EP3453855B1 - Verfahren und vorrichtung zur kühlung und/oder schmierung eines kolbens und/oder der laufbahn eines zylinders einer hubkolbenbrennkraftmaschine - Google Patents

Verfahren und vorrichtung zur kühlung und/oder schmierung eines kolbens und/oder der laufbahn eines zylinders einer hubkolbenbrennkraftmaschine Download PDF

Info

Publication number
EP3453855B1
EP3453855B1 EP18187887.7A EP18187887A EP3453855B1 EP 3453855 B1 EP3453855 B1 EP 3453855B1 EP 18187887 A EP18187887 A EP 18187887A EP 3453855 B1 EP3453855 B1 EP 3453855B1
Authority
EP
European Patent Office
Prior art keywords
piston
lubricant
stroke
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18187887.7A
Other languages
English (en)
French (fr)
Other versions
EP3453855A1 (de
Inventor
Simon Bucher
Norbert Schatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus SE
Original Assignee
MAN Truck and Bus SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Truck and Bus SE filed Critical MAN Truck and Bus SE
Publication of EP3453855A1 publication Critical patent/EP3453855A1/de
Application granted granted Critical
Publication of EP3453855B1 publication Critical patent/EP3453855B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/08Lubricating systems characterised by the provision therein of lubricant jetting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/08Cooling of piston exterior only, e.g. by jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/08Lubricating systems characterised by the provision therein of lubricant jetting means
    • F01M2001/083Lubricating systems characterised by the provision therein of lubricant jetting means for lubricating cylinders

Definitions

  • the invention relates to a method for cooling and / or lubricating a piston and / or the track of a cylinder of a reciprocating piston internal combustion engine.
  • the invention further relates to a device for cooling and / or lubricating a piston and / or the track of a cylinder of a reciprocating piston internal combustion engine.
  • the invention further relates to a motor vehicle, in particular a commercial vehicle, with such a device.
  • Piston cooling is achieved by spraying the underside of the piston with oil from the lubricating oil circuit of the internal combustion engine. In this way, overheating of the piston and the combustion chamber adjoining it is prevented.
  • a device and a method for piston cooling in an internal combustion engine are also known, in which, depending on the engine operating state, oil is sprayed onto the underside of the piston for cooling the piston.
  • the transition from a state without piston cooling to a state with full piston cooling occurs via a phase with intermittent oil injection on the underside of the piston.
  • a device which has a piston oil spray system which comprises at least one piston oil spray device which is functionally connected to at least one engine oil channel and which is constructed and arranged to spray oil onto at least one piston; and at least one mechanism constructed and arranged to control a flow rate and timing of at least one oil spray of the at least one piston oil sprayer such that the oil spray is within a single cycle or at multiple intervals of a flow rate within an engine cycle or a crankshaft revolution flows from zero to a maximum flow rate.
  • a method for operating a reciprocating piston internal combustion engine with a piston cooling device in which a switching valve for controlling the oil quantity for cooling a piston is controlled by a control device with the aid of a device and the oil flow is controlled as a function of the operating point by means of the device mentioned, for example an oil spray nozzle.
  • the switching valve be closed when the control unit detects a temporarily increased oil requirement at another point on the reciprocating piston internal combustion engine.
  • FIG. 6 illustrates an example of a device 1 for piston cooling known from the prior art.
  • the internal combustion engine is shown reduced to features essential to the invention and has a piston 2, a connecting rod 3, a crankshaft 4, a nozzle device (oil spray nozzle) 5, a switching valve 6 and a control unit 7.
  • the oil spray nozzle 5 is arranged in a crankcase, not shown, and splashes oil from below to the underside of the piston 2 to cool it under high loads.
  • the oil is pumped into the main oil channel 8 by a pump, not shown. From there, a partial quantity is passed via a first line 9 to the crankshaft 4 in order to lubricate the bearing of the crankshaft and the connecting rod 3.
  • Another portion of the oil delivered by the pump is delivered to the oil spray nozzle 5 via a second line 10.
  • the remaining amount of oil is conveyed through the extended main oil channel 8 in the direction of the cylinder head, not shown.
  • the oil flow through the second line 10 is controlled by a switching valve 6.
  • the switching valve 6 in turn is controlled by a control unit 7, which calculates the opening time of the switching valve 6 using the input values of various operating parameters.
  • the opening time of the switching valve is calculated in particular independently of the angle of rotation of the crankshaft.
  • the invention has for its object to provide an improved method and an improved device of the type mentioned, by means of which an internal combustion engine, in particular with regard to its cooling, can be operated with lower consumption and more environmentally friendly.
  • a method for cooling and / or lubricating a piston and / or the raceway of a cylinder of a reciprocating piston internal combustion engine, lubricant being supplied to the piston, in particular injected, via a nozzle device.
  • the nozzle device is also referred to as a piston cooling nozzle or piston spray nozzle.
  • the lubricant can be oil.
  • the lubricant is usually also referred to as oil, even though it is often no longer an oil. Accordingly, the nozzle device is also referred to as an oil spray nozzle. All statements in this document, in which oil is used as a highlighted example of lubricant, also apply to other lubricants.
  • the nozzle device is preferably designed in a manner known per se to inject lubricant onto the underside of the piston, the outlet opening of the nozzle device being arranged below the piston.
  • the method is characterized in that at least one interruption phase is provided during the multi-stroke working cycle of the reciprocating piston internal combustion engine, during which the supply of lubricant to the piston via the nozzle device is interrupted.
  • the reciprocating piston internal combustion engine is preferably a four-stroke reciprocating piston internal combustion engine with the four-stroke gas exchange or working cycle: intake - compression - combustion - exhaust.
  • the supply of lubricant to the piston via the nozzle device of the reciprocating piston internal combustion engine is temporarily interrupted during the four-stroke gas change or working cycle, for example by switching the lubricant flow off and on at the oil spray nozzle.
  • the reciprocating piston internal combustion engine can also be designed as a two-stroke reciprocating piston internal combustion engine.
  • the interruption phase is therefore shorter than the duration of the four-stroke gas change. This enables significant savings in lubricant consumption.
  • the drive power required for the lubricant pump to supply the nozzle device with lubricant is correspondingly reduced.
  • the lubricant pump can thus be designed to be smaller or with a lower gear ratio in comparison to lubricant pumps known from the prior art, which reduces the overall fuel consumption of the vehicle.
  • the method is also characterized in that the interruption phase lies only within an upward piston movement and the interruption phase begins and ends during an upward piston movement.
  • the supply of lubricant to the piston via the nozzle device or the spraying of the piston with lubricant is not interrupted during the piston downward movement, but is interrupted during a piston upward movement or during a partial duration of the piston upward movement.
  • the interruption of the lubricant supply during the piston upward movement is particularly advantageous since the disadvantageous effects on the piston cooling are particularly small due to the interrupted lubricant supply. The reason is that the piston moves away from the oil spray nozzle during the upward movement of the piston and thus the speed of impact of the lubricant on the piston is lower than during the downward movement of the piston. The cooling capacity of the striking lubricant is reduced accordingly.
  • the at least one interruption phase comprises a first interruption phase, that of the compression phase or corresponds to part of the compression phase of the four-stroke cycle.
  • the at least one interruption phase can comprise a second interruption phase, which corresponds to the ejection phase or to a part of the ejection phase of the four-stroke work cycle.
  • the interruption phase can comprise that phase of the piston upward movement during which a piston speed exceeds a predetermined threshold value and / or during which an angle of rotation of the crankshaft lies in a predetermined range, which is selected such that the piston speed lies above the threshold value.
  • This choice of the interruption phase is also particularly advantageous since the disadvantageous effects on piston cooling due to the interrupted supply of lubricant are also particularly small.
  • the speed of the piston changes continuously during the multi-stroke working cycle. The piston speed is zero at both top dead center (TDC) and bottom dead center (UT) and reaches a maximum in terms of amount in a middle area between TDC and UT.
  • the interruption phase comprises rotational angle positions of the crankshaft at which a relative speed (v_rel) between the lubricant and the piston falls below a predetermined threshold value.
  • the interruption phase comprises rotational angle positions of the crankshaft at which a relative speed between the lubricant and the piston is negative (v_rel ⁇ 0). This corresponds to angles of rotation during the upward movement of the piston at which the piston speed is faster than the average flow speed of the injected lubricant, in particular at the point where the lubricant hits or would hit the underside of the piston. The piston "runs" away from the lubricant when v_rel ⁇ 0.
  • an interruption phase can also be provided at positive relative speeds.
  • the relative speed as a function of the angular position of the crankshaft is defined as a difference between an average flow velocity of the lubricant at a distance from the nozzle device, which corresponds to the angular distance between the piston and the nozzle device, and one Piston speed, which is dependent on the angle of rotation and is dependent on the push rod ratio.
  • the aforementioned flow rate corresponds in particular to the average flow rate at which the injected lubricant hits or would hit the piston.
  • the flow speed of the lubricant decreases as the distance from the outlet opening of the nozzle device increases due to jet expansion effects.
  • the mean flow velocity (v_oil) with which the lubricant hits or would hit the underside of the piston or the oil inlet bore of the piston depends on the instantaneous distance between the underside of the piston and the outlet opening of the nozzle device, which is minimal in the UT and is at maximum in OT. Accordingly, the mean flow velocity (v_oil) is greatest in the UT and lowest in the OT.
  • the relative speed as a function of the angular position of the crankshaft is defined as a difference between an average flow rate of the lubricant at a distance from the nozzle device, which corresponds to the angular distance between the piston and the nozzle device, and an angle-dependent piston speed.
  • the relative speed can be determined experimentally. For example, each angle of rotation position of the piston is assigned a distance from the underside of the piston or the oil inlet bore of the piston from the outlet opening of the nozzle device. The average flow rate of the injected lubricant for each rotational angle position or for each piston position can then, for. B. measured experimentally. Both the instantaneous piston speed and the flow rate at which the lubricant hits or would hit the underside of the piston or the oil inlet bore of the piston are thus summarized, depending on the instantaneous angular position of the crankshaft.
  • the relative speed of the lubricant and piston, v_rel v_ ⁇ l -v_Kolben, is correspondingly dependent on the current piston stroke and / or angular position of the crankshaft.
  • the lubricant supply is temporarily interrupted, the impairment of the piston cooling is slight.
  • the lubricant consumption can be significantly reduced, combined with the possibility of designing the lubricant pump to be smaller and thereby reducing the fuel consumption.
  • the total oil consumption will pulsate very little due to feedback effects.
  • an electrically controllable solenoid valve is provided, by means of which the lubricant supply to the nozzle device can be temporarily deactivated, ie interrupted, during the multi-stroke, in particular the four-stroke, working cycle of the reciprocating piston internal combustion engine.
  • a rotating rotary valve can be provided, by means of which the lubricant supply to the nozzle device can be temporarily deactivated during the multi-stroke, in particular the four-stroke, working cycle of the reciprocating piston internal combustion engine.
  • a device for cooling and / or lubricating a piston and / or the raceway of a cylinder of a reciprocating piston internal combustion engine comprises at least one piston guided in a cylinder of the reciprocating piston internal combustion engine, a nozzle device for supplying lubricant to the piston and a control device which is designed to supply lubricant to the piston via the nozzle device during the multi-stroke, in particular the four-stroke, working cycle of the reciprocating piston internal combustion engine interrupt during at least one interruption phase.
  • the device and / or the control device can comprise an electrically controllable solenoid valve, by means of which the lubricant supply to the nozzle device can be temporarily deactivated.
  • This embodiment offers the advantage that a freely programmable connection and disconnection of the lubricant supply as a function of further operating parameters, such as, for. B. a load, speed, oil temperature etc., can be realized in a simple manner.
  • a fail-safe can optionally be implemented by resetting the solenoid valve via the lubricant pressure.
  • a coil of the solenoid valve can be arranged on the outside of a crankcase of the reciprocating piston internal combustion engine.
  • the device and / or the control device can comprise a rotating rotary slide valve, by means of which the lubricant supply to the nozzle device can be temporarily deactivated during the multi-stroke, in particular the four-stroke, working cycle of the reciprocating piston internal combustion engine.
  • the rotary valve can be arranged perpendicular to the crankshaft.
  • a fail safe can optionally be set by resetting the Solenoid valve can be realized via the lubricant pressure.
  • a rotation angle sensor is preferably provided for detecting the opening state of the rotary slide.
  • the electric motor for driving the rotary valve can be arranged on the outside of the crankcase.
  • the rotary valve can be arranged parallel to the crankshaft.
  • the rotary slide valve can be driven electrically by an electric motor, in particular an electric motor for all cylinders, or mechanically by a wheel drive of the internal combustion engine.
  • the rotary slide valve can be switched on and off analogously to the control of the camshaft, e.g. B. by means of a camshaft actuator or axial displacement, etc.
  • a rotation angle sensor is preferably provided for detecting the opening state of the rotary valve.
  • the control device can comprise a control device for controlling the solenoid valve or the rotating rotary valve.
  • the invention further relates to a motor vehicle, in particular a commercial vehicle, comprising a device for cooling and / or lubricating a piston and / or the track of a cylinder of a reciprocating piston internal combustion engine, as described in this document.
  • Figure 1 shows a diagram 15 to illustrate the dependency of the flow rate of the lubricant as a function of the piston stroke of a commercial vehicle.
  • the diagram of the Figure 1 is based, for example, only on a reciprocating piston with a stroke of 170 mm, an oil spray nozzle with a diameter of the outlet opening of 3.1 mm, an oil pressure of 3.5 bar and a volume flow at an output speed of 9.5 l / min.
  • the straight line 11 denotes the diameter of the oil inlet bore in the piston, which in the present example is 11 mm.
  • the oil jet from the oil spray nozzle 5 has an increase in the jet diameter (jet widening) with increasing distance.
  • the oil spray nozzle has an outlet opening with a diameter of 3.1 mm.
  • the simplifying assumption was made that the distance of the oil spray nozzle 5 at the bottom of the UT to the piston is zero mm.
  • the emerging lubricant jet has a diameter of 3.1 mm at the outlet opening or at the bottom, which subsequently widens to 11 mm at the top. If the piston is at the bottom, an oil jet with a diameter of 3.1 mm hits the oil inlet bore of the piston. If the piston is at TDC, an oil jet with a diameter of 11 mm hits the oil inlet bore of the piston. If the piston is between UT and OT, curve 12 indicates the beam diameter.
  • Figure 2 shows a diagram 20 to illustrate the dependence of the relative speed between the lubricant and the piston as a function of the piston stroke.
  • Figure 2 also serves to illustrate a method for piston cooling according to an embodiment of the invention.
  • Curve 21 of the upper diagram shows the piston speed (v_piston) in m / s for any angle of rotation position from 0 ° to 360 ° of the crankshaft, where 0 ° and 360 ° correspond to TDC and 180 ° to BDC.
  • the range from 0 ° to 180 ° thus corresponds to a downward movement of the piston at a negative speed.
  • the range from 180 ° to 360 ° thus corresponds to a piston upward movement with positive speed.
  • the piston speed has a maximum in a middle range between UT and OT.
  • the mean flow velocity of the injected oil (v_oil) at the piston inlet, ie at the oil inlet bore on the piston, is shown by curve 22.
  • the flow velocity is the lowest due to the beam expansion effects at TDC (0 ° and 360 °) and at the UT (180 °), as described above with reference to Figure 1 was explained.
  • Curve 23 denotes the relative speed (v_rel) between the lubricant and the piston (difference between lubricant speed 22 and piston speed 21). This is greatest during the downward movement of the piston, since the piston 3 moves towards the oil spray nozzle 5 and thus towards the oil sprayed by it, and during the upward movement of the piston, it is lowest because the piston 3 moves away from the oil spray nozzle 5. In the example shown, the oil speed is lower than the piston speed in the range of the maximum piston speed. As a result, the relative speed (v_rel) between the lubricant speed 22 and the piston speed 21 even becomes negative in this region, which is characterized by the region 23a. It is emphasized that in other exemplary embodiments or motors in the area of the maximum piston speed the oil speed does not have to be lower than the piston speed, but here too the relative speed assumes its minimum value.
  • the oil supply to the oil spray nozzle 5 can be deactivated in these time ranges.
  • the oil supply to the oil spray nozzle 5 can be activated during the four-stroke operating cycle during the piston downward movement and deactivated during the piston upward movement. Deactivation is particularly advantageous in the region 23a of the piston upward movement, ie when the relative speed 23 is negative. This interruption phase is identified by the reference symbol P.
  • the lubricant supply 25 to the underside of the piston is optionally activated or interrupted.
  • the lubricant supply 25 is switched on.
  • the lubricant supply 25 is interrupted.
  • the invention is not limited to this embodiment.
  • the lubricant supply can be interrupted during the complete upward stroke of the piston.
  • the area P can also comprise areas with a positive relative speed.
  • the oil spray nozzle is in the full upward stroke, i.e. H. is switched off both during the compression stroke and during the push-out stroke, d. H. If the oil supply is interrupted, the oil consumption of the oil spray nozzle can be reduced by 50%. In particular in a 6-cylinder reciprocating piston internal combustion engine with a 120 ° cranking of the crankshaft, the total oil consumption of the oil spray nozzles is constant due to the same number of upward and downward movements. Despite the oil supply to the individual oil spray nozzles being switched off during the upward stroke, the pressure pulsations in this version are therefore low.
  • Figure 3 shows a schematic representation of a device 30 according to an embodiment of the invention.
  • Figure 3 again shows a connecting rod 3, at the end of which is the piston, no longer shown.
  • the internal combustion engine is shown reduced to features essential to the invention.
  • Lubricant oil
  • Oil spray nozzle 5 is released during the down stroke of the piston and is interrupted during the up stroke (or in a portion of the up stroke) of the piston.
  • the stroke of the solenoid valve is approximately 6 mm.
  • the control can be superimposed by a control of the oil spray nozzle which is known per se, the oil spray nozzle being controlled on the basis of further operating parameters, such as load, speed, oil temperature, etc., which are received on the input side by the control unit via signal lines 34.
  • FIG. 4 shows a schematic representation of a device 40 for piston cooling according to a further embodiment of the invention.
  • the special feature of this embodiment is that instead of a solenoid valve, a rotating rotary valve 41 is used to release and interrupt the supply of lubricant to the piston.
  • the use of rotating rotary valves offers the advantage that higher switching frequencies and lower noise levels are possible.
  • the rotating rotary valve 41 according to Figure 4 is arranged perpendicular to the crankshaft.
  • a rotation angle sensor (not shown) is provided to detect the opening state.
  • the rotating rotary valve 41 is driven by an electric motor 42 which is arranged on the outside of the crankcase.
  • electrical activation and deactivation of the lubricant supply is possible by activating the electric motor as a function of the upward movement or downward movement of the piston and as a function of further operating parameters.
  • Figure 5 shows a schematic representation of a device 50 for piston cooling according to a further embodiment of the invention.
  • the special feature of this embodiment is that the rotary slide 51 is now arranged parallel to the crankshaft axis.
  • the rotary valve can be driven by an electric motor for all cylinders or alternatively by a wheel drive of the internal combustion engine.
  • the connection and disconnection takes place analogously to the mechanical control of the camshaft, for example via a camshaft adjuster.
  • Reference numeral 52 denotes a lenticular opening which can be opened or closed by the rotating rotary valve and which is connected to the oil supply via the upper channel.
  • Reference numeral 53 denotes the rotational movement of the rotating rotary slide 51.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Kühlung und/oder Schmierung eines Kolbens und/oder der Laufbahn eines Zylinders einer Hubkolbenbrennkraftmaschine. Die Erfindung betrifft ferner eine Vorrichtung zur Kühlung und/oder Schmierung eines Kolbens und/oder der Laufbahn eines Zylinders einer Hubkolbenbrennkraftmaschine. Die Erfindung betrifft ferner ein Kraftfahrzeug, insbesondere ein Nutzfahrzeug, mit einer derartigen Vorrichtung.
  • Aus der DE 35 43 084 A1 sind eine Vorrichtung und ein Verfahren zur Kolbenkühlung in einer Brennkraftmaschine bekannt, bei dem als Eingangsgrößen der Regelung der Kolbenkühlung verschiedene Betriebsgrößen der Brennkraftmaschine wie Motorlast, Motordrehzahl, Öl- und Kühlmitteltemperatur herangezogen werden. Die Kolbenkühlung wird durch Anspritzen der Kolbenunterseite mit Öl aus dem Schmierölkreislauf der Brennkraftmaschine erreicht. Auf diese Weise wird ein Überhitzen des Kolbens und des daran angrenzenden Brennraumes verhindert.
  • Aus der JP 2003-097269 A sind ebenfalls eine Vorrichtung und ein Verfahren zur Kolbenkühlung in einer Brennkraftmaschine bekannt, bei der motorbetriebszustandsabhängig ein Anspritzen von Öl zur Kolbenkühlung an die Kolbenunterseite erfolgt. Der Übergang von einem Zustand ohne Kolbenkühlung zu einem Zustand mit voller Kolbenkühlung erfolgt über eine Phase mit intermittierender Öleinspritzung an die Kolbenunterseite.
  • Aus der DE 10 2015 107 078 A1 ist ferner eine Vorrichtung bekannt, die ein Kolben-Ölspritzsystem aufweist, das zumindest eine Kolben-Ölspritzeinrichtung umfasst, die funktional mit zumindest einem Motorölkanal in Verbindung steht und die konstruiert und angeordnet ist, um Öl auf zumindest einen Kolben zu spritzen; und zumindest einen Mechanismus, der konstruiert und angeordnet ist, um eine Strömungsrate und eine Zeiteinstellung zumindest eines Ölsprühstrahls der zumindest einen Kolben-Ölspritzeinrichtung derart zu steuern, dass der Ölsprühstrahl innerhalb eines Motorzyklus oder einer Kurbelwellenumdrehung in einem einzigen Intervall oder in mehreren Intervallen von einer Strömungsrate von null bis zu einer maximalen Strömungsrate strömt.
  • Aus der DE 10 2005 006 054 A1 ist ein Verfahren zum Betrieb einer Hubkolbenbrennkraftmaschine mit einer Kolbenkühlvorrichtung bekannt, bei welchem ein Schaltventil zur Steuerung der Ölmenge zur Kühlung eines Kolbens mit Hilfe einer Vorrichtung von einem Steuergerät angesteuert und der Ölstrom mittels der genannten Vorrichtung, beispielsweise einer Ölspritzdüse, betriebspunktabhängig gesteuert wird. Insbesondere wird vorgeschlagen, dass das Schaltventil geschlossen wird, wenn an einer anderen Stelle der Hubkolbenbrennkraftmaschine ein vorübergehend erhöhter Ölbedarf vom Steuergerät erfasst wird.
  • Figur 6 illustriert beispielhaft eine aus dem Stand der Technik bekannte Vorrichtung 1 zur Kolbenkühlung. Die Brennkraftmaschine ist auf für die Erfindung wesentliche Merkmale reduziert dargestellt und weist einen Kolben 2, eine Pleuelstange 3, eine Kurbelwelle 4, eine Düseneinrichtung (Ölspritzdüse) 5, ein Schaltventil 6 und ein Steuergerät 7 auf. Die Ölspritzdüse 5 ist in einem nicht gezeigten Kurbelgehäuse angeordnet und spritzt Öl von unten an die Unterseite des Kolbens 2, um ihn bei hoher Belastung zu kühlen. Das Öl wird von einer nicht gezeigten Pumpe in den Hauptölkanal 8 gefördert. Von dort wird eine Teilmenge über eine erste Leitung 9 zur Kurbelwelle 4 geleitet, um die Lagerung der Kurbelwelle und der Pleuelstange 3 zu schmieren. Eine weitere Teilmenge des von der Pumpe geförderten Öls wird über eine zweite Leitung 10 zur Ölspritzdüse 5 gefördert. Die restliche Ölmenge wird durch den verlängerten Hauptölkanal 8 in Richtung des nicht gezeigten Zylinderkopfes gefördert. Der Ölstrom durch die zweite Leitung 10 wird durch ein Schaltventil 6 gesteuert. Das Schaltventil 6 seinerseits wird von einem Steuergerät 7 angesteuert, das mit den Eingangswerten verschiedener Betriebsparameter die Öffnungszeit des Schaltventils 6 errechnet. Die Öffnungszeit des Schaltventils wird insbesondere unabhängig vom Drehwinkel der Kurbelwelle berechnet.
  • Der Erfindung liegt die Aufgabe zugrunde, ein verbessertes Verfahren und eine verbesserte Vorrichtung der eingangs genannten Art bereitzustellen, mittels deren eine Brennkraftmaschine, insbesondere was deren Kühlung betrifft, verbrauchsärmer und umweltschonender betrieben werden kann.
  • Diese Aufgaben werden durch Vorrichtungen und Verfahren mit den Merkmalen der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen und Anwendungen der Erfindung ergeben sich aus den abhängigen Ansprüchen und werden in der folgenden Beschreibung unter teilweiser Bezugnahme auf die Figuren näher erläutert.
  • Gemäß einem ersten allgemeinen Gesichtspunkt der Erfindung wird ein Verfahren zur Kühlung und/oder Schmierung eines Kolbens und/oder der Laufbahn eines Zylinders einer Hubkolbenbrennkraftmaschine bereitgestellt, wobei dem Kolben über eine Düseneinrichtung Schmiermittel zugeführt, insbesondere zugespritzt, wird.
  • Die Düseneinrichtung wird auch als Kolbenkühldüse oder Kolbenspritzdüse bezeichnet. Das Schmiermittel kann Öl sein. Das Schmiermittel wird üblicherweise auch als Öl bezeichnet, auch wenn dies heute häufig kein Öl mehr ist. Entsprechend wird die Düseneinrichtung auch als Ölspritzdüse bezeichnet. Alle Ausführungen in diesem Dokument, bei dem Öl als hervorgehobenes Schmiermittelbeispiel verwendet wird, gelten auch für andere Schmiermittel. Hierbei ist die Düseneinrichtung vorzugsweise in an sich bekannter Weise ausgebildet, Schmiermittel an die Unterseite des Kolbens zu spritzen, wobei die Austrittsöffnung der Düseneinrichtung unterhalb des Kolbens angeordnet ist.
  • Erfindungsgemäß zeichnet sich das Verfahren dadurch aus, dass während des mehrtaktigen Arbeitszyklus der Hubkolbenbrennkraftmaschine mindestens eine Unterbrechungsphase vorgesehen ist, während derer eine Zufuhr von Schmiermittel zum Kolben über die Düseneinrichtung unterbrochen ist. Vorzugsweise ist die Hubkolbenbrennkraftmaschine eine Viertakt-Hubkolbenbrennkraftmaschine mit dem viertaktigen Gaswechsel bzw. Arbeitszyklus Ansaugen - Verdichten - Verbrennen - Ausstoßen. Mit anderen Worten wird im Falle eines Viertakt-Hubkolbenmotors eine Zufuhr von Schmiermittel zum Kolben über die Düseneinrichtung der Hubkolbenbrennkraftmaschine während des viertaktigen Gaswechsels bzw. Arbeitszyklus zeitweise unterbrochen, beispielsweise durch Ab- und Zuschalten des Schmiermittelstroms an der Ölspritzdüse. Prinzipiell kann die Hubkolbenbrennkraftmaschine auch als Zweitakt-Hubkolbenbrennkraftmaschine ausgeführt sein.
  • Die Unterbrechungsphase ist somit kürzer als die Dauer des viertaktigen Gaswechsels. Hierdurch kann eine signifikante Einsparung des Schmiermittelverbrauchs erzielt werden. Entsprechend ist die erforderliche Antriebsleistung für die Schmiermittelpumpe zur Versorgung der Düseneinrichtung mit Schmiermittel reduziert. Die Schmiermittelpumpe kann somit im Vergleich zu aus dem Stand der Technik bekannten Schmiermittelpumpen kleiner bzw. mit geringerer Übersetzung ausgelegt werden, was den Gesamtkraftstoffverbrauch des Fahrzeugs verringert.
  • Ferner zeichnet sich das Verfahren dadurch aus, dass die Unterbrechungsphase nur innerhalb einer Kolbenaufwärtsbewegung liegt und die Unterbrechungsphase während einer Kolbenaufwärtsbewegung beginnt und endet. Gemäß dieser Ausführungsform ist die Zufuhr von Schmiermittel zum Kolben über die Düseneinrichtung bzw. das Anspritzen des Kolbens mit Schmiermittel während der Kolbenabwärtsbewegung nicht unterbrochen, jedoch unterbrochen während einer Kolbenaufwärtsbewegung oder während einer Teildauer der Kolbenaufwärtsbewegung. Die Unterbrechung der Schmiermittelzufuhr während der Kolbenaufwärtsbewegung ist besonders vorteilhaft, da hier die nachteiligen Effekte auf die Kolbenkühlung aufgrund der unterbrochenen Schmiermittelzufuhr besonders gering sind. Der Grund ist, dass sich der Kolben bei der Kolbenaufwärtsbewegung von der Ölspritzdüse wegbewegt und somit die Auftreffgeschwindigkeit des Schmiermittels auf den Kolben geringer ist als bei der Kolbenabwärtsbewegung. Entsprechend ist die Kühlleistung des auftreffenden Schmiermittels verringert.
  • Eine besonders vorteilhafte Variante der Ausführungsform sieht vor, dass die mindestens eine Unterbrechungsphase eine erste Unterbrechungsphase umfasst, die der Verdichtungsphase oder einem Teil der Verdichtungsphase des viertaktigen Arbeitszyklus entspricht. Alternativ oder vorzugsweise zusätzlich kann die mindestens eine Unterbrechungsphase eine zweite Unterbrechungsphase umfassen, die der Ausstoßphase oder einem Teil der Ausstoßphase des viertaktigen Arbeitszyklus entspricht.
  • Gemäß einem weiteren Aspekt kann die Unterbrechungsphase diejenige Phase der Kolbenaufwärtsbewegung umfassen, während derer eine Kolbengeschwindigkeit einen vorbestimmten Schwellenwert überschreitet und/oder während derer ein Drehwinkel der Kurbelwelle in einem vorbestimmten Bereich liegt, der so gewählt ist, dass die Kolbengeschwindigkeit über dem Schwellenwert liegt. Diese Wahl der Unterbrechungsphase ist ebenfalls besonders vorteilhaft, da hier die nachteiligen Effekte auf die Kolbenkühlung aufgrund der unterbrochenen Schmiermittelzufuhr ebenfalls besonders gering sind. Hierbei ist zu beachten, dass sich die Geschwindigkeit des Kolbens während des mehrtaktigen Arbeitszyklus fortlaufend ändert. Die Kolbengeschwindigkeit beträgt null sowohl im oberen Totpunkt (OT) als auch im unteren Totpunkt (UT) und erreicht betragsmäßig ein Maximum in einem mittleren Bereich zwischen dem OT und dem UT.
  • Gemäß einem weiteren Aspekt der Erfindung ist es besonders vorteilhaft, die Festlegung der Unterbrechungsphase während der Aufwärtsbewegung des Kolbens ferner in Abhängigkeit von der Relativgeschwindigkeit zwischen Schmiermittel und Kolben vorzunehmen.
  • So ist gemäß einer weiteren Ausführungsform besonders vorteilhaft, falls die Unterbrechungsphase Drehwinkelpositionen der Kurbelwelle umfasst, an denen eine Relativgeschwindigkeit (v_rel) zwischen dem Schmiermittel und dem Kolben einen vorbestimmten Schwellenwert unterschreitet. Gemäß einer besonders vorteilhaften Variante umfasst die Unterbrechungsphase Drehwinkelpositionen der Kurbelwelle, an denen eine Relativgeschwindigkeit zwischen dem Schmiermittel und dem Kolben negativ ist (v_rel < 0). Dies entspricht Drehwinkeln während der Aufwärtsbewegung des Kolbens, an denen die Kolbengeschwindigkeit schneller ist als die mittlere Strömungsgeschwindigkeit des eingespritzten Schmiermittels, insbesondere an der Stelle, an der das Schmiermittel auf die Kolbenunterseite trifft oder treffen würde. Der Kolben "läuft" somit dem Schmiermittel "weg", wenn v_rel < 0. Es wird betont, dass auch bei positiven Relativgeschwindigkeiten eine Unterbrechungsphase vorgesehen sein kann. Bei einer vorteilhaften Variante dieser Ausgestaltungsform ist die Relativgeschwindigkeit in Abhängigkeit von der Drehwinkelposition der Kurbelwelle festgelegt als eine Differenz einer mittleren Strömungsgeschwindigkeit des Schmiermittels in einem Abstand von der Düseneinrichtung, der dem drehwinkelabhängigen Abstand des Kolbens zur Düseneinrichtung entspricht, und einer Kolbengeschwindigkeit, die drehwinkelabhängig ist und vom Schubstangenverhältnis abhängig ist. Die vorgenannte Strömungsgeschwindigkeit entspricht insbesondere der mittleren Strömungsgeschwindigkeit, mit der das eingespritzte Schmiermittel auf den Kolben trifft oder treffen würde.
  • Diesem Aspekt liegt die technische Erkenntnis zugrunde, dass der Kühleffekt des auf den Kolben treffenden Schmiermittels maßgeblich von der Relativgeschwindigkeit von eingespritztem Schmiermittel und Kolben abhängt. Hierbei ist, wie vorstehend bereits erwähnt, einerseits zu berücksichtigen, dass sich die Geschwindigkeit des Kolbens während des mehrtaktigen Arbeitszyklus fortlaufend ändert. Die Geschwindigkeit beträgt null sowohl im oberen Totpunkt (OT) als auch im unteren Totpunkt (UT) und erreicht betragsmäßig ein Maximum in einem mittleren Bereich zwischen dem OT und dem UT. Wenn die Kolbenunterseite mit Schmiermittel von der Düseneinrichtung angespritzt wird, bewegt sich der Kolben bei der Abwärtsbewegung (Ansaugtakt oder Arbeitstakt) auf das entgegenkommende Schmiermittel zu, das von unten an die Kolbenunterseite gespritzt wird, d. h., die Strömungsgeschwindigkeit des Schmiermittels (v_Öl) und die Geschwindigkeiten des Kolbens (v_Kolben) haben unterschiedliche Vorzeichen.
  • Daher addieren sich bei der Abwärtsbewegung des Kolbens die Strömungsgeschwindigkeit des Schmiermittels (v_Öl) und die Geschwindigkeiten des Kolben (v_Kolben) betragsmäßig zur Ermittlung der Relativgeschwindigkeit, v_rel = v_Öl - v_Kolben = |v_Öl|+ |v_Kolben|. Bei der Aufwärtsbewegung des Kolbens werden die Strömungsgeschwindigkeit des Schmiermittels (v_Öl) und die Kolbengeschwindigkeit (v_Kolben) zur Ermittlung der Relativgeschwindigkeit v_rel= v_Öl - v_Kolben = |v_Öl| - |v_Kolben| betragsmäßig voneinander abgezogen. Es kann zu einer negativen Relativgeschwindigkeit kommen, d. h., der Kolben ist schneller als das Schmiermittel. In diesen Situationen ist der Kühleffekt besonders gering, da der Kolben dem eingespritzten Schmiermittel quasi "wegläuft". Insbesondere gilt, dass je kleiner die Relativgeschwindigkeit (v_rel), desto kleiner der Kühleffekt.
  • Bei der Ermittlung der Relativgeschwindigkeit ist ferner zu beachten, dass die Strömungsgeschwindigkeit des Schmiermittels durch Strahlaufweitungseffekte mit zunehmenden Abstand von der Austrittsöffnung der Düseneinrichtung abnimmt. Die mittlere Strömungsgeschwindigkeit (v_Öl), mit der das Schmiermittel auf die Unterseite des Kolbens bzw. auf die Ölzulaufbohrung des Kolbens trifft oder treffen würde, hängt somit vom momentanen Abstand der Kolbenunterseite von der Austrittsöffnung der Düseneinrichtung ab, der minimal im UT ist und maximal im OT ist. Entsprechend ist die mittlere Strömungsgeschwindigkeit (v_Öl) im UT am größten und im OT am geringsten.
  • Daher ist bei der vorstehend genannten vorteilhaften Variante die Relativgeschwindigkeit in Abhängigkeit von der Drehwinkelposition der Kurbelwelle festgelegt als eine Differenz einer mittleren Strömungsgeschwindigkeit des Schmiermittels in einem Abstand von der Düseneinrichtung, der dem drehwinkelabhängigen Abstand des Kolbens zur Düseneinrichtung entspricht, und einer drehwinkelabhängigen Kolbengeschwindigkeit.
  • Die Relativgeschwindigkeit kann experimentell bestimmt werden. Beispielsweise ist jeder Drehwinkelposition des Kolbens ein Abstand der Kolbenunterseite bzw. der Ölzulaufbohrung des Kolbens von der Austrittsöffnung der Düseneinrichtung zugeordnet. Die mittlere Strömungsgeschwindigkeit des eingespritzten Schmiermittels für jede Drehwinkelposition bzw. für jede Kolbenposition kann dann z. B. experimentell gemessen werden. Zusammengefasst sind somit sowohl die momentane Kolbengeschwindigkeit als auch die Strömungsgeschwindigkeit, mit der das Schmiermittels auf die Unterseite des Kolbens bzw. auf die Ölzulaufbohrung des Kolbens trifft oder treffen würde, abhängig von der momentanen Drehwinkelposition der Kurbelwelle. Entsprechend ist die Relativgeschwindigkeit von Schmiermittel und Kolben, v_rel = v_Öl -v_Kolben, abhängig von der momentanen Kolbenhub- und/oder Drehwinkelposition der Kurbelwelle.
  • Wenn somit in Betriebsphasen, in denen die Relativgeschwindigkeit klein ist, z. B. einen vorbestimmten Schwellenwert unterschreitet, die Schmiermittelversorgung temporär unterbrochen wird, ist die Beeinträchtigung der Kolbenkühlung gering. Gleichzeitig kann der Schmiermittelverbrauch jedoch signifikant gesenkt werden, verbunden mit der Möglichkeit, die Schmiermittelpumpe kleiner auszulegen und dadurch den Kraftstoffverbrauch zu senken. Bei mehrzylindrigen Motoren mit zueinander phasenverschobenen Taktzeitpunkten wird der Summenölverbrauch nur sehr wenig bedingt durch Rückkopplungseffekte pulsieren.
  • Gemäß einem weiteren Aspekt der Erfindung ist ein elektrisch ansteuerbares Magnetventil vorgesehen, mittels dessen die Schmiermittelversorgung der Düseneinrichtung während des mehrtaktigen, insbesondere des viertaktigen, Arbeitszyklus der Hubkolbenbrennkraftmaschine zeitweise deaktivierbar, d. h. unterbrechbar ist.
  • Gemäß einer alternativen Ausführungsform kann ein rotierender Drehschieber vorgesehen sein, mittels dessen die Schmiermittelversorgung der Düseneinrichtung während des mehrtaktigen, insbesondere des viertaktigen, Arbeitszyklus der Hubkolbenbrennkraftmaschine zeitweise deaktivierbar ist.
  • Gemäß einem zweiten allgemeinen Gesichtspunkt der Erfindung wird eine Vorrichtung zur Kühlung und/oder Schmierung eines Kolbens und/oder der Laufbahn eines Zylinders einer Hubkolbenbrennkraftmaschine bereitgestellt. Die Vorrichtung umfasst mindestens einen in einem Zylinder der Hubkolbenbrennkraftmaschine geführten Kolben, eine Düseneinrichtung zur Zuführung von Schmiermittel zu dem Kolben und eine Steuereinrichtung, die ausgebildet ist, während des mehrtaktigen, insbesondere des viertaktigen, Arbeitszyklus der Hubkolbenbrennkraftmaschine eine Zufuhr von Schmiermittel zum Kolben über die Düseneinrichtung während mindestens einer Unterbrechungsphase zu unterbrechen.
  • Die Vorrichtung und/oder die Steuereinrichtung kann ein elektrisch ansteuerbares Magnetventil umfassen, mittels dessen die Schmiermittelversorgung der Düseneinrichtung zeitweise deaktivierbar ist. Diese Ausführungsform bietet den Vorzug, dass durch die elektrische Ansteuerung eine frei programmierbare Zu- und Abschaltung der Schmiermittelversorgung in Abhängigkeit von weiteren Betriebsparametern, wie z. B. einer Last, Drehzahl, Öltemperatur etc., auf einfache Weise realisierbar ist. Ferner kann optional eine Ausfallsicherung (engl. fail safe) durch eine Rückstellung des Magnetventils über den Schmiermitteldruck realisiert sein.
  • Gemäß einer vorteilhaften Variante dieser Ausführungsform kann eine Spule des Magnetventils außen an einem Kurbelgehäuse der Hubkolbenbrennkraftmaschine angeordnet sein.
  • Gemäß einer weiteren Ausführungsform kann die Vorrichtung und/oder die Steuereinrichtung einen rotierenden Drehschieber umfassen, mittels dessen die Schmiermittelversorgung der Düseneinrichtung während des mehrtaktigen, insbesondere des viertaktigen, Arbeitszyklus der Hubkolbenbrennkraftmaschine zeitweise deaktivierbar ist. Der Drehschieber kann senkrecht zur Kurbelwelle angeordnet sein. Diese Ausführungsform bietet ebenfalls den Vorzug, dass durch die elektrische Ansteuerung des rotierenden Drehschiebers eine frei programmierbare Zu- und Abschaltung der Schmiermittelversorgung in Abhängigkeit von weiteren Betriebsparametern, wie z. B. einer Last, Drehzahl, Öltemperatur etc., auf einfache Weise realisierbar ist. Ferner kann optional eine Ausfallsicherung (engl. fail safe) durch eine Rückstellung des Magnetventils über den Schmiermitteldruck realisiert sein. Vorzugsweise ist ein Drehwinkelsensor zur Erkennung des Öffnungszustands des Drehschiebers vorgesehen. Der Elektromotor zum Antrieb des Drehschiebers kann außen am Kurbelgehäuse angeordnet sein.
  • Alternativ kann der Drehschieber parallel zur Kurbelwelle angeordnet sein. Der Antrieb des Drehschiebers kann elektrisch über einen Elektromotor, insbesondere einen Elektromotor für alle Zylinder, erfolgen oder mechanisch durch einen Rädertrieb der Brennkraftmaschine. Bei einem mechanischen Antrieb kann die Zu- und Abschaltung des Drehschiebers analog der Steuerung der Nockenwelle erfolgen, z. B. mittels Nockenwellen-Steller oder Axialverschiebung etc. Vorzugsweise ist ein Drehwinkelsensor zur Erkennung des Öffnungszustands des Drehschiebers vorgesehen. Die Steuereinrichtung kann ein Steuergerät zur Ansteuerung des Magnetventils oder des rotierenden Drehschiebers umfassen.
  • Zur Vermeidung von Wiederholungen sollen rein vorrichtungsgemäß offenbarte Merkmale auch als verfahrensgemäß offenbart gelten und beanspruchbar sein und vice versa.
  • Die Erfindung betrifft ferner ein Kraftfahrzeug, insbesondere ein Nutzfahrzeug, umfassend eine Vorrichtung zur Kühlung und/oder Schmierung eines Kolbens und/oder der Laufbahn eines Zylinders einer Hubkolbenbrennkraftmaschine, wie in diesem Dokument beschrieben.
  • Die zuvor beschriebenen bevorzugten Ausführungsformen und Merkmale der Erfindung sind beliebig miteinander kombinierbar. Weitere Einzelheiten und Vorteile der Erfindung werden im Folgenden unter Bezug auf die beigefügten Zeichnungen beschrieben. Es zeigen:
  • Figur 1
    eine Diagramm zur Illustration der Abhängigkeit der Strömungsgeschwindigkeit des Schmiermittels in Abhängigkeit vom Kolbenhub;
    Figur 2
    ein Diagramm zur Illustration eines Verfahrens gemäß einer Ausführungsform der Erfindung; und
    Figur 3
    eine schematische Darstellung einer Vorrichtung gemäß einer Ausführungsform der Erfindung;
    Figur 4
    eine schematische Darstellung einer Vorrichtung zur Kolbenkühlung gemäß einer weiteren Ausführungsform der Erfindung; und
    Figur 5
    eine schematische Darstellung einer Vorrichtung zur Kolbenkühlung gemäß einer weiteren Ausführungsform der Erfindung; und
    Figur 6
    eine schematische Darstellung einer aus dem Stand der Technik bekannten Vorrichtung zur Kolbenkühlung.
  • Gleiche oder funktional äquivalente Elemente sind in allen Figuren mit denselben Bezugszeichen bezeichnet und zum Teil nicht gesondert beschrieben.
  • Figur 1 zeigt eine Diagramm 15 zur Illustration der Abhängigkeit der Strömungsgeschwindigkeit des Schmiermittels in Abhängigkeit vom Kolbenhub eines Nutzfahrzeugs.
  • Dem Diagramm der Figur 1 liegt lediglich beispielhaft ein Hubkolben mit einem Hub von 170 mm zugrunde, eine Ölspritzdüse mit Durchmesser der Austrittsöffnung von 3,1 mm, ein Öldruck von 3,5 bar und ein Volumenstrom bei Ausgangsdrehzahl von 9,5 l/min. Die Gerade 11 bezeichnet den Durchmesser der Ölzulaufbohrung im Kolben, der vorliegend beispielhaft 11 mm beträgt.
  • Der Ölstrahl aus Ölspritzdüse 5 besitzt mit steigendem Abstand eine Vergrößerung des Strahldurchmessers (Strahlaufweitung). Dies ist in Figur 1 durch die Kurve 12 illustriert. Die Ölspritzdüse hat vorliegend beispielhaft eine Austrittsöffnung mit einen Durchmesser von 3,1 mm. Vorliegend wurde die vereinfachende Annahme getroffen, dass der Abstand der Ölspritzdüse 5 am UT zum Kolben null mm beträgt. Entsprechend hat der austretende Schmiermittelstrahl an der Austrittsöffnung bzw. am UT einen Durchmesser von 3,1 mm, der sich nachfolgend bis auf 11 mm am OT aufweitet. Befindet sich der Kolben somit am UT, trifft auf die Ölzulaufbohrung des Kolbens ein Ölstrahl mit einem Durchmesser von 3,1 mm. Befindet sich der Kolben am OT, trifft auf die Ölzulaufbohrung des Kolbens ein Ölstrahl mit einem Durchmesser von 11 mm. Befindet sich der Kolben zwischen UT und OT, gibt die Kurve 12 den Strahldurchmesser an.
  • Je nach Zusammensetzung des aufgeweiteten Ölstrahls reduziert sich dessen Strömungsgeschwindigkeit durch die Aufweitung mit zunehmendem Abstand. Der Verlauf kann experimentell oder simulativ bestimmt werden und ist in Figur 1 durch die Kurve 13 illustriert, die die mittlere Strömungsgeschwindigkeit des eingespritzten Ölstrahls in m/s für jede Hubposition des Kolbens angibt.
  • Figur 2 zeigt ein Diagramm 20 zur Illustration der Abhängigkeit der Relativgeschwindigkeit zwischen Schmiermittel und Kolben in Abhängigkeit vom Kolbenhub. Figur 2 dient auch zur Illustration eines Verfahrens zur Kolbenkühlung gemäß einer Ausführungsform der Erfindung. Die Kurve 21 des oberen Diagramms gibt die Kolbengeschwindigkeit (v_Kolben) in m/s für jede Drehwinkelposition von 0° bis 360° der Kurbelwelle an, wobei 0° und 360° dem OT und 180° dem UT entsprechen. Der Bereich von 0° bis 180° entspricht somit einer Kolbenabwärtsbewegung mit negativer Geschwindigkeit. Der Bereich von 180° bis 360° entspricht somit einer Kolbenaufwärtsbewegung mit positiver Geschwindigkeit. Bekanntermaßen hat die Kolbengeschwindigkeit jeweils ein Maximum in einem mittleren Bereich zwischen UT und OT.
  • Die mittlere Strömungsgeschwindigkeit des eingespritzten Öls (v_Öl) am Kolbeneintritt, d. h. an der Ölzulaufbohrung am Kolben, ist durch die Kurve 22 dargestellt. Die Strömungsgeschwindigkeit ist aufgrund der Strahlaufweitungseffekte am OT (0° und 360°) am geringsten und am UT (180°) am größten, wie vorstehend anhand von Figur 1 erläutert wurde.
  • Die Kurve 23 bezeichnet die Relativgeschwindigkeit (v_rel) zwischen dem Schmiermittel und dem Kolben (Differenz aus Schmiermittelgeschwindigkeit 22 und Kolbengeschwindigkeit 21). Diese ist während der Kolbenabwärtsbewegung am größten, da der Kolben 3 sich auf die Ölspritzdüse 5 und damit auf das von dieser ausgespritzte Öl zubewegt, und während der Kolbenaufwärtsbewegung am geringsten, da der Kolben 3 sich von der Ölspritzdüse 5 wegbewegt. Im Bereich der maximalen Kolbengeschwindigkeit ist die Ölgeschwindigkeit in dem gezeigten Beispiel geringer als die Kolbengeschwindigkeit. Folglich wird in diesem Bereich die Relativgeschwindigkeit (v_rel) zwischen der Schmiermittelgeschwindigkeit 22 und der Kolbengeschwindigkeit 21 sogar negativ, was durch den Bereich 23a gekennzeichnet ist. Es wird betont, dass bei anderen Ausführungsbeispielen bzw. Motoren im Bereich der maximalen Kolbengeschwindigkeit die Ölgeschwindigkeit nicht geringer als die Kolbengeschwindigkeit sein muss, aber auch hier nimmt die Relativgeschwindigkeit ihren Minimalwert an.
  • Durch die geringe und zum Teil negative Relativgeschwindigkeit 23a während der Kolbenaufwärtsbewegung findet in diesen Zeitbereichen wenig bis keine Anspritzung des Kolbens mit Schmiermittel aus der Ölspritzdüse statt. Bei ausreichender Schmierung der umliegenden Bauteile kann die Ölversorgung der Ölspritzdüse 5 in diesen Zeitbereichen deaktiviert werden. Beispielsweise kann die Ölversorgung der Ölspritzdüse 5 während des Viertakt-Arbeitszyklus während der Kolbenabwärtsbewegung aktiviert sein und während der Kolbenaufwärtsbewegung deaktiviert sein. Besonders vorteilhaft ist die Deaktivierung im Bereich 23a der Kolbenaufwärtsbewegung, d. h. wenn die Relativgeschwindigkeit 23 negativ ist. Diese Unterbrechungsphase ist mit dem Bezugszeichen P gekennzeichnet.
  • Durch Abschaltung der Ölspritzdüse 5 im Aufwärtshub oder lediglich in Teilphasen P des Aufwärtshubs kann der Ölverbrauch und damit die Ölpumpenantriebsleistung reduziert werden, was wiederum zu einem reduzierten Kraftstoffverbrauch führt.
  • Im unteren Diagramm ist entsprechend eine Ausführungsform des Verfahrens illustriert. In Abhängigkeit von der Relativgeschwindigkeit 23 wird die Schmiermittelzufuhr 25 zur Kolbenunterseite wahlweise aktiviert oder unterbrochen. Bei Kolbenhubpositionen, die einer positiven Relativgeschwindigkeit entsprechen, hier beispielhaft von 0° bis 220°, ist die Schmiermittelzufuhr 25 angeschaltet. Bei Kolbenhubpositionen, die einer negativen Relativgeschwindigkeit 23a entsprechen, hier beispielhaft von 220° bis 350° (Bereich P), ist die Schmiermittelzufuhr 25 unterbrochen.
  • Es wird betont, dass die Erfindung nicht auf diese Ausführungsform beschränkt ist. Beispielsweise kann die Schmiermittelversorgung während des kompletten Aufwärtshubs des Kolbens unterbrochen sein. Beispielsweise kann der Bereich P auch Bereiche mit positiver Relativgeschwindigkeit umfassen.
  • Wenn beispielsweise die Ölspritzdüse im kompletten Aufwärtshub, d. h. sowohl während des Verdichtungstakts als auch während des Ausschiebetakts, abgeschaltet wird, d. h. die Ölzufuhr unterbrochen wird, kann der Ölverbrauch der Ölspritzdüse um 50 % reduziert werden. Insbesondere bei einer 6-zylindrischen Hubkolbenbrennkraftmaschine mit 120°-Kropfung der Kurbelwelle ist der Summenölverbrauch der Ölspritzdüsen durch die gleiche Anzahl an Auf- und Abwärtsbewegungen konstant. Trotz Abschaltung der Ölzufuhr bei den einzelnen Ölspritzdüsen beim Aufwärtshub sind die Druckpulsationen bei dieser Ausführung daher gering.
  • Figur 3 zeigt eine schematische Darstellung einer Vorrichtung 30 gemäß einer Ausführungsform der Erfindung. Figur 3 zeigt wiederum eine Pleuelstange 3, an deren Ende sich der nicht mehr gezeigte Kolben befindet. Die Brennkraftmaschine ist auf für die Erfindung wesentliche Merkmale reduziert dargestellt. Über die Ölspritzdüse 5 wird Schmiermittel (Öl) an die Unterseite des Kolbens gespritzt.
  • Dies kann mit einem elektrisch ansteuerbaren Magnetventil 31 realisiert werden, mittels dessen die Zufuhr von Öl zur Ölspritzdüse 5 wahlweise freigegeben oder unterbrochen werden kann. Aus Bauraumgründen ist die Spule 32 des Magnetventils 31 außen am Kurbelgehäuse angeordnet. Ein Steuergerät 37 steuert über eine Signalleitung 33 den Betrieb des Magnetventils 31. Das Steuergerät 37 steuert das Ventil 31 so an, dass die Schmiermittelzufuhr der
  • Ölspritzdüse 5 während des Abwärtshubs des Kolbens freigegeben ist und während des Aufwärtshubs (oder in einem Teilabschnitt des Aufwärtshubs) des Kolbens unterbrochen ist. Lediglich beispielhaft beträgt der Hub des Magnetventils hierbei ca. 6 mm.
  • Die Steuerung kann durch eine an sich bekannte Steuerung der Ölspritzdüse überlagert werden, wobei die Ölspritzdüse anhand weiterer Betriebsparameter, wie Last, Drehzahl, Öltemperatur etc., die eingangsseitig von dem Steuergerät durch Signalleitungen 34 empfangen werden, gesteuert wird.
  • Figur 4 zeigt eine schematische Darstellung einer Vorrichtung 40 zur Kolbenkühlung gemäß einer weiteren Ausführungsform der Erfindung. Die Besonderheit dieser Ausführungsform liegt darin, dass anstelle eines Magnetventils ein rotierender Drehschieber 41 zur Freigabe und Unterbrechung der Zufuhr von Schmiermittel zum Kolben genutzt wird. Der Einsatz rotierender Drehschieber bietet den Vorzug, dass höhere Schaltfrequenzen und eine geringere Geräuschbelastung möglich sind.
  • Der rotierende Drehschieber 41 gemäß Figur 4 ist senkrecht zur Kurbelwelle angeordnet. Zur Erkennung des Öffnungszustands ist ein Drehwinkelsensor vorgesehen (nicht dargestellt). Der Antrieb des rotierenden Drehschiebers 41 erfolgt über einen Elektromotor 42, der außen am Kurbelgehäuse angeordnet ist. Auch hier ist wieder eine elektrische Ansteuerung der Zu- und Abschaltung der Schmiermittelzufuhr durch Ansteuerung des Elektromotors in Abhängigkeit von der Aufwärtsbewegung bzw. Abwärtsbewegung des Kolbens und in Abhängigkeit von weiteren Betriebsparametern möglich.
  • Figur 5 zeigt eine schematische Darstellung einer Vorrichtung 50 zur Kolbenkühlung gemäß einer weiteren Ausführungsform der Erfindung. Die Besonderheit dieser Ausführungsform liegt darin, dass der Drehschieber 51 nun parallel zur Kurbelwellenachse angeordnet ist. Der Antrieb des Drehschiebers kann über einen Elektromotor für alle Zylinder oder alternativ über einen Rädertrieb der Brennkraftmaschine bereitgestellt werden. Bei einem mechanischen Antrieb über den Rädertrieb erfolgt die Zu- und Abschaltung analog der mechanischen Steuerung der Nockenwelle, beispielsweise über einen Nockenwellensteller.
  • Das Bezugszeichen 52 bezeichnet eine linsenförmige Öffnung, die von dem rotierenden Drehschieber freigegeben oder verschlossen werden kann und die an die Ölversorgung über den oberen Kanal angeschlossen ist. Das Bezugszeichen 53 bezeichnet die Rotationsbewegung des rotierenden Drehschiebers 51.
  • Obwohl die Erfindung unter Bezugnahme auf bestimmte Ausführungsbeispiele beschrieben worden ist, ist es für einen Fachmann ersichtlich, dass verschiedene Änderungen ausgeführt werden können und Äquivalente als Ersatz verwendet werden können, ohne den Bereich der Erfindung zu verlassen. Folglich soll die Erfindung nicht auf die offenbarten Ausführungsbeispiele begrenzt sein, sondern soll alle Ausführungsbeispiele umfassen, die in den Bereich der beigefügten Patentansprüche fallen.
  • Bezugszeichenliste
  • 1
    Vorrichtung zur Kolbenkühlung aus dem Stand der Technik
    2
    Kolben
    3
    Pleuelstange
    4
    Kurbelwelle
    5
    Düseneinrichtung, Ölspritzdüse
    6
    Schaltventil
    7
    Steuergerät
    8
    Hauptölkanal
    9
    Ölleitung
    10
    Ölleitung
    11
    Durchmesser Ölzulaufbohrung am Kolben
    12
    Strahldurchmesser Ölstrahl
    13
    Geschwindigkeit des eingespritzten Öls am Kolbeneintritt
    15
    Diagramm
    20
    Diagramm
    21
    Kolbengeschwindigkeit
    22
    Geschwindigkeit des eingespritzten Öls am Kolbeneintritt
    23
    Relativgeschwindigkeit v_rel = v_Öl - v_Kolben
    23a
    Bereich mit negativer Relativgeschwindigkeit
    25
    Schmiermittelzufuhr zur Kolbenunterseite
    30
    Vorrichtung zur Kolbenkühlung
    31
    Magnetventil
    32
    Spule
    33
    Signalleitung
    34
    Signalleitung
    37
    Steuergerät
    40
    Vorrichtung zur Kolbenkühlung
    41
    Rotierender Drehschieber
    42
    Elektromotor
    50
    Vorrichtung zur Kolbenkühlung
    51
    Rotierender Drehschieber
    52
    Linsenförmige Öffnung
    53
    Rotationsrichtungen des rotierenden Drehschiebers
    P
    Unterbrechungsphase

Claims (13)

  1. Verfahren zur Kühlung und/oder Schmierung eines Kolbens und/oder der Laufbahn eines Zylinders einer Hubkolbenbrennkraftmaschine, wobei dem Kolben über eine Düseneinrichtung Schmiermittel zugeführt, insbesondere zugespritzt, wird,
    wobei während des mehrtaktigen, insbesondere des viertaktigen, Arbeitszyklus der Hubkolbenbrennkraftmaschine mindestens eine Unterbrechungsphase (P) vorgesehen ist, während derer eine Zufuhr (25) von Schmiermittel zum Kolben über die Düseneinrichtung (5) unterbrochen ist, dadurch gekennzeichnet, dass die Unterbrechungsphase (P) innerhalb einer Kolbenaufwärtsbewegung liegt und während einer Kolbenaufwärtsbewegung beginnt und endet.
  2. Verfahren nach Anspruch 1, wobei die mindestens eine Unterbrechungsphase (P)
    a) eine erste Unterbrechungsphase umfasst, die der Verdichtungsphase oder einem Teil der Verdichtungsphase entspricht; und/oder
    b) eine zweite Unterbrechungsphase umfasst, die der Ausstoßphase oder einem Teil der Ausstoßphase entspricht.
  3. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Unterbrechungsphase diejenige Phase der Kolbenaufwärtsbewegung umfasst, während derer eine Kolbengeschwindigkeit einen vorbestimmten Schwellenwert überschreitet.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Unterbrechungsphase Drehwinkelpositionen der Kurbelwelle umfasst, an denen eine Relativgeschwindigkeit (23) zwischen dem Schmiermittel und dem Kolben einen vorbestimmten Schwellenwert unterschreitet und vorzugsweise negativ (23a) ist.
  5. Verfahren nach Anspruch 4, wobei die Relativgeschwindigkeit (23) in Abhängigkeit von der Drehwinkelposition der Kurbelwelle festgelegt ist als eine Differenz einer Strömungsgeschwindigkeit (22) des Schmiermittels in einem Abstand von der Düseneinrichtung, der dem drehwinkelabhängigen Abstand des Kolbens zur Düseneinrichtung entspricht, und einer drehwinkelabhängigen Kolbengeschwindigkeit (21).
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Düseneinrichtung (5) ausgebildet ist, Schmiermittel an die Unterseite des Kolbens zu spritzen.
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei ein elektrisch ansteuerbares Magnetventil (31) vorgesehen ist, mittels dessen die Schmiermittelversorgung der Düseneinrichtung während des mehrtaktigen, insbesondere des viertaktigen, Arbeitszyklus der Hubkolbenbrennkraftmaschine zeitweise deaktivierbar ist.
  8. Verfahren nach einem der Ansprüche 1 bis 6, wobei ein rotierender Drehschieber (41; 51) vorgesehen ist, mittels dessen die Schmiermittelversorgung der Düseneinrichtung (5) während des mehrtaktigen, insbesondere des viertaktigen, Arbeitszyklus der Hubkolbenbrennkraftmaschine zeitweise deaktivierbar ist.
  9. Vorrichtung (30; 40; 50) zur Kühlung und/oder Schmierung eines Kolbens und/oder der Laufbahn eines Zylinders einer Hubkolbenbrennkraftmaschine, umfassend
    mindestens einen in einem Zylinder der Hubkolbenbrennkraftmaschine geführten Kolben,
    eine Düseneinrichtung (5) zur Zuführung von Schmiermittel zu dem Kolben und
    eine Steuereinrichtung (37), die ausgebildet ist, während des mehrtaktigen, insbesondere des viertaktigen, Arbeitszyklus der Hubkolbenbrennkraftmaschine eine Zufuhr (25) von Schmiermittel zum Kolben über die Düseneinrichtung (5) während mindestens einer Unterbrechungsphase (P) zu unterbrechen, dadurch gekennzeichnet, dass die Unterbrechungsphase (P) innerhalb einer Kolbenaufwärtsbewegung liegt und während einer Kolbenaufwärtsbewegung beginnt und endet.
  10. Vorrichtung nach Anspruch 9, wobei die Steuereinrichtung ein elektrisch ansteuerbares Magnetventil (31) umfasst, mittels dessen die Schmiermittelversorgung der Düseneinrichtung während des mehrtaktigen, insbesondere des viertaktigen, Arbeitszyklus der Hubkolbenbrennkraftmaschine zeitweise deaktivierbar ist.
  11. Vorrichtung nach Anspruch 10, wobei eine Spule (32) des Magnetventils außen an einem Kurbelgehäuse der Hubkolbenbrennkraftmaschine angeordnet ist.
  12. Vorrichtung nach Anspruch 9, wobei die Steuereinrichtung einen rotierenden Drehschieber (41; 51) umfasst, mittels dessen die Schmiermittelversorgung der Düseneinrichtung während des mehrtaktigen, insbesondere des viertaktigen, Arbeitszyklus der Hubkolbenbrennkraftmaschine zeitweise deaktivierbar ist.
  13. Kraftfahrzeug, insbesondere Nutzfahrzeug, mit einer Vorrichtung nach einem der Ansprüche 9 bis 12.
EP18187887.7A 2017-09-08 2018-08-08 Verfahren und vorrichtung zur kühlung und/oder schmierung eines kolbens und/oder der laufbahn eines zylinders einer hubkolbenbrennkraftmaschine Active EP3453855B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017120727.9A DE102017120727A1 (de) 2017-09-08 2017-09-08 Verfahren und Vorrichtung zur Kühlung und/oder Schmierung eines Kolbens und/oder der Laufbahn eines Zylinders einer Hubkolbenbrennkraftmaschine

Publications (2)

Publication Number Publication Date
EP3453855A1 EP3453855A1 (de) 2019-03-13
EP3453855B1 true EP3453855B1 (de) 2020-04-01

Family

ID=63174031

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18187887.7A Active EP3453855B1 (de) 2017-09-08 2018-08-08 Verfahren und vorrichtung zur kühlung und/oder schmierung eines kolbens und/oder der laufbahn eines zylinders einer hubkolbenbrennkraftmaschine

Country Status (2)

Country Link
EP (1) EP3453855B1 (de)
DE (1) DE102017120727A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021213603A1 (en) * 2020-04-22 2021-10-28 Hans Jensen Lubricators A/S Method for lubricating large slow-running marine diesel engines

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138816A (ja) 1984-12-07 1986-06-26 Toyota Motor Corp 直噴式内燃機関の燃料蒸発率制御装置
DE3821302C1 (de) * 1988-06-24 1989-06-01 Mtu Friedrichshafen Gmbh
JP4599785B2 (ja) 2001-09-25 2010-12-15 トヨタ自動車株式会社 内燃機関のピストン温度制御装置
DE102005006054A1 (de) 2005-02-10 2006-08-31 Daimlerchrysler Ag Verfahren zum Betrieb einer Hubkolbenbrennkraftmaschine mit einer Kolbenkühlvorrichtung
DE102005010234A1 (de) * 2005-03-05 2006-09-14 Daimlerchrysler Ag Kolbenkühlung für eine Brennkraftmaschine
DE102008033294B4 (de) * 2008-07-15 2015-11-05 Mtu Friedrichshafen Gmbh Brennkraftmaschine
DE102009057549A1 (de) * 2009-12-09 2011-06-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Kühlung und/oder Schmierung wenigstens eines Kolbens und/oder der Zylinderlaufbahn einer Brennkraftmaschine
US9556764B2 (en) * 2014-05-13 2017-01-31 GM Global Technology Operations LLC Individual piston squirter switching with crankangle resolved control
DE102015009568B4 (de) * 2015-07-23 2021-02-11 Audi Ag Brennkraftmaschine mit einer Steuereinrichtung zur gezielten Ansteuerung einer Kolbenkühldüse oder eines Kolbenkühlkanals sowie Verfahren zum Betreiben einer Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102017120727A1 (de) 2019-03-14
EP3453855A1 (de) 2019-03-13

Similar Documents

Publication Publication Date Title
DE112004001450B4 (de) Vorrichtung für eine Brennkraftmaschine
DE102015107078B4 (de) Einzel-Kolbenspritzeinrichtungsumschaltung mit bezüglich des Kurbelwinkels aufgelöster Steuerung
DE102012014917A1 (de) Druckimpulsansteuerung für eine Verstelleinrichtung eines variablen Verdichtungsverhältnisses
WO2014019683A1 (de) Hydraulischer freilauf für brennkraftmaschine mit variablem verdichtungsverhältnis
WO2014019684A1 (de) Aktuierungseinheit für variable triebwerkskomponenten
EP2848787B1 (de) Steuerventil für eine Schmiermitteldüse
DE2126736A1 (de) Kraftstoffeinspntzanlage fur Brenn kraftmaschinen
DE102011081088A1 (de) Ansatz für eine wechseldruck-öleinspritzung
DE2126653A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE102013201390B4 (de) Verbrennungsmotor mit aktivem Kraftstoffmanagement und Verfahren zum Steuern des Betriebs eines Verbrennungsmotors.
EP2906803B1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
WO2014048418A1 (de) Verfahren und vorrichtung zur ansteuerung einer elektrisch kommutierten fluidarbeitsmaschine
DE10155669A1 (de) Vorrichtung zur Steuerung mindestens eines Gaswechselventils
EP3453855B1 (de) Verfahren und vorrichtung zur kühlung und/oder schmierung eines kolbens und/oder der laufbahn eines zylinders einer hubkolbenbrennkraftmaschine
WO2016096216A1 (de) Pumpe, insbesondere kraftstoffhochdruckpumpe
DE102015105735B4 (de) Verfahren zum Betreiben einer Kraftstoffpumpe für einen Verbrennungsmotor, Kraftstoffpumpe und Verbrennungsmotor
DE10137869A1 (de) Einspritzanlage und Verfahren zu deren Betrieb
EP2626525A1 (de) Grossmotor mit einer Zylinderschmiervorrichtung und Verfahren zur Schmierung eines Zylinders eines Grossmotors
WO2012007085A1 (de) Adaptionsverfahren
DE102008028697A1 (de) Verfahren zur Ansteuerung eines elektromagnetischen Schaltventils
DE102015219152B4 (de) Schwingungsdämpfer für eine Kraftstoffhochdruckpumpe, Kraftstoffhochdruckpumpe mit Schwingungsdämpfer und Verfahren zur Steuerung eines solchen Schwingungsdämpfers
AT521887B1 (de) System und Verfahren zum Einstellen einer wirksamen Länge einer Pleuelstange mittels Schmiermittelversorgung
DE10149125B4 (de) Zylinderschmiervorrichtung
DE1057388B (de) Einspritzpumpe mit elektromagnetisch betaetigtem Pumpenkolben
DE3510301C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TRUCK & BUS SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190911

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191118

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1251612

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018001080

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200702

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200801

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018001080

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200808

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200808

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230317

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230825

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 6

Ref country code: GB

Payment date: 20230822

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 6

Ref country code: DE

Payment date: 20230828

Year of fee payment: 6