EP3467319B1 - Kreiselpumpe mit verbesserter saughalsdichtung - Google Patents

Kreiselpumpe mit verbesserter saughalsdichtung Download PDF

Info

Publication number
EP3467319B1
EP3467319B1 EP18000558.9A EP18000558A EP3467319B1 EP 3467319 B1 EP3467319 B1 EP 3467319B1 EP 18000558 A EP18000558 A EP 18000558A EP 3467319 B1 EP3467319 B1 EP 3467319B1
Authority
EP
European Patent Office
Prior art keywords
ring
centrifugal pump
pump
wear
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18000558.9A
Other languages
English (en)
French (fr)
Other versions
EP3467319A1 (de
Inventor
Roland Stracke
Günter Strelow
Joern Jacobsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilo SE
Original Assignee
Wilo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilo SE filed Critical Wilo SE
Priority to EP18000558.9A priority Critical patent/EP3467319B1/de
Publication of EP3467319A1 publication Critical patent/EP3467319A1/de
Priority to CN201920944830.8U priority patent/CN211314647U/zh
Application granted granted Critical
Publication of EP3467319B1 publication Critical patent/EP3467319B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/165Sealings between pressure and suction sides especially adapted for liquid pumps
    • F04D29/167Sealings between pressure and suction sides especially adapted for liquid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/622Adjusting the clearances between rotary and stationary parts

Definitions

  • the invention relates to the technical field of centrifugal pumps, in particular so-called split-case pumps with a two-part housing.
  • the invention specifically relates to a centrifugal pump with a pump housing and at least one impeller arranged therein for conveying a liquid from the suction side to the pressure side of the pump unit, the impeller having a suction neck which is sealed off radially from the pump housing by a wear ring.
  • the invention relates to a centrifugal pump unit with a centrifugal pump according to the invention.
  • the impeller separates the interior of the pump housing into a suction side and a pressure side, with the impeller sucking in the liquid to be pumped through the suction mouth ring-shaped surrounded by the suction neck on the suction side, accelerating it tangentially and ejecting it almost radially to the pressure side.
  • This type of pump is therefore also called a centrifugal pump and the impeller is called a radial impeller.
  • the impeller is sealed off from the pump housing. In principle, this can be done axially or radially.
  • a seal rests against the axial outer edge of the suction neck. Due to the axial forces acting on the pump shaft towards the suction side during operation, due to hydraulic pressure shocks in the pipe system connected to the pump and/or due to the mechanical drive of the centrifugal pump, the axial seal usually also acts as an axial bearing and is therefore subject to high wear . Therefore usually a radial Sealing of the suction neck is preferred, in which a suction ring bears sealingly radially on the outside on the outer circumference of the suction neck.
  • the maintenance or replacement of the wear ring is associated with a considerable amount of work and time and usually leads to a longer standstill of the centrifugal pump, usually at least one or two days. It is first necessary to decouple the electric drive from the pump. For dismantling, the pumped liquid must also be removed from the pump housing be drained. The pump housing must then be dismantled and the upper housing section lifted off using a crane. The pump shaft and impeller must then be removed so that the wear ring is accessible.
  • a radially sealing suction neck seal for a centrifugal pump impeller which consists of a first inner ring lying against the suction neck of the impeller and a second outer ring fastened to the pump housing, the rings being wedge-shaped when viewed in axial cross section and the wedge surfaces lying against one another.
  • the axial position of the outer ring can be defined by means of an adjustment screw, with the outer ring being held resiliently on the screw.
  • a centrifugal pump unit comprising a pump housing and at least one impeller arranged therein for promoting a Liquid which has a suction neck which is sealed off radially from the pump housing by a slotted wear ring, the pump housing having an adjustment unit by means of which the diameter of the wear ring can be adjusted.
  • the essence of the invention is therefore to provide an adjustable suction neck seal. Due to the adjustability or readjustability, the radial seal of the suction neck can be adjusted to a minimal gap after assembly of the pump on the one hand, and readjusted to a minimal gap again in the event of maintenance or servicing on the other hand. As a result, significantly lower gap losses and, in turn, higher efficiency are achieved. It is no longer necessary to replace the wear ring thanks to the adjustability.
  • the term “adjust” is used both for the initial adjustment after assembling the pump and for “readjustment” after a corresponding number of operating hours.
  • the seal can be adjusted while the pump is running. It is not necessary to dismantle or remove the centrifugal pump from the connected hydraulic system for the setting. Thus, the maintenance effort is significantly reduced and downtimes are largely avoided, or at least minimized.
  • a slit wear ring is a ring which is interrupted at least at one point on its circumference by a slit, so that two circumferential ends of the wear ring lie opposite one another at a distance. This distance makes it possible to change the inner diameter of the wear ring, which is effected according to the invention by the adjustment unit. As the diameter decreases, the circumferential ends move toward each other, making the slot smaller.
  • the wear ring suitably has only one slit, i.e. it is designed in one piece, which makes handling easier when assembling the suction neck seal and simplifies the structural design overall, since a measure to prevent flow through the slit is only required at one point on the wear ring, as will be explained later is deepened.
  • the wear ring has approximately a C-shape in this one-piece design variant.
  • the slot is significantly smaller compared to the perimeter than a typical C-shape.
  • the slot may have a circumferential width of between 0.5% and 3% of the circumference.
  • the wear ring can also be slotted several times. This means that it consists of two or more ring segments, between the circumferential ends of which a slot-forming distance is formed.
  • the sum of the slots can have a width in the circumferential direction of between 0.5% and 3% of the circumference. It makes sense for the slits to be of the same size, so that with a number n of slits, each slit has a width in the circumferential direction of between 0.5/n% and 3/n% of the circumference.
  • the adjustment unit is preferably set up to exert a force directed radially inwards on the outer circumference of the wear ring. This causes a radial compression of the wear ring with a corresponding adjustment of the inside diameter of the wear ring to the outside diameter of the suction neck of the impeller.
  • the sealing gap between wear ring and suction neck can thus be reduced to a minimum, theoretically even down to 0mm.
  • the wear ring can, for example, be made of metal such as gunmetal, gray cast iron or stainless steel, but alternatively can also be made of plastic such as PTFE.
  • the adjustment unit has an outer ring and an inner ring between which there is a circular wedge connection, the outer ring being angularly adjustable relative to the inner ring in the circumferential direction, the diameter of the inner ring being reducible and the wear ring on the radial inside of the inner ring.
  • the outer ring forms an outer part of the circular spline joint and the inner ring forms an inner part of the circular spline joint.
  • the inner circumference of the outer ring has a circular wedge profile
  • the outer circumference of the inner ring has a complementary circular wedge profile.
  • a property inherent in a circular wedge connection is that the two rings are pressed against one another by their twisting relative to one another.
  • the forces in the circular wedge connection act radially on the connection partners.
  • the outer ring exerts a radially inward force on the inner ring. This causes a reduction in the inside diameter of the inner ring, which in turn passes this on to the wear ring, so that its inside diameter also becomes smaller and the sealing gap is reduced.
  • the outer ring is preferably designed in one piece. This ensures that a torque acting on a point on the circumference acts on the entire ring in order to rotate it. Compared to a multi-part design of the outer ring, this has the advantage that the force effect and rotary movement do not first have to be transmitted to the parts of the outer ring via appropriate means. As a result, the structural design of the adjustment unit is particularly simple.
  • the one-piece outer ring then has the above-mentioned circular spline profile in the form of at least one circular spline along its inner circumference. The inner circumference can thus carry a single, two or more circular wedges.
  • the inner ring can consist of a compressible material, for example an elastomer. It is therefore elastic and yields as a result of a radially inwardly directed force. It should be noted, however, that the elasticity must last for a long time, and in particular should last for several years, so that corresponding requirements must be made of the material.
  • the inner ring can be made of a dimensionally stable material, in particular metal or plastic.
  • provision must be made here to slit the inner ring so that there is a gap along the circumference between two corresponding circumferential ends. By reducing the diameter, these circumferential ends then move towards each other and reduce the gap.
  • slot and gap are technically synonymous, but within the meaning of the invention the term "gap" is used in relation to the inner ring and the term “slot” is used in relation to the wear ring.
  • the inner ring can be formed from just one segment of a circle. It is therefore in one piece and therefore only has a gap along its circumference. Its shape is essentially C-shaped.
  • at least one circular wedge complementary to the outer ring is formed along the outer circumference of the circular segment in order to cooperate with the at least one circular wedge of the outer ring.
  • a single complementary circular wedge can be formed along the outer circumference of the one circular segment forming the inner ring.
  • two or more circular wedges can be present along the outer circumference of the one circular segment forming the inner ring.
  • the inner ring can be formed from an annular arrangement of two or more circle segments. It is therefore in several parts and suitably has a gap between two adjacent circular segments along its circumference. At least one circular wedge, which is complementary to the outer ring, is correspondingly formed along the outer circumference of the circular segments in order to be able to connect with the at least one circular wedge of the outer ring to cooperate.
  • a single complementary circular wedge can be formed along the outer circumference of all circle segments forming the inner ring.
  • the circle segments are thus at the same time also segments of the one complementary circular wedge and together form this one complementary circular wedge.
  • the number of circular segments of the inner ring is equal to the number of circular wedges of the outer ring or equal to the number of complementary circular wedges.
  • the distribution of the complementary circular wedges can preferably take place in such a way that each circle segment carries exactly one complete complementary circular wedge of the circular wedge connection on its back, i.e. on its radial outside. This simplifies the production of the circle segments, since the jump in height from one circle wedge to the next does not occur within a circle segment.
  • the circular wedge connection between the outer ring and the inner ring consists of three circular wedges and three complementary circular wedges. This achieves a self-centering effect of the circular spline connection.
  • three circular wedges are formed along the inner circumference of the outer ring and the inner ring is formed from an annular arrangement of three circular wedge segments, the respective outer circumference of which forms a complete circular wedge that is complementary to the circular wedges of the outer ring.
  • the inner ring can be dimensionally stable, in particular made of metal or plastic, in both a one-piece and in the segmented, multi-part embodiment variant, but alternatively also be elastic, in particular made of an elastomer.
  • the circular segments of the inner ring are preferably held in a radially displaceable manner. This simplifies assembly and ensures a defined movement.
  • the holder prevents the inner ring from turning away in the circumferential direction and thus tightening or loosening the circular spline connection. This could happen if the impeller touches the wear ring at certain points and pulls it along due to the forces acting, which in turn would pull the inner ring along.
  • the circle segments are in particular stationary in relation to the pump housing, so that the inner ring does not rotate when the outer ring is pivoted.
  • a minimum adjustment angle is required for the outer ring.
  • the outer ring can be pivoted in an L-shaped support ring attached to the pump housing.
  • This support ring thus surrounds the outer ring on the outer circumference and on an axial end face and holds it in position.
  • the outer ring can thus also be pivoted relative to the support ring and slides in it.
  • the support ring can have axially protruding guide pins which engage in corresponding recesses in the circular segments.
  • the recesses can be grooves or slots, for example.
  • the grooves or slots may extend substantially radially or along a secant to allow the entire segment to move radially.
  • the guide pins are distributed equidistantly along the circumference.
  • the guide pins can be formed by cylinder pins, for example.
  • the guide pins are preferably screwed to the support ring. Alternatively, they can be welded, soldered, pressed or glued to it.
  • the slot in the wear ring can have any shape. It is particularly easy to produce if the front edges of the peripheral ends are formed at right angles to the peripheral direction in such a way that the slot extends purely axially between the peripheral ends. It thus has an I-shape and a minimal longitudinal extension. Alternatively, the longitudinal extension of the slot are at an angle other than 90 degrees to the circumferential direction. Further, the peripheral ends can also be formed to obtain other slit shapes such as a V-shaped, U-shaped, Z-shaped, labyrinth-shaped or meander-shaped slit. It should be noted that the more complex the slot is designed, the better it seals.
  • a blocking means lies in the slot, i.e. between the peripheral ends of the wear ring, in particular in a sealing manner.
  • the blocking means can be an elastic sealing element. This would then be compressed due to the reduction in diameter of the wear ring, so that the slit is always tight.
  • the blocking means is a wing nut, the diametrically opposite wings of which extend into elongated recesses in the peripheral ends in the installed state as intended.
  • the recesses form guides during the circumferential movement of the circumferential ends and hold them in position via the form fit with the wing screw.
  • the blocking means in particular the wing screw, is preferably located, in particular screwed, in a bore of one of the circle segments.
  • circle segments are of identical design.
  • all circle segments have a corresponding hole for the blocking means, but only one of these holes is used in a wear ring with a single slot, the other holes are unused.
  • the additional bores can be used for a second and third blocking means, which then lies in the corresponding second or third slot.
  • the centrifugal pump comprises an actuator for pivoting the outer ring relative to the inner ring.
  • this is accessible from outside the pump housing, if necessary with an appropriate tool, so that no time-consuming dismantling of pump components is required.
  • the actuating device can comprise a pin protruding radially from the outer ring and a screw lying in a threaded bore in the pump housing, preferably arranged tangentially thereto, which is operatively connected to the pin in such a way that the screwing-in depth of the screw determines the angular position of the pin.
  • the screw can be rotatably accessible from outside the pump housing.
  • the mode of operation of this actuating device is such that the screw, which can be a grub screw, for example, increasingly pushes the pin backwards (as seen from the screw) as the screwing depth increases, changing its angular position and pivoting the outer ring. This means that the outer ring or pin is in an initial pivoting position from which it will move away as the screw is driven deeper into the threaded hole.
  • the actuating device can comprise a gear or worm wheel portion, which is preferably arranged on the outer periphery of the outer ring or forms part of its outer periphery, and a helical worm engaging in the gear or worm wheel portion.
  • the screw can be rotatably accessible from outside the pump housing.
  • the mode of operation of this actuating device is similar to that of the former.
  • the snail is rotated here, the rotation of which, as in a Common to worm gears, a displacement of the toothed wheel or worm wheel portion causes longitudinal extension of the worm, which changes the angular position of the outer ring.
  • the outer ring or pin is initially in an initial pivoted position from which it moves away as the worm is rotated.
  • the wear ring together with the adjustment unit or at least parts thereof, in particular together with the inner ring, the outer ring, the support ring and the pin or gear or worm wheel section, can form a preassembled, in particular replaceable assembly, referred to below as the suction neck seal assembly, so that the assembly of the centrifugal pump and the wear ring can be replaced quickly and easily if service is required.
  • a reduction in the efficiency of the centrifugal pump can be caused not only by a worn wear ring, but also by an impeller damaged as a result of cavitation. In the latter case, of course, adjusting the sealing gap between the impeller and the wear ring does not help, so that the impeller has to be replaced.
  • the pump housing has a closable inspection opening leading into the suction chamber in front of the impeller for the passage of a flexible endoscope for the purpose of inspecting the gap between the wear ring and the pump has impeller. If this gap size is correct, the assumption of a damaged impeller is obvious. Furthermore, the endoscope can help to achieve a precise adjustment of the sealing gap.
  • the centrifugal pump can have a second impeller which has a further suction neck.
  • the impeller can be double-flow and have a further suction neck opposite the suction neck.
  • the further suction neck can also be sealed radially to the pump housing by a corresponding second slotted wear ring, and the pump housing can have a corresponding second adjustment unit, by means of which the diameter of the second wear ring can be set or adjusted.
  • the second wear ring and/or the second adjustment unit can/ can have the same features, properties and advantages as previously described in relation to the first wear ring or in relation to the first adjustment unit.
  • the invention is preferably used in so-called split case pumps.
  • the pump housing can be divided axially, in particular consisting of an upper housing part and a lower housing part, preferably in such a way that the axis of rotation of the pump shaft lies within the parting plane between the two housing parts.
  • the invention also relates to a centrifugal pump assembly comprising a centrifugal pump according to the invention and an electromotive drive unit for driving the centrifugal pump unit.
  • the drive shaft of the drive unit is mechanically coupled to the pump shaft and drives the impeller mounted on the shaft.
  • FIG. 1 shows a centrifugal pump 50 for conveying a liquid in the design of a so-called split case pump with a pump housing 1 of spiral design divided horizontally along the axis of rotation 18 into an upper housing part 1a and a lower housing part 1b.
  • the housing parts 1a, 1b border in the parting plane 9 (see 2 ) to each other.
  • An impeller 2 is arranged in the pump housing 1, which is non-rotatably mounted on a pump shaft 4 by means of a shaft protective sleeve 46 with an annular groove 47 (see Fig figure 2 ) is mounted.
  • the pump shaft 4 is driven by an electric motor drive unit, not shown, with a clutch or gear between the pump shaft 4 and the drive shaft, to enable separate installation and assembly of the two devices.
  • Centrifugal pump 50 and drive unit together form a centrifugal pump unit.
  • the housing parts 1a, 1b have an enormous weight, sometimes up to a ton in total, so that the centrifugal pump 50 has to be assembled and disassembled with a crane.
  • the impeller 2 separates the interior of the pump housing 1 into a suction side 5, from which the impeller 2 draws in the liquid to be pumped, and a pressure side 7, which connects to a spiral chamber 3 located radially outside of the pump impeller 1.
  • the pump housing 1 forms a spiral housing 3a.
  • the impeller 2 accelerates the liquid and ejects it tangentially, while the spiral chamber 3 directs the liquid to the discharge side 7.
  • the impeller 2 is double-flow in this embodiment. This means that it is essentially mirror-symmetrical and has two opposite suction mouths 5 through which the impeller 2 sucks in the liquid. Due to the symmetry of the impeller 2, the pump housing 1 is also constructed essentially symmetrically in relation to the plane of symmetry of the impeller 2. In contrast to conventional impellers of a radial design, the impeller blades 12 here extend in the axial direction on both sides toward the respective suction mouth 5 .
  • the double-flow impeller 2 of the embodiment variant described here lacks a support disk on which the blades are usually arranged in single-flow impellers.
  • the blades 12 are each covered on both sides by a cover disk 10, which, starting from its essentially radial extent at the outer edge in the form of a radial disk, becomes arcuate, viewed in cross-section, as it gets closer to the pump shaft 4, into an axial extent in the form of a cylindrical Ring transitions, which is concentric to the axis of rotation 18 and the suction mouth 5 of the impeller 2 is limited.
  • This cylindrical ring of the cover disk 10 forms the suction neck 10a of the impeller 2 and can have a diameter of up to 500mm.
  • the suction neck 10a must at its radial Outside to be sealed towards the pump housing 1 to prevent a backflow (bypass) of liquid from the pressure side 3, 7 to the suction side 5 of the impeller. Because this worsens the efficiency of the centrifugal pump 50 and affects the pump characteristic.
  • a wear ring 14 is present, which rests with its inner circumference 14a on the outside of the suction neck 10a, with a sealing gap between the suction neck 10a and the wear ring 14 being provided.
  • the wear ring 14 is made of metal such as gunmetal, cast iron or stainless steel, or of plastic, such as PTFE.
  • the sealing gap cannot be set precisely and is usually not constant over the circumference, which is caused, for example, by a deflection of the shaft 4. In practice, it can therefore happen that the wear ring 14 is partially in contact with the suction mouth 10a and loops in after commissioning. In addition, the sealing gap increases during operation due to wear and the efficiency drops, so that maintenance of the centrifugal pump 50 becomes necessary.
  • the centrifugal pump 50 comprises an adjustment unit 20, 21, 29, which enables the sealing gap to be set precisely after the centrifugal pump 50 has been installed, but also allows the sealing gap to be readjusted after numerous operating hours, for example as part of routine maintenance or in the event of extraordinary service.
  • the setting or readjustment of the sealing gap is achieved according to the invention in that the inner diameter of the wear ring 14 can be changed.
  • the wear ring 14 is slotted and the adjusting unit 15, 21, 29 is set up to adjust the diameter of the wear ring 14.
  • a suction neck seal that can be adjusted and readjusted is thus formed.
  • the wear ring 14 used here is simply slotted, it is therefore in one piece and essentially has a C shape.
  • This means that the slot is interrupted at only one point on its circumference by a slot 24, so that there are two Circumferential ends 27a, 27b of the wear ring 24 spaced opposite each other, see 4 .
  • This distance makes it possible to change the inner diameter of the wear ring 14 to a certain extent, which is brought about by the adjusting unit 20, 21, 29 according to the invention.
  • the slot in the initial state, can have a width in the circumferential direction of between 0.5% and 3% of the circumference, for example 12.5 mm. Due to the reduction in diameter, the peripheral ends 27a, 27b move toward one another, so that the slot 24 becomes correspondingly smaller.
  • the adjustment unit 15, 21, 29 is set up here to exert a radially inwardly directed force on the outer circumference of the wear ring 14, which causes a radial compression of the wear ring 14 evenly over the circumference and leads to a corresponding reduction in the inside diameter of the wear ring, for example depending on the size of the wear rings up to 4mm.
  • the adjusting unit 15, 21, 29 is in the figures 2 and 3 clearly visible, which represent a radial section through the suction neck 10a in the area of the suction neck seal.
  • the adjusting unit 15, 21, 29 essentially comprises an outer ring 21, an inner ring 15 and an actuating device 29. There is a circular wedge connection between the outer ring 21 and the inner ring 15, and the outer ring 21 is relative to the inner ring 15 angularly adjustable in the circumferential direction, which can be effected by the actuating device 29.
  • the outer and the inner ring 21, 15 are, independently of one another, made of metal, in particular high-grade steel, or of plastic, e.g. PTFE, and are in any case dimensionally stable.
  • the mutually facing surfaces of the outer and inner rings 21, 15 are at least finished or have an even lower surface roughness in order to minimize the friction between the circular wedges when the outer ring 21 pivots.
  • the inner periphery 21a of the outer ring 21 carries a circular spline in the shape of three circular splines.
  • the individual circular wedges are clearly recognizable by their step-like transitions, since the radial thickness of the outer ring 21 increases in the circumferential direction along a circular wedge up to a maximum and steps back to a minimum radial thickness at the start of the next circular wedge.
  • the outer ring 21 is in one piece and thus forms a kind of circular wedge ring.
  • the outer circumference 15a of the inner ring 15 carries a complementary circular spline profile in the form of three complementary circular splines.
  • the inner ring 15 is here in several parts, i.e. segmented, more precisely formed by three mutually independent circular segments 15 which are arranged in a ring.
  • the three complementary circular wedges are distributed over the circular segments 15 in such a way that each circular segment 15 has a complete complementary circular wedge on its outer circumference 15a.
  • the radial thickness of the circle segments 15 increases in relation to the outer ring 21 in the opposite circumferential direction.
  • the inner circumference 15b of the inner ring 15 is cylindrical.
  • the wear ring 14 rests on it.
  • Both the circular wedges of the outer ring 21 and the circular wedges of the inner ring 15 have the shape of a logarithmic spiral, so that a centering effect on the wear ring 14 is achieved.
  • the circular segments 15 are arranged at a distance from one another, forming a gap 19, in order to enable radial movement and thus a reduction in the inner diameter.
  • the inner periphery 21a of the inner ring 21 slides along the outer periphery 15a of the circumferentially stationary inner ring 15 with the thinner end of the splines first.
  • the radial thickness of the outer ring 21 thus also increases in both rings 15 , 21 , as a result of which the outer ring 21 exerts a radial force on the inner ring 15 .
  • the circular segments 15 deviate with a radial movement, which results in a reduction in the inner diameter of the inner ring 15, which in turn passes this on to the wear ring 14, so that its inner diameter also becomes smaller. This enables the sealing gap to be adjusted.
  • the gaps 19 become narrower.
  • the Circular segments 15 stationary in the circumferential direction, but nevertheless kept radially movable.
  • essentially radially extending elongated holes 17 are provided in the circle segments 15, in which cylindrical guide pins 18 lie. Grooves can also be provided instead of the elongated holes.
  • Each circle segment 15 has a single slot 17 of this type, with the slots being distributed equidistantly.
  • the elongated holes 17 are suitably formed in that section of the circle segments 15 which has the greatest radial thickness.
  • the elongated holes 17 have a length such that a radial movement of the circle segments 15 is possible up to 2 mm.
  • the guide pins 18 are attached to a support ring 20, in particular screwed, welded, soldered, pressed or glued to it. They extend essentially axially away from the support ring 20 .
  • the support ring 20 is formed here in an L-shape from sheet metal and thus comprises an axial, perforated disk-shaped section 20a and a cylindrical section 20b, as is shown in figure 5 can be seen, which is an axial sectional view of the suction neck seal assembly 45 along section line EE in 3 Looking at the inner circumference 14a of the wear ring 14 forms.
  • the support ring 20 surrounds the outer circumference of the outer ring 21 which lies correspondingly sliding in the support ring 20 .
  • the outer ring 21 can thus also be pivoted relative to the support ring 20, but is fixed in its movement in the axial direction.
  • the perforated disk-shaped section 20a which covers the outer ring 21 on an axial end face and carries the guide pins 18 on its axial inner side directed toward the outer ring 21, serves this purpose.
  • the outer ring 21 is covered by a press ring 48 which is pressed into a radial recess in the cylindrical section 20b.
  • This radial recess is characterized by a smaller radial thickness of the cylindrical section 20b of the support ring 20 at an axial end at which the support ring 20 thus encompasses the press ring 48 on the outside.
  • the support ring 20 is held on the pump housing via a form fit with locking bolts 23, which are part of a fastening bracket 22 and are formed in particular on the circumferential ends thereof.
  • the bracket 22 is semicircular and rests on the outside of the support ring 20, see 2 . It is firmly connected to the pump housing 1 or to the lower housing part 1b.
  • the slot 24 in the wear ring 14 has an I-shape, as shown in FIG 4 can be seen, which is a view from direction X according to 3 points to the inner circumference of the wear ring 14.
  • the slot 24 extends at right angles to the circumferential direction, axially parallel to the axis of rotation 18.
  • the front edges of the circumferential ends 27a, 27b are thus located parallel and perpendicular to the circumferential direction.
  • the outer ring 21 behind the wear ring 14 protrudes slightly. It thus has a greater axial length.
  • the inner ring 15 has an identical axial length to the wear ring 14 and is visible through the slot 24 .
  • a blocking means 25 is arranged in the slot 24 in order to prevent the slit 24 from forming a bypass for liquid flowing back, ie from being flown through.
  • the blocking means 25 is formed here by a wing nut with two wings extending diametrically from a shaft 28 .
  • the recesses 26a, 26b serve as a guide and prevent axial displacement of the peripheral ends 27a, 27b.
  • the length of the recesses 26a, 26b is equal to or greater than the length of a wing.
  • the wing screw 25 is screwed with its shank 28, which has a corresponding external thread, into a bore 16 with a corresponding internal thread in one of the circle segments.
  • the wear ring 14 is thus firmly connected to the inner ring 15 via the wing screw 25 .
  • the overall arrangement of adjustment unit 15, 21, 29 and wear ring 14 is thus secured against twisting in the circumferential direction.
  • Part of the adjusting unit 15, 21, 29 is also an actuating device 29 for pivoting the outer ring 21 relative to the inner ring 15.
  • a pin 31 in the form of an eyebolt protrudes radially from the outer ring 21 and extends through a recess 33 specially provided for this purpose in the support ring 20 extends into a chamber 30 formed in the pump housing 1, 1a.
  • a ball joint 32 is arranged in the eye of the eyebolt 31 and is connected to the axial end 35a of a bolt 35, for example with a positive fit, latched or by means of a thread. The ball joint 32 allows the angle between the pin 31 and the screw 25 to be balanced when the outer ring 21 is pivoted.
  • ball and socket joint 32 can be replaced by a simple swivel joint, since here only an angle compensation in one spatial direction has to take place.
  • the screw 35 is designed as a grub screw and is also part of the actuating device 29. It lies in a threaded bore 36, which is offset tangentially or somewhat radially but extends parallel to a tangent to the fastening location of the pin 31.
  • the screw-in depth of the screw 35 thus determines the angular position of the pin 31, since it presses against the pin 31 with its axial end 35a.
  • connection between the joint 32 and the screw 35 does not have to be tight, as movement of the pin 31 in only one direction is required. This movement is effected when the screw 35 is screwed into the threaded bore 36 far enough to strike the pin 31 and then screwed past it. If screw 35 were subsequently turned back, it would only move away from pin 31 and outer ring 21 would remain in the pivoted position.
  • a fixed connection for example in the form of a form fit (locked or by means of a thread) has the advantage over the loose connection that a reversible adjustment can be effected, ie in two directions, turning the screw 35 back, i.e. pivoting back again of the outer ring 21 can reach. This enables the setting to be corrected, for example if the screw 35 has been tightened too much and the wear ring 14 consequently grips the suction mouth 10a firmly.
  • the threaded hole 36 opens out so that the screw 35 is accessible from outside the pump housing. It can be rotated with an appropriate tool without opening the pump housing 1, 1a.
  • the bore 36 is closed by a sealing plug 37 which is spaced apart from the grub screw 35 to form a free space 38 .
  • the plug 37 is removed to operate the actuator 29.
  • the mode of operation of this actuating device 29 is such that the screw 35 increasingly pushes the pin 31 backwards with increasing screwing depth, ie in the direction of the arrow ⁇ in 3 presses, changing its angular position and pivoting the outer ring 21.
  • the angular adjustment can be limited by a stop of the pin 31, for example by means of the recess 33 in the support ring 20 or by a wall of the chamber 30, which the pin reaches when the screw 35 is screwed to its maximum depth.
  • the possible angle adjustment range of the outer ring 21 is in 3 represented by dashed border lines. It can be between 0° and 15° or even between 0° and 20°.
  • the wear ring 14, together with the inner ring 15, the outer ring 21, the support ring 20 and at least the pin 31 of the actuating device 29, forms a preassembled and, if necessary, replaceable subassembly 45, thus a suction neck seal subassembly, so that the centrifugal pump can be assembled and the wear ring replaced in the service can be carried out quickly and easily.
  • the centrifugal pump 50 has an impeller 2 with two suction necks 10a, such a suction neck seal assembly 45 is correspondingly duplicated, as are the actuating devices 29, which are actuated independently of one another be able.
  • the wear ring 14 assigned to the second suction neck 10a and/or the adjustment unit 15, 21, 29 assigned to the second suction neck 10a therefore have the same features, properties and advantages as they previously had in relation to the wear ring 14 assigned to the first suction neck 10a or in relation to of the adjustment unit 15, 21, 29 assigned to the first suction neck 10a.
  • a closable inspection opening 43 which opens into the suction chamber 5 in front of the impeller 2, is provided in the pump housing 1, 1b, and that the sealing gap is inspected with an endoscope 39.
  • an endoscope 39 which in the usual way has a flexible hose 40 with a Bowden cable for navigation and a camera 42 at the end, and a monitor unit 41 for displaying the image recorded by the camera 42, can be easily guided through the inspection opening 43 and to the impeller 2 be navigated to take a picture of the impeller 2 or the sealing gap.
  • Such an inspection opening 43 can be used in the centrifugal pump 50 according to FIG 1 be present on both sides of the pump housing 1, 1b so that both sides of the impeller are equally accessible.
  • the inspection opening 43 is tightly closed by a closure element 44, which is preferably self-sealing.
  • the endoscope 39 can help to achieve a precise setting of the sealing gap, since the camera image on the monitor unit 41 shows whether and by how much the sealing gap needs to be reduced.
  • adjustable suction neck seal according to the invention is not limited to split case pumps, as described in 1 is shown. Rather, it can be used in any centrifugal pump, in particular in any glanded pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft das technische Gebiet der Kreiselpumpen, insbesondere sogenannte Split-Case-Pumpen mit einem zweigeteilten Gehäuse. Speziell betriff die Erfindung eine Kreiselpumpe mit einem Pumpengehäuse und zumindest einem darin angeordneten Laufrad zur Förderung einer Flüssigkeit von der Saugseite zur Druckseite der Pumpeneinheit, wobei das Laufrad einen Saughals aufweist, der radial zum Pumpengehäuse durch einen Schleißring abgedichtet ist. Ferner betrifft die Erfindung ein Kreiselpumpenaggregat mit einer erfindungsgemäßen Kreiselpumpe.
  • Bei Kreiselpumpen trennt das Laufrad das Innere des Pumpengehäuses in eine Saugseite und eine Druckseite, wobei das Laufrad die zu pumpende Flüssigkeit durch den vom Saughals ringförmig umgebenen Saugmund an der Saugseite ansaugt, tangential beschleunigt und quasi radial zu Druckseite hin auswirft. Diese Art von Pumpen wird daher auch Zentrifugalpumpe genannt und das Laufrad als radiales Laufrad bezeichnet. Um einen hydraulischen Bypass zwischen der Saugund Druckseite, d.h. eine Strömung der Flüssigkeit von der Druckseite zurück zur Saugseite zu vermeiden, welche den Wirkungsgrad der Kreiselpumpe erheblich reduziert, wird das Laufrad zum Pumpengehäuse hin abgedichtet. Dies kann grundsätzlich axial oder radial erfolgen. Bei der axialen Abdichtung liegt eine Dichtung an der axialen Außenkante des Saughalses an. Aufgrund der im Betrieb an der Pumpenwelle zur Saugseite gerichtet wirkenden Axialkräfte, aufgrund von hydraulischen Druckschlägen im mit der Pumpe verbundenen Rohrleitungssystem und/ oder aufgrund des mechanischen Antriebs der Kreiselpumpe wirkt die axiale Dichtung in der Regel gleichzeitig auch als Axiallagerung und ist dementsprechend einem hohen Verschleiß unterworfen. Deshalb wird in der Regel eine radiale Abdichtung des Saughalses bevorzugt, bei der ein Saugring radial außen am Außenumfang des Saughalses dichtend anliegt.
  • Die Qualität der Abdichtung zwischen der Druckseite und der Saugseite der Kreiselpumpe hat auch hier einen großen Einfluss auf den hydraulischen Wirkungsgrad. Um die Verluste gering zu halten, ist es erforderlich, den Spalt zwischen dem Laufrad und Pumpengehäuse möglichst klein auszuführen. Da die hydraulischen Kräfte zu einer Verbiegung der Welle und damit zu einer Spaltverkleinerung führen können, sind entsprechende Reserven bei der Dimensionierung zu berücksichtigen. Häufig kommen als Saugringe so genannte Schleißringe (Englisch "wear ring") zum Einsatz, bei denen der Spalt kleiner ausgeführt und bei einer Verbiegung der Welle eine Berührung von Laufrad und Schleißring bewusst in Kauf genommen wird. Der Betriebsspalt schleift sich idealerweise nach einer gewissen Zeit ein. Um ein Blockieren zu vermeiden, ist auch hier ein fertigungsbedingter minimaler Spalt erforderlich. Dies stellt jedoch hohe Anforderungen an die Genauigkeit der Bauteile bei der Fertigung und Montage.
  • Dies gilt umso mehr, je größer die Kreiselpumpe und entsprechend ihre Bauteile sind. So werden beispielsweise bei sogenannten Splitcase Pumpen Schleißringe mit Nenndurchmessern von 500mm oder größer eingesetzt. Die axial zweigeteilten Gehäuse wiegen bis zu einer Tonne und sind daher bei der Montage mit einem Kran zu heben. Es ist auch zu berücksichtigen, dass der Schleißring im Betrieb verschleißt, wodurch sich der radiale Spalt zwischen Schleißring und Saughals mit der Zeit vergrößert. Entsprechend verschlechtert sich der Wirkungsgrad der Kreiselpumpe und die Pumpenkennlinie verschiebt sich in Richtung kleinerer Drehzahlen. Um dies zu vermeiden, muss der Schleißring regelmäßig gewartet und gegebenenfalls ersetzt werden. Gleichwohl kann auch ein außerordentlich hoher Verschleiß einen frühzeitigen Austausch erforderlich machen.
  • Die Wartung bzw. der Austausch des Schleißrings ist mit erheblichem Arbeits- und Zeitaufwand verbunden und führt in der Regel zu längerer Stillstand der Kreiselpumpe, in der Regel von mindestens ein oder zwei Tagen. Dabei ist es zunächst erforderlich, den elektrischen Antrieb von der Pumpe abzukoppeln. Zur Demontage muss ferner die gepumpte Flüssigkeit aus dem Pumpengehäuse abgelassen werden. Anschließend muss das Pumpengehäuse demontiert und das obere Gehäuseteil mittels Kran abgehoben werden. Danach muss die Pumpenwelle samt Laufrad ausgebaut werden, so dass der Schleißring zugänglich wird.
  • Aus der koreanischen Veröffentlichungsschrift KR 2016006533 A ist eine radial dichtende Saughalsdichtung für ein Kreiselpumpenlaufrad bekannt, die aus einem ersten, am Saughals des Laufrads anliegenden Innenring und einem zweiten, am Pumpengehäuse befestigten Außenring besteht, wobei die Ringe im axialen Querschnitt betrachtet keilförmig ausgebildet sind und die Keilflächen aneinander anliegen. Die axiale Position des Außenrings kann mittels einer Einstellschraube definiert werden, wobei der Außenring federnd an der Schraube gehalten ist. Durch ein Herausdrehen der Schaube, deren Kopf auf der Druckseite des Laufrads in der Pumpenkammer liegt, wird ein Spiel geschaffen, so dass eine Feder den Außenring gegen den Schraubenkopf und gegen die Keilfläche des Innenrings drückt. Dies ermöglicht eine Anpassung der Spaltbreite, wenn der Spalt zwischen dem Laufrad und dem Innenring infolge Verschleiß des Innenrings größer wird.
  • Aus dem Patent US 8,690,534 B1 ist eine Hilfsdichtung für die Welle einer Kreiselpumpe offenbart, die für den Einsatz in einem nuklearen Kraftwerk vorgesehen ist, wobei die Hilfsdichtung im Stillstand der Pumpe von einem nicht dichtenden Zustand in einen die Welle abdichtenden Zustand übergeht, wenn die Hauptdichtung der Welle versagt.
  • Es ist Aufgabe der vorliegenden Erfindung, eine Kreiselpumpe mit einer verbesserten radialen Saughalsabdichtung bereitzustellen, bei der der Dichtspalt einerseits sehr genau auf ein minimales Maß eingestellt werden kann, und bei der andererseits der Wartungsaufwand erheblich reduziert ist.
  • Diese Aufgabe wird durch eine Kreiselpumpe mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angeben und werden nachfolgend erläutert.
  • Erfindungsgemäß wird eine Kreiselpumpeneinheit vorgeschlagen, umfassend ein Pumpengehäuse und zumindest ein darin angeordnetes Laufrad zur Förderung einer Flüssigkeit, welches einen Saughals aufweist, der radial zum Pumpengehäuse durch einen geschlitzten Schleißring abgedichtet ist, wobei das Pumpengehäuse eine Verstelleinheit aufweist, mittels welcher der Durchmesser des Schleißrings einstellbar ist. Der Kern der Erfindung ist es somit, eine ein- und nachstellbare Saughalsdichtung vorzusehen. Durch die Einstellbarkeit bzw. Nachstellbarkeit lässt sich die radiale Dichtung des Saughalses einerseits nach dem Zusammenbau der Pumpe auf einen minimalen Spalt einstellen, andererseits im Wartungs- oder Servicefall wieder auf einen minimalen Spalt nachstellen. Hierdurch werden erheblich geringere Spaltverluste und dadurch wiederum ein höherer Wirkungsgrad erreicht. Ein Austausch des Schleißrings ist durch die Nachstellbarkeit nicht mehr erforderlich.
  • Nachfolgend wird der Begriff "einstellen" sowohl für die erstmalige Einstellung nach dem Zusammenbau der Pumpe als auch für das "Nachstellen" nach einer entsprechenden Anzahl an Betriebsstunden verwendet. Die Einstellung Dichtung kann während des Pumpenbetriebs durchgeführt werden. Eine Demontage oder ein Ausbau der Kreiselpumpe aus dem angeschlossenen hydraulischen Systemen ist für die Einstellung nicht erforderlich. Somit werden der Wartungsaufwand erheblich reduziert und Stillstandzeiten weitgehend vermieden, mindestens jedenfalls minimiert.
  • Bei einem geschlitzten Schleißring handelt es sich um einen Ring, der an wenigstens einer Stelle seines Umfangs durch einen Schlitz unterbrochen ist, so dass sich dort zwei Umfangsenden des Schleißrings beabstandet gegenüberliegen. Dieser Abstand ermöglicht, den Innendurchmesser des Schleißrings zu ändern, was erfindungsgemäß durch die Verstelleinheit bewirkt wird. Durch die Verkleinerung des Durchmessers bewegen sich die Umfangsenden zueinander, so dass der Schlitz kleiner wird.
  • Geeigneterweise besitzt der Schleißring nur einen Schlitz, ist also einteilig ausgebildet, was die Handhabung beim Zusammenbau der Saughalsdichtung erleichtert und den konstruktiven Aufbau insgesamt vereinfacht, da nur an einer Stelle des Schleißrings eine Maßnahme zur Verhinderung einer Durchströmung durch den Schlitz erforderlich ist, wie später noch vertieft wird. Im Wesentlichen besitzt der Schleißring somit in dieser einteiligen Ausführungsvariante annährend eine C-Form. Allerdings ist der Schlitz im Vergleich zum Umfang deutlich kleiner als bei einer typischen C-Form. Beispielsweise kann der Schlitz eine Breite in Umfangsrichtung zwischen 0,5% und 3% des Umfangs haben.
  • Grundsätzlich kann der Schleißring aber auch mehrfach geschlitzt sein. Dies bedeutet, dass er aus zwei oder mehr Ringsegmenten besteht, zwischen deren Umfangsenden dann jeweils ein schlitzbildender Abstand gebildet ist. Die Summe der Schlitze kann in dieser Ausführungsvariante eine Breite in Umfangsrichtung zwischen 0,5% und 3% des Umfangs haben. Sinnvollerweise sind die Schlitze hierbei gleich groß, so dass bei einer Anzahl n an Schlitzen, jeder Schlitz eine Breite in Umfangsrichtung zwischen 0,5/n% und 3/n% des Umfangs hat.
  • Vorzugsweise ist die Verstelleinheit eingerichtet, eine radial nach Innen gerichtete Kraft auf den Außenumfang des Schleißrings auszuüben. Dies bewirkt eine radiale Verpressung des Schleißrings mit entsprechender Anpassung des Schleißringinnendurchmessers an den Außendurchmesser des Saughalses des Laufrades. Der Dichtspalt zwischen Schleißring und Saughals kann somit auf ein Minimum, theoretisch sogar bis auf 0mm verkleinert werden.
  • Der Schleißring kann beispielsweise aus Metall wie Rotguss, Grauguss oder Edelstahl, alternativ aber auch aus Kunststoff wie beispielsweise PTFE bestehen.
  • Gemäß einer vorteilhaften Ausführungsvariante weist die Verstelleinheit einen äußeren Ring und einen inneren Ring auf, zwischen denen eine Kreiskeilverbindung besteht, wobei der äußere Ring relativ zum inneren Ring in Umfangsrichtung winklig verstellbar ist, der Durchmesser des inneren Rings reduzierbar ist und der Schleißring an der radialen Innenseite des inneren Rings anliegt. Somit bildet der äußere Ring einen äußeren Teil der Kreiskeilverbindung und der innere Ring einen inneren Teil der Kreiskeilverbindung. Der Innenumfang des äußeren Rings trägt hierbei ein Kreiskeilprofil, der Außenumfang des inneren Rings ein komplementäres Kreiskeilprofil.
  • Eine einer Kreiskeilverbindung innewohnende Eigenschaft besteht darin, dass die beiden Ringe durch ihre Verdrehung relativ zueinander gegeneinander verpresst werden. Die Kräfte bei der Kreiskeilverbindung wirken auf die Verbindungspartner radial. Der äußere Ring übt dabei auf den inneren Ring eine radial nach Innen gerichtete Kraft auf. Dies bewirkt eine Verkleinerung des Innendurchmessers des inneren Rings, welcher diese wiederum an den Schleißring weitergibt, so dass dessen Innendurchmesser ebenfalls kleiner wird und der Dichtspalt reduziert wird. Dies hat den Vorteil, dass eine deutlich präzisere Einstellung des Spaltes über den gesamten Umfang erreicht wird und das Nachjustieren des Dichtspalts besonders einfach ist.
  • Bevorzugt ist der äußere Ring einteilig ausgebildet. Hierdurch wird erreicht, dass ein an einem Umfangspunkt angreifendes Drehmoment am gesamten Ring wirkt, um diesen zu drehen. Dies hat gegenüber einer mehrteiligen Ausbildung des äußeren Rings den Vorteil, dass die Kraftwirkung und Drehbewegung nicht erst über entsprechende Mittel auf die Teile des äußeren Rings übertragen werden muss. Der konstruktive Aufbau der Verstelleinheit ist dadurch besonders einfach. Der einteilig ausgebildete äußere Ring besitzt dann entlang seines Innenumfangs das genannte Kreiskeilprofil in Gestalt wenigstens eines Kreiskeils. Der Innenumfang kann somit einen einzigen, zwei oder mehr Kreiskeile tragen.
  • Damit der Durchmesser des inneren Rings reduzierbar ist, kann der innere Ring aus einem komprimierbaren Material, beispielsweise aus einem Elastomer bestehen. Somit ist er elastisch und gibt infolge einer radial innen gerichteten Kraft nach. Hierbei ist allerdings zu beachten, dass die Elastizität von langer Dauer sein muss, insbesondere mehrere Jahre halten sollte, so dass entsprechende Anforderungen an das Material zu stellen sind.
  • Um dieses Problem zu umgehen, kann der innere Ring aus einem formstabilen Material, insbesondere aus Metall oder Kunststoff bestehen. Um die Verkleinerung des Durchmessers zu ermöglichen, muss hier allerdings vorgesehen werden, den inneren Ring zu schlitzen, so dass entlang des Umfangs ein Spalt zwischen zwei entsprechenden Umfangsenden vorliegt. Durch eine Verkleinerung des Durchmessers bewegen sich diese Umfangsenden dann zueinander und verkleinern den Spalt. Es sei darauf hingewiesen, dass die Begriffe Schlitz und Spalt technisch gleichbedeutend sind, jedoch im Sinne der Erfindung der Begriff "Spalt" in Bezug zum inneren Ring und der Begriff "Schlitz" in Bezug zum Schleißring verwendet wird.
  • In einer Ausführungsvariante kann der innere Ring aus nur einem Kreissegment gebildet sein. Er ist somit einteilig und weist mithin nur einen Spalt entlang seines Umfangs auf. Seine Form ist im Wesentlichen C-förmig. Entlang des Außenumfangs des Kreissegments ist entsprechend wenigstens ein zum äußeren Ring komplementärer Kreiskeil ausgebildet, um mit dem wenigstens einen Kreiskeil des äußeren Rings zu kooperieren. Somit kann in einer Untervariante ein einziger komplementärer Kreiskeil entlang des Außenumfangs des einen, den inneren Ring bildenden Kreissegments, ausgebildet sein. Alternativ können in einer anderen Untervariante zwei oder mehr Kreiskeile entlang des Außenumfangs des einen, den inneren Ring bildenden Kreissegments vorhanden sein.
  • Der innere Ring kann gemäß einer anderen Ausführungsvariante aus einer ringförmigen Anordnung von zwei oder mehr Kreissegmenten gebildet sein. Es ist somit mehrteilig und weist geeigneterweise entlang seines Umfangs jeweils einen Spalt zwischen zwei benachbarten Kreissegmenten auf. Entlang des Außenumfangs der Kreissegmente ist entsprechend wenigstens ein zum äußeren Ring komplementärer Kreiskeil ausgebildet, um mit dem wenigstens einen Kreiskeil des äußeren Rings zu kooperieren. Somit kann in einer Untervariante ein einziger komplementärer Kreiskeil entlang des Außenumfangs aller den inneren Ring bildenden Kreissegmente ausgebildet sein. Die Kreissegmente sind somit gleichzeitig auch Segmente des einen komplementären Kreiskeils und bilden gemeinsam diesen einen komplementären Kreiskeil. In einer anderen Untervariante sind zwei oder mehr komplementäre Kreiskeile entlang des Außenumfangs aller den inneren Ring bildenden Kreissegmente vorhanden.
  • Idealerweise ist die Anzahl der Kreissegmente des inneren Rings gleich der Anzahl an Kreiskeilen des äußeren Rings bzw. gleich der Anzahl an komplementären Kreiskeilen. Dabei kann bevorzugt die Verteilung der komplementären Kreiskeile derart erfolgen, dass jedes Kreissegment auf seinem Rücken, d.h. auf seiner radialen Außenseite genau einen vollständigen komplementären Kreiskeil der Kreiskeilverbindung trägt. Dies vereinfacht die Herstellung der Kreissegmente, da der Höhensprung von einem Kreiskeil zum nächsten nicht innerhalb eines Kreissegments vorliegt.
  • Von besondere Vorteil ist es, wenn die Kreiskeilverbindung zwischen dem äußeren Ring und dem inneren Ring aus drei Kreiskeilen und drei komplementären Kreiskeilen besteht. Hierdurch wird eine selbstzentrierende Wirkung der Kreiskeilverbindung erreicht.
  • In einer bevorzugten Ausführungsvariante kann somit vorgesehen sein, dass entlang des Innenumfangs des äußeren Rings drei Kreiskeile ausgebildet sind und der innere Ring aus einer ringförmigen Anordnung von drei Kreiskeilsegmenten gebildet ist, deren jeweiliger Außenumfang jeweils einen vollständigen komplementären Kreiskeil zu den Kreiskeilen des äußeren Rings bildet.
  • Es sei angemerkt, dass der innere Ring sowohl bei einer einteiligen, als auch bei der segmentierten, mehrteiligen Ausführungsvariante formstabil, insbesondere aus Metall oder Kunststoff, alternativ aber auch elastisch sein, insbesondere aus einem Elastomer bestehen kann.
  • Bevorzugt sind die Kreissegmente des inneren Rings radial verschiebbar gehalten. Dies vereinfacht die Montage und stellt eine definierte Bewegung sicher. Außerdem wird durch die Halterung verhindert, dass sich der innere Ring in Umfangsrichtung wegdreht und damit die Kreiskeilverbindung spannt oder lockert. Dies könnte passieren, wenn das Laufrad am Schleißring punktuell anläuft und diesen aufgrund der wirkenden Kräfte mitreißt, welcher wiederum den inneren Ring mitreißen würde.
  • In Umfangsrichtung sind die Kreissegmente bezogen auf das Pumpengehäuse insbesondere ortsfest, so dass sich der innere Ring nicht mit dreht, wenn der äußere Ring verschwenkt wird. Somit wird zum Verschwenken des äußeren Rings relativ zum inneren Ring ein minimaler Verstellwinkel beim äußeren Ringes benötigt.
  • In einer Ausführungsvariante kann der äußere Ring in einem am Pumpengehäuse befestigten L-förmigen Tragring verschwenkbar einliegen. Dieser Tragring umgreift somit den äußeren Ring außenumfangsseitig sowie an einer axialen Stirnseite und hält ihn in Position. Der äußere Ring ist somit auch relativ zum Tragring schwenkbar und gleitet in diesem.
  • Um die Kreissegmente in Umfangsrichtung ortsfest zu fixieren und gleichzeitig radial beweglich zu halten, kann der Tragring axial abstehende Führungsstifte aufweisen, die in entsprechende Ausnehmungen in den Kreissegmenten eingreifen. Die Ausnehmungen können beispielsweise Nuten oder Langlöcher sein. Die Nuten oder Langlöcher können sich im Wesentlichen radial oder entlang einer Sekante erstrecken, damit sich das gesamte Segment radial bewegen kann. Geeigneterweise sind die Führungsstifte äquidistant entlang des Umfangs verteilt. Die Führungsstifte können beispielsweise durch Zylinderstifte gebildet sein. Vorzugsweise sind die Führungsstifte am Tragring verschraubt. Sie können alternativ mit diesem verschweißt, verlötet, verpresst oder verklebt sein.
  • Der im Schleißring vorhandene Schlitz kann grundsätzlich eine beliebige Form aufweist. Besonders einfach ist seine Herstellung, wenn die Stirnkanten der Umfangsenden rechtwinklig zur Umfangsrichtung derart ausgebildet sind, dass sich der Schlitz zwischen den Umfangsenden rein axial erstreckt. Er besitzt somit eine I-Form und eine minimale Längserstreckung. Alternativ kann die Längserstreckung des Schlitzes in einem Winkel ungleich 90 Grad zur Umfangsrichtung liegen. Ferner können die Umfangsenden auch derart ausgebildet sein, dass andere SchlitzFormen erhalten werden, wie z.B. ein V-förmiger, U-förmiger, Z-förmiger, labyrinthförmiger oder meanderförmiger Schlitz. Dabei ist zu berücksichtigen, dass je aufwändiger der Schlitz gestaltet ist, umso besser dichtet er ab.
  • Da der Schlitz quasi einen Bypass zwischen der Saugseite und der Druckseite des Laufrads bildet kann ein Teil der gepumpten Flüssigkeit durch den Schlitz von der Druckseite am Laufrad vorbei zur Saugseite strömen. Zur Verhinderung einer solchen Durchströmung ist es von Vorteil, wenn ein Sperrmittel in dem Schlitz, d.h. zwischen den Umfangsenden des Schleißrings insbesondere dichtend einliegt. Beispielsweise kann das Sperrmittel ein elastisches Dichtungselement sein. Dieses würde dann aufgrund der Verkleinerung des Durchmessers des Schleißrings komprimiert werden, so dass der Schlitz stets dicht ist.
  • Gemäß einer alternativen Ausführungsvariante ist das Sperrmittel eine Flügelmutter, deren sich diametral gegenüberliegende Flügel im bestimmungsgemäß montiertem Zustand in längliche Ausnehmungen in den Umfangsenden hinein erstrecken. Die Ausnehmungen bildet gleichzeitig Führungen bei der Umfangsbewegung der Umfangsenden und halten diese über den Formschluss mit der Flügelschraube in Position.
  • Bevorzugt ist das Sperrmittel, insbesondere die Flügelschraube, in einer Bohrung eines der Kreissegmente einliegend, insbesondere eingeschraubt. Hierdurch besteht eine feste Verbindung zwischen dem Schleißring und dem inneren Ring, der eine Relativbewegung zwischen Schleißring und innerem Ring, insbesondere bei einem Anlaufen des Laufrads am Schleißring verhindert. In Kombination mit den am Tragring befestigten Führungsstiften, ist somit die Gesamtanordnung aus Verstelleinheit und Schleißring gegen eine Verdrehung in Umfangsrichtung gesichert.
  • Von Vorteil ist es, wenn die Kreissegmente identisch ausgebildet sind. In diesem Fall muss bei der Montage der Verstelleinheit nicht zwischen verschiedenen Arten von Kreissegmenten unterschieden werden, insbesondere nicht zwischen solchen, die eine Bohrung für das Sperrmittel haben und solchen, die keine solche Bohrung haben. Somit habe alle Kreissegmente eine entsprechende Bohrung für das Sperrmittel, jedoch ist bei einem einfach geschlitzten Schleißring nur eine dieser Bohrungen benutzt, die weiteren Bohrungen sind ungenutzt. Im Falle eines zwei oder dreifach geschlitzten Schleißrings können allerdings die weiteren Bohrungen für ein zweites und drittes Sperrmittel verwendet werden, das dann entsprechend in dem korrespondierenden zweiten bzw. dritten Schlitz einliegt.
  • Geeigneterweise umfasst die Kreiselpumpe eine Betätigungseinrichtung zur Verschwenkung des äußeren Rings relativ zum inneren Ring. Diese ist idealerweise von außerhalb des Pumpengehäuses zugänglich, gegebenenfalls mit einem entsprechenden Werkzeug, so dass keine aufwändige Demontage von Pumpenkomponenten erforderlich ist.
  • Gemäß einer Ausführungsvariante kann die Betätigungseinrichtung einen vom äußeren Ring radial abstehenden Stift und eine in einer vorzugsweise tangential hierzu angeordneten Gewindebohrung im Pumpengehäuse einliegenden Schraube umfassen, die mit dem Stift derart in Wirkverbindung steht, dass die Einschraubtiefe der Schraube die Winkellage des Stifts bestimmt. Hierbei kann die Schraube von außerhalb des Pumpengehäuses drehbar zugänglich sein. Die Wirkungsweise dieser Betätigungseinrichtung ist derart, dass die Schraube, die beispielsweise eine Madenschraube sein kann, mit zunehmender Einschraubtiefe den Stift zunehmend nach hinten (aus Sicht der Schraube) drückt, dabei dessen Winkelstellung ändert und den äußeren Ring verschwenkt. Dies bedeutet, dass sich der äußere Ring bzw. der Stift im Ausgangszustand in einer anfänglichen Schwenkposition befindet, von der er sich entfernt, wenn die Schraube tiefer in die Gewindebohrung getrieben wird.
  • Gemäß einer alternativen Ausführungsvariante kann die Betätigungseinrichtung einen Zahnrad- oder Schneckenradabschnitt, der vorzugsweise am Außenumfang des äußeren Rings angeordnet ist oder einen Teil seines Außenumfangs bildet, und eine in den Zahnrad- oder Schneckenradabschnitt eingreifende schraubenförmige Schnecke umfassen. Hierbei kann die Schnecke von außerhalb des Pumpengehäuses drehbar zugänglich sein. Die Wirkungsweise dieser Betätigungseinrichtung ist ähnlich wie bei der Erstgenannten. Anstelle der Schraube wird hier jedoch die Schnecke gedreht, deren Drehung, wie bei einem Schneckengetriebe üblich, eine Verschiebung des Zahnrad- oder Schneckenradabschnitts längs zur Erstreckung der Schnecke bewirkt, welche die Winkelstellung des äußeren Rings ändert. Auch hier befindet sich der äußere Ring bzw. der Stift im Ausgangszustand in einer anfänglichen Schwenkposition, von der er sich entfernt, wenn die Schnecke gedreht wird.
  • Der Schleißring kann mitsamt der Verstelleinheit oder zumindest Teilen derselben, insbesondere mitsamt dem inneren Ring, des äußeren Rings, des Tragrings und dem Stift oder Zahnrad- oder Schneckenradabschnitt eine vormontierte, insbesondere auswechselbare Baugruppe bilden, nachfolgend Saughalsdichtungsbaueinheit genannt, so dass der Zusammenbau der Kreiselpumpe sowie ein Austausch des Schleißrings im Servicefall einfach und schnell erfolgen kann.
  • Eine Wirkungsgradverringerung der Kreiselpumpe kann nicht nur durch einen verschlissenen Schleißring, sondern auch durch ein infolge Kavitation beschädigtes Laufrad vorliegen. In letztgenannten Fall hilft natürlich ein Nachstellen des Dichtspalts zwischen Laufrad und Schleißring nichts, so dass ein Austausch des Laufrades erforderlich ist. Um die Ursache für die Beeinträchtigung des Wirkungsgrades festzustellen und zu vermeiden, dass die falsche Wartungsmaßnahme getroffen wird, kann vorgesehen werden, dass das Pumpengehäuse eine verschließbare, in den Saugraum vor dem Laufrad mündende Revisionsöffnung zur Durchführung eines flexiblen Endoskops zwecks Inspektion des Spaltmaßes zwischen Schleißring und Laufrad aufweist. Ist dieses Spaltmaß in Ordnung, liegt die Annahme eines beschädigten Laufrads nahe. Des Weiteren kann das Endoskop helfen, eine präzise Einstellung des Dichtspalts zu erreichen.
  • In einer Ausführungsvariante kann die Kreiselpumpe ein zweites Laufrad aufweisen, welches einen weiteren Saughals besitzt. In einer anderen Ausführungsvariante kann das Laufrad doppelflutig sein und dem Saughals gegenüberliegend einen weiteren Saughals aufweisen. In beiden Varianten kann der weitere Saughals ebenfalls radial zum Pumpengehäuse durch einen entsprechenden zweiten geschlitzten Schleißring abgedichtet sein, und das Pumpengehäuse eine entsprechend zweite Verstelleinheit aufweisen, mittels welcher der Durchmesser des zweiten Schleißrings ein- bzw. nachstellbar ist. Der zweite Schleißring und/ oder die zweite Verstelleinheit kann/ können dieselben Merkmale, Eigenschaften und Vorteile haben, wie sie zuvor in Bezug zu dem ersten Schleißring bzw. in Bezug zu der ersten Verstelleinheit beschrieben sind.
  • Die Erfindung findet bevorzugt Anwendung bei sogenannten Splitcase Pumpen. So kann das Pumpengehäuse axial geteilt sein, insbesondere aus einem oberen Gehäuseteil und einem unteren Gehäuseteil bestehen, vorzugsweise derart, dass die Rotationsachse der Pumpenwelle innerhalb der Trennebene zwischen den beiden Gehäuseteilen liegt.
  • Die Erfindung betrifft zudem ein Kreiselpumpenaggregat umfassend eine erfindungsgemäße Kreiselpumpe und eine elektromotorische Antriebseinheit zum Antreiben der Kreiselpumpeneinheit. Die Antriebswelle der Antriebseinheit ist hierzu mechanisch mit der Pumpenwelle gekoppelt und treibt das auf der Welle montierte Laufrad an.
  • Weitere Merkmale, Eigenschaften und Vorteile der Erfindung werden nachfolgend anhand von Ausführungsbeispielen erläutert. Es zeigen:
    • Fig. 1: eine erfindungsgemäße Kreiselpumpe im vertikalen Axialschnitt
    • Fig. 2: eine Radialschnittdarstellung der Kreiselpumpe nach Fig. 1 durch den Saughals des Laufrads
    • Fig. 3: eine Radialschnittdarstellung der Saughalsdichtungsbaueinheit der Kreiselpumpe nach Fig. 1 ohne Pumpengehäuse
    • Fig. 4: Ansicht der Innenseite des Schleißrings gemäß Richtung X in Fig. 3
    • Fig. 5: eine axiale Schnittansicht der Saughalsdichtungsbaueinheit gemäß Schnittlinie E-E in Fig. 3
  • Fig. 1 zeigt eine Kreiselpumpe 50 zum Fördern einer Flüssigkeit in der Bauart einer sogenannten Splitcase Pumpe mit einem horizontal entlang der Drehachse 18 in ein obere Gehäuseteil 1a und ein unteres Gehäuseteil 1b geteilten Pumpengehäuse 1 spiraler Bauart. Die Gehäuseteile 1a, 1b grenzen in der Trennebene 9 (siehe Fig. 2) aneinander. Im Pumpengehäuse 1 ist ein Laufrad 2 angeordnet, das drehfest auf einer Pumpenwelle 4 mittels einer Wellenschutzhülse 46 mit Ringnut 47 (siehe Fig. 2) montiert ist. Die Pumpenwelle 4 wird von einer nicht dargestellten elektromotorischen Antriebseinheit angetrieben, wobei eine Kupplung oder ein Getriebe zwischen Pumpenwelle 4 und Antriebswelle liegt, um eine getrennte Aufstellung und Montage der beiden Geräte zu ermöglichen. Kreiselpumpe 50 und Antriebseinheit bilden gemeinsam ein Kreiselpumpenaggregat. Die Gehäuseteile 1a, 1b haben ein enormes Gewicht, in Summe z.T. bis zu einer Tonne, so dass eine Montage und Demontage der Kreiselpumpe 50 mit einem Kran erfolgen muss.
  • Das Laufrad 2 trennt den Innenraum des Pumpengehäuses 1 in eine Saugseite 5, von der das Laufrad 2 die zu pumpende Flüssigkeit ansaugt, und eine Druckseite 7, welche sich an eine radial außerhalb des Pumpenlaufrads 1 befindliche Spiralkammer 3 anschließt. Im Bereich der Spiralkammer bildet das Pumpengehäuse 1 ein Spiralgehäuse 3a. Das Laufrad 2 beschleunigt die Flüssigkeit und wirft sie tangential aus, wobei die Spiralkammer 3 die Flüssigkeit zur Druckseite 7 leitet.
  • Das Laufrad 2 ist in dieser Ausführungsvariante doppelflutig. Dies bedeutet, dass es im Wesentlichen spiegelsymmetrisch aufgebaut ist und zwei sich gegenüberliegende Saugmünder 5 aufweist, durch welche das Laufrad 2 die Flüssigkeit ansaugt. Aufgrund der Symmetrie des Laufrades 2 ist auch das Pumpengehäuse 1 bezogen auf die Symmetrieebene des Laufrades 2 im Wesentlichen symmetrisch aufgebaut. Gegenüber konventionellen Laufrädern radialer Bauart erstrecken sich die Laufradschaufeln 12 hier in axialer Richtung zu beiden Seiten zum jeweiligen Saugmund 5 hin. Dem doppelflutigen Laufrad 2 der hier beschriebenen Ausführungsvariante fehlt eine Tragscheibe, auf der die Schaufeln bei einflutigen Laufrädern üblicherweise angeordnet sind.
  • Stattdessen sind die Schaufeln 12 zu beiden Seiten jeweils von einer Deckscheibe 10 abgedeckt, die ausgehend von ihrer im Wesentlichen radialen Erstreckung am Außenrand in Gestalt einer radialen Scheibe mit zunehmender Nähe zur Pumpenwelle 4, im Querschnitt betrachtet bogenförmig, in eine axiale Erstreckung in Gestalt eines zylindrischen Rings übergeht, der konzentrisch zur Rotationsachse 18 ist und den Saugmund 5 des Laufrads 2 begrenzt. Dieser zylindrische Ring der Deckscheibe 10 bildet den Saughals 10a des Laufrades 2 und kann einen Durchmesser bis zu 500mm haben. Der Saughals 10a muss an seiner radialen Außenseite zum Pumpengehäuse 1 hin abgedichtet werden, um eine Rückströmung (Bypass) von Flüssigkeit von der Druckseite 3, 7 zur Saugseite 5 des Laufrads zu verhindern. Denn dies verschlechtert den Wirkungsgrad der Kreiselpumpe 50 und beeinträchtigt die Pumpenkennlinie.
  • Hierzu ist ein Schleißring 14 vorhanden, der mit seinem Innenumfang 14a außen am Saughals 10a anliegt, wobei ein Dichtspalt zwischen Saughals 10a und Schleißring 14 gegeben ist. Der Schleißring 14 ist aus Metall wie Rotguss, Grauguss oder Edelstahl, oder aus Kunststoff, beispielsweise PTFE hergestellt.
  • Aufgrund von Bauteil- und Montagetoleranzen kann der Dichtspalt nicht präzise eingestellt werden und ist über den Umfang meist nicht konstant, was beispielsweise bedingt ist durch eine Durchbiegung der Welle 4. In der Praxis kann sich daher ergeben, dass der Schleißring 14 partiell am Saugmund 10a anliegt und sich nach der Inbetriebnahme einschleift. Zudem vergrößert sich der Dichtspalt im Betrieb verschleißbedingt und der Wirkungsgrad sinkt, so dass eine Wartung der Kreiselpumpe 50 erforderlich wird.
  • Erfindungsgemäß umfasst die erfindungsgemäße Kreiselpumpe 50 eine Verstelleinheit 20, 21, 29, die ein präzises Einstellen des Dichtspalts nach der Montage der Kreiselpumpe 50, aber auch ein Nachstellen des Dichtspalts nach zahlreichen Betriebsstunden ermöglicht, beispielsweise im Rahmen einer ordentlichen Wartung oder im außerordentlichen Servicefall.
  • Das Einstellen bzw. Nachstellen des Dichtspalts, nachfolgend gemeinsam als "Einstellen" bezeichnet, wird erfindungsgemäß dadurch erreicht, dass der Innendurchmesser des Schleißrings 14 änderbar ist. Hierzu ist der Schleißring 14 geschlitzt, und die Verstelleinheit 15, 21, 29 eingerichtet, den Durchmesser des Schleißrings 14 einzustellen. Somit ist eine ein- und nachstellbare Saughalsdichtung gebildet.
  • Der hier verwendete Schleißring 14 ist einfach geschlitzt, er ist somit einteilig und hat im Wesentlichen eine C-Form. D.h., dass der Schlitz an nur einer Stelle seines Umfangs durch einen Schlitz 24 unterbrochen ist, so dass sich dort zwei Umfangsenden 27a, 27b des Schleißrings 24 beabstandet gegenüberliegen, siehe Fig. 4. Dieser Abstand ermöglicht, den Innendurchmesser des Schleißrings 14 in einem bestimmen Maße zu ändern, was erfindungsgemäß durch die Verstelleinheit 20, 21, 29 bewirkt wird. Beispielsweise kann der Schlitz im Ausgangszustand eine Breite in Umfangsrichtung zwischen 0,5% und 3% des Umfangs haben, beispielsweise 12,5mm. Durch die Verkleinerung des Durchmessers bewegen sich die Umfangsenden 27a, 27b zueinander, so dass der Schlitz 24 entsprechend kleiner wird.
  • Die Verstelleinheit 15, 21, 29 ist hier eingerichtet, eine radial nach Innen gerichtete Kraft auf den Außenumfang des Schleißrings 14 auszuüben, welche eine radiale Verpressung des Schleißrings 14 gleichmäßig über den Umfang bewirkt und zu einer entsprechenden Verkleinerung des Schleißringinnendurchmessers, beispielsweise je nach Größe des Schleißrings bis zu 4mm führt. Die Verstelleinheit 15, 21, 29 ist in den Figuren 2 und 3 gut zu erkennen, welche einen radialen Schnitt durch den Saughals 10a im Bereich der Saughalsdichtung darstellen.
  • Die Verstelleinheit 15, 21, 29 umfasst hier im Wesentlichen einen äußeren Ring 21, einen inneren Ring 15 und eine Betätigungseinrichtung 29. Zwischen dem äußeren Ring 21 und dem inneren Ring 15 besteht eine Kreiskeilverbindung, und der äußere Ring 21 ist relativ zum inneren Ring 15 in Umfangsrichtung winklig verstellbar, was durch die Betätigungseinrichtung 29 bewirkt werden kann. Der äußere und der innere Ring 21,15 sind, unabhängig voneinander, aus Metall, insbesondere Edelstahl, oder aus Kunststoff, z.B. PTFE, hergestellt, und hier jedenfalls formstabil. Die zueinander gerichteten Oberflächen des äußeren und inneren Rings 21, 15 sind mindestens geschlichtet oder haben eine noch geringere Oberflächenrauigkeit, um die Reibung zwischen den Kreiskeilen beim Verschwenken des äußeren Rings 21 zu minimieren.
  • Der Innenumfang 21a des äußeren Rings 21 trägt ein Kreiskeilprofil in Gestalt von drei Kreiskeilen. Gut erkennbar sind die einzelnen Kreiskeile an ihren stufenartigen Übergängen, da die radiale Dicke des äußeren Rings 21 in Umfangsrichtung entlang eines Kreiskeils bis zu einem Maximum zunimmt und stufenartig zu einer minimalen radialen Dicke am Anfang des nächstfolgenden Kreiskeils zurückspringt. Der äußere Ring 21 ist einteilig und bildet somit quasi einen Kreiskeilring.
  • Der Außenumfang 15a des inneren Rings 15 trägt demgegenüber ein komplementäres Kreiskeilprofil in Gestalt von drei komplementären Kreiskeilen. Der innere Ring 15 ist hier mehrteilig, d.h. segmentiert, genauer gesagt durch drei voneinander unabhängige Kreissegmente 15 gebildet, die ringförmig angeordnet sind. Die drei komplementären Kreiskeile sind auf die Kreissegmente 15 derart verteilt, dass jedes Kreissegment 15 an seinem Außenumfang 15a einen vollständigen komplementären Kreiskeil aufweist. Die radiale Dicke der Kreissegmente 15 nimmt gegenüber dem äußeren Ring 21 in entgegengesetzter Umfangsrichtung jeweils zu.
  • Der Innenumfang 15b des inneren Rings 15 ist zylindrisch. An ihm liegt der Schleißring 14 an. Sowohl die Kreiskeile des äußeren Rings 21 als auch die Kreiskeile des inneren Rings 15 haben die Form einer logarithmischen Spirale, so dass eine Zentrierwirkung auf den Schleißring 14 erreicht wird. Die Kreissegmente 15 sind unter Ausbildung eines Spalts 19 beabstandet zueinander angeordnet, um eine radiale Bewegung und damit eine Verkleinerung des Innendurchmessers zu ermöglichen.
  • Durch die Verschwenkung des äußeren Rings 21 relativ zum inneren Ring 15 entgegen dem Uhrzeigersinn, gleitet der Innenumfang 21a des inneren Rings 21 mit dem dünneren Ende der Kreiskeile voran am Außenumfang 15a des in Umfangsrichtung ortsfesten inneren Rings 15 entlang. Auf einen ortsfesten Umfangspunkt bezogen vergrößert sich dadurch die radiale Dicke des äußeren Rings 21 mithin also auch beider Ringe 15, 21, wodurch der äußere Ring 21 eine radiale Kraft auf den inneren Ring 15 ausübt. Die Kreissegmente 15 weichen infolgedessen mit einer radialen Bewegung aus, woraus eine Verkleinerung des Innendurchmessers des inneren Rings 15 resultiert, welcher diese wiederum an den Schleißring 14 weitergibt, so dass dessen Innendurchmesser ebenfalls kleiner wird. Dies ermöglicht die Einstellung des Dichtspalts.
  • Durch die radiale Bewegung der Kreissegmente 15 werden die Spalten 19 schmaler. Um ein Verdrehen des inneren Rings 15 im Falle eines Anlaufens des Laufrads 2 am Schleißring 14 und Mitdrehens des Schleißrings 14 zu verhindern, sind die Kreissegmente 15 in Umfangsrichtung ortsfest, aber gleichwohl radial beweglich gehalten. Hierfür sind sich im Wesentlichen radial erstreckende Langlöcher 17 in den Kreissegmenten 15 vorgesehen, in denen zylindrische Führungsstifte 18 einliegen. Anstelle der Langlöcher können auch Nuten vorgesehen werden. Jedes Kreissegment 15 besitzt ein einziges derartiges Langloch 17, wobei die Langlöcher äquidistant verteilt angeordnet sind. Geeigneterweise sind die Langlöcher 17 in demjenigen Abschnitt der Kreissegmente 15 ausgebildet, der die größte radiale Dicke aufweist. Die Langlöcher 17 haben eine Länge derart, dass eine radiale Bewegung der Kreissegmente 15 bis zum 2mm möglich ist.
  • Die Führungsstifte 18 sind an einem Tragring 20 befestigt, insbesondere mit diesem verschraubt, verschweißt, verlötet, verpresst oder verklebt. Sie erstrecken sich im Wesentlichen axial vom Tragring 20 weg. Der Tragring 20 ist hier L-förmig aus Blech gebildet und umfasst somit einen axialen, lochscheibenförmigen Abschnitt 20a und einen zylindrischen Abschnitt 20b, wie dies in Fig. 5 zu erkennen ist, die eine axiale Schnittansicht der Saughalsdichtungsbaueinheit 45 gemäß Schnittlinie E-E in Fig. 3 Mit Blick auf den Innenumfang 14a des Schleißrings 14 bildet. Der Tragring 20 umgreift den äußeren Ring 21 außenumfänglich, der entsprechend gleitend in dem Tragring 20 einliegt. Der äußere Ring 21 ist somit auch relativ zum Tragring 20 schwenkbar, in seiner Bewegung in axialer Richtung jedoch fixiert. Hierzu dient der lochscheibenförmige Abschnitt 20a, der den äußeren Ring 21 an einer axialen Stirnseite abdeckt und auf seiner zum äußeren Ring 21 gerichteten axialen Innenseite die Führungsstifte 18 trägt. An der anderen axialen Stirnseite ist der äußere Ring 21 durch einen Pressring 48 abgedeckt, der in einen radialen Rücksprung im zylindrischen Abschnitt 20b eingepresst ist. Dieser radiale Rücksprung kennzeichnet sich durch eine geringere radiale Dicke des zylindrischen Abschnitts 20b des Tragrings 20 an einem axialen Ende aus, an dem der Tragring 20 den Pressring 48 somit außenumfänglich umgreift.
  • Der Tragring 20 ist über einen Formschluss mit Arretierungsbolzen 23, die Teil eines Befestigungsbügels 22 sind, insbesondere an dessen Umfangsenden ausgebildet sind, am Pumpengehäuse gehalten. Der Bügel 22 ist halbkreisförmig und liegt außen am Tragring 20 an, siehe Fig. 2. Er ist fest mit dem Pumpengehäuse 1 bzw. mit dem unteren Gehäuseteil 1b verbunden.
  • Der im Schleißring 14 vorhandene Schlitz 24 hat in dem hier gezeigten Ausführungsbeispiel eine I-Form, wie dies in Fig. 4 zu erkennen ist, die eine Ansicht aus Richtung X gemäß Fig. 3 auf den Innenumfang des Schleißrings 14 zeigt. Der Schlitz 24 erstreckt sich rechtwinklig zur Umfangsrichtung, achsparallel zur Rotationsachse 18. Somit liegen sich die Stirnkanten der Umfangsenden 27a, 27b rechtwinklig zur Umfangsrichtung parallel gegenüber. Wie in Fig 4 zudem erkennbar ist, steht der äußere Ring 21 hinter dem Schleißring 14 etwas hervor. Er besitzt somit eine größere axiale Länge. Der innere Ring 15 hat demgegenüber eine identische axiale Länge wie der Schleißring 14 und ist durch den Schlitz 24 hindurch sichtbar.
  • Um zu verhindern, dass der Schlitz 24 einen Bypass für rückströmende Flüssigkeit bildet, mithin also durchströmt wird, ist ein Sperrmittel 25 im Schlitz 24 angeordnet. Das Sperrmittel 25 ist hier durch eine Flügelmutter mit zwei sich diametral von einem Schaft 28 weg erstreckenden Flügeln gebildet. In jedem der beiden Umfangsenden 27a, 27b ist eine längliche, in Umfangsrichtung erstreckende und zur jeweiligen Stirnkante hin offene Ausnehmung 26a, 26b vorgesehen, in die sich jeweils ein Flügel der Flügelmutter 25 formschlüssig hinein erstreckt. Die Ausnehmungen 26a, 26b dienen als Führung und verhindern ein axiales Verschieben der Umfangsenden 27a, 27b. Die Länge der Ausnehmungen 26a, 26b ist gleich oder größer der Länge eines Flügels.
  • Die Flügelschraube 25 ist mit ihrem Schaft 28, der ein entsprechendes Außengewinde hat, in eine Bohrung 16 mit korrespondierendem Innengewinde in einem der Kreissegmente eingeschraubt. Somit ist der Schleißring 14 über die Flügelschraube 25 mit dem inneren Ring 15 fest verbunden. In Kombination mit den am Tragring 20 befestigten Führungsstiften 18, ist somit die Gesamtanordnung aus Verstelleinheit 15, 21, 29 und Schleißring 14 gegen eine Verdrehung in Umfangsrichtung gesichert.
  • Um die Montage zu vereinfachen und nicht zwischen unterschiedlichen Kreissegmenten 15 unterscheiden zu müssen, sind alle Kreissegmente 15 identisch ausgebildet. Somit habe alle Kreissegmente 15 die genannte Bohrung 16 für ein Sperrmittel, jedoch ist bei der hier dargestellten Ausführungsvariante nur eine dieser Bohrungen 16 benutzt.
  • Teil der Verstelleinheit 15, 21, 29 ist zudem eine Betätigungseinrichtung 29 zur Verschwenkung des äußeren Rings 21 relativ zum inneren Ring 15. Hierzu steht vom äußeren Ring 21 radial ein Stift 31 in Gestalt einer Augenschraube ab, die sich durch eine hierfür speziell vorgesehene Ausnehmung 33 im Tragring 20 in eine im Pumpengehäuse 1, 1a ausgebildete Kammer 30 hinein erstreckt. In dem Auge der Augenschraube 31 ist ein Kugelgelenk 32 angeordnet, welches mit dem axialen Ende 35a einer Schraube 35 verbunden ist, beispielsweise formschlüssig, verrastet oder mittels Gewinde. Das Kugelgelenk 32 ermöglicht einen Ausgleich des Winkels zwischen dem Stift 31 und der Schraube 25, wenn der äußere Ring 21 geschwenkt wird.
  • Es sei erwähnt, dass das Kugelgelenk 32 durch ein einfaches Drehgelenk ersetzt werden kann, da hier nur ein Winkelausgleich in eine Raumrichtung erfolgen muss.
  • Die Schraube 35 ist als Madenschraube ausgeführt und ist ebenfalls Teil der Betätigungseinrichtung 29. Sie liegt in einer Gewindebohrung 36 ein, die sich tangential bzw. etwas radial versetzt aber parallel zu einer Tangente an den Befestigungsort des Stifts 31 erstreckt. Die Einschraubtiefe der Schraube 35 bestimmt somit die Winkellage des Stifts 31, da sie mit ihrem Axialende 35a gegen den Stift 31 drückt.
  • Es sei an dieser Stelle erwähnt, dass die Verbindung zwischen dem Gelenk 32 und der Schraube 35 nicht fest sein muss, da nur eine Bewegung des Stifts 31 in eine Richtung erforderlich ist. Diese Bewegung wird bewirkt, wenn die Schraube 35 so weit in die Gewindebohrung 36 hineingedreht ist, dass sie gegen den Stift 31 schlägt, und anschließend darüber hinaus gedreht wird. Würde Schraube 35 anschließend zurückgedreht, entfernt sie sich lediglich vom Stift 31 und der äußere Ring 21 bliebe in der verschwenkten Position. Eine feste Verbindung, beispielsweise in Form eines Formschlusses (verrastet oder mittels Gewinde) hat gegenüber der losen Verbindung jedoch den Vorteil, dass eine reversible Verstellung, d.h. in zwei Richtungen bewirkt werden kann, ein Zurückdrehen der Schraube 35 also wieder ein Zurückschwenken des äußeren Rings 21 erreichen kann. Dies ermöglicht eine Korrektur der Einstellung, z.B. wenn die Schraube 35 zu fest angezogen wurde, der Schleißring 14 den Saugmund 10a mithin fest umgreift.
  • Die Gewindebohrung 36 mündet nach außen, so dass die Schraube 35 von außerhalb des Pumpengehäuses zugänglich ist. Sie kann mit einem entsprechenden Werkzeug gedreht werden, ohne das Pumpengehäuse 1, 1a zu öffnen. Die Bohrung 36 ist durch einen Verschlussstopfen 37 verschlossen, der unter Ausbildung eines Freiraums 38 beabstandet zur Madenschraube 35 liegt. Der Stopfen 37 wird zur Betätigung der Betätigungseinrichtung 29 abgenommen.
  • Die Wirkungsweise dieser Betätigungseinrichtung 29 ist derart, dass die Schraube 35 mit zunehmender Einschraubtiefe den Stift 31 zunehmend nach hinten, d.h. in Richtung des Pfeils α in Fig. 3 drückt, dabei dessen Winkelstellung ändert und den äußeren Ring 21 verschwenkt. Dies bedeutet, dass sich der äußere Ring 21 bzw. der Stift 31 im Ausgangszustand in einer anfänglichen Schwenkposition befindet, die in den Figuren 2 und 3 gezeigt ist, von der er sich entfernt, wenn die Schraube 35 tiefer in die Gewindebohrung 36 getrieben wird. Eine Begrenzung der Winkelverstellung kann durch einen Anschlag des Stifts 31 erreicht werden, beispielsweise mittels der Ausnehmung 33 im Tragring 20 oder durch eine Wand der Kammer 30, die der Stift bei maximaler Einschraubtiefe der Schraube 35 erreicht. Der mögliche Winkelverstellbereich des äußeren Rings 21 ist in Fig. 3 durch gestrichelte Begrenzungslinien dargestellt. Er kann zwischen 0° und 15° oder sogar zwischen 0° und 20° liegen.
  • Der Schleißring 14 bildet mitsamt dem inneren Ring 15, dem äußeren Ring 21, dem Tragring 20 und wenigstens dem Stift 31 der Betätigungseinrichtung 29 eine vormontierte und bedarfsweise auswechselbare Baugruppe 45, mithin eine Saughalsdichtungsbaueinheit, so dass der Zusammenbau der Kreiselpumpe sowie ein Austausch des Schleißrings im Servicefall einfach und schnell erfolgen kann.
  • Da die Kreiselpumpe 50 ein Laufrad 2 mit zwei Saughälsen 10a besitzt, ist eine solche Saughalsdichtungsbaueinheit 45 entsprechend zweifach vorhanden, ebenso die Betätigungseinrichtungen 29, die unabhängig voneinander betätigt werden können. Der dem zweiten Saughals 10a zugeordnete Schleißring 14 und/ die dem zweiten Saughals 10a zugeordnete Verstelleinheit 15, 21, 29 haben somit dieselben Merkmale, Eigenschaften und Vorteile, wie sie zuvor in Bezug zu dem dem ersten Saughals 10a zugeordneten Schleißring 14 bzw. in Bezug zu der dem ersten Saughals 10a zugeordneten Verstelleinheit 15, 21, 29 beschrieben sind.
  • Wie in der Beschreibungseinleitung erläutert, kann eine Wirkungsgradverringerung der Kreiselpumpe 50 kann nicht nur durch einen verschlissenen Schleißring 14, sondern auch durch ein infolge Kavitation beschädigtes Laufrad 2 vorliegen, so dass ein Nachstellen des Dichtspalts keine Besserung bringen würde. Bei einem doppelflutigen Laufrad 2 gemäß Fig. 1 ist außerdem zu beachten, dass zwei Saughälse 10a, mithin zwei Dichtspalte vorhanden sind, deren Schleißringe 14 unterschiedlich verschleißen können, so dass nur bei einem der beiden Schleißringe 14 ein Nachstellen des Dichtspalts erforderlich ist.
  • Es ist deshalb von Vorteil, wenn ohne großen Aufwand die Ursache der Wirkungsgradverringerung festgestellt werden kann. Zurückkommend auf Fig. 1 zeigt diese eine einfache Maßnahme zur Auffindung der Ursache für die Beeinträchtigung des Wirkungsgrades. Hierbei ist vorgesehen, im Pumpengehäuse 1, 1b eine verschließbare, in den Saugraum 5 vor dem Laufrad 2 mündende Revisionsöffnung 43 vorzusehen, und eine Inspektion des Dichtspalts mit einem Endoskop 39 durchzuführen. Ein solches Endoskop 39, das in üblicher Weise einen flexiblen Schlauch 40 mit Bowdenzug zum navigieren und endseitiger Kamera 42, und eine Monitoreinheit 41 zur Darstellung des von der Kamera 42 aufgenommenen Bildes aufweist, kann auf einfache Weise durch die Revisionsöffnung 43 hindurchgeführt und zum Laufrad 2 navigiert werden, um ein Bild vom Laufrad 2 bzw. dem Dichtspalt aufzunehmen. Eine solche Revisionsöffnung 43 kann bei der Kreiselpumpe 50 gemäß Fig. 1 auf beiden Seiten des Pumpengehäuses 1, 1b vorhanden sein, damit beide Laufradseiten gleichermaßen zugänglich sind. Die Revisionsöffnung 43 ist durch ein Verschlusselement 44 dicht verschlossen, das vorzugsweise selbstdichtend ist.
  • Ist das Spaltmaß des Dichtspalts in Ordnung, liegt die Annahme eines beschädigten Laufrads 2 nahe, dessen Flügel 12 ebenfalls mit dem Endoskop 39 inspiziert werden können. Des Weiteren kann das Endoskop 39 helfen, eine präzise Einstellung des Dichtspalts zu erreichen, da über das Kamerabild auf der Monitoreinheit 41 ersichtlich ist, ob und wie weit der Dichtspalt verkleinert werden muss.
  • Die vorstehenden Ausführungsbeispiele dienen lediglich der Veranschaulichung der Erfindung und sind nicht einschränkend zu verstehen. Insbesondere ist die Anwendung der erfindungsgemäßen einstellbaren Saughalsdichtung nicht auf Splitcase Pumpen beschränkt, wie sie in Fig. 1 dargestellt ist. Sie kann vielmehr in jeder Kreiselpumpe, insbesondere in jeder Trockenläuferpumpe verwendet werden.
  • Bezugszeichenliste
  • 1
    Pumpengehäuse
    1a
    oberes Pumpengehäuse
    1b
    unteres Pumpengehäuse
    2
    Laufrad
    3
    Spiralkammer,
    3a
    Spiralgehäuse
    4
    Pumpenwelle
    5
    Saugseite, Saugraum
    6
    Saugmund
    7
    Druckseite
    8
    Wellenachse
    9
    Trennebene
    10
    Deckscheibe
    10a
    Saughals
    11
    Nabe
    12
    Schaufel
    14
    Schleißring
    14a
    Innenumfang des Schleißrings
    15
    Kreissegment
    15a
    Außenumfang des Kreissegments
    15b
    Innenumfang des Kreissegments
    16
    Gewindebohrung
    17
    Langloch
    18
    Führungsstift
    19
    Spalt
    20
    L-förmiger Tragring
    20a
    lochscheibenförmiger Abschnitt des Tragrings
    20b
    zylindrischer Abschnitt des Tragrings
    21
    äußerer Ring
    21a
    Innenumfang des äußeren Rings
    22
    Befestigungsbügel
    23
    Arretierungsbolzen
    24
    Schlitz
    25
    Sperrmittel, Flügelschraube
    26a, 26b
    längliche Ausnehmung
    27a, 27b
    Umfangsende des Schleißrings
    28
    Schaft
    29
    Betätigungseinrichtung
    30
    Kammer
    31
    Stift
    32
    Kugelgelenk
    33
    Ausnehmung
    35
    Madenschraube
    35a
    Axialende der Madenschraube
    36
    Bohrung
    37
    Verschlussstopfen
    38
    Freiraum
    39
    Endoskop
    40
    Schlauch
    41
    Monitoreinheit
    42
    Kamera
    43
    Revisionsöffnung
    44
    Verschlusselement
    45
    Saughalsdichtungsbaueinheit
    46
    Wellenschutzhülse
    47
    Ringnut der Wellenschutzhülse
    48
    Pressssring
    50
    Kreiselpumpe

Claims (18)

  1. Kreiselpumpe (50) mit einem Pumpengehäuse (1, 1a, 1b) und zumindest einem darin angeordneten Laufrad (2) zur Förderung einer Flüssigkeit, welches einen Saughals (10a) aufweist, der radial zum Pumpengehäuse (1, 1a, 1b) durch einen Schleißring (14) abgedichtet ist, dadurch gekennzeichnet, dass der Schleißring (14) geschlitzt ist und das Pumpengehäuse (1, 1a, 1b) eine Verstelleinheit (15, 21) aufweist, mittels welcher der Durchmesser des Schleißrings (14) einstellbar ist.
  2. Kreiselpumpe (50) nach Anspruch 1, dadurch gekennzeichnet, dass die Verstelleinheit (15, 21) eingerichtet ist, eine radial nach Innen gerichtete Kraft auf den Außenumfang des Schleißrings (14) auszuüben.
  3. Kreiselpumpe (50) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verstelleinheit (15, 21) einen äußeren Ring (21) und einen inneren Ring (15) aufweist, zwischen denen eine Kreiskeilverbindung besteht, wobei der äußere Ring (21) relativ zum inneren Ring (15) in Umfangsrichtung winklig verstellbar ist, der Durchmesser des inneren Rings (15) reduzierbar ist und der Schleißring (14) an der radialen Innenseite des inneren Rings (15) anliegt.
  4. Kreiselpumpe (50) nach Anspruch 3, dadurch gekennzeichnet, dass der äußere Ring (21) einteilig ist und entlang seines Innenumfangs (21a) wenigstens ein Kreiskeil ausgebildet ist.
  5. Kreiselpumpe (50) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der innere Ring (15) aus nur einem Kreissegment oder aus einer ringförmigen Anordnung von zwei oder mehr Kreissegmenten (15) gebildet ist, wobei entlang des Außenumfangs (15a) des einen Kreissegments oder aller Kreissegmente (15) wenigstens ein zum äußeren Ring (21) komplementärer Kreiskeil ausgebildet ist.
  6. Kreiselpumpe (50) nach Anspruch 5, dadurch gekennzeichnet, dass die Kreissegmente (15) radial verschiebbar gehalten sind.
  7. Kreiselpumpe (50) nach zumindest einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass der äußere Ring (21) in einem am Pumpengehäuse (1, 1a, 1b) befestigten L-förmigen Tragring (20) verschwenkbar einliegt.
  8. Kreiselpumpe (50) nach Anspruch 7, dadurch
    gekennzeichnet, dass der Tragring (20) axial abstehende Führungsstifte (18) aufweist, die in entsprechende Ausnehmungen (17) in den Kreissegmenten (15), insbesondere in Form von Langlöchern (17) oder Nuten, eingreifen.
  9. Kreiselpumpe (50) nach einem der vorherigen Ansprüche, dadurch
    gekennzeichnet, dass in einem Schlitz (24) zwischen den Umfangsenden (27a,
    27b) des Schleißrings (14) ein Sperrmittel (25) zur Verhinderung einer Durchströmung des Schlitzes (24) einliegt.
  10. Kreiselpumpe (50) nach Anspruch 9, dadurch
    gekennzeichnet, dass das Sperrmittel (25) eine Flügelmutter (25) ist, deren sich diametral gegenüberliegende Flügel im bestimmungsgemäß montiertem Zustand in längliche Ausnehmungen (26a, 26b) in den Umfangsenden (27a, 27b) hinein erstrecken.
  11. Kreiselpumpe (50) zumindest nach einem der Ansprüche 5 oder 6 und einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass das Sperrmittel (25) in einer Bohrung (16) eines der Kreissegmente (15) einliegt, insbesondere eingeschraubt ist.
  12. Kreiselpumpe (50) zumindest nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die Kreissegmente (15) identisch ausgebildet sind.
  13. Kreiselpumpe (50) nach einem der Ansprüche 3 bis 12, gekennzeichnet durch eine Betätigungseinrichtung (29) zur Verschwenkung des äußeren Rings (21) relativ zum inneren Ring (15).
  14. Kreiselpumpe (50) nach Anspruch 13, dadurch gekennzeichnet, dass die Betätigungseinrichtung (29) einen vom äußeren Ring (21) radial abstehenden Stift (31) und eine in einer Gewindebohrung (36) im Pumpengehäuse (1, 1a) einliegenden Schraube (35) umfasst, die mit dem Stift (34) derart in Wirkverbindung steht, dass die Einschraubtiefe der Schraube (35) die Winkellage des Stifts (34) bestimmt, wobei die Schraube (35) insbesondere von außerhalb des Pumpengehäuses (1, 1a) drehbar zugänglich ist.
  15. Kreiselpumpe (50) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Schleißring (21) mitsamt der Verstelleinheit (15, 21) eine vormontierte, auswechselbare Baugruppe bildet.
  16. Kreiselpumpe (50) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Pumpengehäuse (1, 1a, 1b) eine verschließbare, in den Saugraum (5) vor dem Laufrad (2) mündende Revisionsöffnung (43) zur Durchführung eines flexiblen Endoskops (39) zwecks Inspektion des Spaltmaßes zwischen Schleißring (14) und Laufrad (2) aufweist.
  17. Kreiselpumpe (50) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Pumpengehäuse (1a, 1b) aus einem oberen Gehäuseteil (1a) und einem unteren Gehäuseteil (1b) besteht, insbesondere derart, dass die Rotationsachse (8) der Pumpenwelle (4) innerhalb der Trennebene (9) zwischen den beiden Gehäuseteilen (1a, 1b) liegt.
  18. Kreiselpumpenaggregat umfassend eine Kreiselpumpe (50) nach einem der vorherigen Ansprüche und eine elektromotorische Antriebseinheit zum Antreiben der Kreiselpumpe (50).
EP18000558.9A 2018-06-25 2018-06-25 Kreiselpumpe mit verbesserter saughalsdichtung Active EP3467319B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18000558.9A EP3467319B1 (de) 2018-06-25 2018-06-25 Kreiselpumpe mit verbesserter saughalsdichtung
CN201920944830.8U CN211314647U (zh) 2018-06-25 2019-06-21 离心泵及离心泵组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18000558.9A EP3467319B1 (de) 2018-06-25 2018-06-25 Kreiselpumpe mit verbesserter saughalsdichtung

Publications (2)

Publication Number Publication Date
EP3467319A1 EP3467319A1 (de) 2019-04-10
EP3467319B1 true EP3467319B1 (de) 2022-03-30

Family

ID=62791477

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18000558.9A Active EP3467319B1 (de) 2018-06-25 2018-06-25 Kreiselpumpe mit verbesserter saughalsdichtung

Country Status (2)

Country Link
EP (1) EP3467319B1 (de)
CN (1) CN211314647U (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345082B (zh) * 2019-07-11 2024-04-05 浙江理工大学 叶轮时序角与跨距可调的两级离心泵装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1639279A (en) * 1923-05-16 1927-08-16 Frederick Iron And Steel Compa Wearing ring for rotary elements
US1545608A (en) * 1924-10-31 1925-07-14 Frederick Iron & Steel Company Centrifugal pump
US5971704A (en) * 1997-04-23 1999-10-26 Toyo Pumps North America Corporation Device for adjusting the running clearance of an impeller
US8690534B1 (en) * 2009-06-08 2014-04-08 Curtiss-Wright Electro-Mechanical Corporation Backup seals in rotary pumps
KR20160065333A (ko) * 2014-11-28 2016-06-09 현대중공업 주식회사 원심펌프

Also Published As

Publication number Publication date
CN211314647U (zh) 2020-08-21
EP3467319A1 (de) 2019-04-10

Similar Documents

Publication Publication Date Title
DE4331560B4 (de) Magnetisch gekuppelte Kreiselpumpe
EP3187736B1 (de) Mehrstufige horizontale zentrifugalpumpe zum fördern eines fluids sowie verfahren zum instandsetzen einer solchen
DE69628549T2 (de) Zentrifugalpumpe
EP2304246B1 (de) Vorrichtung zur laufradabdichtung bei kreiselpumpen
DE2105485B2 (de)
DE10012181A1 (de) Kreiselpumpe mit Noppen-Laufrad und Noppen-Laufrad hierfür
EP3467319B1 (de) Kreiselpumpe mit verbesserter saughalsdichtung
EP2348220B1 (de) Tauchpumpe
DE29609865U1 (de) Rotationsverdrängerpumpe
EP2707629B1 (de) Vorrichtung zum abdichten eines pumpraums einer drehkolbenpumpe, sowie drehkolbenpumpe mit selbiger
EP2766608B1 (de) Kreiselpumpe für feststoffe enthaltende flüssigkeiten mit spaltabdichtung
DE2539425C2 (de)
DE102004058533B4 (de) Pumpe für Flüssigkeiten unter Überdruck
EP3581803B1 (de) Kreiselpumpe mit regelung des spaltes zwischen deckel und laufrad
EP2818722B1 (de) Kreiselpumpe
EP1282777B1 (de) Drehkolbenpumpe
DE102009039119A1 (de) Vakuumpumpe und Anordnung mit Vakuumpumpe
DE3244308C2 (de) Rührwerkskugelmühle
EP1467102B1 (de) Gebläse
WO2018091397A1 (de) Seitenkanalverdichter mit dichtungsanordnung
DE10034195C1 (de) Baggerpumpe
DE10327723B3 (de) Dreheinführung
EP4108934A1 (de) Anordnung umfassend ein laufrad und einen schneidkopf für mit feststoff belastete flüssigkeit einer pumpe
EP3171028B1 (de) Mehrstufige kreiselpumpe mit einem axialschub-ausgleichskolben, dessen druck- und saugseiten von einer gleitringdichtung getrennt sind
EP4108935A1 (de) Schneidring für mit feststoff belastete flüssigkeit einer pumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190418

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WILO SE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1479437

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018009205

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220630

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220630

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220701

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220801

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220730

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018009205

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

26N No opposition filed

Effective date: 20230103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220625

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220625

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230523

Year of fee payment: 6

Ref country code: FR

Payment date: 20230523

Year of fee payment: 6

Ref country code: DE

Payment date: 20230523

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330