EP3436686B1 - Ignition device for igniting an air fuel in a combustion chamber - Google Patents

Ignition device for igniting an air fuel in a combustion chamber Download PDF

Info

Publication number
EP3436686B1
EP3436686B1 EP17715623.9A EP17715623A EP3436686B1 EP 3436686 B1 EP3436686 B1 EP 3436686B1 EP 17715623 A EP17715623 A EP 17715623A EP 3436686 B1 EP3436686 B1 EP 3436686B1
Authority
EP
European Patent Office
Prior art keywords
electrode
voltage source
output
ignition device
spark plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17715623.9A
Other languages
German (de)
French (fr)
Other versions
EP3436686A1 (en
Inventor
Gunnar Armbrecht
Martin Fuchs
Michael Wollitzer
Marcel VAN DELDEN
Thomas Musch
Sven GRÖGER
Andre Bergner
Gordon NOTZON
Peter Awakowicz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosenberger Hochfrequenztechnik GmbH and Co KG
Original Assignee
Rosenberger Hochfrequenztechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosenberger Hochfrequenztechnik GmbH and Co KG filed Critical Rosenberger Hochfrequenztechnik GmbH and Co KG
Publication of EP3436686A1 publication Critical patent/EP3436686A1/en
Application granted granted Critical
Publication of EP3436686B1 publication Critical patent/EP3436686B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P11/00Safety means for electric spark ignition, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/055Layout of circuits with protective means to prevent damage to the circuit, e.g. semiconductor devices or the ignition coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/10Drives of distributors or of circuit-makers or -breakers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the invention relates to an ignition device for igniting an air-fuel mixture in a combustion chamber, in particular an internal combustion engine, with a spark plug.
  • a corresponding high-frequency plasma ignition device comprises a series resonant circuit with an inductance and a capacitance, and a high-frequency source for the resonant excitation of this series resonant circuit.
  • the capacitance is represented by inner and outer conductor electrodes with a dielectric in between. The extreme ends of these electrodes extend into the combustion chamber at a predetermined mutual distance.
  • a method for ignition in which a spark plasma is generated by means of a high-voltage pulse, which is then further heated by means of an HF field and thereby transitions into a glow discharge.
  • the high-voltage pulse and an output signal of an HF generator are fed together to a spark electrode of a spark plug.
  • a counter electrode of the spark plug is grounded.
  • the spark plug is a coaxial structure and essentially consists of a central electrode surrounded by an insulator and an outer electrode which is connected to the spark plug housing.
  • the ignition coil supplies the spark plug with a high voltage pulse or high DC voltage pulse. A spark is created between the electrodes that initiates combustion.
  • An alternative method in which, in addition to the high voltage applied to the ignition coil, a high-frequency voltage is applied to the spark plug, is in US Pat DE 10 2013 215 663 A1 A 1 described. The spark plasma is transformed into an HF plasma.
  • the DE 11 2014 002666 T5 discloses a spark plug with two electrodes, a high voltage source and a high frequency voltage source.
  • the two voltage sources share the same input and the same ground connection.
  • the JP 2011 134636 describes a spark plug with three electrodes. A first electrode is connected to a high voltage source, a second electrode is connected to a high frequency voltage source and a third electrode serves as a ground connection.
  • the spark plasma burns between two electrodes, an active "driven” electrode (also called a high-voltage electrode) and a passive electrode (also called a ground electrode), their potential on the ground (0 V) of the engine block and the complete body of one Automobile lies.
  • the ground electrode can also be designed as a multiple electrode.
  • the plasma is no longer heated.
  • reactive species such as atomic oxygen
  • the combustion takes place on considerably longer time scales, but lives from the previously generated atomic oxygen density.
  • the object of the invention is to improve an ignition device with regard to the possibilities of influencing the parameters of the plasma between the electrodes of the spark plug.
  • an ignition device with a spark plug that has exactly two electrodes, namely a first electrode and a second electrode, it is provided that the output of the high-frequency voltage source is electrically connected to the second electrode via a second electrical line path such that the high-frequency AC voltage is present at the second electrode.
  • a particularly simple and functionally reliable ignition device is achieved in that the high voltage source is designed as an ignition coil.
  • Protection of the high-frequency voltage source against overvoltage is achieved by electrically inserting a protective circuit in the second line path between the second electrode of the spark plug and the output of the high-frequency voltage source, which blocks the high-voltage pulse from breaking through from the high-voltage source to the output of the high-frequency voltage source.
  • Frequency-selective transmission for example of only one desired frequency band, from the high-frequency voltage source to the second electrode of the spark plug is achieved by a separating element in the form of a frequency-selective filter, in particular, in the second electrical conduction path between the second electrode of the spark plug and the output of the high-frequency voltage source in the form of a bandpass filter, is electrically looped in.
  • Protection of the isolating element from overvoltage is also achieved in that the isolating element between the protective circuit and the output of the high-frequency voltage source is looped into the second electrical line path.
  • the separating element between the protective circuit and the second electrode is looped into the second electrical line path.
  • An improved transmission of the high voltage from the high voltage source to the spark plug is achieved in that a protective circuit which represents a ground reference for the HF is electrically inserted in the first electrical line path between the output of the high voltage source and the first electrode of the spark plug.
  • a clear separation of the two active electrodes is achieved in that only the high-voltage pulse is applied to the first electrode and that only the high-frequency AC voltage is applied to the second electrode.
  • the illustrated preferred embodiment of an ignition device 10 has a spark plug 12, a high-voltage source or high-DC voltage source 14 and a high-frequency voltage source 16.
  • the spark plug 12 has a first electrode 18 (high-voltage electrode) and a second electrode 20 (high-frequency electrode).
  • the electrodes 18, 20 project into a combustion chamber, not shown, for example in a working cylinder of an internal combustion engine, in which a fuel-air mixture is to be ignited.
  • the high-voltage source 14 is designed as an ignition coil and generates a high-voltage pulse or high-DC voltage pulse (DC), which is present at an output 22 of the high-voltage source 14.
  • DC high-voltage pulse
  • high-voltage electrical pulse here denotes a high-voltage electrical voltage pulse of a few kV, such as 3 kV to 30 kV or 8 kV to 12 kV.
  • the output 22 of the high-voltage source 14 is electrically connected to the first electrode 18 via a first electrical conduction path 24 such that the high-voltage pulse comes off the high voltage source 14 of the first electrode 18 of the spark plug 12 is supplied.
  • the electrical high-voltage pulse is only applied to the first electrode (18).
  • the high-frequency voltage source 16 generates a high-frequency AC voltage, which is present at an output 26 of the high-frequency voltage source 16.
  • the output 26 of the high-frequency voltage source 16 is electrically connected to the second electrode 20 of the spark plug 12 via a second electrical conduction path 28 such that the high-frequency alternating voltage from the high-frequency voltage source 16 is supplied to the second electrode 20 of the spark plug 12.
  • the high-frequency voltage source 16 is also electrically connected to an electrical ground potential 40.
  • the high-frequency AC voltage is only applied to the second electrode (20).
  • a protective circuit 30 is electrically looped into the second electrical line path 28.
  • This protective circuit 30 is designed such that it prevents the high-voltage pulse from the high-voltage source 14 from passing through the second electrical line path 28 to the output 26 of the high-frequency voltage source 16 and the high-frequency AC voltage from the high-frequency voltage source 16 in the direction of the second electrode 20 Spark plug 12 forwards. In this way, the high-frequency voltage source 16 is protected against overvoltage.
  • a separating element 32 is electrically looped in between the protective circuit 30 and the output 26 of the high-frequency voltage source 16 in the second electrical line path 28.
  • This separating element 32 is designed as a frequency-selective filter, for example as a bandpass filter with a constant or variable capacitance 34 and a constant or variable inductance 36.
  • This bandpass filter only allows a predetermined frequency band to pass from the high-frequency voltage source 16 via the second electrical conduction path 28 in the direction of the second electrode 20.
  • the ignition device according to the invention is designed as a high-frequency plasma ignition system and contains two active electrodes in the spark plug 12, the high-voltage electrode as the first electrode 18 and the high-frequency electrode as the second electrode 20.
  • a ground electrode as in conventional ignition systems, is not present.
  • the ignition coil 14 generates a high voltage pulse or high DC voltage pulse (DC) which, when a breakdown voltage is reached between the high voltage electrode 18 and the high frequency electrode 20 of the spark plug 12, causes an initial plasma to burn in the space around the two electrodes 18, 20 (arrow 42).
  • DC high DC voltage pulse
  • This plasma is further supplied with energy by the subsequent supply of the high-frequency AC voltage from the high-frequency voltage source 16 (arrow 44) and is thus maintained for a certain time, so that the plasma is present longer than it is by the high-voltage pulse from the high-voltage source 14 would be the case.
  • a plasma contains, among other things, electrons, ions, excited particles and neutral particles.
  • the free charge carriers (electrons and ions) form a conductive plasma channel between the high-voltage electrode 18 and the high-frequency electrode 20 of the spark plug 12.
  • the free charge carriers created by the plasma are used for the current transport of the high-frequency plasma between the high-frequency electrode 20 and the high-voltage electrode 18.
  • the significantly increased amount of atomic oxygen ensures more effective combustion and allows, among other things, the safe ignition of lean fuel-air mixtures in the combustion chamber or an increased engine output with constant fuel consumption.
  • the protective circuit 30 is provided between the high-frequency electrode 20 and the high-frequency voltage source 16.
  • a big advantage of this ignition system is that the plasma is directly between the two active electrodes 18, 20 burns. The high-frequency voltage source is safely taken over in order to continue to actively couple energy into the plasma after the initial spark from the high-voltage pulse from the high-voltage source 14, since the initial spark in any case generates free charge carriers between the electrodes.
  • the protective circuit 30 includes, for example, a gas-filled surge arrester, which has an insulating effect, as long as the voltage remains below a predetermined value of, for example, approximately 450 V.
  • the gas-filled surge arrester does not interfere due to its small capacity of only about 2 pF. If the ignition voltage of the gas-filled surge arrester is exceeded, the resistance drops to very low values within microseconds, whereby current peaks of up to 100 kA, for example, can be derived.
  • the demands on the dielectric strength of the separating element 32 are drastically reduced.
  • the load on the high-voltage source 14 in the form of the ignition coil is considerably reduced by this step and the generation of the high voltage is significantly simplified.
  • the generation of sufficiently high voltage pulses for safe ignition is an ever growing challenge.
  • there are more degrees of freedom in the selection of the reactive components of the separating element since it is no longer necessary to pay attention to the lowest possible capacitive load on the ignition coil.
  • the capacities of the isolating element can be increased and the inductivities reduced, which simplifies the implementation of the isolating element.
  • Fig. 2 are functionally identical parts with the same reference numerals as in Fig. 1 referred to, so that to explain them to the above description of Fig. 1 is referred.
  • the protection circuit 30 between the Separating element 32 and the output 26 of the high-frequency voltage source 16 are looped into the second electrical conduction path 28.
  • the protective circuit 30 and / or the isolating element 32 additionally has an electrical connection to the ground potential 40, as with dashed lines in FIG Fig. 1 and 2nd shown.
  • a protective circuit 31 with an electrical connection to ground potential 40 is electrically looped into the first electrical line path 24 between the output 22 of the high-voltage source 14 and the first electrode 18.
  • This protection circuit 31 is in the Fig. 1 and 2nd accordingly indicated by dashed lines.
  • the protective circuit is intended to be a reference to the HF and not to block the high voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft eine Zündvorrichtung zum Zünden eines Luft-Kraftstoffgemisches in einem Brennraum, insbesondere einer Brennkraftmaschine, mit einer Zündkerze.The invention relates to an ignition device for igniting an air-fuel mixture in a combustion chamber, in particular an internal combustion engine, with a spark plug.

So genannte Otto-Brennverfahren mit Direkteinspritzung des Brennstoffes besitzen durch die Möglichkeit eine Schichtladung im Verbrennungsraum darzustellen ein großes Potential hinsichtlich der Verbrauchsreduktion. Das nicht homogene Gemisch im Brennraum stellt jedoch erhöhte Anforderungen an das eingesetzte Zündverfahren hinsichtlich einer zuverlässigen Zündung zum geeigneten Zeitpunkt. Schwankungen jeglicher Art mindern beispielsweise die Qualität der Zündung und somit den Wirkungsgrad des gesamten Motors. Zum einen kann die Lage des zündfähigen Gemisches leicht variieren und zum anderen kann sich der Haken der Masseelektrode der Zündkerze störend auf die Gemischbildung auswirken. Hilfreich für ein direkt einspritzendes Brennverfahren ist ein Zündsystem mit einer größeren räumlichen Ausdehnung in den Verbrennungsraum hinein. Hierzu wird in der DE 10 2004 058 925 A1 vorgeschlagen, ein Kraftstoff-Luft-Gemisch in einem Verbrennungsraum einer Brennkraftmaschine mittels eines Plasmas zu zünden. Eine entsprechende Hochfrequenz-Plasmazündvorrichtung umfasst einen Serienschwingkreis mit einer Induktivität und einer Kapazität sowie eine Hochfrequenzquelle zur resonanten Anregung dieses Serienschwingkreises. Die Kapazität ist durch Innen- und Außenleiterelektroden mit dazwischen liegendem Dielektrikum dargestellt. Diese Elektroden reichen mit ihren äußersten Enden mit einem vorgegebenen gegenseitigen Abstand bis in den Verbrennungsraum hinein.So-called Otto combustion processes with direct fuel injection have the potential to represent stratified charge in the combustion chamber, which has great potential for reducing consumption. However, the non-homogeneous mixture in the combustion chamber places increased demands on the ignition method used with regard to reliable ignition at the appropriate time. Fluctuations of any kind, for example, reduce the quality of the ignition and thus the efficiency of the entire engine. On the one hand, the position of the ignitable mixture can vary slightly, and on the other hand, the hook of the ground electrode of the spark plug can have a disruptive effect on the mixture formation. An ignition system with a larger spatial extension into the combustion chamber is helpful for a direct injection combustion process. For this, in the DE 10 2004 058 925 A1 proposed a fuel-air mixture in one Ignite combustion chamber of an internal combustion engine by means of a plasma. A corresponding high-frequency plasma ignition device comprises a series resonant circuit with an inductance and a capacitance, and a high-frequency source for the resonant excitation of this series resonant circuit. The capacitance is represented by inner and outer conductor electrodes with a dielectric in between. The extreme ends of these electrodes extend into the combustion chamber at a predetermined mutual distance.

Aus der DE 10 2008 051 185 A1 ist ein Verfahren zum Zünden bekannt, bei dem mittels eines Hochspannungsimpulses ein Funkenplasma erzeugt wird, welches anschließend mittels eines HF-Feldes weiter geheizt wird und dabei in eine Glimmentladung übergeht. Der Hochspannungsimpuls und ein Ausgangssignal eines HF-Generators werden dabei gemeinsam einer Funkenelektrode einer Zündkerze zugeführt. Eine Gegenelektrode der Zündkerze ist geerdet.From the DE 10 2008 051 185 A1 A method for ignition is known in which a spark plasma is generated by means of a high-voltage pulse, which is then further heated by means of an HF field and thereby transitions into a glow discharge. The high-voltage pulse and an output signal of an HF generator are fed together to a spark electrode of a spark plug. A counter electrode of the spark plug is grounded.

Moderne Zündanlagen für Ottomotoren weisen heute eine Zündkerze und eine Einzelzündspule mit elektronischer Ansteuereinheit auf. Die Zündkerze ist ein koaxialer Aufbau und besteht im Wesentlichen aus einer mittleren Elektrode umgeben von einem Isolator und einer äußeren Elektrode, die mit dem Zündkerzengehäuse verbunden ist. Die Zündspule liefert der Zündkerze einen Hochspannungsimpuls bzw. Hochgleichspannungsimpuls. Zwischen den Elektroden entsteht ein Funke der die Verbrennung einleitet. Ein alternatives Verfahren, in dem zusätzlich zur angelegten Hochspannung der Zündspule eine hochfrequente Spannung an die Zündkerze angelegt wird, ist in der DE 10 2013 215 663 A1 A 1 beschrieben. Hierbei geht das Funkenplasma in ein HF-Plasma über.Modern ignition systems for gasoline engines today have a spark plug and a single ignition coil with an electronic control unit. The spark plug is a coaxial structure and essentially consists of a central electrode surrounded by an insulator and an outer electrode which is connected to the spark plug housing. The ignition coil supplies the spark plug with a high voltage pulse or high DC voltage pulse. A spark is created between the electrodes that initiates combustion. An alternative method in which, in addition to the high voltage applied to the ignition coil, a high-frequency voltage is applied to the spark plug, is in US Pat DE 10 2013 215 663 A1 A 1 described. The spark plasma is transformed into an HF plasma.

Die DE 11 2014 002666 T5 offenbart eine Zündkerze mit zwei Elektroden, einer Hochspannungsquelle und einer Hochfrequenzspannungsquelle. Die zwei Spannungsquellen teilen den gleichen Eingang und den gleichen Masseanschluss.The DE 11 2014 002666 T5 discloses a spark plug with two electrodes, a high voltage source and a high frequency voltage source. The two voltage sources share the same input and the same ground connection.

Die JP 2011 134636 beschreibt eine Zündkerze mit drei Elektroden. Eine erste Elektrode ist mit einer Hochspannungsquelle verbunden, eine zweite Elektrode ist mit einer Hochfrequenzspannungsquelle verbunden und eine dritte Elektrode dient als Masseanschluss.The JP 2011 134636 describes a spark plug with three electrodes. A first electrode is connected to a high voltage source, a second electrode is connected to a high frequency voltage source and a third electrode serves as a ground connection.

Bei den zuvor beschriebenen klassischen Zündkonzepten brennt das Funkenplasma zwischen zwei Elektroden, einer aktiven "getriebenen" Elektrode (auch Hochspannungselektrode genannt) und einer passiven Elektrode (auch Masseelektrode genannt), deren Potential auf der Masse (0 V) des Motorblocks sowie der vollständigen Karosserie eines Automobils liegt. Die Masseelektrode kann auch als Mehrfachelektrode ausgeführt sein. Diese Zündsysteme haben den Prinzip bedingten Nachteil einer mangelhaften Steuerbarkeit, da nach der Plasmazündung die in der Zündspule gespeicherte Energie auf einer Zeitskala von wenigen zehn Nanosekunden in das Plasma eingekoppelt wird. Der stark ansteigende Strom ist eine Folge der rasant steigenden Elektronendichte und damit verbundenen Steigerung der Leitfähigkeit des Plasmas. Alle nachwirkenden Prozesse im Plasma sind nur noch eine Folge dieses Energieeintrages und nicht mehr von außen beeinflussbar. Insbesondere findet keine Heizung des Plasmas mehr statt. Dies hat zur Folge, dass keine nennenswerte Erzeugung von freien Elektroden und damit einhergehend von reaktiven Spezies, wie beispielsweise von atomarem Sauerstoff, die die Verbrennung fördern, stattfindet. Die Verbrennung hingegen findet auf erheblich längeren Zeitskalen statt, lebt aber von der zuvor erzeugten atomaren Sauerstoffdichte.In the classic ignition concepts described above, the spark plasma burns between two electrodes, an active "driven" electrode (also called a high-voltage electrode) and a passive electrode (also called a ground electrode), their potential on the ground (0 V) of the engine block and the complete body of one Automobile lies. The ground electrode can also be designed as a multiple electrode. These ignition systems have the disadvantage, due to the principle, of poor controllability, since after the plasma ignition, the energy stored in the ignition coil is injected into the plasma on a time scale of a few tens of nanoseconds. The rapidly increasing current is a consequence of the rapidly increasing electron density and the associated increase in the conductivity of the plasma. All after-effects processes in the plasma are only a consequence of this energy input and can no longer be influenced from outside. In particular, the plasma is no longer heated. As a result, there is no significant generation of free electrodes and, as a result, of reactive species, such as atomic oxygen, which promote combustion. The combustion, on the other hand, takes place on considerably longer time scales, but lives from the previously generated atomic oxygen density.

Der Erfindung liegt die Aufgabe zugrunde, eine Zündvorrichtung hinsichtlich der Einflussmöglichkeiten auf die Parameter des Plasmas zwischen den Elektroden der Zündkerze zu verbessern.The object of the invention is to improve an ignition device with regard to the possibilities of influencing the parameters of the plasma between the electrodes of the spark plug.

Diese Aufgabe wird erfindungsgemäß durch eine Zündvorrichtung gemäß Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den weiteren Ansprüchen beschrieben.This object is achieved by an ignition device according to claim 1. Advantageous embodiments of the invention are described in the further claims.

Dazu ist es bei einer Zündvorrichtung mit einer Zündkerze, die genau zwei Elektroden und zwar eine erste Elektrode und eine zweite Elektrode besitzt, vorgesehen, dass der Ausgang der Hochfrequenzspannungsquelle mit der zweiten Elektrode über einen zweiten elektrischen Leitungspfad derart elektrisch verbunden ist, dass die Hochfrequenz-Wechselspannung an der zweiten Elektrode anliegt.For this purpose, in an ignition device with a spark plug that has exactly two electrodes, namely a first electrode and a second electrode, it is provided that the output of the high-frequency voltage source is electrically connected to the second electrode via a second electrical line path such that the high-frequency AC voltage is present at the second electrode.

Dies hat den Vorteil, dass zwei aktive Elektroden zur Verfügung stehen, so dass nach dem Zünden eines Plasmas zwischen den beiden Elektroden der Zündkerze durch den Hochspannungsimpuls sofort die Hochfrequenz-Wechselspannung bei einem wesentlich niedrigeren Niveau der elektrischen Spannung weiter Energie in das Plasma einkoppeln kann.This has the advantage that two active electrodes are available, so that after the ignition of a plasma between the two electrodes of the spark plug by the high-voltage pulse, the high-frequency AC voltage can continue to couple energy into the plasma at a significantly lower level of the electrical voltage.

Eine besonders einfache und funktionssichere Zündvorrichtung erzielt man dadurch, dass die Hochspannungsquelle als Zündspule ausgebildet ist.A particularly simple and functionally reliable ignition device is achieved in that the high voltage source is designed as an ignition coil.

Einen Schutz der Hochfrequenzspannungsquelle gegen Überspannung erzielt man dadurch, dass in dem zweiten Leitungspfad zwischen der zweiten Elektrode der Zündkerze und dem Ausgang der Hochfrequenzspannungsquelle eine Schutzschaltung elektrisch eingeschleift ist, welche ein Durchschlagen des Hochspannungsimpulses von der Hochspannungsquelle zum Ausgang der Hochfrequenzspannungsquelle blockiert.Protection of the high-frequency voltage source against overvoltage is achieved by electrically inserting a protective circuit in the second line path between the second electrode of the spark plug and the output of the high-frequency voltage source, which blocks the high-voltage pulse from breaking through from the high-voltage source to the output of the high-frequency voltage source.

Eine frequenzselektive Übertragung, beispielsweise von nur einem gewünschten Frequenzband, von der Hochfrequenzspannungsquelle zu der zweiten Elektrode der Zündkerze erzielt man dadurch, dass in dem zweiten elektrischen Leitungspfad zwischen der zweiten Elektrode der Zündkerze und dem Ausgang der Hochfrequenzspannungsquelle ein Trennelement in Form eines frequenzselektiven Filters, insbesondere in Form eines Bandpassfilters, elektrisch eingeschleift ist.Frequency-selective transmission, for example of only one desired frequency band, from the high-frequency voltage source to the second electrode of the spark plug is achieved by a separating element in the form of a frequency-selective filter, in particular, in the second electrical conduction path between the second electrode of the spark plug and the output of the high-frequency voltage source in the form of a bandpass filter, is electrically looped in.

Einen Schutz auch des Trennelementes vor Überspannung erzielt man dadurch, dass das Trennelement zwischen der Schutzschaltung und dem Ausgang der Hochfrequenzspannungsquelle in den zweiten elektrischen Leitungspfad eingeschleift ist.Protection of the isolating element from overvoltage is also achieved in that the isolating element between the protective circuit and the output of the high-frequency voltage source is looped into the second electrical line path.

In einer bevorzugten Weiterbildung der Erfindung ist das Trennelement zwischen der Schutzschaltung und der zweiten Elektrode in den zweiten elektrischen Leitungspfad eingeschleift. Dies hat den Vorteil, dass der Bandpass des Trennelementes die Energie außerhalb des Durchlassbereiches dämpft, wodurch die Realisierung der Schutzschaltung einfacher wird.In a preferred development of the invention, the separating element between the protective circuit and the second electrode is looped into the second electrical line path. This has the advantage that the bandpass of the isolating element dampens the energy outside the pass band, which makes it easier to implement the protective circuit.

Eine verbesserte Übertragung der Hochspannung von der Hochspannungsquelle zur Zündkerze wird dadurch erzielt, dass in dem ersten elektrischen Leitungspfad zwischen dem Ausgang der Hochspannungsquelle und der ersten Elektrode der Zündkerze eine Schutzschaltung elektrisch eingeschleift ist, welche einen Massebezug für die HF darstellt.An improved transmission of the high voltage from the high voltage source to the spark plug is achieved in that a protective circuit which represents a ground reference for the HF is electrically inserted in the first electrical line path between the output of the high voltage source and the first electrode of the spark plug.

Eine klare Trennung der beiden aktiven Elektroden erzielt man dadurch, dass an der ersten Elektrode einzig der Hochspannungsimpuls anliegt und dass an der zweiten Elektrode einzig die Hochfrequenz-Wechselspannung anliegt.A clear separation of the two active electrodes is achieved in that only the high-voltage pulse is applied to the first electrode and that only the high-frequency AC voltage is applied to the second electrode.

Die Erfindung wird im Folgenden anhand der Zeichnung näher erläutert. Diese zeigt in

Fig. 1
eine schematische Darstellung einer bevorzugten Ausführungsform einer erfindungsgemäßen Zündvorrichtung und
Fig. 2
eine schematische Darstellung einer alternativen bevorzugten Ausführungsform einer erfindungsgemäßen Zündvorrichtung.
The invention is explained in more detail below with reference to the drawing. This shows in
Fig. 1
a schematic representation of a preferred embodiment of an ignition device according to the invention and
Fig. 2
is a schematic representation of an alternative preferred embodiment of an ignition device according to the invention.

Die in Fig. 1 dargestellte, bevorzugte Ausführungsform einer erfindungsgemäßen Zündvorrichtung 10 weist eine Zündkerze 12, eine Hochspannungsquelle bzw. Hochgleichspannungsquelle 14 und eine Hochfrequenzspannungsquelle 16 auf. Die Zündkerze 12 weist eine erste Elektrode 18 (Hochspannungselektrode) und eine zweite Elektrode 20 (Hochfrequenzelektrode) auf. Die Elektroden 18, 20 ragen in einen nicht dargestellten Brennraum, beispielsweise in einem Arbeitszylinder einer Brennkraftmaschine, in dem ein Kraftstoff-Luftgemisch entzündet werden soll. Die Hochspannungsquelle 14 ist als Zündspule ausgebildet und erzeugt einen Hochspannungsimpuls bzw. Hochgleichspannungsimpuls (DC), welcher an einem Ausgang 22 der Hochspannungsquelle 14 anliegt. Der Ausdruck "elektrischer Hochgleichspannungsimpuls" bezeichnet hier einen elektrischen Gleichspannungsimpuls mit hoher elektrischer Spannung von einigen kV, wie beispielsweise 3 kV bis 30 kV oder 8 kV bis 12 kV. Der Ausgang 22 der Hochspannungsquelle 14 ist über einen ersten elektrischen Leitungspfad 24 mit der ersten Elektrode 18 derart elektrisch verbunden, dass der Hochspannungsimpuls aus der Hochspannungsquelle 14 der ersten Elektrode 18 der Zündkerze 12 zugeführt wird. Hierbei liegt der elektrische Hochspannungsimpuls einzig an der ersten Elektrode (18) an.In the Fig. 1 The illustrated preferred embodiment of an ignition device 10 according to the invention has a spark plug 12, a high-voltage source or high-DC voltage source 14 and a high-frequency voltage source 16. The spark plug 12 has a first electrode 18 (high-voltage electrode) and a second electrode 20 (high-frequency electrode). The electrodes 18, 20 project into a combustion chamber, not shown, for example in a working cylinder of an internal combustion engine, in which a fuel-air mixture is to be ignited. The high-voltage source 14 is designed as an ignition coil and generates a high-voltage pulse or high-DC voltage pulse (DC), which is present at an output 22 of the high-voltage source 14. The term "high-voltage electrical pulse" here denotes a high-voltage electrical voltage pulse of a few kV, such as 3 kV to 30 kV or 8 kV to 12 kV. The output 22 of the high-voltage source 14 is electrically connected to the first electrode 18 via a first electrical conduction path 24 such that the high-voltage pulse comes off the high voltage source 14 of the first electrode 18 of the spark plug 12 is supplied. The electrical high-voltage pulse is only applied to the first electrode (18).

Die Hochfrequenzspannungsquelle 16 erzeugt eine Hochfrequenz-Wechselspannung, welche an einem Ausgang 26 der Hochfrequenzspannungsquelle 16 anliegt. Der Ausgang 26 der Hochfrequenzspannungsquelle 16 ist über einen zweiten elektrischen Leitungspfad 28 mit der zweiten Elektrode 20 der Zündkerze 12 elektrisch derart verbunden, dass die Hochfrequenz-Wechselspannung aus der Hochfrequenzspannungsquelle 16 der zweiten Elektrode 20 der Zündkerze 12 zugeführt wird. Die Hochfrequenzspannungsquelle 16 ist weiterhin mit einem elektrischen Massepotential 40 elektrisch verbunden. Hierbei liegt die Hochfrequenz-Wechselspannung einzig an der zweiten Elektrode (20) an.The high-frequency voltage source 16 generates a high-frequency AC voltage, which is present at an output 26 of the high-frequency voltage source 16. The output 26 of the high-frequency voltage source 16 is electrically connected to the second electrode 20 of the spark plug 12 via a second electrical conduction path 28 such that the high-frequency alternating voltage from the high-frequency voltage source 16 is supplied to the second electrode 20 of the spark plug 12. The high-frequency voltage source 16 is also electrically connected to an electrical ground potential 40. The high-frequency AC voltage is only applied to the second electrode (20).

In dem zweiten elektrischen Leitungspfad 28 ist eine Schutzschaltung 30 elektrisch eingeschleift. Diese Schutzschaltung 30 ist derart ausgebildet, dass sie einerseits den Hochspannungsimpuls von der Hochspannungsquelle 14 daran hindert, über den zweiten elektrischen Leitungspfad 28 bis zum Ausgang 26 der Hochfrequenzspannungsquelle 16 durchzuschlagen und andererseits die Hochfrequenz-Wechselspannung aus der Hochfrequenzspannungsquelle 16 in Richtung der zweiten Elektrode 20 der Zündkerze 12 weiterleitet. Auf diese Weise ist die Hochfrequenzspannungsquelle 16 vor Überspannung geschützt.A protective circuit 30 is electrically looped into the second electrical line path 28. This protective circuit 30 is designed such that it prevents the high-voltage pulse from the high-voltage source 14 from passing through the second electrical line path 28 to the output 26 of the high-frequency voltage source 16 and the high-frequency AC voltage from the high-frequency voltage source 16 in the direction of the second electrode 20 Spark plug 12 forwards. In this way, the high-frequency voltage source 16 is protected against overvoltage.

Weiterhin ist in dem zweiten elektrischen Leitungspfad 28 ein Trennelement 32 zwischen der Schutzschaltung 30 und dem Ausgang 26 der Hochfrequenzspannungsquelle 16 elektrisch eingeschleift. Dieses Trennelement 32 ist als ein frequenzselektives Filter, beispielswese als ein Bandpassfilter mit einer konstanten oder variablen Kapazität 34 und einer konstanten oder variablen Induktivität 36, ausgebildet. Dieses Bandpassfilter lässt nur ein vorbestimmtes Frequenzband von der Hochfrequenzspannungsquelle 16 über den zweiten elektrischen Leitungspfad 28 in Richtung der zweiten Elektrode 20 passieren. Mit dem Trennelement 32 kann die eingekoppelte Frequenz der Hochfrequenz-Wechselspannung ständig angepasst werden, so dass ein optimaler Energieeintrag in das gezündete Plasma erzielt wird.Furthermore, a separating element 32 is electrically looped in between the protective circuit 30 and the output 26 of the high-frequency voltage source 16 in the second electrical line path 28. This separating element 32 is designed as a frequency-selective filter, for example as a bandpass filter with a constant or variable capacitance 34 and a constant or variable inductance 36. This bandpass filter only allows a predetermined frequency band to pass from the high-frequency voltage source 16 via the second electrical conduction path 28 in the direction of the second electrode 20. With the separating element 32, the injected frequency of the high-frequency alternating voltage can be continuously adjusted so that an optimal energy input into the ignited plasma is achieved.

Die erfindungsgemäße Zündvorrichtung ist als Hochfrequenz-Plasma-Zündsystem ausgebildet und beinhaltet in der Zündkerze 12 zwei aktive Elektroden, die Hochspannungselektrode als erste Elektrode 18 und die Hochfrequenzelektrode als zweite Elektrode 20. Eine Masseelektrode, wie bei herkömmlichen Zündsystemen, ist nicht vorhanden. Die Zündspule 14 erzeugt einen Hochspannungsimpuls bzw. Hochgleichspannungsimpuls (DC), der bei Erreichen einer Durchbruchspannung zwischen der Hochspannungselektrode 18 und der Hochfrequenzelektrode 20 der Zündkerze 12 ein initiales Plasma im Raum um die beiden Elektroden 18, 20 brennen lässt (Pfeil 42). Dieses Plasma wird durch anschließendes Zuführen der Hochfrequenz-Wechselspannung von der Hochfrequenzspannungsquelle 16 weiter mit Energie versorgt (Pfeil 44) und dadurch für eine gewisse Zeit aufrecht erhalten, so dass das Plasma länger vorhanden ist, als es alleine durch den Hochspannungsimpuls aus der Hochspannungsquelle 14 der Fall wäre.The ignition device according to the invention is designed as a high-frequency plasma ignition system and contains two active electrodes in the spark plug 12, the high-voltage electrode as the first electrode 18 and the high-frequency electrode as the second electrode 20. A ground electrode, as in conventional ignition systems, is not present. The ignition coil 14 generates a high voltage pulse or high DC voltage pulse (DC) which, when a breakdown voltage is reached between the high voltage electrode 18 and the high frequency electrode 20 of the spark plug 12, causes an initial plasma to burn in the space around the two electrodes 18, 20 (arrow 42). This plasma is further supplied with energy by the subsequent supply of the high-frequency AC voltage from the high-frequency voltage source 16 (arrow 44) and is thus maintained for a certain time, so that the plasma is present longer than it is by the high-voltage pulse from the high-voltage source 14 Would be the case.

Ein Plasma beinhaltet unter anderem Elektronen, Ionen, angeregte Teilchen und Neutralteilchen. Die freien Ladungsträger (Elektronen und Ionen) bilden einen leitfähigen Plasmakanal zwischen der Hochspannungselektrode 18 und der Hochfrequenzelektrode 20 der Zündkerze 12. Die durch das Plasma entstandenen freien Ladungsträger werden für den Stromtransport des Hochfrequenzplasmas zwischen der Hochfrequenzelektrode 20 und der Hochspannungselektrode 18 genutzt. Somit kann durch das zusätzliche Anlegen einer Hochfrequenzspannung aus der Hochfrequenzspannungsquelle 16 an der Hochfrequenzelektrode 20 mehr Leistung über einen längeren Zeitraum in das Plasma eingebracht werden. Dadurch werden kontinuierlich Elektronen erzeugt und die freie Elektronendichte im Plasma bleibt länger erhalten, womit eine permanente Erzeugung von reaktiven Spezies (vor allem von atomarem Sauerstoff) einhergeht. Die deutlich erhöhte Menge von atomarem Sauerstoff sorgt für eine effektivere Verbrennung und erlaubt u.a. das sichere Entflammen von mageren Kraftstoff-Luft-Gemischen im Brennraum bzw. eine erhöhte Motorleistung bei konstantem Kraftstoffverbrauch. Damit die Hochfrequenzspannungsquelle 16 vor dem Hochspannungsimpuls aus der Hochspannungsquelle 14 geschützt ist, ist zwischen der Hochfrequenzelektrode 20 und Hochfrequenzspannungsquelle 16 die Schutzschaltung 30 vorgesehen. Ein großer Vorteil dieses Zündsystems liegt darin, dass das Plasma direkt zwischen den beiden aktiven Elektroden 18, 20 brennt. Eine sichere Übernahme der Hochfrequenzspannungsquelle, um nach dem initialen Funken durch den Hochspannungsimpuls aus der Hochspannungsquelle 14 weiterhin aktiv Energie in das Plasma einzukoppeln, ist gegeben, da der initiale Funken in jedem Fall freie Ladungsträger zwischen den Elektroden generiert.A plasma contains, among other things, electrons, ions, excited particles and neutral particles. The free charge carriers (electrons and ions) form a conductive plasma channel between the high-voltage electrode 18 and the high-frequency electrode 20 of the spark plug 12. The free charge carriers created by the plasma are used for the current transport of the high-frequency plasma between the high-frequency electrode 20 and the high-voltage electrode 18. Thus, by additionally applying a high-frequency voltage from the high-frequency voltage source 16 to the high-frequency electrode 20, more power can be introduced into the plasma over a longer period of time. As a result, electrons are continuously generated and the free electron density in the plasma is retained for a longer period, which is associated with the permanent generation of reactive species (especially atomic oxygen). The significantly increased amount of atomic oxygen ensures more effective combustion and allows, among other things, the safe ignition of lean fuel-air mixtures in the combustion chamber or an increased engine output with constant fuel consumption. In order that the high-frequency voltage source 16 is protected from the high-voltage pulse from the high-voltage source 14, the protective circuit 30 is provided between the high-frequency electrode 20 and the high-frequency voltage source 16. A big advantage of this ignition system is that the plasma is directly between the two active electrodes 18, 20 burns. The high-frequency voltage source is safely taken over in order to continue to actively couple energy into the plasma after the initial spark from the high-voltage pulse from the high-voltage source 14, since the initial spark in any case generates free charge carriers between the electrodes.

Die Schutzschaltung 30 beinhaltet beispielsweise einen gasgefüllten Überspannungsableiter, welcher isolierend wirkt, solange die Spannung unter einem vorbestimmten Wert von beispielsweise etwa 450 V bleibt. Der gasgefüllte Überspannungsableiter stört wegen seiner geringen Kapazität von nur etwa 2 pF nicht. Wird die Zündspannung des gasgefüllten Überspannungsableiters überschritten, fällt der Widerstand innerhalb von Mikrosekunden auf sehr geringe Werte, wobei Stromspitzen von beispielsweise bis zu 100 kA abgeleitet werden können.The protective circuit 30 includes, for example, a gas-filled surge arrester, which has an insulating effect, as long as the voltage remains below a predetermined value of, for example, approximately 450 V. The gas-filled surge arrester does not interfere due to its small capacity of only about 2 pF. If the ignition voltage of the gas-filled surge arrester is exceeded, the resistance drops to very low values within microseconds, whereby current peaks of up to 100 kA, for example, can be derived.

Durch die Trennung von Hochspannungs- und Hochfrequenzpotential werden die Anforderungen an die Spannungsfestigkeit des Trennelementes 32 drastisch reduziert. Gleichzeitig wird durch diesen Schritt die Belastung der Hochspannungsquelle 14 in Form der Zündspule erheblich herabgesetzt und die Erzeugung der Hochspannung deutlich vereinfacht. Vor dem Hintergrund immer stärker aufgeladener und kleinvolumiger Otto-Motoren ist die Erzeugung von ausreichend hohen Spannungsimpulsen zur sicheren Entflammung eine immer weiter wachsende Herausforderung. Des Weiteren ergeben sich mehr Freiheitsgrade bei der Wahl der reaktiven Bauelemente des Trennelementes, da auf eine möglichst geringe kapazitive Belastung der Zündspule nicht mehr geachtet werden muss. Die Kapazitäten des Trennelementes können im Gegensatz zu bisherigen Schaltungskonzepten erhöht und die Induktivitäten gesenkt werden, was die Realisierung des Trennelementes vereinfacht.By separating high-voltage and high-frequency potential, the demands on the dielectric strength of the separating element 32 are drastically reduced. At the same time, the load on the high-voltage source 14 in the form of the ignition coil is considerably reduced by this step and the generation of the high voltage is significantly simplified. Against the background of increasingly charged and small-volume gasoline engines, the generation of sufficiently high voltage pulses for safe ignition is an ever growing challenge. Furthermore, there are more degrees of freedom in the selection of the reactive components of the separating element, since it is no longer necessary to pay attention to the lowest possible capacitive load on the ignition coil. In contrast to previous circuit concepts, the capacities of the isolating element can be increased and the inductivities reduced, which simplifies the implementation of the isolating element.

In Fig. 2 sind funktionsgleiche Teile mit gleichen Bezugszeichen wie in Fig. 1 bezeichnet, so dass zu deren Erläuterung auf die obige Beschreibung der Fig. 1 verwiesen wird. Bei der zweiten Ausführungsform gemäß Fig. 2 ist im Unterschied zur ersten Ausführungsform gemäß Fig. 1 die Schutzschaltung 30 zwischen dem Trennelement 32 und dem Ausgang 26 der Hochfrequenzspannungsquelle 16 in den zweiten elektrischen Leitungspfad 28 eingeschleift.In Fig. 2 are functionally identical parts with the same reference numerals as in Fig. 1 referred to, so that to explain them to the above description of Fig. 1 is referred. In the second embodiment according to Fig. 2 is different from the first embodiment according to Fig. 1 the protection circuit 30 between the Separating element 32 and the output 26 of the high-frequency voltage source 16 are looped into the second electrical conduction path 28.

Optional weist die Schutzschaltung 30 und/oder das Trennelement 32 zusätzlich eine elektrische Verbindung mit dem Massepotential 40 auf, wie mit gestrichelten Linien in Fig. 1 und 2 dargestellt.Optionally, the protective circuit 30 and / or the isolating element 32 additionally has an electrical connection to the ground potential 40, as with dashed lines in FIG Fig. 1 and 2nd shown.

Optional ist in dem ersten elektrischen Leitungspfad 24 zwischen dem Ausgang 22 der Hochspannungsquelle 14 und der ersten Elektrode 18 eine Schutzschaltung 31 mit elektrischer Verbindung mit dem Massepotential 40 elektrisch eingeschleift. Diese Schutzschaltung 31 ist in den Fig. 1 und 2 entsprechend mit gestrichelten Linien angedeutet. Die Schutzschaltung soll einen Massebezug für die HF darstellen und nicht die Hochspannung blockieren.Optionally, a protective circuit 31 with an electrical connection to ground potential 40 is electrically looped into the first electrical line path 24 between the output 22 of the high-voltage source 14 and the first electrode 18. This protection circuit 31 is in the Fig. 1 and 2nd accordingly indicated by dashed lines. The protective circuit is intended to be a reference to the HF and not to block the high voltage.

Claims (8)

  1. Ignition device (10) for igniting an air/fuel mixture in a combustion chamber, in particular of an internal combustion engine, having a spark plug (12) which has exact two electrodes (18, 20), namely a first electrode (18) and a second electrode (20), having a high voltage source (14) for generating an electrical high voltage pulse at an output (22) of the high voltage source and having a high frequency voltage source (16) for generating an electrical high frequency alternating voltage at an output (26) of the high frequency voltage source (16), wherein the output (22) of the high voltage source (14) is connected electrically to the first electrode (18) of the spark plug (12) via a first electrical conduction path (24) in such a way that the high voltage pulse is present at the first electrode (18), and wherein
    the output (26) of the high frequency voltage source (16) is connected electrically to the second electrode (20) via a second electrical conduction path (28) in such a way that the high frequency alternating voltage is present at the second electrode (20).
  2. Ignition device (10) according to claim 1, characterised in that the high voltage source (14) is designed in the form of an ignition coil.
  3. Ignition device (10) according to claim 1 or 2, characterised in that a protective circuit (30) is looped electrically into the second electrical conduction path (28) between the second electrode (20) of the spark plug (12) and the output (26) of the high frequency voltage source (16) which blocks a breakdown of the high voltage pulse from the high voltage source (14) to the output (26) of the high frequency voltage source (16).
  4. Ignition device (10) according to at least one of the preceding claims, characterised in that an isolating element (32) in the form of a frequency-selective filter, in particular in the form of a band pass filter, is looped electrically into the second electrical conduction path (28) between the second electrode (20) of the spark plug (12) and the output (26) of the high frequency voltage source (16).
  5. Ignition device (10) according to claims 3 and 4, characterised in that the isolating element (32) is looped into the second electrical conduction path (28) between the protective circuit (30) and the output (26) of the high frequency voltage source (16).
  6. Ignition device (10) according to claims 3 and 4, characterised in that the isolating element (32) is looped into the second electrical conduction path (28) between the protective circuit (30) and the second electrode (20).
  7. Ignition device according to at least one of the preceding claims, characterised in that a protective circuit (31) is looped electrically into the first electrical conduction path (24) between the output (22) of the high voltage source (14) and the first electrode (18) of the spark plug (12), which represents a ground reference for the HF.
  8. Ignition device according to at least one of the preceding claims, characterised in that only the high voltage pulse is present at the first electrode (18) and that only the high frequency alternating voltage is present at the second electrode (20).
EP17715623.9A 2016-03-29 2017-03-23 Ignition device for igniting an air fuel in a combustion chamber Active EP3436686B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016003793.8A DE102016003793A1 (en) 2016-03-29 2016-03-29 Ignition device for igniting an air-fuel mixture in a combustion chamber
PCT/EP2017/000363 WO2017167438A1 (en) 2016-03-29 2017-03-23 Ignition device for igniting an air/fuel mixture in a combustion chamber

Publications (2)

Publication Number Publication Date
EP3436686A1 EP3436686A1 (en) 2019-02-06
EP3436686B1 true EP3436686B1 (en) 2020-07-29

Family

ID=58489281

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17715623.9A Active EP3436686B1 (en) 2016-03-29 2017-03-23 Ignition device for igniting an air fuel in a combustion chamber

Country Status (8)

Country Link
US (1) US10982641B2 (en)
EP (1) EP3436686B1 (en)
JP (1) JP2019511670A (en)
KR (1) KR20180124908A (en)
CN (1) CN109312707B (en)
DE (1) DE102016003793A1 (en)
TW (1) TW201734304A (en)
WO (1) WO2017167438A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110500222A (en) * 2019-09-20 2019-11-26 韦伟平 A kind of high-frequency resonant firing circuit of lean combustion engine and its work, control method
CN114109692B (en) * 2021-11-26 2022-09-27 山东大学 Fast pulse multipoint discharge system and engine combustion control method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1335797A (en) * 1920-04-06 of toledo
JPS5328568B1 (en) * 1971-03-06 1978-08-15
JPS5152653Y2 (en) * 1971-09-02 1976-12-16
US3934566A (en) * 1974-08-12 1976-01-27 Ward Michael A V Combustion in an internal combustion engine
US4297983A (en) * 1978-12-11 1981-11-03 Ward Michael A V Spherical reentrant chamber
US4369756A (en) * 1980-01-11 1983-01-25 Nissan Motor Co., Ltd. Plasma jet ignition system for internal combustion engine
DE3145169A1 (en) * 1981-11-13 1983-05-26 Marcel 68390 Sausheim-Battenheim Blanchard Arrangement for producing a high voltage
US5777867A (en) * 1995-09-14 1998-07-07 Suitomo Electric Industries, Ltd. Electric discharge method and apparatus
DE19723784C1 (en) * 1997-06-06 1998-08-20 Daimler Benz Ag Circuit for ignition system of IC engine supplying high voltage to spark plug electrodes
DE102004058925A1 (en) 2004-12-07 2006-06-08 Siemens Ag High-frequency plasma ignition device for internal combustion engines, in particular for directly injecting gasoline engines
JP2008082286A (en) 2006-09-28 2008-04-10 Toyota Central R&D Labs Inc Internal combustion engine, and its igniter
DE102008051185A1 (en) 2008-02-14 2009-11-12 Stanislav Tkadlec Ignition method for generating discharge plasma by high frequency field and direct current impulse, particularly for internal combustion engine, involves supplying high frequency voltage on spark electrode and counter electrode
JP5152653B2 (en) * 2008-05-20 2013-02-27 株式会社エーイーティー Ignition system using spark discharge ignition method and microwave plasma ignition method in combination
JP5413186B2 (en) * 2009-12-25 2014-02-12 株式会社デンソー High frequency plasma ignition device
WO2012032846A1 (en) 2010-09-07 2012-03-15 日本特殊陶業株式会社 Ignition system and spark plug
WO2012099027A1 (en) 2011-01-18 2012-07-26 イマジニアリング株式会社 Plasma generation device and internal combustion engine
JPWO2012124671A1 (en) 2011-03-14 2014-07-24 イマジニアリング株式会社 Internal combustion engine
JP5954812B2 (en) * 2011-10-31 2016-07-20 ダイハツ工業株式会社 Control device for spark ignition internal combustion engine
JP5469229B1 (en) * 2012-10-26 2014-04-16 三菱電機株式会社 Ignition coil device for high frequency discharge
JP5805125B2 (en) 2013-03-18 2015-11-04 三菱電機株式会社 Ignition device
US9709017B2 (en) * 2013-06-04 2017-07-18 Mitsubishi Electric Corporation Ignition device of spark-ignition internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN109312707A (en) 2019-02-05
DE102016003793A1 (en) 2017-10-05
TW201734304A (en) 2017-10-01
US10982641B2 (en) 2021-04-20
EP3436686A1 (en) 2019-02-06
JP2019511670A (en) 2019-04-25
WO2017167438A1 (en) 2017-10-05
KR20180124908A (en) 2018-11-21
CN109312707B (en) 2019-11-26
US20200011283A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
EP3465849B1 (en) Spark plug for a high-frequency ignition system
DE3137239C2 (en) Plasma ignition device for an internal combustion engine
DE3222496C2 (en) Plasma ignition system for a multi-cylinder internal combustion engine
DE3221990C2 (en) Plasma ignition system for a multi-cylinder internal combustion engine
EP3436688A1 (en) Ignition device for igniting an air-fuel mixture in a combustion chamber
EP2058909B1 (en) Resonant assembly
DE102010015344B4 (en) A method for igniting a fuel-air mixture of a combustion chamber, in particular in an internal combustion engine by generating a corona discharge
DE102010045171A1 (en) An igniter for igniting a fuel-air mixture in a combustion chamber, in particular in an internal combustion engine, by generating a corona discharge
DE3781309T2 (en) ELECTRONIC PLASMA IGNITION CONTROL IN AN INTERNAL INTERNAL COMBUSTION ENGINE.
WO2012130649A1 (en) Method and device for extending the combustion duration of a spark ignited by a spark plug in an internal combustion engine
DE10331418A1 (en) Plasma jet spark plug
DE102013105682B4 (en) Method for controlling a corona ignition device
EP3436686B1 (en) Ignition device for igniting an air fuel in a combustion chamber
EP2847456B1 (en) High-frequency plasma ignition device
EP4148988A1 (en) Pulse generator for a hpem pulse
DE102010045174B4 (en) Circuit arrangement for an HF ignition of internal combustion engines
DE102010024396B4 (en) A method for igniting a fuel-air mixture of a combustion chamber, in particular in an internal combustion engine by generating a corona discharge
DE102013102290A1 (en) ignition system
DE102012210391B4 (en) detonator
DE1902199A1 (en) Method and device for improving ignition in internal combustion engines
DE102013112039B4 (en) Corona ignition system for an internal combustion engine and method for controlling a corona ignition system
DE102015112217B3 (en) Method for controlling a corona ignition device
DE1751892C3 (en) Electrical pulse generator
WO2017108389A1 (en) Ignition device for igniting a fuel-air mixture
DE102016006782A1 (en) Ignition device and method for igniting an air-fuel mixture

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191108

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200429

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1296102

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017006422

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017006422

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210323

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230323

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1296102

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230317

Year of fee payment: 7

Ref country code: IT

Payment date: 20230321

Year of fee payment: 7

Ref country code: GB

Payment date: 20230321

Year of fee payment: 7

Ref country code: DE

Payment date: 20230328

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170323

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017006422

Country of ref document: DE

Representative=s name: KANDLBINDER, MARKUS, DIPL.-PHYS., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729