (approx. -60 ° C).
- the middle radiation shield 7 couples to an upper cooling stage 9 of the active cooling device 4 at approximately 50 K, and the inner radiation shield 8 couples to a lower cooling stage 10 of the active cooling device at approximately 3.5 K; the latter also represents the lowest working temperature AT mss of the active cooling device 4.
- the magnetic coil system 3 is arranged in a vacuum, which can be superconductively short-circuited via a switch 12 of a charging and short-circuit circuit 12a.
- the magnetic field generated by the magnetic coil system 3 can be used in normal operation, for example for an NMR measurement.
- the inner radiation shield 8 can also be gas-tight, so that to improve the thermal conductivity, for example, some gaseous helium can be provided or contained, which, however, does not have to be filled in during operation (including charging and normal operation) and cannot escape ( "cryogen-free cryostat").
- the cryostat 2 can also be designed as a cryogen-containing cryostat (in Fig. 1 not shown).
- a cryogenic container is provided, which typically contains liquid cryogen (such as helium), in which the magnetic coil system 3 is completely or partially immersed.
- the cryogen in the cryocontainer can be refilled in the cryogen-containing cryostat during operation, if necessary also during loading.
- the current leads 5a, 5b lead from connections 13a, 13b on the vacuum container 11 through the cryostat 3 to connections 14a, 14b on the charging and short-circuit circuit 12a.
- the power supply lines 5a, 5b each comprise a normally conducting area 15a, 15b (between vacuum container 11 and middle radiation shield 7), an HTS area 16a, 16b (between middle radiation shield 7 and inner radiation shield 8) and an LTS area (inside the inner radiation shield 8).
- the current supply lines 5a, 5b in the normally conductive area 15a, 15b each have a cross-sectional area B which decreases continuously from the cold (near the magnetic coil system) end 18a, 18b to the warm (near the room temperature connection) end 19a, 19b, as can be seen from an upward direction reducing diameter;
- the cross-sectional area B is drawn approximately in the middle (along the longitudinal direction) of the current leads 5a, 5b in the normally conductive region 15a, 15b.
- the cross-sectional area B is reduced by a factor of approximately 3 in the exemplary embodiment shown (note that the diameter is square in the cross-sectional area B, the cold to warm diameter ratio being approximately 1.75 here).
- the reduction in cross-section is established here over the entire (vertical) length of the current leads 5a, 5b in the normally conductive region 15a, 15b.
- Cold accumulators 20 are coupled to the supply leads 5a, 5b in the normally conductive area 15a, 15b.
- the cold stores 20 are designed here as metallic masses 20a.
- three stages 21, 22, 23 of the thermal coupling are set up, two cold stores 20 (left and right) at each of the stages 21, 22, 23 at the same length position (the length direction runs in Fig. 1 vertically) are coupled.
- the cold stores 20 of the coldest stage 21 have a total heavy mass M1 which is greater than the total heavy mass M2 which the cold stores 20 of the middle stage 22, and the total heavy mass M2 of the cold stores 20 of the middle stage 22 is again greater than the total Heavy mass M3 of the cold accumulator 20 of the warmest stage 23.
- the cold accumulator 20 of the different stages 21-23, and here also within the stages 21-23, are spaced apart from one another in the vacuum region 11a of the vacuum container 11 in order to avoid a thermal short circuit.
- the power supply lines 5a, 5b are coupled to the central radiation shield 7, so that a certain cooling capacity of the upper cold stage 9 of the active cooling device 4 can be used.
- the outer radiation shield 6 contacts the current leads 5a, 5b in the normally conductive area 15a, 15b, here between the stages 22 and 23; alternatively, a non-coupling passage can also be provided on the outer radiation shield 6.
- the heat load (heat flow "downwards") in the area of the lowest stage 21 when loading WL can be limited compared to the heat load in equilibrium in normal operation WL gg , so that WL laden ⁇ 2 * WL gg. Load the remaining heat load WL can be compensated for by the active cooling device 4, so that the superconducting magnet coil system 3 and also not the HTS region 16a, 16b of the power supply lines 5a, 5b heat up inadmissibly (above the respective transition temperature).
- the Fig. 2 shows a second embodiment of a magnet arrangement 1 according to the invention, which largely corresponds to the design of Fig. 1 corresponds; only the main differences are explained below.
- the cryostat 2 here only has an outer radiation shield 6, which is coupled to the upper cooling stage 9 of the active cooling device 4, and an inner radiation shield 8, which is coupled to the lower cooling stage 10, but not via a middle radiation shield.
- the current leads 5a, 5b in the normally conductive region 15a, 15b each run here with two cylindrical sections 25, 26, the colder section 25 having a significantly larger cross-sectional area B 1 compared to the cross-sectional area B 2 of the warmer section 26.
- the lower section 25 essentially runs in a cold store 20 which is formed with a gas-tight container 27 and an evaporable substance 28 contained therein.
- the evaporable substance 28 is in liquid form; some vaporizable substance 28 is already in the container 27 evaporates.
- the lower end of the container 27 is coupled to the lower cooling stage 10 of the active cooling device 4 via a heat-conducting element 29.
- the upper section 26 runs essentially in a cold store 20, which is formed with a gas-tight container 30 and an evaporable substance 28 contained therein.
- the lower end of the container 30 is coupled to the upper cooling stage 9 of the active cooling device 4 via a heat-conducting element 29.
- the lower container 27 is significantly larger than the upper container 30, and the lower container 27 contains significantly more (based on the heavy mass) vaporizable substance 28 than the upper container 30.
- the Fig. 3 shows a power supply 5a in the normal conducting area 15a for the invention.
- the cross-sectional areas B1-B4 decrease from the cold end 18a to the warm end 19a.
- the different sections 41-44 are coupled to different cold stores 20, here in the form of metallic bodies 20a.
- the two coupled cold stores 20 of a section 41-44 contact their section 41-44 here approximately in the middle with respect to the vertical longitudinal direction of the power supply 5a by means of a short bridge element 45.
- the total heavy masses Mi of the cold stores 20 of the four stages of the thermal coupling decrease from the cold end 18a to the warm end 19a.
- the Bi / Hi ratio decreases from the cold end 18a to the warm end 19a.
- FIG. 4 A further power supply line 5a is shown in the normally conductive area 15a, which largely corresponds to the design of Fig. 3 corresponds, so that only the main differences are explained.
- the cold stores 20 are each coupled to the transitions between the sections 41-44 with short bridge elements 45, and in addition a pair of cold stores 20 are coupled to the lower, cold end 18a of the power supply 5a in the normally conductive region 15a via bridge elements 45.
- the power supply 5a here is made integrally from a single part, e.g. as a metal plate cut to size.
- the Fig. 5 shows a third embodiment of a magnet arrangement 1 according to the invention, which largely corresponds to the design of Fig. 1 corresponds; only the main differences are explained below.
- an active auxiliary cooling device 50 is also present here, which is coupled to the outer radiation shield 6 via a heat exchanger 51.
- the outer radiation shield 6 in turn contacts a part (a section) of the power supply lines 5a, 5b in the normally conductive area 15a, 15b, here between the stages 22, 23 of the thermal coupling.
- the auxiliary cooling device 50 can reach a lowest working temperature AT aid of approximately -60 ° C.
- auxiliary cooling device 50 Via the auxiliary cooling device 50, part of the heat load occurring during charging can be derived from the power supply lines 5a, 5b in the normally conductive area 15a, 15b, so that the active cooling device 4 is relieved. It is also possible to support the cooling in normal operation with the auxiliary cooling device 50.
- Fig. 6 shows a fourth embodiment of a magnet arrangement 1 according to the invention, largely of the design of Fig. 5 corresponds, so that only the essential differences are explained below.
- the active auxiliary cooling device 50 not only cools the heat exchanger 51 to the outer radiation shield 6, but also a heat exchanger 52, which in turn cools a heat exchanger 53 of a temperature control device 54 for a sample 55 to be examined.
- the sample 55 to be examined is shown during its measurement by NMR spectroscopy in a not shown
- the room temperature bore of the cryostat 2 is kept at a constant temperature by the tempering device 54, the magnetic field generated by the magnet coil system 3 of the magnet arrangement 1 during normal operation being used.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Claims (16)
- Agencement magnétique (1), comprenant un cryostat (2), un système de bobines magnétiques supraconductrices (3), un dispositif de refroidissement actif (4) pour le système de bobines magnétiques (3) et des amenées de courant (5a, 5b) pour charger le système de bobines magnétiques (3) dans le cryostat (2),
dans lequel les amenées de courant (5a, 5b) comprennent au moins une zone normalement conductrice (15a, 15b), en particulier dans lequel les amenées de courant (5a, 5b) comprennent également une zone HTS (16a, 16b), dans lequel plusieurs accumulateurs de froid (20) sont couplés thermiquement aux amenées de courant (5a, 5b) le long de la zone normalement conductrice (15a, 15b) des amenées de courant (5a, 5b) pour absorber la chaleur générée dans la zone normalement conductrice (15a, 15b) lors de la charge du système de bobines magnétiques (3),
caractérisé en ce
que les amenées de courant (5a, 5b) dans la zone normalement conductrice (15a, 20, 15b) présentent une surface de section transversale B variable suivant leur direction d'extension,
la surface de section transversale B diminuant d'une extrémité froide (18a, 18b) à une extrémité chaude (19a, 19b) au moins sur une partie prépondérante de la longueur totale des amenées de courant (5a, 5b) dans la zone normalement conductrice (15a, 15b). - Agencement magnétique (1) selon la revendication 1, caractérisé en ce que les amenées de courant (5a, 5b) présentent chacune dans la zone normalement conductrice (15a, 15b) N tronçons successifs (25, 26 ; 41-44), avec N ≥ 2, en particulier 3 ≤ N ≤ 7,
les tronçons (25, 26 ; 41-44) présentant chacun une surface de section transversale Bi constante au sein d'un tronçon (25, 26 ; 41-44),
et que les surfaces de section transversale Bi diminuent de l'extrémité froide (18a, 18b) vers l'extrémité chaude (19a, 19b). - Agencement magnétique (1) selon la revendication 2, caractérisée en ce que différents tronçons (25, 26 ; 41-44) sont couplés thermiquement à différents accumulateurs de froid (20).
- Agencement magnétique (1) selon la revendication 2, caractérisé en ce qu'au moins un accumulateur de froid (20) est couplé thermiquement à chaque jonction de deux tronçons (25, 26 ; 41-44), en particulier au moins un accumulateur de froid (20) étant également couplé thermiquement à l'extrémité froide (18a, 18b) de l'amenée de courant (5a, 5b) dans la zone normalement conductrice (15a, 15b).
- Agencement magnétique (1) selon l'une des revendications précédentes, caractérisé en ce que K étages de couplage thermique (21-23) sont prévus le long de chacune des amenées de courant (5a, 5b) dans la zone normalement conductrice (15a, 15b), au moins un accumulateur de froid (20) étant couplé thermiquement aux amenées de courant (5a, 5b) à chaque étage (21-23), avec K ≥ 2, en particulier 3 ≤ K ≤ 7.
- Agencement magnétique (1) selon la revendication 5, caractérisé en ce qu'une lourde masse Mi de matériau accumulateur de froid dans ledit au moins un accumulateur de froid (20) d'un étage respectif de couplage thermique (21-23) diminue de l'extrémité froide (18a, 18b) vers l'extrémité chaude (19a, 19b) sur les étages (21-23).
- Agencement magnétique (1) selon l'une des revendications précédentes, caractérisé en ce que le cryostat (2) est réalisé sous la forme d'un cryostat (2) sans cryogène.
- Agencement magnétique (1) selon l'une des revendications précédentes, caractérisé en ce qu'au moins une partie des accumulateurs de froid (20) est réalisée sous la forme de récipients étanches aux gaz (27, 30), une partie du volume des récipients étanches aux gaz (27, 30) étant remplie d'une substance vaporisable (28).
- Agencement magnétique (1) selon la revendication 8, caractérisé en ce que les amenées de courant (5a, 5b) dans la zone normalement conductrice (15a, 15b) s'étendent au moins partiellement à l'intérieur des récipients (27, 30).
- Agencement magnétique (1) selon l'une des revendications 8 et 9 précédentes, caractérisé en ce qu'au moins une partie des récipients (27, 30) est couplée thermiquement à une extrémité inférieure, par l'intermédiaire d'un élément thermoconducteur (29), à un dissipateur de chaleur (9, 10) du dispositif de refroidissement actif (4), et le point d'ébullition de la substance (28) contenue dans le récipient (27, 30) est supérieur à la température du dissipateur de chaleur (9, 10).
- Agencement magnétique (1) selon l'une des revendications précédentes, caractérisé en ce qu'au moins une partie des accumulateurs de froid (20) est réalisée sous la forme de corps métalliques (20a).
- Agencement magnétique (1) selon la revendication 11, caractérisé en ce que plusieurs accumulateurs de froid (20) réalisés sous la forme de corps métalliques (20a) sont disposés à distance les uns des autres dans une zone de vide (11a) du cryostat (2).
- Agencement magnétique (1) selon l'une des revendications précédentes, caractérisé en ce qu'un dispositif de refroidissement auxiliaire actif (50) est également présent, qui est couplé thermiquement à une partie des amenées de courant (5a, 5b) dans la zone normalement conductrice (15a, 15b), en particulier une température de fonctionnement la plus basse AThilf du dispositif de refroidissement auxiliaire (50) étant supérieure à une température de fonctionnement la plus basse ATmss du dispositif de refroidissement actif (4) pour le système de bobines magnétiques (3).
- Agencement magnétique (1) selon la revendication 13, caractérisé en ce que le dispositif de refroidissement auxiliaire (50) est en outre couplé thermiquement à un écran anti-rayonnement (6, 7, 8) du cryostat (2) et/ou à un récipient sous vide (11) du cryostat (2) et/ou à un dispositif de régulation de température (54) pour un échantillon (55) à examiner.
- Agencement magnétique (1) selon l'une des revendications précédentes, caractérisée en ce que la surface de section transversale B varie d'au moins un facteur 3 de l'extrémité froide (18a, 18b) à l'extrémité chaude (19a, 19b).
- Utilisation d'un agencement magnétique (1) selon l'une des revendications précédentes,
selon laquelle le système de bobines magnétiques (3) est chargé par l'intermédiaire des amenées de courant (5a, 5b) et un courant de charge est choisi de telle sorte et la surface de section transversale variable B et/ou les accumulateurs de froid (20) sont conçus de telle sorte que pour une charge thermique WLladen qui agit au maximum sur un étage le plus froid (21) des amenées de courant (5a, 5b) dans la zone normalement conductrice (15a, 15b) pendant la charge, et pour une charge thermique WLgg sur cet étage le plus froid (21) dans un état d'équilibre avec un système de bobines magnétiques chargées (3), la relation suivante s'applique :
WLladen ≤ 5*WLgg, en particulier WLladen ≤ 2*WLgg.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017217930.9A DE102017217930A1 (de) | 2017-10-09 | 2017-10-09 | Magnetanordnung mit Kryostat und Magnetspulensystem, mit Kältespeichern an den Stromzuführungen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3467852A1 EP3467852A1 (fr) | 2019-04-10 |
EP3467852B1 true EP3467852B1 (fr) | 2020-04-15 |
Family
ID=63787821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18198875.9A Active EP3467852B1 (fr) | 2017-10-09 | 2018-10-05 | Dispositif magnétique pourvu de cryostat et de système de bobines magnétiques, d'accumulateurs de froid sur les alimentations en courant |
Country Status (4)
Country | Link |
---|---|
US (1) | US10839998B2 (fr) |
EP (1) | EP3467852B1 (fr) |
CN (1) | CN109637772B (fr) |
DE (1) | DE102017217930A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019216818A1 (de) * | 2019-10-31 | 2021-05-06 | Siemens Energy Global GmbH & Co. KG | Stromzuführung, supraleitende Spuleneinrichtung und Rotor |
EP3982378A1 (fr) * | 2020-10-09 | 2022-04-13 | Koninklijke Philips N.V. | Système d'aimants supraconducteurs dépourvus de cryogène |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3588312A (en) * | 1969-08-26 | 1971-06-28 | Alsthom Cgee | Method and device for circulating a cryogenic liquid within a body immersed in the cryogenic liquid |
US4535595A (en) * | 1983-02-09 | 1985-08-20 | Bruker Analytische Mebtechnik Gmbh | Cooling device for a low temperature magnet system |
GB8512804D0 (en) * | 1985-05-21 | 1985-06-26 | Oxford Instr Ltd | Cyclotrons |
US4895831A (en) * | 1988-07-05 | 1990-01-23 | General Electric Company | Ceramic superconductor cryogenic current lead |
US4959964A (en) * | 1988-09-16 | 1990-10-02 | Hitachi, Ltd. | Cryostat with refrigerator containing superconductive magnet |
US4986078A (en) * | 1989-08-17 | 1991-01-22 | General Electric Company | Refrigerated MR magnet support system |
JP2821549B2 (ja) | 1990-05-15 | 1998-11-05 | 株式会社日立製作所 | 超電導磁石システム |
US5220800A (en) * | 1990-12-10 | 1993-06-22 | Bruker Analytische Messtechnik Gmbh | Nmr magnet system with superconducting coil in a helium bath |
US5317296A (en) | 1991-09-13 | 1994-05-31 | General Electric Company | Demountable conduction cooled current leads for refrigerated superconducting magnets |
US5302928A (en) | 1992-08-03 | 1994-04-12 | General Electric Company | Superconducting current leads for a cryogenless superconducting magnetic energy storage device |
US5623240A (en) * | 1992-10-20 | 1997-04-22 | Sumitomo Heavy Industries, Ltd. | Compact superconducting magnet system free from liquid helium |
JPH06231950A (ja) | 1993-02-03 | 1994-08-19 | Asahi Glass Co Ltd | 超電導磁石 |
JPH07142237A (ja) * | 1993-11-22 | 1995-06-02 | Toshiba Corp | 超電導磁石装置 |
US5586437A (en) | 1995-09-06 | 1996-12-24 | Intermagnetics General Corporation | MRI cryostat cooled by open and closed cycle refrigeration systems |
DE19548273A1 (de) * | 1995-12-22 | 1997-06-26 | Spectrospin Ag | NMR-Meßeinrichtung mit Pulsrohrkühler |
JPH11288809A (ja) * | 1998-03-31 | 1999-10-19 | Toshiba Corp | 超電導マグネット装置 |
JP3698099B2 (ja) * | 2001-12-14 | 2005-09-21 | 株式会社日立製作所 | 磁気共鳴撮像装置用マグネット |
GB2425345B (en) * | 2002-11-21 | 2007-03-14 | Ge Med Sys Global Tech Co Llc | Cryogen pressure vessel assembly for superconducting magnets |
US6965236B2 (en) * | 2003-11-20 | 2005-11-15 | Ge Medical Systems Global Technology Co., Llc | MRI system utilizing supplemental static field-shaping coils |
DE102004007340B4 (de) * | 2004-02-16 | 2008-10-16 | Bruker Biospin Gmbh | Driftarmes supraleitendes Hochfeldmagnetsystem und hochauflösendes magnetisches Resonanzspektrometer |
US7170377B2 (en) * | 2004-07-28 | 2007-01-30 | General Electric Company | Superconductive magnet including a cryocooler coldhead |
DE102004037172B4 (de) * | 2004-07-30 | 2006-08-24 | Bruker Biospin Ag | Kryostatanordnung |
DE102004053972B3 (de) * | 2004-11-09 | 2006-07-20 | Bruker Biospin Gmbh | NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat |
DE102004060832B3 (de) * | 2004-12-17 | 2006-06-14 | Bruker Biospin Gmbh | NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat |
WO2008007574A1 (fr) * | 2006-07-12 | 2008-01-17 | Hitachi Medical Corporation | Aimant supraconducteur, unité d'imagerie par résonance magnétique, et procédé de détermination de la capacité de refroidissement d'un refroidisseur cryogénique |
DE102007013350B4 (de) * | 2007-03-16 | 2013-01-31 | Bruker Biospin Ag | Stromzuführung mit Hochtemperatursupraleitern für supraleitende Magnete in einem Kryostaten |
DE102007021033B3 (de) * | 2007-05-04 | 2009-03-05 | Siemens Ag | Strahlführungsmagnet zur Ablenkung eines Strahls elektrisch geladener Teilchen längs einer gekrümmten Teilchenbahn und Bestrahlungsanlage mit einem solchen Magneten |
US20090038318A1 (en) * | 2007-08-10 | 2009-02-12 | Telsa Engineering Ltd. | Cooling methods |
DE102009045373B4 (de) * | 2009-10-06 | 2011-12-08 | Bruker Biospin Gmbh | Kompakte supraleitende Magnetanordnung mit aktiver Abschirmung, wobei die Abschirmspule das Feldmaximum der Hauptfeldspule dämpft |
CN102117691B (zh) | 2010-01-05 | 2012-11-28 | 通用电气公司 | 超导磁体的电流引线系统 |
DE102011006164B8 (de) * | 2011-03-25 | 2013-04-18 | Bruker Biospin Ag | Kompakter kryogener NMR-Sensor mit integriertem, aktivem Kühlaggregat |
CN102360694B (zh) | 2011-08-22 | 2013-10-30 | 中国科学院高能物理研究所 | 一种一级可拔的二元同轴电流引线结构 |
KR101362772B1 (ko) | 2012-02-06 | 2014-02-13 | 삼성전자주식회사 | 냉동 시스템 및 이를 채용한 초전도 자석 장치 |
CN102592773B (zh) | 2012-03-05 | 2013-06-26 | 宁波健信机械有限公司 | 用于磁共振成像超导磁体的可分离高温超导电流引线 |
GB2503460B (en) * | 2012-06-26 | 2014-08-13 | Siemens Plc | Method and apparatus for reduction of gradient coil vibration in MRI systems |
US9182464B2 (en) | 2012-07-27 | 2015-11-10 | General Electric Company | Retractable current lead |
TW201433331A (zh) * | 2012-09-28 | 2014-09-01 | Mevion Medical Systems Inc | 線圈位置調整 |
CN106461287A (zh) | 2014-04-17 | 2017-02-22 | 维多利亚互联有限公司 | 用于将从待冷却部件延伸的长形导热结构有效冷却到低温温度的低温流体回路设计 |
CN105097179A (zh) | 2014-05-07 | 2015-11-25 | 中国科学院高能物理研究所 | 一种强磁场高梯度超导磁体装置 |
EP3230756B1 (fr) * | 2014-12-12 | 2018-11-07 | Koninklijke Philips N.V. | Système et procédé pour le maintien de vide dans un système à aimant supraconducteur dans le cas d'une perte de refroidissement |
CN105786045B (zh) * | 2014-12-22 | 2019-06-21 | 中国科学院宁波材料技术与工程研究所 | 高能系统的外置式环绕型温度控制装置及方法 |
JP6628391B2 (ja) | 2015-03-18 | 2020-01-08 | 昭和電線ケーブルシステム株式会社 | 電流リード固定用フランジユニット及び電流リード付きフランジユニット |
US10511168B2 (en) * | 2015-04-15 | 2019-12-17 | Christopher Mark Rey | Intelligent current lead device and operational methods therof |
CN109074932B (zh) * | 2016-03-30 | 2021-07-30 | 住友重机械工业株式会社 | 超导磁铁装置及超低温制冷机系统 |
CN107134767B (zh) | 2017-06-06 | 2019-04-09 | 西安交通大学 | 一种应用于大温度梯度条件下的高电压大电流电极引线 |
DE102018212758A1 (de) * | 2018-07-31 | 2020-02-06 | Bruker Switzerland Ag | Kryostatanordnung mit supraleitendem Magnetspulensystem mit thermischer Verankerung der Befestigungsstruktur |
-
2017
- 2017-10-09 DE DE102017217930.9A patent/DE102017217930A1/de not_active Withdrawn
-
2018
- 2018-10-05 EP EP18198875.9A patent/EP3467852B1/fr active Active
- 2018-10-09 US US16/155,262 patent/US10839998B2/en active Active
- 2018-10-09 CN CN201811171660.0A patent/CN109637772B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
US20190108932A1 (en) | 2019-04-11 |
US10839998B2 (en) | 2020-11-17 |
CN109637772A (zh) | 2019-04-16 |
DE102017217930A1 (de) | 2019-04-11 |
EP3467852A1 (fr) | 2019-04-10 |
CN109637772B (zh) | 2020-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1504458B1 (fr) | Dispositif de supraconductivite comportant un aimant supraconducteur et une unite de refroidissement | |
DE102011078608B4 (de) | Kryostatanordnung | |
EP3285032B1 (fr) | Agencement de cryostat et son procédé de fonctionnement | |
EP3282269B1 (fr) | Appareil rmn pourvu des composants formant sondes, refroidis par l'intermédiaire d'un sas sous vide dans un cryostat d'un assemblage d'aimants supraconducteurs ainsi que procédé de montage et son démontage | |
DE102006012511B3 (de) | Kryostat mit einem Magnetspulensystem, das eine unterkühlte LTS- und eine in einem separaten Heliumtank angeordnete HTS-Sektion umfasst | |
DE19914778A1 (de) | Supraleitende Magnetvorrichtung | |
DE102005028414A1 (de) | Einrichtung zur Erzeugung eines gepulsten Magnetfelds | |
EP3467852B1 (fr) | Dispositif magnétique pourvu de cryostat et de système de bobines magnétiques, d'accumulateurs de froid sur les alimentations en courant | |
DE102015218019B4 (de) | Kryostat mit Magnetanordnung, die einen LTS-Bereich und einen HTS-Bereich umfasst | |
EP3244137B1 (fr) | Dispositif cryostatique | |
EP1742234B1 (fr) | Ensemble de cryostat horizontal en surfusion | |
DE102010028750B4 (de) | Verlustarme Kryostatenanordnung | |
DE102004058006B3 (de) | Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter | |
DE102006059139A1 (de) | Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr | |
EP0485395A1 (fr) | Bobine magnetique supraconductrice homogene a champ eleve. | |
EP3611528A1 (fr) | Dispositif cryostat pourvu de système de bobines magnétiques supraconducteur à ancrage thermique de la structure de fixation | |
DE4039365C2 (fr) | ||
EP2721619B1 (fr) | Dispositif et procédé pour refroidir un équipement | |
DE10211568A1 (de) | Kälteanlage für zu kühlende Teile einer Einrichtung | |
DE102010038713B4 (de) | Hochfeld-NMR-Apparatur mit Überschuss-Kühlleistung und integrierter Helium-Rückverflüssigung | |
DE102004023073B3 (de) | Magnetsystem mit abgeschirmten Regeneratorgehäuse und Verfahren zum Betrieb eines solchen Magnetsystems | |
DE102006012506A1 (de) | Kryostat mit einem Magnetspulensystem, das eine LTS- und eine beheizbare HTS-Sektion umfasst | |
WO2001035034A1 (fr) | Dispositif de refroidissement cryogenique | |
WO2020043340A1 (fr) | Dispositif de refroidissement d'un élément supraconducteur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190507 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BRUKER SWITZERLAND AG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191119 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018001204 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1258252 Country of ref document: AT Kind code of ref document: T Effective date: 20200515 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200415 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200716 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200817 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200715 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200815 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200715 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018001204 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
26N | No opposition filed |
Effective date: 20210118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201005 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231025 Year of fee payment: 6 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231221 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231023 Year of fee payment: 6 Ref country code: DE Payment date: 20231018 Year of fee payment: 6 Ref country code: CH Payment date: 20231102 Year of fee payment: 6 |