EP3453503A1 - Maschine zur bearbeitung von länglichen werkstücken aus holz, kunststoff und dergleichen, messeinrichtung zur vermessung von länglichen werkstücken sowie verfahren zur vermessung solcher länglicher werkstücke - Google Patents

Maschine zur bearbeitung von länglichen werkstücken aus holz, kunststoff und dergleichen, messeinrichtung zur vermessung von länglichen werkstücken sowie verfahren zur vermessung solcher länglicher werkstücke Download PDF

Info

Publication number
EP3453503A1
EP3453503A1 EP18000724.7A EP18000724A EP3453503A1 EP 3453503 A1 EP3453503 A1 EP 3453503A1 EP 18000724 A EP18000724 A EP 18000724A EP 3453503 A1 EP3453503 A1 EP 3453503A1
Authority
EP
European Patent Office
Prior art keywords
workpiece
workpieces
measuring
machine
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18000724.7A
Other languages
English (en)
French (fr)
Other versions
EP3453503B8 (de
EP3453503B1 (de
Inventor
Josef Ballweg
Albrecht Dawidziak
Christian Burger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michael Weinig AG
Original Assignee
Michael Weinig AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michael Weinig AG filed Critical Michael Weinig AG
Publication of EP3453503A1 publication Critical patent/EP3453503A1/de
Application granted granted Critical
Publication of EP3453503B1 publication Critical patent/EP3453503B1/de
Publication of EP3453503B8 publication Critical patent/EP3453503B8/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27CPLANING, DRILLING, MILLING, TURNING OR UNIVERSAL MACHINES FOR WOOD OR SIMILAR MATERIAL
    • B27C1/00Machines for producing flat surfaces, e.g. by rotary cutters; Equipment therefor
    • B27C1/08Machines for working several sides of work simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/2452Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces
    • B23Q17/2471Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces of workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/248Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods
    • B23Q17/249Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods using image analysis, e.g. for radar, infrared or array camera images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q39/02Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station
    • B23Q39/021Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like
    • B23Q39/025Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like with different working directions of toolheads on same workholder
    • B23Q39/026Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like with different working directions of toolheads on same workholder simultaneous working of toolheads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0691Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2240/00Machine tools specially suited for a specific kind of workpiece
    • B23Q2240/007Elongated workpieces

Definitions

  • the invention relates to a machine for processing elongate workpieces made of wood, plastic and the like according to the preamble of claim 1, a measuring device for measuring elongated workpieces according to the preamble of claim 7 and a method for measuring elongated workpieces according to the preamble of claim 10.
  • Machines are known in the form of moulders, with which elongate workpieces are processed in a continuous process on all sides, e.g. by planing or milling.
  • the invention has the object of providing the generic machine, the generic measuring device and the generic method in such a way that the workpieces can be edited so that their top and bottom have the best possible parallelism to each other.
  • the machine according to the invention has the measuring device with the measuring elements arranged above and below the workpiece. They are connected to a controller to which the signals of the measuring elements are transmitted. From these measurement element signals, the controller determines the degree of parallelism between the top and bottom of the workpiece. As soon as the controller determines that the degree of parallelism exceeds or falls below a predefined tolerance value, this is detected by the controller, so that countermeasures can be initiated immediately. As a result, errors can be detected early and scrap avoided, or at least significantly reduced.
  • the thickness of the workpiece can also be detected with the measuring elements. If the thickness exceeds or falls below a predetermined tolerance value, this is also detected by the controller and a signal is sent to initiate countermeasures or to switch off the machine.
  • the parallelism for example, the difference in thickness at two points, seen over the workpiece width, are used.
  • the pitch deviation of two straight lines extending perpendicular to the longitudinal direction of the workpieces ie extending in the width direction and one of which describes the top and the other the bottom of the workpiece.
  • the straight lines can be determined, for example, in each case by means of two measuring points on the upper side and underside, or via the width profiles of upper or lower sides determined by a 3D camera.
  • the calculation of the distance values from two measuring points each at the top and bottom to the respective measuring elements gives an indication of the parallelism of the workpiece taking into account the positions of the measuring elements.
  • the measured values described are recorded at the same time points, ie at the same length positions of the workpieces in the passage of the workpieces.
  • the measuring elements are advantageously arranged at a distance from the top and bottom of the workpieces.
  • the measure of the distance depends on the measuring range of the measuring elements used, which in turn depends essentially on the type of the measuring object and the desired measuring accuracy.
  • the measuring device is arranged in a preferred embodiment outside of the machine room, advantageously at an outlet opening of the machine.
  • the workpieces are therefore detected and measured by the measuring device upon exiting the machine and thus after being processed.
  • the resulting chips in the machine room during workpiece machining and the like do not reach the measuring device or its measuring elements.
  • the measuring elements need only be cleaned at longer intervals to ensure a reliable measurement.
  • the measuring elements are arranged in the region of the right and the left longitudinal side of the workpiece. In these areas of the workpiece, the non-parallelism of the top and bottom of the workpiece can be optimally determined.
  • At least one of the upper and lower measuring elements in the width direction of the workpiece can be adjusted in an advantageous manner.
  • the measuring elements can be brought into the most favorable position for the measurement.
  • the measuring elements are non-contact sensors, in particular laser distance sensors. Since they do not come into contact with the workpiece during the measurement, the workpieces are not damaged by the sensors. It also protects the sensors themselves from wear.
  • At least one of the two upper sensors is transversely, advantageously adjustable in the vertical direction to the top of the workpiece. This can be taken in particular on different thickness workpieces consideration.
  • 3D cameras can also be used. Then it is sufficient to use only one 3D camera above and below the workpiece.
  • the measuring device is characterized in that the measuring elements face each other, are connected to the controller and are located above and below the workpiece to be measured. With the measuring elements their distance to the top and the Measured underside of the workpiece and determined from the control of the parallelism of the top and bottom, preferably also the thickness of the workpiece. For this purpose, the measuring elements send their measured values to the controller. Your transmitter determines the position of the top and the bottom of the workpiece relative to each other from the supplied measurements of the distance sensors.
  • the control advantageously produces a signal when a predetermined tolerance value with respect to the parallelism, preferably also the thickness, is exceeded.
  • This signal may be a warning signal, for example an optical and / or acoustic warning signal, which indicates to the user that the parallelism of the top and bottom of the workpieces or the thickness exceeds or falls below a predetermined tolerance level. Then the user of the machine can take precautions to machine the workpieces with their top and bottom parallel to each other.
  • the measuring elements are advantageously distance sensors, advantageously laser distance sensors. With the laser beams emitted by them an exact measurement of the workpieces is guaranteed.
  • the distance sensors measure their distance from the top and bottom of the workpiece near the right and left longitudinal sides of the workpiece and from this determine two thickness values in the controller whose difference is used as a measure of the parallelism of the top and bottom of the workpiece.
  • the distance to the upper side and the lower side of the workpiece is measured with the measuring elements. From these distance values, the degree of parallelism of the top and bottom of the workpiece is determined.
  • the thickness of the workpiece is detected with the measuring elements. Even with fluctuating thicknesses of the processed slats it can In the later production of laminated beams lead to problems when gluing, as areas with larger glue joints are not acted upon or provided with sufficient pressing force and amount of glue. There may be open glue joint areas.
  • the distance to the upper side and the lower side is measured from two distance sensors provided in the region above and below the workpiece near the longitudinal sides of the workpiece, and the distance values determine the degree of parallelism of the upper side and lower side of the workpiece.
  • the distance values also determine the thickness of the workpiece near its longitudinal sides.
  • the controller advantageously generates a signal as soon as the degree of parallelism of top and bottom, preferably also the thickness of the workpiece exceeds or falls below a predetermined tolerance value. Then countermeasures can be taken to bring the parallelism within the given tolerance range.
  • the control signal may be a message signal, for example an optical and / or acoustic signal.
  • control signal can also be a shutdown signal with which the machine is switched off when the parallelism measure or the thickness gauge exceeds or falls below the predetermined tolerance value.
  • the shutdown signal and the message signal can be generated.
  • the measurement takes place during the transport of the workpiece, ie in a continuous process.
  • the measurement is quasi-continuous.
  • an average value is formed from a plurality of distance measurement values, which is used to calculate the workpiece thickness.
  • the workpiece thicknesses and the difference of the workpiece thicknesses to assess the parallelism of averaging are subjected.
  • the moving median value is determined and used as the mean value. The moving median value is used to smooth the detected distance signals.
  • the machine according to Fig. 1 serves to process workpieces 1 in a continuous process.
  • the workpieces 1 are processed during their transport through the machine by appropriate tools.
  • the machine is a molding machine, with the square cross-section, in particular rectangular, elongated workpieces 1 are processed on all four sides.
  • feed or transport rollers 2 are provided which rest on the workpieces 1.
  • a dressing table 3 In the inlet region of the molding machine is a dressing table 3, on which the workpieces 1 are fed to the molding machine.
  • a finseal 4 At the right in the inlet direction of the dressing table 3, a finseal 4 is provided, against which the workpiece 1 rests with its right longitudinal side during transport.
  • the finseal 4 can be adjusted transversely to the transport direction of the workpiece 1 in order to set the degree of chip removal on the right longitudinal side of the workpiece 1.
  • the dressing table 3 can be adjusted in the vertical direction, whereby the degree of chip removal at the bottom of the workpiece 1 can be adjusted.
  • the workpiece 1 passes through an inlet opening 5 in the machine.
  • a horizontal lower dressing spindle on which a dressing tool 6 is non-rotatably seated, with which, as it passes through the workpiece 1, its underside is machined, preferably straight-planed.
  • a vertical right spindle In the transport direction of the workpiece 1 behind the dressing tool 6 is a vertical right spindle, on which a tool 7 is seated, with which the right in the transport direction longitudinal side of the workpiece 1 is processed, preferably straight planed.
  • the tool 7 is a planer head with straight knives. However, it can also be a profiling tool with which a profile is produced on the right side of the workpiece.
  • a vertical left spindle is provided, on which a tool 8 is seated, which is preferably a planing head with which the left side of the workpiece is straight planed.
  • the tool 8 may be a profiling tool, with which a profile on the left longitudinal side of the workpiece 1 can be produced.
  • the workpieces 1 When passing through the machine, the workpieces 1 are on a machine table 9. It forms a transport path on which the workpieces 1 are transported lying on the machine.
  • the machine table 9 is fixed to the machine and forms the horizontal supporting and reference plane for the workpieces 1.
  • the machine table 9 is interrupted, so that the underside of the workpiece 1 can be processed by the dressing tool 6 as it passes through the machine.
  • the workpiece 1 In the transport direction of the workpieces 1 after the right tool 7, the workpiece 1 is guided on a stop 10 on through the machine.
  • the workpiece 1 rests with its right, processed longitudinal side of this stop 10, which is fixed to the machine and forms the vertical contact and reference plane.
  • the machine In the transport direction behind the left vertical spindle, the machine has an upper horizontal spindle, rotatably on a tool 11 is seated, with which the top of the workpiece 1 in its passage through the Machine is being processed.
  • the workpiece top With the tool 11, the workpiece top can be straight planed, for example.
  • a second upper tool 12 is rotatably driven about a horizontal axis.
  • the machine In the area between the two tools 11, 12, the machine is provided with a lower horizontal table roller 13, with which the workpiece 1 is conveyed.
  • the machine table 9 is interrupted in the area of this table roller 13.
  • the processed on all four sides in the continuous process workpiece 1 passes through an outlet opening 14 from the machine.
  • the described tools are located within a machine cover 15.
  • the machine In the transport direction of the workpieces 1 behind the tool 12, the machine is provided with a further horizontal lower tool 16 which is non-rotatably mounted on a lower spindle and with which the underside of the workpiece 1 can be processed again before passing through the outlet opening 14.
  • the machine table 9 is interrupted in the region of this tool 16.
  • a control panel 17 which is provided for example on a cabinet 34 next to the machine cover 15 and with the help of which the user can make adjustments to the machine.
  • a measuring device 18 is provided with which the thickness of the machined workpieces 1 emerging through the outlet opening 14 can be detected.
  • the thickness measurement takes place during the passage of the machined workpiece and serves primarily to monitor the parallelism of the workpieces 1. This is especially true at the production of lamellae for laminated beams 35 ( Fig. 3 ) substantially, since they experience a curvature in a conical cross-section of the workpieces when stacked and glued together.
  • the causes for the non-parallel planing of the workpieces 1 can be varied, for example, incorrectly set or blunt tools, a dirty machine table, poor guidance of the workpieces as they pass through the machine and the like.
  • the measuring device 18 has four laser distance sensors 19 to 22, which determine the distance of the workpiece surface to the sensor at four points of the workpiece 1.
  • the measuring principle of such sensors is based on laser triangulation. Such laser distance sensors are known and are therefore not described in detail.
  • the four sensors 19 to 22 detect the workpiece upper side 23 and the workpiece lower side 24 in the region of the right longitudinal side 25 in the transport direction and the left longitudinal side 26 of the workpiece 1.
  • the sensors 19 to 22 are first positioned with respect to the respective processed workpieces 1, so that the distance between them and the workpiece 1 is fixed.
  • the sensors 19, 20 are at a distance above the workpiece upper side 23, to which the laser beams 27, 28 emitted by the sensors 19, 20 impinge.
  • the sensors 21, 22 are at a distance from the workpiece bottom 24, to which the laser beams 29, 30 emitted by these sensors 21, 22 meet. With the sensors 19 to 22, the distance of the respective workpiece surface 23, 24 is determined to the sensor.
  • the sensor signals are transmitted to a control or evaluation unit (not shown), which determines the workpiece thickness and the parallelism of the two workpiece sides 23, 24 from the sensor signals.
  • the thickness of the workpiece in the region of the right longitudinal side 25 and the left longitudinal side 26 is calculated. From the difference between the two workpiece thicknesses determined near the longitudinal sides 25, 26, the parallelism of the two workpiece sides 23, 24 can be inferred. If a predetermined tolerance of these two measured values is exceeded, a warning message can be issued or displayed and / or the machine can be switched off. The controller sends corresponding control signals to a warning device and / or to the drive of the machine.
  • the distance measurement of the sensors 19 to 22 is not continuous, but at certain intervals.
  • the sampling cycle is advantageously in the range below one millisecond, so that the measurement can be regarded as quasi-continuous.
  • the controller determines from these individual sensor signals an average value with respect to the distances, the thickness of the workpiece 1 in the region of the two longitudinal sides 25 and 26 and the parallelism. In this way, false messages or shutdowns are avoided. Since wood is an inhomogeneous material which may have structure roughness, cracks, branches and the like, a single distance measurement may be erroneous and may not detect the actual machined surface. In this case, the controller is set up in such a way that it can carry out the average value calculation from the clocked sensor signals.
  • the moving median value is determined and used as the mean value. Additionally or alternatively, it is also possible to deposit a time over which the corresponding tolerance values must be exceeded before a warning or shutdown signal is sent.
  • Corresponding setpoints can be stored in the control for different workpieces to be machined. Will they be for a given Tolerance value exceeded or fallen below, the controller generates the corresponding sensor signals.
  • the distance of the impact point of the sensor beams 27 to 30 on the workpiece upper side 23 and the workpiece lower side 24 from the adjacent longitudinal sides 25, 26 can be adjusted to obtain reliable measurements in the thickness measurement.
  • the individual sensors 19 to 22 are each independently adjustable in the width direction 31.
  • the laser beams 27 to 30 can in this case be adjusted so that they reach the workpiece upper side 23 or workpiece underside 24 at the location suitable for a reliable thickness measurement.
  • the measuring device 18 is designed so that all the sensors 19 to 22 together and the sensors 20 and 22 together, but independently of the sensors 19 and 21 in the width direction of the workpiece 1 can be adjusted. As a result, an adaptation of the measuring device 18 to different widths of the workpieces 1 is easily possible.
  • the measuring device 18 may be configured such that the sensor 19 in the height direction 32, the sensor 20 in the height direction 32 and in the width direction 31 and the sensor 22 in the width direction 21 are adjustable.
  • corresponding (not shown) guides are provided.
  • the sensors 19 to 22 can be controlled, ie automatically adjusted in the height and / or width direction. It is also possible to adjust the sensors 19 to 22 manually in the required position with respect to the workpieces 1.
  • the distance 33 is exemplified for the sensor 19, the sensor has from the workpiece top 23.
  • This distance measure 33 is dependent on the type of sensor used and its measuring range.
  • the workpiece bottom 24 is always in the same plane.
  • the two lower sensors 21, 22 need not be adjustable in the height direction.
  • the height distance 33 'of the sensors from the workpiece bottom 24 is constant in this case.
  • lower sensors 21, 22 could be completely dispensed with, since the same reference plane of the machine table 9 can always be assumed , Since disturbances in the machining process, blunt or incorrectly set tools, contamination or splinters do not always guarantee this in practice, sensors that detect the underside of the workpieces are necessary and advantageous for assessing and ensuring the quality.
  • the two upper sensors 19, 20, however, are adjustable in height direction 32, since the workpieces 1 can be different in thickness.
  • the sensors 19, 20 are then adapted to different thickness workpieces 1 by appropriate height adjustment.
  • the two upper sensors 19 and 20 can also be adjusted together in the horizontal direction.
  • the right longitudinal side 25 of the workpieces 1 is always in the same plane, since the workpieces 1 are guided with their right longitudinal side on the machine-fixed stopper 10.
  • an adjustment of the right in the direction of transport sensors 19 and 21 in the horizontal direction is not essential.
  • the sensors 20 and 22 are adjustable in the horizontal direction, advantageously together. Then the adjustment to the workpiece width can be made easily become.
  • the left in the transport direction sensors 20, 22 detect the workpiece 1 near its left longitudinal side 26.
  • the transmitter and receiver surfaces of the sensors 19 to 22 are advantageously cleaned with compressed air to avoid interference in the measurement by contamination.
  • corresponding compressed air nozzles are provided, from which the compressed air can reach the transmitter and receiver surfaces in a targeted manner.
  • the cleaning of the sensors 19 to 22 can be timed, preferably at regular intervals.
  • the sensors 19 to 22 are designed so that they detect contamination of the transmitter and receiver surface itself and either generate a corresponding signal that a cleaning is necessary, or that they themselves operate the compressed air nozzles, so that a automatic cleaning takes place.
  • a standard workpiece or a calibration pattern is placed on the machine table 9. Then, the sensors 19 to 22 with respect to the height dimension 33, 33 'are canceled.
  • the calibration is advantageously carried out after each new adjustment of the sensors 19 to 22.
  • Such a sensor adjustment is necessary when a profile change of the workpiece 1 must be performed when workpieces 1 are to be used with a different thickness and / or different width.
  • a height adjustment of the sensors 19, 20 is required if the height dimension 33 lies outside the measuring range of the sensors. Then, the sensors 19, 20 are adjusted so that the distance is within the predetermined measuring range.
  • the absolute thickness of the workpieces 1 can be determined if the thickness of the calibration pattern is known or if the position of the sensors 19 to 22 in the vertical direction, for example by means of Linear scales is determined. In this case, the thickness of the vertical distance of the lower and upper sensor minus the two determined distances of the Werk Swissober- or -unterseite determined by the corresponding sensors. In many cases, an absolute thickness determination is not necessary, but it is sufficient to determine the deviation from the calibration value and to monitor for predetermined tolerance limits.
  • the adjustment of the sensors 19 to 22 in the width direction 31 makes it possible to set the point of impact of the laser beams 27 to 30 on the workpiece sides 23, 24 at a certain distance from the two longitudinal sides 25, 26 of the workpiece 1.
  • the sensors 19 to 22 not only the thickness and the parallelism of the surfaces of workpieces having a rectangular cross-section can be measured, but also, for example, seam thicknesses, spring thicknesses and other profile dimensions.
  • a profile on the workpiece sides 23, 24 is exemplified a workpiece 1, the top is provided with a profile.
  • the sensor 19 is adjusted in this case so that its sensor beam 27 detects the higher profile part.
  • the sensor 20 is adjusted so that its sensor beam 28 detects the flatter part of the workpiece profile.
  • the sensors 19 to 22 are located outside of the machine room, so that the chips and dust accumulating in the machine during processing of the workpieces 1 can not pollute the sensors. As a result, a long service life of the measuring device 18 is ensured.
  • the measurement of the workpieces 1 is carried out in a continuous process, whereby an uninterrupted manufacturing process and thus high productivity are ensured. Since the measurement is operator-independent, a very high quality of processing can be maintained.
  • the measuring device 18 also makes it possible to prepare a production documentation for a certification.
  • the measured values supplied to the control by the sensors 19 to 22 and the measured values determined therefrom or workpiece thicknesses, workpiece parallelism and tolerances can be stored, whereby at the same time also, for example, the type of workpiece, the type of workpiece machining, the machining parameters and the like can be stored.
  • Fig. 4 shows such a curved glulam 35.
  • the curvature arises from the fact that the superposed workpieces have 1 tops 23 and bottoms 24, which do not run parallel to each other.
  • the measuring device 18 can also be used in other four-sided planing and profiling of workpieces, for example, to produce insulating rods or tongue and groove boards. With tongue and groove boards, for example, floor coverings are produced.
  • the measuring device 18 can generally be used where high profile accuracy is important, for example when mitring picture frames.
  • the measuring device 18 can be retrofitted to existing machines, so that the high quality can be achieved even with such machines.
  • the measurement of thickness and parallelism is permanent and non-contact.
  • the non-contact measuring sensor ensures that the workpieces 1 are not damaged after their processing.
  • the wear of the sensors 19 to 22 itself is kept low.
  • the measurement can be performed reliably at high transport speeds of the workpieces 1 by the machine.
  • the workpieces 1 may have a passage speed of the order of about 250 m / min.
  • the evaluation / logic in the controller contains the limits in terms of thickness and parallelism, when exceeded in the described manner, the controller emits appropriate signals.
  • 3D cameras can also be used. Then it is sufficient to use only one 3D camera above and below the workpiece 1. With the 3D cameras, the parallelism of the top 23 and the bottom 24 of the workpiece 1 can be determined in the manner described. Because the 3D cameras like the sensors 19 to 22 are contactless work, damage to the measuring elements and / or the workpieces 1 is avoided.
  • the method can be carried out not only contactless, but also touching.
  • digital probes are used, which are designed as sliding block or as a roller and bear against the workpiece 1 during its passage through the machine.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

Die Maschine dient zur Bearbeitung länglicher Werkstücke (1) und hat Werkzeuge zur Bearbeitung der Werkstücke (1) sowie eine Messeinrichtung, die im Bereich oberhalb und unterhalb des Werkstückes (1) jeweils wenigstens ein Messelement (19 bis 22) aufweist. Die Messelemente (19 bis 22) sind an eine Steuerung angeschlossen, die aus den von den Messelementen (19 bis 22) gelieferten Messsignalen die Parallelität zwischen der Ober- und der Unterseite des Werkstückes (1) ermittelt. Die Steuerung weist eine Auswerteelektronik auf, die aus den von den Messelementen (19 bis 22) gelieferten Sensorsignalen die Lage der Ober- und der Unterseite des Werkstückes (1) relativ zueinander bestimmt. Von den Messelementen (19 bis 22) wird der Abstand zur Ober- und zur Unterseite des Werkstückes (1) gemessen. Aus den Abstandswerten wird das Maß der Parallelität von Ober- und Unterseite des Werkstückes (1) ermittelt.

Description

  • Die Erfindung betrifft eine Maschine zur Bearbeitung von länglichen Werkstücken aus Holz, Kunststoff und dergleichen nach dem Oberbegriff des Anspruches 1, eine Messeinrichtung zur Vermessung von länglichen Werkstücken nach dem Oberbegriff des Anspruches 7 sowie ein Verfahren zur Vermessung länglicher Werkstücke nach dem Oberbegriff des Anspruches 10.
  • Es sind Maschinen in Form von Kehlmaschinen bekannt, mit denen längliche Werkstücke im Durchlaufverfahren an allen Seiten bearbeitet werden, z.B. durch Hobeln oder Fräsen.
  • Aus den länglichen Werkstücken werden häufig Leimbinder bzw. Brettschichthölzer hergestellt, indem diese Werkstücke mit ihren Ober- und Unterseiten aufeinanderliegend miteinander verleimt werden. Bei der Bearbeitung der Ober- und der Unterseite der Werkstücke kommt es vor, dass sie nicht exakt parallel zueinander verlaufen. Dies hat zur Folge, dass beim Aufeinandersetzen dieser Werkstücke das entstehende Brettschichtholz eine Krümmung erhält. Außerdem kann aufgrund dieser mangelnden Parallelität nicht gewährleistet werden, dass beim Verleimen die Presse die Lamellen über die komplette Breite der Leimfugen mit der erforderlichen Kraft beaufschlagen kann. Der Leim kann dadurch nicht wirksam eingesetzt werden und es können offene Leimfugenbereiche zurückbleiben. Diese mangelnde Parallelität von Werkstückober- und -unterseite kann beispielsweise durch falsch eingestellte oder stumpfe Werkzeuge, durch eine unzureichende Werkstückführung und dergleichen auftreten.
  • Der Erfindung liegt die Aufgabe zugrunde, die gattungsgemäße Maschine, die gattungsgemäße Messeinrichtung und das gattungsgemäße Verfahren so auszubilden, dass die Werkstücke so bearbeitet werden können, dass ihre Ober- und Unterseite eine möglichst optimale Parallelität zueinander aufweisen.
  • Diese Aufgabe wird bei der gattungsgemäßen Maschine erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruches 1, bei der gattungsgemäßen Messeinrichtung erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruches 7 und beim gattungsgemäßen Verfahren erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruches 10 gelöst.
  • Die erfindungsgemäße Maschine weist die Messeinrichtung mit den ober- und unterhalb des Werkstückes angeordneten Messelementen auf. Sie sind an eine Steuerung angeschlossen, an welche die Signale der Messelemente übertragen werden. Aus diesen Messelementsignalen ermittelt die Steuerung das Maß der Parallelität zwischen der Oberseite und der Unterseite des Werkstückes. Sobald die Steuerung feststellt, dass das Maß der Parallelität einen vorgegebenen Toleranzwert über- oder unterschreitet, wird dies von der Steuerung erkannt, so dass sofort Gegenmaßnahmen eingeleitet werden können. Dadurch können Fehler frühzeitig erkannt und Ausschuss vermieden, zumindest aber in erheblichem Maße verringert werden.
  • Gleichzeitig kann mit den Messelementen auch die Dicke des Werkstückes erfasst werden. Wenn die Dicke einen vorgegebenen Toleranzwert über- oder unterschreitet, wird dies ebenfalls von der Steuerung erkannt und es wird ein Signal gesendet, um Gegenmaßnahmen einleiten zu können oder um die Maschine abzuschalten.
  • Als Maß für die Parallelität kann beispielsweise der Dickenunterschied an zwei Stellen, über die Werkstückbreite gesehen, herangezogen werden. Ebenso kann als Maß für die Parallelität die Steigungsabweichung zweier Geraden dienen, die sich senkrecht zur Längsrichtung der Werkstücke, d.h. in Breitenrichtung erstrecken und von denen eine die Oberseite und die andere die Unterseite des Werkstückes beschreibt. Die Geraden können beispielsweise jeweils über zwei Messpunkte an der Oberseite und Unterseite bestimmt werden oder über die von einer 3D-Kamera ermittelten Breitenprofile von Ober- bzw. Unterseite. Auch die Verrechnung der Abstandswerte von jeweils zwei Messpunkten an der Oberseite und Unterseite zu den jeweiligen Messelementen gibt unter Berücksichtigung der Positionen der Messelemente ein Hinweis auf die Parallelität des Werkstückes. Die beschriebenen Messwerte werden jeweils zu gleichen Zeitpunkten, d.h. an gleichen Längenpositionen der Werkstücke im Durchlauf der Werkstücke erfasst.
  • Die Messelemente sind vorteilhaft mit Abstand zur Ober- und Unterseite der Werkstücke angeordnet. Das Maß des Abstandes richtet sich nach dem Messbereich der eingesetzten Messelemente, welcher wiederum im Wesentlichen von der Art des Messobjektes und der gewünschten Messgenauigkeit abhängt.
  • Damit die Messeinrichtung durch die Bearbeitung der Werkstücke nicht beeinträchtigt wird, ist die Messeinrichtung bei einer bevorzugten Ausführungsform außerhalb des Maschinenraumes angeordnet, vorteilhaft an einer Auslassöffnung der Maschine. Die Werkstücke werden daher beim Austritt aus der Maschine und damit nach ihrer Bearbeitung von der Messeinrichtung erfasst und gemessen. Die im Maschinenraum bei der Werkstückbearbeitung anfallenden Späne und dergleichen gelangen dadurch nicht an die Messeinrichtung bzw. an ihre Messelemente. Dadurch müssen die Messelemente nur in größeren Zeitabständen gereinigt werden, um eine zuverlässige Messung sicherzustellen.
  • Bei einer einfachen Ausführungsform sind im Bereich oberhalb und unterhalb des Werkstückes jeweils zwei Messelemente vorgesehen. Mit ihnen lässt sich die Parallelität der Ober- und der Unterseite des Werkstückes sehr genau erfassen.
  • Vorteilhaft sind die Messelemente im Bereich der rechten und der linken Längsseite des Werkstückes angeordnet. In diesen Bereichen des Werkstückes lässt sich die Nichtparallelität von Ober- und Unterseite des Werkstückes optimal feststellen.
  • Damit auch unterschiedlich breite Werkstücke gemessen werden können, sind in vorteilhafter Weise zumindest eines der oberen und der unteren Messelemente in Breitenrichtung des Werkstückes verstellbar. Dadurch können die Messelemente in die für die Messung günstigste Lage gebracht werden.
  • Bei einer bevorzugten Ausführungsform sind die Messelemente berührungslos arbeitende Sensoren, insbesondere Laserabstandssensoren. Da sie bei der Messung nicht mit dem Werkstück in Berührung kommen, werden die Werkstücke auch nicht durch die Sensoren beschädigt. Außerdem werden dadurch auch die Sensoren selbst vor Verschleiß geschützt.
  • Zumindest einer der beiden oberen Sensoren ist quer, vorteilhaft in senkrechter Richtung zur Oberseite des Werkstückes einstellbar. Dadurch kann insbesondere auf unterschiedlich dicke Werkstücke Rücksicht genommen werden.
  • Als Messelemente können auch 3D-Kameras eingesetzt werden. Dann reicht es auch, oberhalb und unterhalb des Werkstückes jeweils nur eine 3D-Kamera zu verwenden.
  • Die erfindungsgemäße Messeinrichtung zeichnet sich dadurch aus, dass die Messelemente einander gegenüberliegen, an die Steuerung angeschlossen sind und sich oberhalb und unterhalb des zu vermessenden Werkstückes befinden. Mit den Messelementen wird ihr Abstand zur Oberseite und zur Unterseite des Werkstückes gemessen und hieraus in der Steuerung die Parallelität von Oberseite und Unterseite ermittelt, vorzugsweise auch die Dicke des Werkstückes. Hierzu senden die Messelemente ihre Messwerte an die Steuerung. Ihre Auswerteelektronik bestimmt aus den gelieferten Messwerten der Abstandssensoren die Lage der Oberseite und der Unterseite des Werkstückes relativ zueinander.
  • Die Steuerung erzeugt in vorteilhafter Weise bei Überschreiten eines vorgegebenen Toleranzwertes bezüglich der Parallelität, vorzugsweise auch der Dicke, ein Signal. Dieses Signal kann ein Warnsignal sein, beispielsweise ein optisches und/oder akustisches Warnsignal, das den Anwender darauf hinweist, dass die Parallelität von Oberseite und Unterseite der Werkstücke bzw. die Dicke ein vorgegebenes Toleranzmaß über- oder unterschreiten. Dann kann der Benutzer der Maschine Vorkehrungen treffen, um die Werkstücke so zu bearbeiten, dass ihre Ober- und Unterseite parallel zueinander verlaufen.
  • Die Messelemente sind vorteilhaft Abstandssensoren, vorteilhaft Laserabstandssensoren. Mit den von ihnen ausgesandten Laserstrahlen ist eine exakte Vermessung der Werkstücke gewährleistet. Mit den Abstandssensoren wird nahe der rechten und der linken Längsseite des Werkstückes ihr Abstand zur Oberseite und zur Unterseite des Werkstückes gemessen und hieraus in der Steuerung zwei Dickenwerte ermittelt, deren Differenz als Maß der Parallelität von Oberseite und Unterseite des Werkstückes herangezogen wird.
  • Beim erfindungsgemäßen Verfahren wird mit den Messelementen der Abstand zu der Oberseite und der Unterseite des Werkstückes gemessen. Aus diesen Abstandswerten wird das Maß der Parallelität von Oberseite und Unterseite des Werkstückes ermittelt.
  • Vorteilhaft wird mit den Messelementen auch die Dicke des Werkstückes erfasst. Auch bei schwankenden Dicken der bearbeiteten Lamellen kann es bei der späteren Herstellung der Leimbinder zu Problemen beim Verleimen kommen, da Bereiche mit größeren Leimfugen nicht mit ausreichender Presskraft und Leimmenge beaufschlagt bzw. versehen sind. Es können offene Leimfugenbereiche auftreten.
  • Vorteilhaft wird von jeweils zwei im Bereich oberhalb und unterhalb des Werkstückes vorgesehen Abstandssensoren nahe den Längsseiten des Werkstückes der Abstand zu der Oberseite und der Unterseite gemessen und aus den Abstandswerten das Maß der Parallelität von Oberseite und Unterseite des Werkstückes ermittelt.
  • In vorteilhafter Ausgestaltung wird aus den Abstandswerten auch die Dicke des Werkstückes nahe dessen Längsseiten ermittelt.
  • Die Steuerung erzeugt vorteilhaft ein Signal, sobald das Maß der Parallelität von Oberseite und Unterseite, vorzugsweise auch der Dicke des Werkstückes einen vorgegebenen Toleranzwert überschreitet oder unterschreitet. Dann können Gegenmaßnahmen ergriffen werden, um die Parallelität in den vorgegebenen Toleranzbereich zu bringen.
  • Das Steuerungssignal kann ein Meldesignal sein, beispielsweise ein optisches und/oder akustisches Signal.
  • Das Steuerungssignal kann aber auch ein Abschaltsignal sein, mit dem die Maschine abgeschaltet wird, wenn das Parallelitätsmaß bzw. das Dickenmaß den vorgegebenen Toleranzwert über- oder unterschreitet.
  • Zusätzlich zum Abschaltsignal kann auch das Meldesignal erzeugt werden.
  • Die Messung erfolgt während des Transportes des Werkstückes, also im Durchlaufverfahren.
  • Vorteilhaft erfolgt die Messung quasi- kontinuierlich. Vorteilhaft wird, um Fehlabschaltungen bzw. Fehlwarnmeldungen zu vermeiden, aus mehreren Abstandsmesswerten jeweils ein Mittelwert gebildet, der zur Berechnung der Werkstückdicke herangezogen wird. Vorteilhaft werden auch die Werkstückdicken und die Differenzbildung der Werkstückdicken zur Beurteilung der Parallelität einer Mittelwertbildung unterzogen. Vorteilhaft wird als Mittelwert der gleitende Medianwert ermittelt und herangezogen. Der gleitende Medianwert dient der Glättung der erfassten Abstandssignale.
  • Der Anmeldungsgegenstand ergibt sich nicht nur aus dem Gegenstand der einzelnen Patentansprüche, sondern auch durch alle in den Zeichnungen und der Beschreibung offenbarten Angaben und Merkmale. Sie werden, auch wenn sie nicht Gegenstand der Ansprüche sind, als erfindungswesentlich beansprucht, soweit sie einzeln oder in Kombination gegenüber dem Stand der Technik neu sind.
  • Weitere Merkmale der Erfindung ergeben sich aus den weiteren Ansprüchen, der Beschreibung und den Zeichnungen.
  • Die Erfindung wird anhand eines in den Zeichnungen dargestellten Ausführungsbeispieles näher erläutert. Es zeigen
  • Fig. 1
    in perspektivischer und schematischer Darstellung eine erfindungsgemäße Maschine zum Bearbeiten von Werkstücken aus Holz, Kunststoff und dergleichen,
    Fig. 2
    in Ansicht eine erfindungsgemäße Messeinrichtung der erfindungsgemäßen Maschine gemäß Fig. 1,
    Fig. 3
    in perspektivischer Darstellung ein Brettschichtholz bzw. einen Leimbinder, der aus Werkstücken gebildet ist, deren Ober- und Unterseite parallel zueinander verlaufen,
    Fig. 4
    das Brettschichtholz bzw. den Leimbinder, der aus Werkstücken gebildet ist, deren Ober- und Unterseite nicht parallel zueinander verlaufen.
  • Die Maschine gemäß Fig. 1 dient dazu, Werkstücke 1 im Durchlaufverfahren zu bearbeiten. Die Werkstücke 1 werden während ihres Transportes durch die Maschine durch entsprechende Werkzeuge bearbeitet.
  • Im Ausführungsbeispiel ist die Maschine eine Kehlmaschine, mit der im Querschnitt viereckige, insbesondere rechteckige, längliche Werkstücke 1 an allen vier Seiten bearbeitet werden. Zum Transport der Werkstücke 1 sind Vorschub- bzw. Transportwalzen 2 vorgesehen, die auf den Werkstücken 1 aufliegen. Im Einlaufbereich der Kehlmaschine befindet sich ein Abrichttisch 3, auf dem die Werkstücke 1 der Kehlmaschine zugeführt werden. An der in Einlaufrichtung rechten Seite des Abrichttisches 3 ist ein Fügelineal 4 vorgesehen, an dem das Werkstück 1 mit seiner rechten Längsseite beim Transport anliegt. Das Fügelineal 4 kann quer zur Transportrichtung des Werkstückes 1 eingestellt werden, um das Maß der Spanabnahme an der rechten Längsseite des Werkstückes 1 einzustellen. Der Abrichttisch 3 lässt sich in vertikaler Richtung einstellen, wodurch das Maß der Spanabnahme an der Unterseite des Werkstückes 1 eingestellt werden kann.
  • Das Werkstück 1 gelangt über eine Einlauföffnung 5 in die Maschine. Im Maschinenraum befindet sich eine horizontale untere Abrichtspindel, auf der ein Abrichtwerkzeug 6 drehfest sitzt, mit dem beim Durchlaufen des Werkstückes 1 dessen Unterseite spanabhebend bearbeitet, vorzugsweise geradegehobelt wird. In Transportrichtung des Werkstückes 1 hinter dem Abrichtwerkzeug 6 liegt eine vertikale rechte Spindel, auf der ein Werkzeug 7 sitzt, mit dem die in Transportrichtung rechte Längsseite des Werkstückes 1 bearbeitet, vorzugsweise geradegehobelt wird. Das Werkzeug 7 ist ein Hobelkopf mit geraden Messern. Es kann aber auch ein Profilierwerkzeug sein, mit dem an der rechten Werkstückseite ein Profil hergestellt wird.
  • In Transportrichtung des Werkstückes 1 hinter der vertikalen rechten Spindel ist eine vertikale linke Spindel vorgesehen, auf der ein Werkzeug 8 sitzt, das vorzugsweise ein Hobelkopf ist, mit dem die linke Werkstückseite geradegehobelt wird. Durch die Bearbeitung der rechten und der linken Werkstücklängsseite wird die Breite des fertigen Werkstückes erzeugt.
  • Auch das Werkzeug 8 kann ein Profilierwerkzeug sein, mit dem ein Profil an der linken Längsseite des Werkstückes 1 hergestellt werden kann.
  • Beim Durchlauf durch die Maschine liegen die Werkstücke 1 auf einem Maschinentisch 9 auf. Er bildet eine Transportbahn, auf der die Werkstücke 1 aufliegend durch die Maschine transportiert werden. Der Maschinentisch 9 ist maschinenfest und bildet die horizontale Auflage- und Bezugsebene für die Werkstücke 1.
  • Im Bereich des Abrichtwerkzeuges 6 ist der Maschinentisch 9 unterbrochen, so dass die Unterseite des Werkstückes 1 beim Durchlauf durch die Maschine durch das Abrichtwerkzeug 6 bearbeitet werden kann.
  • In Transportrichtung der Werkstücke 1 nach dem rechten Werkzeug 7 wird das Werkstück 1 an einem Anschlag 10 weiter durch die Maschine geführt.
  • Das Werkstück 1 liegt mit seiner rechten, bearbeiteten Längsseite an diesem Anschlag 10 an, der maschinenfest ist und die vertikale Anlage- und Bezugsebene bildet.
  • In Transportrichtung hinter der linken vertikalen Spindel weist die Maschine eine obere horizontale Spindel auf, auf der drehfest ein Werkzeug 11 sitzt, mit dem die Oberseite des Werkstückes 1 bei seinem Durchlauf durch die Maschine bearbeitet wird. Mit dem Werkzeug 11 kann die Werkstückoberseite beispielsweise geradegehobelt werden.
  • In Transportrichtung des Werkstückes 1 mit Abstand hinter dem oberen Werkzeug 11 ist ein zweites oberes Werkzeug 12 um eine horizontale Achse drehbar angetrieben.
  • Im Bereich zwischen den beiden Werkzeugen 11, 12 ist die Maschine mit einer unteren horizontalen Tischwalze 13 versehen, mit der das Werkstück 1 gefördert wird. Der Maschinentisch 9 ist im Bereich dieser Tischwalze 13 unterbrochen.
  • Das an allen vier Seiten im Durchlaufverfahren bearbeitete Werkstück 1 gelangt durch eine Auslassöffnung 14 aus der Maschine. Die beschriebenen Werkzeuge befinden sich innerhalb einer Maschinenabdeckung 15.
  • In Transportrichtung der Werkstücke 1 hinter dem Werkzeug 12 ist die Maschine mit einem weiteren horizontalen unteren Werkzeug 16 versehen, das drehfest auf einer unteren Spindel sitzt und mit dem die Unterseite des Werkstückes 1 vor dem Durchtritt durch die Auslassöffnung 14 nochmals bearbeitet werden kann. Der Maschinentisch 9 ist im Bereich dieses Werkzeuges 16 unterbrochen.
  • Im Einlaufbereich befindet sich außerhalb der Maschinenabdeckung 15 ein Bedienpanel 17, das beispielsweise an einem Schaltschrank 34 neben der Maschinenabdeckung 15 vorgesehen ist und mit dessen Hilfe der Benutzer Einstellungen an der Maschine vornehmen kann.
  • Im Bereich der Auslassöffnung 14 ist eine Messeinrichtung 18 vorgesehen, mit der die Dicke der durch die Auslassöffnung 14 austretenden bearbeiteten Werkstücke 1 erfasst werden kann. Die Dickenvermessung erfolgt während des Durchlaufes des bearbeiteten Werkstückes und dient primär der Überwachung der Parallelität der Werkstücke 1. Dies ist insbesondere bei der Herstellung von Lamellen für Leimbinder 35 (Fig. 3) wesentlich, da diese bei einem konischen Querschnitt der Werkstücke beim Aufeinanderschichten und Verleimen eine Krümmung erfahren. Die Ursachen für das nicht parallele Aushobeln der Werkstücke 1 können vielfältig sein, zum Beispiel falsch eingestellte oder stumpfe Werkzeuge, ein verschmutzter Maschinentisch, eine schlechte Führung der Werkstücke beim Durchlauf durch die Maschine und dergleichen. Durch die Dickenmessung und die Parallelitätsüberwachung können der Ausschuss vermieden und gegebenenfalls Fehler frühzeitig erkannt werden.
  • Die Messeinrichtung 18 weist vier Laserabstandssensoren 19 bis 22 auf, die an vier Punkten des Werkstückes 1 den Abstand der Werkstückoberfläche zum Sensor ermitteln. Das Messprinzip solcher Sensoren basiert auf der Lasertriangulation. Solche Laserabstandssensoren sind bekannt und werden darum nicht näher beschrieben.
  • Die vier Sensoren 19 bis 22 erfassen die Werkstückoberseite 23 und die Werkstückunterseite 24 im Bereich der in Transportrichtung rechten Längsseite 25 und der linken Längsseite 26 des Werkstückes 1.
  • Die Sensoren 19 bis 22 werden zunächst in Bezug auf die jeweils bearbeiteten Werkstücke 1 positioniert, so dass der Abstand zwischen ihnen und dem Werkstück 1 feststeht.
  • Die Sensoren 19, 20 liegen mit Abstand oberhalb der Werkstückoberseite 23, auf die die von den Sensoren 19, 20 ausgesandten Laserstrahlen 27, 28 treffen. Die Sensoren 21, 22 liegen mit Abstand zur Werkstückunterseite 24, auf die die von diesen Sensoren 21, 22 ausgesandten Laserstrahlen 29, 30 treffen. Mit den Sensoren 19 bis 22 wird der Abstand der jeweiligen Werkstückoberfläche 23, 24 zum Sensor ermittelt. Die Sensorsignale werden einer (nicht dargestellten) Steuerung oder Auswerteeinheit übermittelt, die aus den Sensorsignalen die Werkstückdicke sowie die Parallelität der beiden Werkstückseiten 23, 24 ermittelt.
  • Aus den Signalen der oberen Sensoren 19, 20 und der unteren Signale 21, 22 wird die Dicke des Werkstückes im Bereich der rechten Längsseite 25 sowie der linken Längsseite 26 berechnet. Aus der Differenz der beiden nahe den Längsseiten 25, 26 ermittelten Werkstückdicken kann auf die Parallelität der beiden Werkstückseiten 23, 24 geschlossen werden. Bei Überschreiten einer vorgegebenen Toleranz dieser beiden Messwerte kann eine Warnmeldung ausgegeben oder angezeigt und/oder die Maschine abgeschaltet werden. Die Steuerung sendet entsprechende Steuersignale an eine Warneinrichtung und/oder an den Antrieb der Maschine.
  • Die Abstandsmessung der Sensoren 19 bis 22 erfolgt nicht kontinuierlich, sondern in bestimmten Zeitabständen. Der Abtastzyklus liegt vorteilhaft im Bereich unter einer Millisekunde, so dass die Messung als quasi-kontinuierlich angesehen werden kann.
  • Vorteilhaft ermittelt die Steuerung aus diesen einzelnen Sensorsignalen einen Mittelwert bezüglich der Abstände, der Dicke des Werkstückes 1 im Bereich der beiden Längsseiten 25 und 26 und der Parallelität. Auf diese Weise werden Fehlmeldungen oder -abschaltungen vermieden. Da Holz ein inhomogener Werkstoff ist, der Strukturrauheiten, Risse, Aststellen und dgl. aufweisen kann, kann eine einzelne Abstandmessung schon einmal fehlerhaft sein und nicht die tatsächliche bearbeitete Oberfläche erfassen. Die Steuerung ist in diesem Falle so eingerichtet, dass sie aus den getakteten Sensorsignalen die Mittelwertberechnung durchführen kann. Vorteilhaft wird als Mittelwert der gleitende Medianwert ermittelt und herangezogen. Zusätzlich oder alternativ ist es auch möglich, eine Zeit zu hinterlegen, über welche die entsprechenden Toleranzwerte überschritten sein müssen, bevor ein Warn- oder Abschaltsignal gesendet wird.
  • In der Steuerung können für unterschiedliche zu bearbeitende Werkstücke entsprechende Sollwerte abgelegt sein. Werden sie um einen vorgegebenen Toleranzwert über- oder unterschritten, erzeugt die Steuerung die entsprechenden Sensorsignale.
  • Der Abstand des Auftreffpunktes der Sensorstrahlen 27 bis 30 auf die Werkstückoberseite 23 und die Werkstückunterseite 24 von den benachbarten Längsseiten 25, 26 kann eingestellt werden, um zuverlässige Messwerte bei der Dickenmessung zu erhalten. Für diesen Fall ist es vorteilhaft, wenn die einzelnen Sensoren 19 bis 22 jeweils unabhängig voneinander in Breitenrichtung 31 verstellbar sind. Die Laserstrahlen 27 bis 30 können hierbei so eingestellt werden, dass sie an der für eine zuverlässige Dickenmessung geeigneten Stelle auf die Werkstückoberseite 23 bzw. Werkstückunterseite 24 gelangen.
  • Bei einer einfacheren Ausführungsform ist die Messeinrichtung 18 so ausgebildet, dass alle Sensoren 19 bis 22 gemeinsam sowie die Sensoren 20 und 22 zusammen, aber unabhängig von den Sensoren 19 und 21 in Breitenrichtung des Werkstückes 1 verstellt werden können. Dadurch ist eine Anpassung der Messeinrichtung 18 auf unterschiedliche Breiten der Werkstücke 1 einfach möglich.
  • Bei einer anderen Ausführungsform kann die Messeinrichtung 18 so ausgebildet sein, dass der Sensor 19 in Höhenrichtung 32, der Sensor 20 in Höhenrichtung 32 und in Breitenrichtung 31 und der Sensor 22 in Breitenrichtung 21 verstellbar sind.
  • Zum Verstellen der Sensoren 19 bis 22 sind entsprechende (nicht dargestellte) Führungen vorgesehen. Die Sensoren 19 bis 22 können gesteuert, d.h. automatisch in Höhen- und/oder Breitenrichtung verstellt werden. Es ist weiter möglich, die Sensoren 19 bis 22 auch manuell in die erforderliche Lage in Bezug auf die Werkstücke 1 zu verstellen.
  • In Fig. 2 ist der Abstand 33 beispielhaft für den Sensor 19 angegeben, den der Sensor von der Werkstückoberseite 23 hat. Dieses Abstandsmaß 33 ist abhängig von der Art des eingesetzten Sensors und dessen Messbereichs.
  • Da das Werkstück 1 auf dem Maschinentisch 9 aufliegt, befindet sich die Werkstückunterseite 24 stets in der gleichen Ebene. Aus diesem Grunde müssen die beiden unteren Sensoren 21, 22 nicht in Höhenrichtung verstellbar sein. Der Höhenabstand 33' der Sensoren von der Werkstückunterseite 24 ist in diesem Falle konstant. Unter der Voraussetzung, dass die Werkstücke von der Unterseite immer sauber gehobelt werden und vollflächig auf dem Maschinentisch aufliegen bzw. auf diesen gedrückt werden, könnte auf untere Sensoren 21, 22 ganz verzichtet werden, da immer von der gleichen Bezugsebene des Maschinentisches 9 ausgegangen werden kann. Da durch Störungen im Bearbeitungsprozess, stumpfe oder falsch eingestellte Werkzeuge, Verschmutzung oder Spreißel dies in der Praxis nicht immer gewährleitet ist, sind Sensoren, die die Unterseite der Werkstücke erfassen, zur Beurteilung und Sicherstellung der Qualität notwendig und von Vorteil.
  • Die beiden oberen Sensoren 19, 20 hingegen sind in Höhenrichtung 32 verstellbar, da die Werkstücke 1 unterschiedlich dick sein können. Die Sensoren 19, 20 werden dann an unterschiedlich dicke Werkstücke 1 durch entsprechende Höhenverstellung angepasst. Vorteilhaft können die beiden oberen Sensoren 19 und 20 auch gemeinsam in horizontaler Richtung verstellt werden.
  • Gleichermaßen befindet sich die rechte Längsseite 25 der Werkstücke 1 stets in der gleichen Ebene, da die Werkstücke 1 mit ihrer rechten Längsseite an dem maschinenfesten Anschlag 10 geführt werden. Somit ist eine Verstellung der in Transportrichtung rechten Sensoren 19 und 21 in horizontaler Richtung nicht unbedingt erforderlich. Zur Breiteneinstellung sind die Sensoren 20 und 22 in horizontaler Richtung verstellbar, vorteilhaft gemeinsam. Dann kann die Einstellung auf die Werkstückbreite einfach vorgenommen werden. Zur genauen Bestimmung der Parallelität ist es vorteilhaft, wenn die in Transportrichtung linken Sensoren 20, 22 das Werkstück 1 nahe seiner linken Längsseite 26 erfassen.
  • Damit eine zuverlässige Vermessung der Werkstücke 1 ermöglicht wird, werden die Sender- und Empfängerflächen der Sensoren 19 bis 22 vorteilhaft mit Druckluft gereinigt, um Störungen bei der Messung durch Verschmutzung zu vermeiden. Hierfür sind entsprechende Druckluftdüsen vorgesehen, aus denen die Druckluft gezielt auf die Sender- und Empfängerflächen gelangen kann. Die Reinigung der Sensoren 19 bis 22 kann zeitgesteuert erfolgen, vorzugsweise in regelmäßigen Zeitabständen.
  • Es ist auch möglich, dass die Sensoren 19 bis 22 so ausgebildet sind, dass sie eine Verschmutzung der Sender- und Empfängerfläche selbst erkennen und entweder ein entsprechendes Signal erzeugen, dass eine Reinigung notwendig ist, oder dass sie selbst die Druckluftdüsen betätigen, so dass eine automatische Reinigung erfolgt.
  • Zur Kalibrierung der Sensoren 19 bis 22 wird ein Normwerkstück oder ein Kalibriermuster auf den Maschinentisch 9 aufgelegt. Dann werden die Sensoren 19 bis 22 hinsichtlich des Höhenmaßes 33, 33' abgenullt. Die Kalibrierung erfolgt vorteilhaft nach jeder neuen Einstellung der Sensoren 19 bis 22. Eine solche Sensoreinstellung ist notwendig, wenn ein Profilwechsel des Werkstückes 1 durchgeführt werden muss, wenn Werkstücke 1 mit anderer Dicke und/oder anderer Breite eingesetzt werden sollen. Bei Dickenunterschieden der Werkstücke 1 ist eine Höhenverstellung der Sensoren 19, 20 dann erforderlich, wenn das Höhenmaß 33 außerhalb des Messbereiches der Sensoren liegt. Dann werden die Sensoren 19, 20 so eingestellt, dass der Abstand innerhalb des vorgegebenen Messbereichs liegt.
  • Mittels der Messeinrichtung lässt sich die absolute Dicke der Werkstücke 1 bestimmen, wenn die Dicke des Kalibriermusters bekannt ist oder wenn die Position der Sensoren 19 bis 22 in vertikaler Richtung beispielsweise mittels Linearmaßstäben ermittelt wird. In diesem Fall ermittelt sich die Dicke aus dem vertikalen Abstand des unteren und oberen Sensors abzüglich der beiden ermittelten Abstände der Werkstückober- bzw. -unterseite von den entsprechenden Sensoren. In vielen Fällen ist eine absolute Dickenbestimmung nicht notwendig, sondern es reicht aus, die Abweichung von dem Kalibrierwert zu ermitteln und hinsichtlich vorgegebener Toleranzgrenzen zu überwachen.
  • Die Verstellung der Sensoren 19 bis 22 in Breitenrichtung 31 erlaubt es, den Auftreffpunkt der Laserstrahlen 27 bis 30 auf die Werkstückseiten 23, 24 in einem bestimmten Abstand von den beiden Längsseiten 25, 26 des Werkstückes 1 einzustellen.
  • Mit den Sensoren 19 bis 22 kann nicht nur die Dicke und die Parallelität der Flächen von Werkstücken mit rechteckigem Querschnitt gemessen werden, sondern beispielsweise auch Falzstärken, Federdicken und andere Profildimensionen.
  • Insbesondere wenn die Sensoren 19 bis 22 unabhängig voneinander verstellbar sind, besteht die Möglichkeit, ein Profil an den Werkstückseiten 23, 24 exakt zu vermessen. In Fig. 2 ist beispielhaft ein Werkstück 1 dargestellt, dessen Oberseite mit einem Profil versehen ist. Der Sensor 19 wird in diesem Falle so eingestellt, dass sein Sensorstrahl 27 den höheren Profilteil erfasst. Der Sensor 20 wird so eingestellt, dass sein Sensorstrahl 28 den flacheren Teil des Werkstückprofiles erfasst.
  • Die Sensoren 19 bis 22 befinden sich außerhalb des Maschinenraums, so dass die bei der Bearbeitung der Werkstücke 1 in der Maschine anfallenden Späne und Staub die Sensoren nicht verschmutzen können. Dadurch ist eine lange Einsatzdauer der Messeinrichtung 18 gewährleistet.
  • Die Messung der Werkstücke 1 erfolgt im Durchlaufverfahren, wodurch ein ununterbrochener Fertigungsprozess und damit eine hohe Produktivität sichergestellt sind. Da die Messung bedienerunabhängig erfolgt, kann eine sehr hohe Bearbeitungsqualität eingehalten werden.
  • Durch den Einsatz der Messeinrichtung 18 wird eine zuverlässige Verleimung der Werkstücke bei der Herstellung von Leimbindern erreicht. Zudem wird ein Ausschuss von Werkstücken 1 minimiert, da Herstellfehler sofort von der Messeinrichtung 18 erkannt werden.
  • Die Messeinrichtung 18 ermöglicht es ferner, eine Produktionsdokumentation für eine Zertifizierung anzufertigen. Die von den Sensoren 19 bis 22 an die Steuerung gelieferten Messwerte sowie die von der Steuerung hieraus ermittelten Messwerte bzw. ermittelten Werkstückdicken, Werkstückparallelität und Toleranzen können abgespeichert werden, wobei gleichzeitig auch beispielsweise die Art des Werkstückes, die Art der Werkstückbearbeitung, die Bearbeitungsparameter und dergleichen abgespeichert werden können.
  • Mit der beschriebenen Messeinrichtung 18 ist eine zuverlässige Qualitätssicherung bei der Werkstückbearbeitung gewährleistet, insbesondere beim Hobeln von Leimbinderlamellen, bei dem die Werkstücke 1 mit ihrer Werkstückoberseite 23 bzw. Werkstückunterseite 24 aufeinanderliegend miteinander verleimt werden. Die so aufeinanderliegenden und miteinander verleimten Werkstücke 1 bilden den Leimbinder 35, der auch als Brettschichtholz bezeichnet wird. Durch die Vermessung der Parallelität der Werkstückoberseite 23 zur Werkstückunterseite 24 ist sichergestellt, dass das aus den aufeinanderliegenden Werkstücken gebildete Brettschichtholz keine Krümmung aufweist, sondern im Querschnitt rechtwinklig ist. Außerdem ist gewährleistet, dass eine optimale Verleimung stattfinden kann und die Leimfugen geschlossen sind.
  • Fig. 4 zeigt ein solches gekrümmtes Brettschichtholz 35. Die Krümmung entsteht dadurch, dass die aufeinander liegenden Werkstücke 1 Oberseiten 23 und Unterseiten 24 haben, die nicht parallel zueinander verlaufen.
  • Die Messeinrichtung 18 kann auch bei sonstigem vierseitigem Hobeln und Profilieren von Werkstücken eingesetzt werden, um beispielsweise Isolierstäbe oder Nut- und Federbretter herzustellen. Mit Nut- und Federbrettern werden beispielsweise Fußbodenbeläge hergestellt.
  • Die Messeinrichtung 18 kann allgemein dort eingesetzt werden, wo es auf eine hohe Profilgenauigkeit ankommt, beispielsweise bei der Gehrung von Bilderrahmen.
  • Die Messeinrichtung 18 kann an bereits bestehende Maschinen nachträglich angebaut werden, so dass die hohe Qualität auch bei solchen Maschinen erreicht werden kann. Die Messung der Dicke und der Parallelität erfolgt permanent und berührungslos. Insbesondere die berührungslos messende Sensorik stellt sicher, dass die Werkstücke 1 nach ihrer Bearbeitung nicht beschädigt werden. Außerdem wird der Verschleiß der Sensoren 19 bis 22 selbst gering gehalten. Die Messung kann bei hohen Transportgeschwindigkeiten der Werkstücke 1 durch die Maschine zuverlässig durchgeführt werden. Beispielsweise können die Werkstücke 1 eine Durchlaufgeschwindigkeit in der Größenordnung von etwa 250 m/min haben.
  • Die Auswerteelektronik/Logik in der Steuerung enthält die Grenzwerte hinsichtlich der Dicke und der Parallelität, bei deren Überschreiten in der beschriebenen Weise die Steuerung entsprechende Signale aussendet.
  • Als Messelemente können auch 3D-Kameras eingesetzt werden. Dann reicht es aus, oberhalb und unterhalb des Werkstückes 1 jeweils nur eine 3D-Kamera zu verwenden. Mit den 3D-Kameras kann in der beschriebenen Weise die Parallelität der Oberseite 23 und der Unterseite 24 des Werkstückes 1 ermittelt werden. Da die 3D-Kameras wie die Sensoren 19 bis 22 berührungslos arbeiten, ist eine Beschädigung der Messelemente und/oder der Werkstücke 1 vermieden.
  • Grundsätzlich kann das Verfahren nicht nur berührungslos, sondern auch berührend durchgeführt werden. Als Messelemente werden in diesem Fall beispielsweise digitale Messtaster eingesetzt, die als Gleitschuh oder als Rolle ausgebildet sind und am Werkstück 1 während dessen Durchlaufs durch die Maschine anliegen.

Claims (16)

  1. Maschine zur Bearbeitung von länglichen Werkstücken aus Holz, Kunststoff und dergleichen, insbesondere Kehlmaschine, mit wenigstens einer Transportbahn für die Werkstücke, entlang welcher die Werkstücke durch die Maschine zur Bearbeitung geführt werden, und mit drehbar angetriebenen Werkzeugen zur Bearbeitung der Ober- und der Unterseite der Werkstücke,
    dadurch gekennzeichnet, dass die Maschine mit wenigstens einer Messeinrichtung (18) versehen ist, die im Bereich oberhalb und unterhalb des Werkstückes (1) jeweils wenigstens ein Messelement (19 bis 22) aufweist, das an eine Steuerung angeschlossen ist, die aus den von den Messelementen (19 bis 22) gelieferten Messsignalen die Parallelität zwischen der Oberseite (23) und der Unterseite (24) des Werkstückes (1) ermittelt.
  2. Maschine nach Anspruch 1,
    dadurch gekennzeichnet, dass die Messelemente (19 bis 22) mit Abstand zur Ober- und Unterseite (23, 24) der Werkstücke (1) angeordnet sind, und dass vorteilhaft im Bereich oberhalb und unterhalb des Werkstückes (1) jeweils zwei Messelemente (19 bis 22) vorgesehen sind.
  3. Maschine nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Messeinrichtung (18) außerhalb des Maschinenraumes, vorteilhaft an einer Auslauföffnung (14) der Maschine, angeordnet ist.
  4. Maschine nach Anspruch 3,
    dadurch gekennzeichnet, dass die vorteilhaft als berührungslos arbeitende Sensoren, insbesondere Laserabstandssensoren, ausgebildeten Messelemente (19 bis 22) im Bereich der rechten und der linken Längsseite (25, 26) des Werkstückes (1) angeordnet sind.
  5. Maschine nach einem der Ansprüche 3 oder 4,
    dadurch gekennzeichnet, dass zumindest einer der beiden oberen Sensoren (19, 20) quer, vorzugsweise senkrecht zur Oberseite (23) des Werkstückes (1) einstellbar ist.
  6. Maschine nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass im Bereich oberhalb und unterhalb des Werkstückes (1) als Messelement jeweils eine 3D-Kamera vorgesehen ist.
  7. Messeinrichtung zur Vermessung von länglichen Werkstücken, insbesondere zur Verwendung bei einer Maschine nach einem der Ansprüche 1 bis 6, mit Messelementen,
    dadurch gekennzeichnet, dass die Messelemente (19 bis 22) einander gegenüberliegen, an eine Steuerung angeschlossen und oberhalb und unterhalb des zu vermessenden Werkstückes (1) angeordnet sind, und dass die Steuerung eine Auswerteelektronik aufweist, die aus den von den Messelementen (19 bis 22) gelieferten Sensorsignalen die Lage der Oberseite (23) und der Unterseite (24) des Werkstückes relativ zueinander bestimmt.
  8. Messeinrichtung nach Anspruch 7,
    dadurch gekennzeichnet, dass die Steuerung bei Überschreiten eines vorgegebenen Toleranzwertes bezüglich der Parallelität ein Signal erzeugt.
  9. Messeinrichtung nach Anspruch 7 oder 8,
    dadurch gekennzeichnet, dass die Messelemente (19 bis 22) Abstandssensoren, vorzugsweise Laserabstandssensoren und/oder 3D-Kameras sind.
  10. Verfahren zur Vermessung von länglichen Werkstücken aus Holz, Kunststoff und dergleichen, insbesondere unter Verwendung der Maschine nach einem der Ansprüche 1 bis 6 und/oder der Messeinrichtung nach einem der Ansprüche 7 bis 9,
    dadurch gekennzeichnet, dass von Messelementen (19 bis 22) der Abstand zu der Oberseite (23) und der Unterseite (24) des Werkstückes (1) gemessen wird, und dass aus den Abstandswerten das Maß der Parallelität von Oberseite (23) und Unterseite (24) des Werkstückes (1) ermittelt wird.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet, dass aus den Abstandswerten die Dicke des Werkstückes (1) ermittelt wird.
  12. Verfahren nach Anspruch 10 oder 11,
    dadurch gekennzeichnet, dass von jeweils zwei im Bereich oberhalb und unterhalb des Werkstückes (1) vorgesehenen Abstandssensoren (19 bis 22) nahe den Längsseiten (25, 26) des Werkstückes (1) der Abstand zu der Oberseite (23) und der Unterseite (24) gemessen wird, und dass aus den Abstandswerten das Maß der Parallelität von Oberseite (23) und Unterseite (24) des Werkstückes (1) ermittelt wird.
  13. Verfahren nach Anspruch 12,
    dadurch gekennzeichnet, dass aus den Abstandswerten die Dicke nahe den Längsseiten (25, 26) des Werkstückes (1) ermittelt wird.
  14. Verfahren nach einem der Ansprüche 10 bis 13,
    dadurch gekennzeichnet, dass die Steuerung ein Signal erzeugt, sobald das Maß der Parallelität von Oberseite (23) und Unterseite (24) des Werkstückes (1) einen vorgegebenen Toleranzwert über- oder unterschreitet, und dass vorteilhaft das Steuerungssignal ein Meldesignal oder ein Abschaltsignal ist, mit dem die Maschine abgeschaltet ist.
  15. Verfahren nach einem der Ansprüche 10 bis 14,
    dadurch gekennzeichnet, dass die Messung während des Transportes des Werkstückes (1), vorteilhaft quasi-kontinuierlich vorgenommen wird.
  16. Verfahren nach einem der Ansprüche 10 bis 15,
    dadurch gekennzeichnet, dass aus mehreren Abstandswerten jeweils ein Mittelwert gebildet wird, der zur Berechnung der Dicke des Werkstückes herangezogen wird, und dass vorzugsweise als Mittelwert der gleitende Medianwert ermittelt und herangezogen wird.
EP18000724.7A 2017-09-11 2018-09-07 Maschine zur bearbeitung von länglichen werkstücken aus holz, kunststoff und dergleichen sowie verfahren zur vermessung solcher länglicher werkstücke Active EP3453503B8 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017008554.4A DE102017008554A1 (de) 2017-09-11 2017-09-11 Maschine zur Bearbeitung von länglichen Werkstücken aus Holz, Kunststoff und dergleichen, Messeinrichtung zur Vermessung von länglichen Werkstücken sowie Verfahren zur Vermessung solcher länglicher Werkstücke

Publications (3)

Publication Number Publication Date
EP3453503A1 true EP3453503A1 (de) 2019-03-13
EP3453503B1 EP3453503B1 (de) 2022-02-16
EP3453503B8 EP3453503B8 (de) 2022-06-08

Family

ID=63557195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18000724.7A Active EP3453503B8 (de) 2017-09-11 2018-09-07 Maschine zur bearbeitung von länglichen werkstücken aus holz, kunststoff und dergleichen sowie verfahren zur vermessung solcher länglicher werkstücke

Country Status (2)

Country Link
EP (1) EP3453503B8 (de)
DE (1) DE102017008554A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111823049A (zh) * 2020-07-16 2020-10-27 吴斌 一种精密数控机床
CN113134878A (zh) * 2020-01-20 2021-07-20 豪迈股份公司 用于加工工件的设备和方法
CN115416112A (zh) * 2022-10-17 2022-12-02 溆浦湘楚木作古建工程有限公司 一种基于智能控制的四面刨开榫清边流水线
DE102022111128A1 (de) 2022-05-05 2023-11-09 Homag Gmbh Bearbeitungsvorrichtung sowie Verfahren

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859780A (en) * 1957-03-11 1958-11-11 Woods Machine Co Sa Wood planing machine having means responsive to thickness variations in work pieces for automatically adjusting a cutterhead
DE4105207A1 (de) * 1990-02-27 1991-08-29 Paloheimo Oy Vorrichtung an werkzeugmaschinen
US6533642B1 (en) * 2000-08-09 2003-03-18 Cemco, Inc. Electronic control system by planer/sander
US20030205293A1 (en) * 2002-05-02 2003-11-06 Sylvain Gilbert Automated planer machine
US20040177896A1 (en) * 2003-03-13 2004-09-16 Mcgehee Ronald W. Optimizing planer system and method
US20040235391A1 (en) * 2002-08-21 2004-11-25 Grivna Howard W. Material removal monitor
DE102006059415A1 (de) * 2006-12-15 2008-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Dickenmessung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19616165A1 (de) * 1996-04-24 1997-10-30 Hoffmann & Kuehnhenrich Gmbh Spanabhebende Bearbeitungsmaschine
DE19703813C2 (de) * 1997-01-27 1999-01-28 Schmidler Maschinenbau Gmbh Bauholz-Hobelmaschine und Abbundanlage mit Hobelmaschine
JPH11129205A (ja) * 1997-10-28 1999-05-18 Kikukawa Tekkosho:Kk 四面鉋盤
US6272437B1 (en) * 1998-04-17 2001-08-07 Cae Inc. Method and apparatus for improved inspection and classification of attributes of a workpiece

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859780A (en) * 1957-03-11 1958-11-11 Woods Machine Co Sa Wood planing machine having means responsive to thickness variations in work pieces for automatically adjusting a cutterhead
DE4105207A1 (de) * 1990-02-27 1991-08-29 Paloheimo Oy Vorrichtung an werkzeugmaschinen
US6533642B1 (en) * 2000-08-09 2003-03-18 Cemco, Inc. Electronic control system by planer/sander
US20030205293A1 (en) * 2002-05-02 2003-11-06 Sylvain Gilbert Automated planer machine
US20040235391A1 (en) * 2002-08-21 2004-11-25 Grivna Howard W. Material removal monitor
US20040177896A1 (en) * 2003-03-13 2004-09-16 Mcgehee Ronald W. Optimizing planer system and method
DE102006059415A1 (de) * 2006-12-15 2008-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Dickenmessung

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113134878A (zh) * 2020-01-20 2021-07-20 豪迈股份公司 用于加工工件的设备和方法
EP3851243A1 (de) * 2020-01-20 2021-07-21 HOMAG GmbH Vorrichtung und verfahren zum bearbeiten eines werkstücks
CN113134878B (zh) * 2020-01-20 2024-05-03 豪迈股份公司 用于加工工件的设备和方法
CN111823049A (zh) * 2020-07-16 2020-10-27 吴斌 一种精密数控机床
CN111823049B (zh) * 2020-07-16 2021-06-01 杭州川上机械科技有限公司 一种精密数控机床
DE102022111128A1 (de) 2022-05-05 2023-11-09 Homag Gmbh Bearbeitungsvorrichtung sowie Verfahren
CN115416112A (zh) * 2022-10-17 2022-12-02 溆浦湘楚木作古建工程有限公司 一种基于智能控制的四面刨开榫清边流水线

Also Published As

Publication number Publication date
EP3453503B8 (de) 2022-06-08
EP3453503B1 (de) 2022-02-16
DE102017008554A1 (de) 2019-03-14

Similar Documents

Publication Publication Date Title
EP3453503B1 (de) Maschine zur bearbeitung von länglichen werkstücken aus holz, kunststoff und dergleichen sowie verfahren zur vermessung solcher länglicher werkstücke
WO2015135686A1 (de) Verfahren zum betreiben einer plattenbearbeitungsanlage
EP3359358B1 (de) Bearbeitungsmaschine und verfahren zur bearbeitung von werkstücken
EP2958744B1 (de) Anlage und verfahren zur bearbeitung einer papierbahn oder wellpappebahn
DE102008029166B4 (de) Maschine zum Beschichten von Schmalflächenseiten plattenförmiger Werkstücke
DE102012006124A1 (de) Verfahren zur Erzeugung von Strukturen oder Konturen an einem Werkstück sowie eine Kehlmaschine
EP3290154A2 (de) Verfahren zur überwachung eines schleifprozesses
EP3546163A1 (de) Maschine und verfahren zum konischen bearbeiten, insbesondere zum konischen hobeln, von werkstücken aus holz, kunststoff und dergleichen
EP3498423B1 (de) Bearbeitungsvorrichtung zum bearbeiten einer werkstückschmalseite sowie verfahren
EP2308659A1 (de) Vorrichtung und Verfahren zum Ausrichten von Werkstücken
DE102016013408A1 (de) Maschine und Verfahren zur Bearbeitung von Werkstücken aus Holz, Kunststoff und dgl.
AT400826B (de) Verfahren zum einstellen eines vorritzers gegenüber einem trennsägeblatt und vorrichtung zur durchführung des verfahrens
EP3473377B1 (de) Verfahren zum betrieb zumindest einer bearbeitungsvorrichtung sowie bearbeitungsanlage
EP3372331B1 (de) Verfahren zum aufteilen eines plattenförmigen werkstücks
DE4105207A1 (de) Vorrichtung an werkzeugmaschinen
WO2019214948A1 (de) Werkstückbearbeitungsanlage, sowie verfahren zum betreiben einer werkstückbearbeitungsanlage und steuerungseinrichtung
EP2802441B1 (de) Holzbearbeitungsanlage und verfahren zu deren betrieb
EP2221134B1 (de) Bearbeitungsvorrichtung
DE102010047137A1 (de) Verfahren und Vorrichtung zur Überwachung der Herstellung von Verlege- und Verriegelungsprofilen von Laminatpaneelen
EP2665587B1 (de) Kehlmaschine zum bearbeiten von stabförmigen werkstücken aus holz, kunststoff und dergleichen
EP3659765A1 (de) Vorrichtung zur bearbeitung länglicher werkstücke aus holz, kunststoff und dergleichen
DE102009010372A1 (de) Bürstanordnung zur Bearbeitung von zu reinigenden Werkstücken
DE102022111128A1 (de) Bearbeitungsvorrichtung sowie Verfahren
DE102004049436A1 (de) Bearbeitungsmaschine und Verfahren zur Bearbeitung von Werkstücken
DE202019103020U1 (de) Vorrichtung zur Visualisierung eines Abschnitts einer Bandkontur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190913

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210910

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018008768

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1468614

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

RIN2 Information on inventor provided after grant (corrected)

Inventor name: FRANK, BENJAMIN

Inventor name: BURGER, CHRISTIAN

Inventor name: DAWIDZIAK, ALBRECHT

Inventor name: BALLWEG, JOSEF

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220516

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220517

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018008768

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220907

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220907

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230919

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231129

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220216