EP3436686B1 - Zündvorrichtung zum zünden eines luft-kraftstoffgemisches in einem brennraum - Google Patents

Zündvorrichtung zum zünden eines luft-kraftstoffgemisches in einem brennraum Download PDF

Info

Publication number
EP3436686B1
EP3436686B1 EP17715623.9A EP17715623A EP3436686B1 EP 3436686 B1 EP3436686 B1 EP 3436686B1 EP 17715623 A EP17715623 A EP 17715623A EP 3436686 B1 EP3436686 B1 EP 3436686B1
Authority
EP
European Patent Office
Prior art keywords
electrode
voltage source
output
ignition device
spark plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17715623.9A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3436686A1 (de
Inventor
Gunnar Armbrecht
Martin Fuchs
Michael Wollitzer
Marcel VAN DELDEN
Thomas Musch
Sven GRÖGER
Andre Bergner
Gordon NOTZON
Peter Awakowicz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosenberger Hochfrequenztechnik GmbH and Co KG
Original Assignee
Rosenberger Hochfrequenztechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosenberger Hochfrequenztechnik GmbH and Co KG filed Critical Rosenberger Hochfrequenztechnik GmbH and Co KG
Publication of EP3436686A1 publication Critical patent/EP3436686A1/de
Application granted granted Critical
Publication of EP3436686B1 publication Critical patent/EP3436686B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P11/00Safety means for electric spark ignition, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/055Layout of circuits with protective means to prevent damage to the circuit, e.g. semiconductor devices or the ignition coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/10Drives of distributors or of circuit-makers or -breakers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the invention relates to an ignition device for igniting an air-fuel mixture in a combustion chamber, in particular an internal combustion engine, with a spark plug.
  • a corresponding high-frequency plasma ignition device comprises a series resonant circuit with an inductance and a capacitance, and a high-frequency source for the resonant excitation of this series resonant circuit.
  • the capacitance is represented by inner and outer conductor electrodes with a dielectric in between. The extreme ends of these electrodes extend into the combustion chamber at a predetermined mutual distance.
  • a method for ignition in which a spark plasma is generated by means of a high-voltage pulse, which is then further heated by means of an HF field and thereby transitions into a glow discharge.
  • the high-voltage pulse and an output signal of an HF generator are fed together to a spark electrode of a spark plug.
  • a counter electrode of the spark plug is grounded.
  • the spark plug is a coaxial structure and essentially consists of a central electrode surrounded by an insulator and an outer electrode which is connected to the spark plug housing.
  • the ignition coil supplies the spark plug with a high voltage pulse or high DC voltage pulse. A spark is created between the electrodes that initiates combustion.
  • An alternative method in which, in addition to the high voltage applied to the ignition coil, a high-frequency voltage is applied to the spark plug, is in US Pat DE 10 2013 215 663 A1 A 1 described. The spark plasma is transformed into an HF plasma.
  • the DE 11 2014 002666 T5 discloses a spark plug with two electrodes, a high voltage source and a high frequency voltage source.
  • the two voltage sources share the same input and the same ground connection.
  • the JP 2011 134636 describes a spark plug with three electrodes. A first electrode is connected to a high voltage source, a second electrode is connected to a high frequency voltage source and a third electrode serves as a ground connection.
  • the spark plasma burns between two electrodes, an active "driven” electrode (also called a high-voltage electrode) and a passive electrode (also called a ground electrode), their potential on the ground (0 V) of the engine block and the complete body of one Automobile lies.
  • the ground electrode can also be designed as a multiple electrode.
  • the plasma is no longer heated.
  • reactive species such as atomic oxygen
  • the combustion takes place on considerably longer time scales, but lives from the previously generated atomic oxygen density.
  • the object of the invention is to improve an ignition device with regard to the possibilities of influencing the parameters of the plasma between the electrodes of the spark plug.
  • an ignition device with a spark plug that has exactly two electrodes, namely a first electrode and a second electrode, it is provided that the output of the high-frequency voltage source is electrically connected to the second electrode via a second electrical line path such that the high-frequency AC voltage is present at the second electrode.
  • a particularly simple and functionally reliable ignition device is achieved in that the high voltage source is designed as an ignition coil.
  • Protection of the high-frequency voltage source against overvoltage is achieved by electrically inserting a protective circuit in the second line path between the second electrode of the spark plug and the output of the high-frequency voltage source, which blocks the high-voltage pulse from breaking through from the high-voltage source to the output of the high-frequency voltage source.
  • Frequency-selective transmission for example of only one desired frequency band, from the high-frequency voltage source to the second electrode of the spark plug is achieved by a separating element in the form of a frequency-selective filter, in particular, in the second electrical conduction path between the second electrode of the spark plug and the output of the high-frequency voltage source in the form of a bandpass filter, is electrically looped in.
  • Protection of the isolating element from overvoltage is also achieved in that the isolating element between the protective circuit and the output of the high-frequency voltage source is looped into the second electrical line path.
  • the separating element between the protective circuit and the second electrode is looped into the second electrical line path.
  • An improved transmission of the high voltage from the high voltage source to the spark plug is achieved in that a protective circuit which represents a ground reference for the HF is electrically inserted in the first electrical line path between the output of the high voltage source and the first electrode of the spark plug.
  • a clear separation of the two active electrodes is achieved in that only the high-voltage pulse is applied to the first electrode and that only the high-frequency AC voltage is applied to the second electrode.
  • the illustrated preferred embodiment of an ignition device 10 has a spark plug 12, a high-voltage source or high-DC voltage source 14 and a high-frequency voltage source 16.
  • the spark plug 12 has a first electrode 18 (high-voltage electrode) and a second electrode 20 (high-frequency electrode).
  • the electrodes 18, 20 project into a combustion chamber, not shown, for example in a working cylinder of an internal combustion engine, in which a fuel-air mixture is to be ignited.
  • the high-voltage source 14 is designed as an ignition coil and generates a high-voltage pulse or high-DC voltage pulse (DC), which is present at an output 22 of the high-voltage source 14.
  • DC high-voltage pulse
  • high-voltage electrical pulse here denotes a high-voltage electrical voltage pulse of a few kV, such as 3 kV to 30 kV or 8 kV to 12 kV.
  • the output 22 of the high-voltage source 14 is electrically connected to the first electrode 18 via a first electrical conduction path 24 such that the high-voltage pulse comes off the high voltage source 14 of the first electrode 18 of the spark plug 12 is supplied.
  • the electrical high-voltage pulse is only applied to the first electrode (18).
  • the high-frequency voltage source 16 generates a high-frequency AC voltage, which is present at an output 26 of the high-frequency voltage source 16.
  • the output 26 of the high-frequency voltage source 16 is electrically connected to the second electrode 20 of the spark plug 12 via a second electrical conduction path 28 such that the high-frequency alternating voltage from the high-frequency voltage source 16 is supplied to the second electrode 20 of the spark plug 12.
  • the high-frequency voltage source 16 is also electrically connected to an electrical ground potential 40.
  • the high-frequency AC voltage is only applied to the second electrode (20).
  • a protective circuit 30 is electrically looped into the second electrical line path 28.
  • This protective circuit 30 is designed such that it prevents the high-voltage pulse from the high-voltage source 14 from passing through the second electrical line path 28 to the output 26 of the high-frequency voltage source 16 and the high-frequency AC voltage from the high-frequency voltage source 16 in the direction of the second electrode 20 Spark plug 12 forwards. In this way, the high-frequency voltage source 16 is protected against overvoltage.
  • a separating element 32 is electrically looped in between the protective circuit 30 and the output 26 of the high-frequency voltage source 16 in the second electrical line path 28.
  • This separating element 32 is designed as a frequency-selective filter, for example as a bandpass filter with a constant or variable capacitance 34 and a constant or variable inductance 36.
  • This bandpass filter only allows a predetermined frequency band to pass from the high-frequency voltage source 16 via the second electrical conduction path 28 in the direction of the second electrode 20.
  • the ignition device according to the invention is designed as a high-frequency plasma ignition system and contains two active electrodes in the spark plug 12, the high-voltage electrode as the first electrode 18 and the high-frequency electrode as the second electrode 20.
  • a ground electrode as in conventional ignition systems, is not present.
  • the ignition coil 14 generates a high voltage pulse or high DC voltage pulse (DC) which, when a breakdown voltage is reached between the high voltage electrode 18 and the high frequency electrode 20 of the spark plug 12, causes an initial plasma to burn in the space around the two electrodes 18, 20 (arrow 42).
  • DC high DC voltage pulse
  • This plasma is further supplied with energy by the subsequent supply of the high-frequency AC voltage from the high-frequency voltage source 16 (arrow 44) and is thus maintained for a certain time, so that the plasma is present longer than it is by the high-voltage pulse from the high-voltage source 14 would be the case.
  • a plasma contains, among other things, electrons, ions, excited particles and neutral particles.
  • the free charge carriers (electrons and ions) form a conductive plasma channel between the high-voltage electrode 18 and the high-frequency electrode 20 of the spark plug 12.
  • the free charge carriers created by the plasma are used for the current transport of the high-frequency plasma between the high-frequency electrode 20 and the high-voltage electrode 18.
  • the significantly increased amount of atomic oxygen ensures more effective combustion and allows, among other things, the safe ignition of lean fuel-air mixtures in the combustion chamber or an increased engine output with constant fuel consumption.
  • the protective circuit 30 is provided between the high-frequency electrode 20 and the high-frequency voltage source 16.
  • a big advantage of this ignition system is that the plasma is directly between the two active electrodes 18, 20 burns. The high-frequency voltage source is safely taken over in order to continue to actively couple energy into the plasma after the initial spark from the high-voltage pulse from the high-voltage source 14, since the initial spark in any case generates free charge carriers between the electrodes.
  • the protective circuit 30 includes, for example, a gas-filled surge arrester, which has an insulating effect, as long as the voltage remains below a predetermined value of, for example, approximately 450 V.
  • the gas-filled surge arrester does not interfere due to its small capacity of only about 2 pF. If the ignition voltage of the gas-filled surge arrester is exceeded, the resistance drops to very low values within microseconds, whereby current peaks of up to 100 kA, for example, can be derived.
  • the demands on the dielectric strength of the separating element 32 are drastically reduced.
  • the load on the high-voltage source 14 in the form of the ignition coil is considerably reduced by this step and the generation of the high voltage is significantly simplified.
  • the generation of sufficiently high voltage pulses for safe ignition is an ever growing challenge.
  • there are more degrees of freedom in the selection of the reactive components of the separating element since it is no longer necessary to pay attention to the lowest possible capacitive load on the ignition coil.
  • the capacities of the isolating element can be increased and the inductivities reduced, which simplifies the implementation of the isolating element.
  • Fig. 2 are functionally identical parts with the same reference numerals as in Fig. 1 referred to, so that to explain them to the above description of Fig. 1 is referred.
  • the protection circuit 30 between the Separating element 32 and the output 26 of the high-frequency voltage source 16 are looped into the second electrical conduction path 28.
  • the protective circuit 30 and / or the isolating element 32 additionally has an electrical connection to the ground potential 40, as with dashed lines in FIG Fig. 1 and 2nd shown.
  • a protective circuit 31 with an electrical connection to ground potential 40 is electrically looped into the first electrical line path 24 between the output 22 of the high-voltage source 14 and the first electrode 18.
  • This protection circuit 31 is in the Fig. 1 and 2nd accordingly indicated by dashed lines.
  • the protective circuit is intended to be a reference to the HF and not to block the high voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
EP17715623.9A 2016-03-29 2017-03-23 Zündvorrichtung zum zünden eines luft-kraftstoffgemisches in einem brennraum Active EP3436686B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016003793.8A DE102016003793A1 (de) 2016-03-29 2016-03-29 Zündvorrichtung zum Zünden eines Luft-Kraftstoffgemisches in einem Brennraum
PCT/EP2017/000363 WO2017167438A1 (de) 2016-03-29 2017-03-23 Zündvorrichtung zum zünden eines luft-kraftstoffgemisches in einem brennraum

Publications (2)

Publication Number Publication Date
EP3436686A1 EP3436686A1 (de) 2019-02-06
EP3436686B1 true EP3436686B1 (de) 2020-07-29

Family

ID=58489281

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17715623.9A Active EP3436686B1 (de) 2016-03-29 2017-03-23 Zündvorrichtung zum zünden eines luft-kraftstoffgemisches in einem brennraum

Country Status (8)

Country Link
US (1) US10982641B2 (ja)
EP (1) EP3436686B1 (ja)
JP (1) JP2019511670A (ja)
KR (1) KR20180124908A (ja)
CN (1) CN109312707B (ja)
DE (1) DE102016003793A1 (ja)
TW (1) TW201734304A (ja)
WO (1) WO2017167438A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110500222A (zh) * 2019-09-20 2019-11-26 韦伟平 一种稀薄燃烧发动机的高频谐振点火电路及其工作、控制方法
CN114109692B (zh) * 2021-11-26 2022-09-27 山东大学 一种快脉冲多点放电系统及发动机燃烧控制方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1335797A (en) * 1920-04-06 of toledo
JPS5328568B1 (ja) * 1971-03-06 1978-08-15
JPS5152653Y2 (ja) * 1971-09-02 1976-12-16
US3934566A (en) * 1974-08-12 1976-01-27 Ward Michael A V Combustion in an internal combustion engine
US4297983A (en) * 1978-12-11 1981-11-03 Ward Michael A V Spherical reentrant chamber
US4369756A (en) * 1980-01-11 1983-01-25 Nissan Motor Co., Ltd. Plasma jet ignition system for internal combustion engine
DE3145169A1 (de) * 1981-11-13 1983-05-26 Marcel 68390 Sausheim-Battenheim Blanchard "anordnung zur erzielung von hochspannung"
US5777867A (en) * 1995-09-14 1998-07-07 Suitomo Electric Industries, Ltd. Electric discharge method and apparatus
DE19723784C1 (de) * 1997-06-06 1998-08-20 Daimler Benz Ag Schaltungsanordnung für die Zündung einer Brennkraftmaschine
DE102004058925A1 (de) 2004-12-07 2006-06-08 Siemens Ag Hochfrequenz-Plasmazündvorrichtung für Verbrennungskraftmaschinen, insbesondere für direkt einspritzende Otto-Motoren
JP2008082286A (ja) * 2006-09-28 2008-04-10 Toyota Central R&D Labs Inc 内燃機関及びその点火装置
DE102008051185A1 (de) 2008-02-14 2009-11-12 Stanislav Tkadlec Verfahren-Zündung durch Erzeugung des Entladungsplasma mit Hilfe HF-Feldes und Gleichspannungsimpulses
JP5152653B2 (ja) * 2008-05-20 2013-02-27 株式会社エーイーティー 火花放電点火方式とマイクロ波プラズマ点火方式を併用する点火装置
JP5413186B2 (ja) * 2009-12-25 2014-02-12 株式会社デンソー 高周波プラズマ点火装置
JP5320474B2 (ja) 2010-09-07 2013-10-23 日本特殊陶業株式会社 点火システム及び点火プラグ
JP6082877B2 (ja) 2011-01-18 2017-02-22 イマジニアリング株式会社 プラズマ生成装置、及び内燃機関
US9677534B2 (en) 2011-03-14 2017-06-13 Imagineering, Inc. Internal combustion engine
JP5954812B2 (ja) 2011-10-31 2016-07-20 ダイハツ工業株式会社 火花点火式内燃機関の制御装置
JP5469229B1 (ja) * 2012-10-26 2014-04-16 三菱電機株式会社 高周波放電用点火コイル装置
JP5805125B2 (ja) 2013-03-18 2015-11-04 三菱電機株式会社 点火装置
CN105264218B (zh) 2013-06-04 2017-06-23 三菱电机株式会社 火花点火式内燃机的点火装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN109312707A (zh) 2019-02-05
US10982641B2 (en) 2021-04-20
JP2019511670A (ja) 2019-04-25
WO2017167438A1 (de) 2017-10-05
TW201734304A (zh) 2017-10-01
CN109312707B (zh) 2019-11-26
EP3436686A1 (de) 2019-02-06
DE102016003793A1 (de) 2017-10-05
US20200011283A1 (en) 2020-01-09
KR20180124908A (ko) 2018-11-21

Similar Documents

Publication Publication Date Title
EP3465849B1 (de) Zündkerze für eine hochfrequenz-zündanlage
DE3137239C2 (de) Plasmazündvorrichtung für eine Brennkraftmaschine
DE3222496C2 (de) Plasma-Zündsystem für eine mehrzylindrige Brennkraftmaschine
EP0118789B1 (de) Zündkerze für Brennkraftmaschinen
DE3221990C2 (de) Plasmazündanlage für eine mehrzylindrige Brennkraftmaschine
WO2017167437A1 (de) Zündvorrichtung zum zünden eines luft-kraftstoffgemisches in einem brennraum
EP2058909B1 (de) Resonatoranordnung
DE102010015344B4 (de) Verfahren zum Zünden eines Brennstoff-Luft-Gemisches einer Verbrennungskammer, insbesondere in einem Verbrennungsmotor durch Erzeugen einer Korona-Entladung
DE3781309T2 (de) Elektronische plasmazuendsteuerung in einer inneren brennkraftmaschine.
WO2012130649A1 (de) Verfahren und vorrichtung zur verlängerung der brenndauer eines von einer zündkerze gezündeten funkens in einem verbrennungsmotor
DE10331418A1 (de) Plasmastrahl-Zündkerze
DE102013105682B4 (de) Verfahren zum Steuern einer Koronazündeinrichtung
EP3436686B1 (de) Zündvorrichtung zum zünden eines luft-kraftstoffgemisches in einem brennraum
EP2847456B1 (de) Hochfrequenz-plasmazündvorrichtung
EP4148988A1 (de) Pulsgenerator für einen hpem-puls
DE102010045174B4 (de) Schaltungsanordnung für eine HF-Zündung von Verbrennungsmotoren
DE102010024396B4 (de) Verfahren zum Zünden eines Brennstoff-Luft-Gemisches einer Verbrennungskammer, insbesondere in einem Verbrennungsmotor durch Erzeugen einer Korona-Entladung
DE102013102290A1 (de) Zündsystem
DE102012210391B4 (de) Zündvorrichtung
DE1902199A1 (de) Verfahren und Vorrichtung zur Verbesserung der Zuendung bei Brennkraftmaschinen
DE102013112039B4 (de) Korona-Zündsystem für einen Verbrennungsmotor und Verfahren zur Steuerung eines Korona-Zündsystems
DE102015112217B3 (de) Verfahren zum Steuern einer Koronazündeinrichtung
DE1751892C3 (de) Elektrische Impulserzeugungseinrichtung
WO2017108389A1 (de) Zündvorrichtung zum zünden eines kraftstoff-luft-gemisches
DE102016006782A1 (de) Zündvorrichtung und Verfahren zum Zünden eines Luft-Kraftstoffgemisches

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191108

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200429

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1296102

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017006422

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017006422

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210323

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230323

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1296102

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230317

Year of fee payment: 7

Ref country code: IT

Payment date: 20230321

Year of fee payment: 7

Ref country code: GB

Payment date: 20230321

Year of fee payment: 7

Ref country code: DE

Payment date: 20230328

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170323

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017006422

Country of ref document: DE

Representative=s name: KANDLBINDER, MARKUS, DIPL.-PHYS., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG