EP3436686A1 - Ignition device for igniting an air/fuel mixture in a combustion chamber - Google Patents

Ignition device for igniting an air/fuel mixture in a combustion chamber

Info

Publication number
EP3436686A1
EP3436686A1 EP17715623.9A EP17715623A EP3436686A1 EP 3436686 A1 EP3436686 A1 EP 3436686A1 EP 17715623 A EP17715623 A EP 17715623A EP 3436686 A1 EP3436686 A1 EP 3436686A1
Authority
EP
European Patent Office
Prior art keywords
electrode
voltage source
frequency
output
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17715623.9A
Other languages
German (de)
French (fr)
Other versions
EP3436686B1 (en
Inventor
Gunnar Armbrecht
Martin Fuchs
Michael Wollitzer
Marcel VAN DELDEN
Thomas Musch
Sven GRÖGER
Andre Bergner
Gordon NOTZON
Peter Awakowicz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosenberger Hochfrequenztechnik GmbH and Co KG
Original Assignee
Rosenberger Hochfrequenztechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosenberger Hochfrequenztechnik GmbH and Co KG filed Critical Rosenberger Hochfrequenztechnik GmbH and Co KG
Publication of EP3436686A1 publication Critical patent/EP3436686A1/en
Application granted granted Critical
Publication of EP3436686B1 publication Critical patent/EP3436686B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P11/00Safety means for electric spark ignition, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/055Layout of circuits with protective means to prevent damage to the circuit, e.g. semiconductor devices or the ignition coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/10Drives of distributors or of circuit-makers or -breakers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • Ignition device for igniting an air-fuel mixture
  • the invention relates to an ignition device for igniting an air-fuel mixture in a combustion chamber, in particular an internal combustion engine, with a spark plug having a first electrode and a second electrode, with a high voltage source or high DC voltage source for generating a high voltage electrical pulse or high DC voltage pulse at an output the high voltage source and having a high frequency voltage source for generating a high frequency electrical AC voltage at an output of the high frequency power source, wherein the output of the high voltage source is electrically connected to the first electrode of the spark plug via a first electrical conduction path such that the high voltage pulse at the first electrode According to the preamble of patent claim 1.
  • So-called gasoline combustion process with direct injection of the fuel have the possibility of a Schichtla
  • the non-homogeneous mixture in the combustion chamber places increased demands on the fuel used Ignition method for reliable ignition at the appropriate time. Fluctuations of any kind reduce, for example, the quality of the ignition and thus the efficiency of the entire engine.
  • the position of the ignitable mixture can vary slightly and, on the other hand, the hook of the ground electrode of the spark plug can have a disruptive effect on the mixture formation.
  • Helpful for a direct injection combustion process is an ignition system with a greater spatial extent into the combustion chamber.
  • a corresponding high frequency plasma ignition device comprises a series resonant circuit with an inductance and a capacitance and a high frequency source for the resonant excitation of this series resonant circuit.
  • the capacitance is represented by inner and outer conductor electrodes with intervening dielectric. These electrodes extend with their outermost ends at a predetermined mutual distance into the combustion chamber.
  • a method for ignition in which by means of a high voltage pulse a spark plasma is generated, which is then heated further by means of an RF field and thereby merges into a glow discharge.
  • the high-voltage pulse and an output signal of an HF generator are supplied together to a spark electrode of a spark plug.
  • a counter electrode of the spark plug is grounded.
  • the spark plug is a coaxial structure and consists essentially of a central electrode surrounded by an insulator and an outer electrode connected to the spark plug housing.
  • the ignition coil provides the spark plug with a high voltage pulse. Between the electrodes a spark is created which initiates combustion.
  • An alternative method, in which a high-frequency voltage is applied to the spark plug in addition to the applied high voltage of the ignition coil, is described in DE 10 2013 215 663 A1 A 1. In this case, the spark plasma changes into an HF plasma.
  • the spark plasma burns between two electrodes, an active "driven” electrode (also called high voltage electrode) and a passive electrode (also called ground electrode) whose potential on the ground (0 V) of the engine block and the entire body of a Automobile lies.
  • the ground electrode can also be designed as a multiple electrode.
  • the invention has for its object to improve an ignition device of the above type with respect to the influencing possibilities on the parameters of the plasma between the electrodes of the spark plug.
  • a particularly simple and functionally reliable ignition device is achieved in that the high-voltage source is designed as an ignition coil.
  • a protection of the high frequency voltage source against overvoltage is achieved in that in the second conduction path between the second electrode of the spark plug and the output of the high frequency voltage source, a protective circuit is electrically connected, which blocks a breakdown of the high voltage pulse from the high voltage source to the output of the high frequency power source.
  • a frequency-selective transmission, for example of only one desired frequency band, from the high-frequency voltage source to the second electrode of the spark plug is achieved in that in the second electrical conduction path between the second electrode of the spark plug and the output of the high-frequency voltage source, a separating element in the form of a frequency-selective filter, in particular in the form of a bandpass filter, is electrically connected.
  • Protection of the separating element from overvoltage is also achieved in that the separating element between the protective circuit and the output of the high-frequency voltage source is looped into the second electrical conduction path.
  • the separating element between the protective circuit and the second electrode is looped into the second electrical conduction path.
  • An improved transmission of the high voltage from the high voltage source to the spark plug is achieved in that in the first electrical conduction path between the output of the high voltage source and the first electrode of the spark plug, a protection circuit is electrically connected, which represents a ground reference for the HF.
  • a clear separation of the two active electrodes is achieved in that only the high-voltage pulse is applied to the first electrode and that only the high-frequency AC voltage is applied to the second electrode.
  • Fig. 1 is a schematic representation of a preferred embodiment of an ignition device according to the invention and Fig. 2 is a schematic representation of an alternative preferred embodiment of an ignition device according to the invention.
  • an ignition device 10 comprises a spark plug 12, a Hochwoodsquelie or high DC voltage source 14 and a high frequency power source 16.
  • the spark plug 12 has a first electrode 18 (high voltage electrode) and a second electrode 20 (high frequency electrode).
  • the electrodes 18, 20 protrude into a combustion chamber, not shown, for example in a Häzyiinder an internal combustion engine in which a fuel-air mixture to be ignited.
  • the high voltage source 14 is designed as an ignition coil and generates a high voltage pulse or high DC voltage pulse (DC), which is applied to an output 22 of the high voltage source 14.
  • the term "electrical high DC voltage pulse” refers here to a high voltage electrical DC pulse of a few kV, such as 3 kV to 30 kV or 8 kV to 12 kV.
  • the output 22 of the high voltage source 14 is electrically connected to the first electrode 18 via a first electrical conduction path 24 such that the high voltage pulse from the high voltage source 14 is applied to the first electrode 18 of the spark plug 12 becomes.
  • the electric high voltage pulse is applied only to the first electrode (18).
  • the high-frequency voltage source 16 generates a high-frequency AC voltage which is applied to an output 28 of the high-frequency voltage source 16.
  • the output 26 of the high-frequency voltage source 16 is electrically connected via a second electrical conduction path 28 to the second electrode 20 of the spark plug 12 such that the high-frequency AC voltage from the high-frequency voltage source 16 of the second electrode 20 of the spark plug 12 is supplied.
  • the high frequency voltage source 16 is further electrically connected to an electrical ground potential 40.
  • the high-frequency AC voltage is applied only to the second electrode (20).
  • a protection circuit 30 is electrically connected in the second electrical conduction path 28 in the second electrical conduction path 28, a protection circuit 30 is electrically connected.
  • This Schutzschaitung 30 is designed such that on the one hand prevents the high voltage pulse from the high voltage source 14 from strike through the second electrical conduction path 28 to the output 26 of the high frequency power source 16 and on the other hand, the high frequency alternating voltage from the high frequency power source 16 in the direction of the second electrode 20 of Spark plug 12 forwards. In this way, the high frequency power source 16 is protected from overvoltage.
  • a separating element 32 is electrically connected between the protection circuit 30 and the output 26 of the high-frequency voltage source 16.
  • This separator 32 is designed as a frequency-selective filter, for example as a band-pass filter with a constant or variable capacitance 34 and a constant or variable inductance 36.
  • This bandpass filter passes only a predetermined frequency band from the high frequency power source 16 via the second electrical conduction path 28 toward the second electrode 20.
  • the ignition device according to the invention is designed as a high-frequency plasma ignition system and includes two active electrodes in the spark plug 12, the high voltage electrode as the first electrode 18 and the high frequency electrode as the second electrode 20. A ground electrode, as in conventional ignition systems is not present.
  • the ignition coil 14 generates a high voltage pulse or high DC voltage pulse (DC) which, upon reaching a breakdown voltage between the high voltage electrode 18 and the high frequency electrode 20 of the spark plug 12 an initial plasma in space around the two electrodes 18, 20 burn (arrow 42).
  • This plasma is further energized (arrow 44) by subsequent supply of the high frequency AC voltage from the RF power source 16 and thereby maintained for a time such that the plasma is present for longer than the high voltage pulse from the high voltage source 14 of FIG Case would be.
  • a plasma includes, among others, electrons, ions, excited particles, and neutral particles.
  • the free charge carriers (electrons and ions) form a conductive plasma channel between the high-voltage electrode 18 and the high-frequency electrode 20 of the spark plug 12.
  • the free charge carriers formed by the plasma are used for the current transport of the high-frequency plasma between the high-frequency electrode 20 and the high-voltage electrode 18.
  • the significantly increased amount of atomic oxygen ensures a more effective combustion and allows, among other things, the safe ignition of lean fuel-air mixtures in the combustion chamber or an increased engine power with constant fuel consumption.
  • the protective circuit 30 is provided between the high-frequency electrode 20 and the high-frequency voltage source 16.
  • a big advantage of this ignition system is that the plasma burns directly between the two active electrodes 18, 20.
  • a secure takeover of the High frequency power source to continue to actively inject energy into the plasma after the initial spark by the high voltage pulse from the high voltage source 14 is given because the initial spark in each case generates free charge carriers between the electrodes.
  • the protection circuit 30 includes, for example, a gas-filled surge absorber which acts insulating as long as the voltage remains below a predetermined value of, for example, about 450V.
  • the gas-filled surge arrester does not disturb because of its low capacity of only about 2 pF. If the ignition voltage of the gas-filled Matternapsabieiters exceeded, the resistance falls within microseconds to very low values, with current peaks of, for example, up to 100 kA can be derived. Due to the separation of high voltage and high frequency potential requirements for the dielectric strength of the separator 32 are drastically reduced. At the same time the load of the high voltage source 14 in the form of the ignition coil is significantly reduced by this step and the generation of the high voltage significantly simplified.
  • the generation of sufficiently high voltage pulses for safe ignition is an ever-increasing challenge. Furthermore, there are more degrees of freedom in the choice of the reactive components of the separating element, since the lowest possible capacitive load on the ignition coil no longer needs to be paid attention.
  • the capacitances of the separating element can be increased in contrast to previous circuit concepts and the inductances can be reduced, which simplifies the realization of the separating element.
  • Fig. 2 functionally identical parts are designated by the same reference numerals as in Fig. 1, so that reference is made to their explanation in the above description of FIG.
  • the protective circuit 30 is looped between the isolating element 32 and the output 26 of the high-frequency voltage source 16 into the second electrical conduction path 28.
  • the protection circuit 30 and / or the separation element 32 additionally has an electrical connection to the ground potential 40, as shown in dashed lines in FIGS. 1 and 2.
  • a protective circuit 31 is electrically connected to the ground potential 40 with electrical connection.
  • This protective circuit 31 is indicated in FIGS. 1 and 2 correspondingly with dashed lines.
  • the protection circuit should represent a ground reference for the RF and not block the high voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

The present invention relates to an ignition device for igniting an air/fuel mixture in a combustion chamber, in particular of an internal combustion engine, having a spark plug which has a first electrode and a second electrode, having a high voltage source for generating an electrical high voltage pulse at an output of the high voltage source, and having a high frequency voltage source for generating an electrical high frequency alternating voltage at an output of the high frequency voltage source, wherein the output of the high voltage source is connected electrically to the first electrode of the spark plug via a first electrical conduction path in such a way that the high voltage pulse is present at the first electrode, wherein the output of the high frequency voltage source is connected electrically to the second electrode via a second electrical conduction path in such a way that the high frequency alternating voltage is present at the second electrode.

Description

Zündvorrichtung zym Zünden eines Luft-Kraftstoffgemisches  Ignition device for igniting an air-fuel mixture
in einem Brennraum  in a combustion chamber
Die Erfindung betrifft eine Zündvorrichtung zum Zünden eines Luft- Kraftstoffgemisches in einem Brennraum, insbesondere einer Brennkraftmaschine, mit einer Zündkerze, die eine erste Elektrode und eine zweite Elektrode aufweist, mit einer Hochspannungsquelle bzw. Hochgleichspannungsquelle zum Erzeugen eines elektrischen Hochspannungsimpulses bzw. Hochgleichspannungsimpulses an einem Ausgang der Hochspannungsquelle und mit einer Hochfrequenzspannungsquelle bzw. Hochfrequenzwechselspannungsquelle zum Erzeugen einer elektrischen Hochfrequenz-Wechselspannung an einem Ausgang der Hochfrequenzspannungsquelle, wobei der Ausgang der Hochspannungsquelle mit der ersten Elektrode der Zündkerze über einen ersten elektrischen Leitungspfad derart elektrisch verbunden ist, dass der Hochspannungsimpuls an der ersten Elektrode anliegt, gemäß dem Oberbegriff des Patentanspruchs 1. So genannte Otto-Brennverfahren mit Direkteinspritzung des Brennstoffes besitzen durch die Möglichkeit eine Schichtladung im Verbrennungsraum darzustellen ein großes Potential hinsichtlich der Verbrauchsreduktion, Das nicht homogene Gemisch im Brennraum stellt jedoch erhöhte Anforderungen an das eingesetzte Zündverfahren hinsichtlich einer zuverlässigen Zündung zum geeigneten Zeitpunkt. Schwankungen jeglicher Art mindern beispielsweise die Qualität der Zündung und somit den Wirkungsgrad des gesamten Motors. Zum einen kann die Lage des zündfähigen Gemisches leicht variieren und zum anderen kann sich der Haken der Masseelektrode der Zündkerze störend auf die Gemischbildung auswirken. Hilfreich für ein direkt einspritzendes Brennverfahren ist ein Zündsystem mit einer größeren räumlichen Ausdehnung in den Verbrennungsraum hinein. Hierzu wird in der DE 10 2004 058 925 A1 vorgeschlagen, ein Kraftstoff-Luft-Gemisch in einem Verbrennungsraum einer Brennkraftmaschine mittels eines Plasmas zu zünden. Eine entsprechende Hochfrequenz-Plasmazündvorrichtung umfasst einen Serienschwingkreis mit einer Induktivität und einer Kapazität sowie eine Hochfrequenzquelle zur resonanten Anregung dieses Serienschwingkreises. Die Kapazität ist durch Innen- und Außenleitereiektroden mit dazwischen liegendem Dielektrikum dargestellt. Diese Elektroden reichen mit ihren äußersten Enden mit einem vorgegebenen gegenseitigen Abstand bis in den Verbrennungsraum hinein. The invention relates to an ignition device for igniting an air-fuel mixture in a combustion chamber, in particular an internal combustion engine, with a spark plug having a first electrode and a second electrode, with a high voltage source or high DC voltage source for generating a high voltage electrical pulse or high DC voltage pulse at an output the high voltage source and having a high frequency voltage source for generating a high frequency electrical AC voltage at an output of the high frequency power source, wherein the output of the high voltage source is electrically connected to the first electrode of the spark plug via a first electrical conduction path such that the high voltage pulse at the first electrode According to the preamble of patent claim 1. So-called gasoline combustion process with direct injection of the fuel have the possibility of a Schichtla The non-homogeneous mixture in the combustion chamber, however, places increased demands on the fuel used Ignition method for reliable ignition at the appropriate time. Fluctuations of any kind reduce, for example, the quality of the ignition and thus the efficiency of the entire engine. On the one hand, the position of the ignitable mixture can vary slightly and, on the other hand, the hook of the ground electrode of the spark plug can have a disruptive effect on the mixture formation. Helpful for a direct injection combustion process is an ignition system with a greater spatial extent into the combustion chamber. For this purpose, it is proposed in DE 10 2004 058 925 A1 to ignite a fuel-air mixture in a combustion chamber of an internal combustion engine by means of a plasma. A corresponding high frequency plasma ignition device comprises a series resonant circuit with an inductance and a capacitance and a high frequency source for the resonant excitation of this series resonant circuit. The capacitance is represented by inner and outer conductor electrodes with intervening dielectric. These electrodes extend with their outermost ends at a predetermined mutual distance into the combustion chamber.
Aus der DE 10 2008 051 185 A1 ist ein Verfahren zum Zünden bekannt, bei dem mittels eines Hochspannungsimpulses ein Funkenplasma erzeugt wird, welches anschließend mittels eines HF-Feldes weiter geheizt wird und dabei in eine Glimmentladung übergeht. Der Hochspannungsimpuls und ein Ausgangssignal eines HF-Generators werden dabei gemeinsam einer Funkenelektrode einer Zündkerze zugeführt. Eine Gegenelektrode der Zündkerze ist geerdet. From DE 10 2008 051 185 A1 a method for ignition is known in which by means of a high voltage pulse a spark plasma is generated, which is then heated further by means of an RF field and thereby merges into a glow discharge. The high-voltage pulse and an output signal of an HF generator are supplied together to a spark electrode of a spark plug. A counter electrode of the spark plug is grounded.
Moderne Zündanlagen für Ottomotoren weisen heute eine Zündkerze und eine Einzelzündspule mit elektronischer AnSteuereinheit auf. Die Zündkerze ist ein koaxialer Aufbau und besteht im Wesentlichen aus einer mittleren Elektrode umgeben von einem Isolator und einer äußeren Elektrode, die mit dem Zündkerzengehäuse verbunden ist. Die Zündspule liefert der Zündkerze einen Hochspannungsimpuls bzw. Hochgleichspannungsimpuls. Zwischen den Elektroden entsteht ein Funke der die Verbrennung einleitet. Ein alternatives Verfahren, in dem zusätzlich zur angelegten Hochspannung der Zündspule eine hochfrequente Spannung an die Zündkerze angelegt wird, ist in der DE 10 2013 215 663 A1 A 1 beschrieben. Hierbei geht das Funkenplasma in ein HF-Plasma über. Bei den zuvor beschriebenen klassischen Zündkonzepten brennt das Funkenplasma zwischen zwei Elektroden, einer aktiven "getriebenen" Elektrode (auch Hochspannungselektrode genannt) und einer passiven Elektrode (auch Masseelektrode genannt), deren Potential auf der Masse (0 V) des Motorblocks sowie der vollständigen Karosserie eines Automobils liegt. Die Masseelektrode kann auch als Mehrfachelektrode ausgeführt sein. Diese Zündsysteme haben den Prinzip bedingten Nachteil einer mangelhaften Steuerbarkeit, da nach der Plasmazündung die in der Zündspule gespeicherte Energie auf einer Zeitskaia von wenigen zehn Nanosekunden in das Plasma eingekoppelt wird. Der stark ansteigende Strom ist eine Folge der rasant steigenden Elektronendichte und damit verbundenen Steigerung der Leitfähigkeit des Plasmas. Alle nachwirkenden Prozesse im Plasma sind nur noch eine Folge dieses Energieeintrages und nicht mehr von außen beeinflussbar. Insbesondere findet keine Heizung des Plasmas mehr statt. Dies hat zur Folge, dass keine nennenswerte Erzeugung von freien Elektroden und damit einhergehend von reaktiven Spezies, wie beispielsweise von atomarem Sauerstoff, die die Verbrennung fördern, stattfindet. Die Verbrennung hingegen findet auf erheblich längeren Zeitskalen statt, lebt aber von der zuvor erzeugten atomaren Sauerstoffdichte. Der Erfindung liegt die Aufgabe zugrunde, eine Zündvorrichtung der o.g. Art hinsichtlich der Einflussmögiichkeiten auf die Parameter des Plasmas zwischen den Elektroden der Zündkerze zu verbessern. Modern ignition systems for gasoline engines today have a spark plug and a Einzelzündspule with electronic AnSteuereinheit. The spark plug is a coaxial structure and consists essentially of a central electrode surrounded by an insulator and an outer electrode connected to the spark plug housing. The ignition coil provides the spark plug with a high voltage pulse. Between the electrodes a spark is created which initiates combustion. An alternative method, in which a high-frequency voltage is applied to the spark plug in addition to the applied high voltage of the ignition coil, is described in DE 10 2013 215 663 A1 A 1. In this case, the spark plasma changes into an HF plasma. In the classical ignition concepts described above, the spark plasma burns between two electrodes, an active "driven" electrode (also called high voltage electrode) and a passive electrode (also called ground electrode) whose potential on the ground (0 V) of the engine block and the entire body of a Automobile lies. The ground electrode can also be designed as a multiple electrode. These ignition systems have the principle conditional disadvantage of poor controllability, since after plasma ignition the energy stored in the ignition coil is coupled into the plasma on a time-scale of a few tens of nanoseconds. The strongly increasing current is a consequence of the rapidly increasing electron density and associated increase in the conductivity of the plasma. All subsequent processes in the plasma are only a consequence of this energy input and can no longer be influenced from the outside. In particular, no more heating of the plasma takes place. As a result, there is no appreciable generation of free electrodes and, concomitantly, reactive species, such as atomic oxygen, which promote combustion. On the other hand, combustion takes place on considerably longer time scales, but it lives on the previously generated atomic oxygen density. The invention has for its object to improve an ignition device of the above type with respect to the influencing possibilities on the parameters of the plasma between the electrodes of the spark plug.
Diese Aufgabe wird erfindungsgemäß durch eine Zündvorrichtung der o.g. Art mit den in Anspruch 1 gekennzeichneten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den weiteren Ansprüchen beschrieben. This object is achieved by an igniter of o.g. Art solved with the features characterized in claim 1. Advantageous embodiments of the invention are described in the further claims.
Dazu ist es bei einer Zündvorrichtung der o.g. Art erfindungsgemäß vorgesehen, dass der Ausgang der Hochfrequenzspannungsquelle mit der zweiten Elektrode über einen zweiten elektrischen Leitungspfad derart elektrisch verbunden ist, dass die Hochfrequenz-Wechselspannung an der zweiten Elektrode anliegt. For this it is in an igniter of o.g. Art according to the invention provided that the output of the high-frequency voltage source to the second electrode via a second electrical conduction path is electrically connected such that the high-frequency AC voltage applied to the second electrode.
Dies hat den Vorteil, dass zwei aktive Elektroden zur Verfügung stehen, so dass nach dem Zünden eines Plasmas zwischen den beiden Elektroden der Zündkerze durch den Hochspannungsimpuls sofort die Hochfrequenz-Wechselspannung bei einem wesentlich niedrigeren Niveau der elektrischen Spannung weiter Energie in das Plasma einkoppein kann. Eine besonders einfache und funktionssichere Zündvorrichtung erzielt man dadurch, dass die Hochspannungsquelle als Zündspule ausgebildet ist. This has the advantage that two active electrodes are available, so that after the ignition of a plasma between the two electrodes of the spark plug by the high voltage pulse immediately the high-frequency AC voltage at a much lower level of electrical voltage einkoppein energy in the plasma einkoppein can. A particularly simple and functionally reliable ignition device is achieved in that the high-voltage source is designed as an ignition coil.
Einen Schutz der Hochfrequenzspannungsquelle gegen Überspannung erzielt man dadurch, dass in dem zweiten Leitungspfad zwischen der zweiten Elektrode der Zündkerze und dem Ausgang der Hochfrequenzspannungsquelle eine Schutzschaltung elektrisch eingeschleift ist, welche ein Durchschlagen des Hochspannungsimpulses von der Hochspannungsquelle zum Ausgang der Hochfrequenzspannungsquelle blockiert. Eine frequenzselektive Übertragung, beispielsweise von nur einem gewünschten Frequenzband, von der Hochfrequenzspannungsquelle zu der zweiten Elektrode der Zündkerze erzielt man dadurch, dass in dem zweiten elektrischen Leitungspfad zwischen der zweiten Elektrode der Zündkerze und dem Ausgang der Hochfrequenzspannungsquelle ein Trennelement in Form eines frequenzselektiven Filters, insbesondere in Form eines Bandpassfilters, elektrisch eingeschleift ist. A protection of the high frequency voltage source against overvoltage is achieved in that in the second conduction path between the second electrode of the spark plug and the output of the high frequency voltage source, a protective circuit is electrically connected, which blocks a breakdown of the high voltage pulse from the high voltage source to the output of the high frequency power source. A frequency-selective transmission, for example of only one desired frequency band, from the high-frequency voltage source to the second electrode of the spark plug is achieved in that in the second electrical conduction path between the second electrode of the spark plug and the output of the high-frequency voltage source, a separating element in the form of a frequency-selective filter, in particular in the form of a bandpass filter, is electrically connected.
Einen Schutz auch des Trennelementes vor Überspannung erzielt man dadurch, dass das Trennelement zwischen der Schutzschaltung und dem Ausgang der Hochfrequenzspannungsquelie in den zweiten elektrischen Leitungspfad eingeschleift ist. Protection of the separating element from overvoltage is also achieved in that the separating element between the protective circuit and the output of the high-frequency voltage source is looped into the second electrical conduction path.
In einer bevorzugten Weiterbildung der Erfindung ist das Trennelement zwischen der Schutzschaltung und der zweiten Elektrode in den zweiten elektrischen Leitungspfad eingeschleift. Dies hat den Vorteil, dass der Bandpass des Trennelementes die Energie außerhalb des Durchlassbereiches dämpft, wodurch die Realisierung der Schutzschaltung einfacher wird. In a preferred embodiment of the invention, the separating element between the protective circuit and the second electrode is looped into the second electrical conduction path. This has the advantage that the bandpass of the isolator attenuates the power outside the passband, thereby simplifying the realization of the protection circuit.
Eine verbesserte Übertragung der Hochspannung von der Hochspannungsquelle zur Zündkerze wird dadurch erzielt, dass in dem ersten elektrischen Leitungspfad zwischen dem Ausgang der Hochspannungsquelie und der ersten Elektrode der Zündkerze eine Schutzschaltung elektrisch eingeschleift ist, welche einen Massebezug für die HF darstellt. Eine klare Trennung der beiden aktiven Elektroden erzielt man dadurch, dass an der ersten Elektrode einzig der Hochspannungsimpuls anliegt und dass an der zweiten Elektrode einzig die Hochfrequenz-Wechselspannung anliegt. An improved transmission of the high voltage from the high voltage source to the spark plug is achieved in that in the first electrical conduction path between the output of the high voltage source and the first electrode of the spark plug, a protection circuit is electrically connected, which represents a ground reference for the HF. A clear separation of the two active electrodes is achieved in that only the high-voltage pulse is applied to the first electrode and that only the high-frequency AC voltage is applied to the second electrode.
Die Erfindung wird im Folgenden anhand der Zeichnung näher erläutert. Diese zeigt in The invention will be explained in more detail below with reference to the drawing. This shows in
Fig. 1 eine schematische Darstellung einer bevorzugten Ausführungsform einer erfindungsgemäßen Zündvorrichtung und Fig. 2 eine schematische Darstellung einer alternativen bevorzugten Ausführungsform einer erfindungsgemäßen Zündvorrichtung. Fig. 1 is a schematic representation of a preferred embodiment of an ignition device according to the invention and Fig. 2 is a schematic representation of an alternative preferred embodiment of an ignition device according to the invention.
Die in Fig. 1 dargestellte, bevorzugte Ausführungsform einer erfindungsgemäßen Zündvorrichtung 10 weist eine Zündkerze 12, eine Hochspannungsquelie bzw. Hochgleichspannungsquelle 14 und eine Hochfrequenzspannungsquelle 16 auf. Die Zündkerze 12 weist eine erste Elektrode 18 (Hochspannungselektrode) und eine zweite Elektrode 20 (Hochfrequenzelektrode) auf. Die Elektroden 18, 20 ragen in einen nicht dargestellten Brennraum, beispielsweise in einem Arbeitszyiinder einer Brennkraftmaschine, in dem ein Kraftstoff-Luftgemisch entzündet werden soll. Die Hochspannungsquelie 14 ist als Zündspule ausgebildet und erzeugt einen Hochspannungsimpuls bzw. Hochgleichspannungsimpuls (DC), weicher an einem Ausgang 22 der Hochspannungsquelie 14 anliegt. Der Ausdruck "elektrischer Hochgleichspannungsimpuls" bezeichnet hier einen elektrischen Gleichspannungsimpuls mit hoher elektrischer Spannung von einigen kV, wie beispielsweise 3 kV bis 30 kV oder 8 kV bis 12 kV. Der Ausgang 22 der Hochspannungsquelie 14 ist über einen ersten elektrischen Leitungspfad 24 mit der ersten Elektrode 18 derart elektrisch verbunden, dass der Hochspannungsimpuis aus der Hochspannungsquelie 14 der ersten Elektrode 18 der Zündkerze 12 zugeführt wird. Hierbei liegt der elektrische Hochspannungsimpuls einzig an der ersten Elektrode (18) an. The illustrated in Fig. 1, preferred embodiment of an ignition device 10 according to the invention comprises a spark plug 12, a Hochspannungsquelie or high DC voltage source 14 and a high frequency power source 16. The spark plug 12 has a first electrode 18 (high voltage electrode) and a second electrode 20 (high frequency electrode). The electrodes 18, 20 protrude into a combustion chamber, not shown, for example in a Arbeitszyiinder an internal combustion engine in which a fuel-air mixture to be ignited. The high voltage source 14 is designed as an ignition coil and generates a high voltage pulse or high DC voltage pulse (DC), which is applied to an output 22 of the high voltage source 14. The term "electrical high DC voltage pulse" refers here to a high voltage electrical DC pulse of a few kV, such as 3 kV to 30 kV or 8 kV to 12 kV. The output 22 of the high voltage source 14 is electrically connected to the first electrode 18 via a first electrical conduction path 24 such that the high voltage pulse from the high voltage source 14 is applied to the first electrode 18 of the spark plug 12 becomes. Here, the electric high voltage pulse is applied only to the first electrode (18).
Die Hochfrequenzspannungsquelle 16 erzeugt eine Hochfrequenz- Wechselspannung, welche an einem Ausgang 28 der Hochfrequenzspannungsquelle 16 anliegt. Der Ausgang 26 der Hochfrequenzspannungsquelle 16 ist über einen zweiten elektrischen Leitungspfad 28 mit der zweiten Elektrode 20 der Zündkerze 12 elektrisch derart verbunden, dass die Hochfrequenz-Wechselspannung aus der Hochfrequenzspannungsquelle 16 der zweiten Elektrode 20 der Zündkerze 12 zugeführt wird. Die Hochfrequenzspannungsquelle 16 ist weiterhin mit einem elektrischen Massepotential 40 elektrisch verbunden. Hierbei liegt die Hochfrequenz- Wechselspannung einzig an der zweiten Elektrode (20) an. The high-frequency voltage source 16 generates a high-frequency AC voltage which is applied to an output 28 of the high-frequency voltage source 16. The output 26 of the high-frequency voltage source 16 is electrically connected via a second electrical conduction path 28 to the second electrode 20 of the spark plug 12 such that the high-frequency AC voltage from the high-frequency voltage source 16 of the second electrode 20 of the spark plug 12 is supplied. The high frequency voltage source 16 is further electrically connected to an electrical ground potential 40. Here, the high-frequency AC voltage is applied only to the second electrode (20).
In dem zweiten elektrischen Leitungspfad 28 ist eine Schutzschaltung 30 elektrisch eingeschleift. Diese Schutzschaitung 30 ist derart ausgebildet, dass sie einerseits den Hochspannungsimpuls von der Hochspannungsquelle 14 daran hindert, über den zweiten elektrischen Leitungspfad 28 bis zum Ausgang 26 der Hochfrequenzspannungsquelle 16 durchzuschlagen und andererseits die Hochfrequenz-Wechselspannung aus der Hochfrequenzspannungsquelle 16 in Richtung der zweiten Elektrode 20 der Zündkerze 12 weiterleitet. Auf diese Weise ist die Hochfrequenzspannungsquelle 16 vor Überspannung geschützt. In the second electrical conduction path 28, a protection circuit 30 is electrically connected. This Schutzschaitung 30 is designed such that on the one hand prevents the high voltage pulse from the high voltage source 14 from strike through the second electrical conduction path 28 to the output 26 of the high frequency power source 16 and on the other hand, the high frequency alternating voltage from the high frequency power source 16 in the direction of the second electrode 20 of Spark plug 12 forwards. In this way, the high frequency power source 16 is protected from overvoltage.
Weiterhin ist in dem zweiten elektrischen Leitungspfad 28 ein Trennelement 32 zwischen der Schutzschaltung 30 und dem Ausgang 26 der Hochfrequenzspannungsquelle 16 elektrisch eingeschleift. Dieses Trennelement 32 ist als ein frequenzselektives Filter, beispielswese als ein Bandpassfilter mit einer konstanten oder variablen Kapazität 34 und einer konstanten oder variablen Induktivität 36, ausgebildet. Dieses Bandpassfilter lässt nur ein vorbestimmtes Frequenzband von der Hochfrequenzspannungsquelle 16 über den zweiten elektrischen Leitungspfad 28 in Richtung der zweiten Elektrode 20 passieren. Mit dem Trennelement 32 kann die eingekoppelte Frequenz der Hochfrequenz- Wechselspannung ständig angepasst werden, so dass ein optimaler Energieeintrag in das gezündete Plasma erzielt wird. Die erfindungsgemäße Zündvorrichtung ist als Hochfrequenz-Plasma-Zündsystem ausgebildet und beinhaltet in der Zündkerze 12 zwei aktive Elektroden, die Hochspannungselektrode als erste Elektrode 18 und die Hochfrequenzelektrode als zweite Elektrode 20. Eine Masseelektrode, wie bei herkömmlichen Zündsystemen, ist nicht vorhanden. Die Zündspule 14 erzeugt einen Hochspannungsimpuls bzw. Hochgleichspannungsimpuls (DC), der bei Erreichen einer Durchbruchspannung zwischen der Hochspannungselektrode 18 und der Hochfrequenzelektrode 20 der Zündkerze 12 ein initiales Plasma im Raum um die beiden Elektroden 18, 20 brennen lässt (Pfeil 42). Dieses Plasma wird durch anschließendes Zuführen der Hochfrequenz-Wechselspannung von der Hochfrequenzspannungsquelle 16 weiter mit Energie versorgt (Pfeil 44) und dadurch für eine gewisse Zeit aufrecht erhalten, so dass das Plasma länger vorhanden ist, als es alleine durch den Hochspannungsimpuls aus der Hochspannungsquelle 14 der Fall wäre. Ein Plasma beinhaltet unter anderem Elektronen, Ionen, angeregte Teilchen und Neutralteilchen. Die freien Ladungsträger (Elektronen und Ionen) bilden einen leitfähigen Plasmakanal zwischen der Hochspannungselektrode 18 und der Hochfrequenzelektrode 20 der Zündkerze 12. Die durch das Plasma entstandenen freien Ladungsträger werden für den Stromtransport des Hochfrequenzplasmas zwischen der Hochfrequenzelektrode 20 und der Hochspannungselektrode 18 genutzt. Somit kann durch das zusätzliche Anlegen einer Hochfrequenzspannung aus der Hochfrequenzspannungsquelle 16 an der Hochfrequenzelektrode 20 mehr Leistung über einen längeren Zeitraum in das Plasma eingebracht werden. Dadurch werden kontinuierlich Elektronen erzeugt und die freie Elektronendichte im Plasma bleibt länger erhalten, womit eine permanente Erzeugung von reaktiven Spezies (vor allem von atomarem Sauerstoff) einhergeht. Die deutlich erhöhte Menge von atomarem Sauerstoff sorgt für eine effektivere Verbrennung und erlaubt u.a. das sichere Entflammen von mageren Kraftstoff-Luft-Gemischen im Brennraum bzw. eine erhöhte Motorleistung bei konstantem Kraftstoffverbrauch. Damit die Hochfrequenzspannungsquelle 16 vor dem Hochspannungsimpuls aus der Hochspannungsquelle 14 geschützt ist, ist zwischen der Hochfrequenzelektrode 20 und Hochfrequenzspannungsquelle 16 die Schutzschaltung 30 vorgesehen. Ein großer Vorteil dieses Zündsystems liegt darin, dass das Plasma direkt zwischen den beiden aktiven Elektroden 18, 20 brennt. Eine sichere Übernahme der Hochfrequenzspannungsquelle, um nach dem initialen Funken durch den Hochspannungsimpuls aus der Hochspannungsquelle 14 weiterhin aktiv Energie in das Plasma einzukoppeln, ist gegeben, da der initiale Funken in jedem Faii freie Ladungsträger zwischen den Elektroden generiert. Furthermore, in the second electrical conduction path 28, a separating element 32 is electrically connected between the protection circuit 30 and the output 26 of the high-frequency voltage source 16. This separator 32 is designed as a frequency-selective filter, for example as a band-pass filter with a constant or variable capacitance 34 and a constant or variable inductance 36. This bandpass filter passes only a predetermined frequency band from the high frequency power source 16 via the second electrical conduction path 28 toward the second electrode 20. With the separating element 32, the injected frequency of the high-frequency AC voltage can be constantly adjusted, so that an optimal energy input into the ignited plasma is achieved. The ignition device according to the invention is designed as a high-frequency plasma ignition system and includes two active electrodes in the spark plug 12, the high voltage electrode as the first electrode 18 and the high frequency electrode as the second electrode 20. A ground electrode, as in conventional ignition systems is not present. The ignition coil 14 generates a high voltage pulse or high DC voltage pulse (DC) which, upon reaching a breakdown voltage between the high voltage electrode 18 and the high frequency electrode 20 of the spark plug 12 an initial plasma in space around the two electrodes 18, 20 burn (arrow 42). This plasma is further energized (arrow 44) by subsequent supply of the high frequency AC voltage from the RF power source 16 and thereby maintained for a time such that the plasma is present for longer than the high voltage pulse from the high voltage source 14 of FIG Case would be. A plasma includes, among others, electrons, ions, excited particles, and neutral particles. The free charge carriers (electrons and ions) form a conductive plasma channel between the high-voltage electrode 18 and the high-frequency electrode 20 of the spark plug 12. The free charge carriers formed by the plasma are used for the current transport of the high-frequency plasma between the high-frequency electrode 20 and the high-voltage electrode 18. Thus, by the additional application of a high frequency voltage from the high frequency voltage source 16 to the high frequency electrode 20 more power over a longer period can be introduced into the plasma. As a result, electrons are generated continuously and the free electron density in the plasma is retained for a longer time, which is accompanied by a permanent generation of reactive species (especially of atomic oxygen). The significantly increased amount of atomic oxygen ensures a more effective combustion and allows, among other things, the safe ignition of lean fuel-air mixtures in the combustion chamber or an increased engine power with constant fuel consumption. So that the high-frequency voltage source 16 is protected from the high-voltage source 14 before the high-voltage pulse, the protective circuit 30 is provided between the high-frequency electrode 20 and the high-frequency voltage source 16. A big advantage of this ignition system is that the plasma burns directly between the two active electrodes 18, 20. A secure takeover of the High frequency power source to continue to actively inject energy into the plasma after the initial spark by the high voltage pulse from the high voltage source 14 is given because the initial spark in each case generates free charge carriers between the electrodes.
Die Schutzschaltung 30 beinhaltet beispielsweise einen gasgefüllten Überspannungsabieiter, welcher isolierend wirkt, solange die Spannung unter einem vorbestimmten Wert von beispielsweise etwa 450 V bleibt. Der gasgefüllte Überspannungsabieiter stört wegen seiner geringen Kapazität von nur etwa 2 pF nicht. Wird die Zündspannung des gasgefüllten Überspannungsabieiters überschritten, fällt der Widerstand innerhalb von Mikrosekunden auf sehr geringe Werte, wobei Stromspitzen von beispielsweise bis zu 100 kA abgeleitet werden können. Durch die Trennung von Hochspannungs- und Hochfrequenzpotential werden die Anforderungen an die Spannungsfestigkeit des Trennelementes 32 drastisch reduziert. Gleichzeitig wird durch diesen Schritt die Belastung der Hochspannungsquelle 14 in Form der Zündspule erheblich herabgesetzt und die Erzeugung der Hochspannung deutlich vereinfacht. Vor dem Hintergrund immer stärker aufgeladener und kleinvolumiger Otto-Motoren ist die Erzeugung von ausreichend hohen Spannungsimpulsen zur sicheren Entflammung eine immer weiter wachsende Herausforderung. Des Weiteren ergeben sich mehr Freiheitsgrade bei der Wahl der reaktiven Bauelemente des Trennelementes, da auf eine möglichst geringe kapazitive Belastung der Zündspule nicht mehr geachtet werden muss. Die Kapazitäten des Trennelementes können im Gegensatz zu bisherigen Schaltungskonzepten erhöht und die Induktivitäten gesenkt werden, was die Realisierung des Trennelementes vereinfacht. The protection circuit 30 includes, for example, a gas-filled surge absorber which acts insulating as long as the voltage remains below a predetermined value of, for example, about 450V. The gas-filled surge arrester does not disturb because of its low capacity of only about 2 pF. If the ignition voltage of the gas-filled Überspannungsabieiters exceeded, the resistance falls within microseconds to very low values, with current peaks of, for example, up to 100 kA can be derived. Due to the separation of high voltage and high frequency potential requirements for the dielectric strength of the separator 32 are drastically reduced. At the same time the load of the high voltage source 14 in the form of the ignition coil is significantly reduced by this step and the generation of the high voltage significantly simplified. Against the background of increasingly charged and small-volume gasoline engines, the generation of sufficiently high voltage pulses for safe ignition is an ever-increasing challenge. Furthermore, there are more degrees of freedom in the choice of the reactive components of the separating element, since the lowest possible capacitive load on the ignition coil no longer needs to be paid attention. The capacitances of the separating element can be increased in contrast to previous circuit concepts and the inductances can be reduced, which simplifies the realization of the separating element.
In Fig. 2 sind funktionsgleiche Teile mit gleichen Bezugszeichen wie in Fig. 1 bezeichnet, so dass zu deren Erläuterung auf die obige Beschreibung der Fig. 1 verwiesen wird. Bei der zweiten Ausführungsform gemäß Fig. 2 ist im Unterschied zur ersten Ausführungsform gemäß Fig. 1 die Schutzschaltung 30 zwischen dem Trennelement 32 und dem Ausgang 26 der Hochfrequenzspannungsquelle 16 in den zweiten elektrischen Leitungspfad 28 eingeschleift. Optional weist die Schutzschaltung 30 und/oder das Trennelement 32 zusätzlich eine elektrische Verbindung mit dem Massepotential 40 auf, wie mit gestrichelten Linien in Fig. 1 und 2 dargestellt. In Fig. 2 functionally identical parts are designated by the same reference numerals as in Fig. 1, so that reference is made to their explanation in the above description of FIG. In the second embodiment according to FIG. 2, in contrast to the first embodiment according to FIG. 1, the protective circuit 30 is looped between the isolating element 32 and the output 26 of the high-frequency voltage source 16 into the second electrical conduction path 28. Optionally, the protection circuit 30 and / or the separation element 32 additionally has an electrical connection to the ground potential 40, as shown in dashed lines in FIGS. 1 and 2.
Optional ist in dem ersten elektrischen Leitungspfad 24 zwischen dem Ausgang 22 der Hochspannungsquelle 14 und der ersten Elektrode 18 eine Schutzschaltung 31 mit elektrischer Verbindung mit dem Massepotential 40 elektrisch eingeschleift. Diese Schutzschaltung 31 ist in den Fig. 1 und 2 entsprechend mit gestrichelten Linien angedeutet. Die Schutzschaltung soll einen Massebezug für die HF darstellen und nicht die Hochspannung blockieren. Optionally, in the first electrical conduction path 24 between the output 22 of the high voltage source 14 and the first electrode 18, a protective circuit 31 is electrically connected to the ground potential 40 with electrical connection. This protective circuit 31 is indicated in FIGS. 1 and 2 correspondingly with dashed lines. The protection circuit should represent a ground reference for the RF and not block the high voltage.

Claims

Ansprüche: Claims:
1. Zündvorrichtung (10) zum Zünden eines Luft-Kraftstoffgemisches in einem Brennraum, insbesondere einer Brennkraftmaschine, mit einer Zündkerze (12), die eine erste Elektrode (18) und eine zweite Elektrode (20) aufweist, mit einer Hochspannungsquelle (14) zum Erzeugen eines elektrischen Hochspannungsimpulses an einem Ausgang (22) der Hochspannungsquelle und mit einer Hochfrequenzspannungsquelle (16) zum Erzeugen einer elektrischen Hochfrequenz-Wechselspannung an einem Ausgang (26) der Hochfrequenzspannungsquelle (16), wobei der Ausgang (22) der Hochspannungsquelle (14) mit der ersten Elektrode (18) der Zündkerze (12) über einen ersten elektrischen Leitungspfad (24) derart elektrisch verbunden ist, dass der Hochspannungsimpuls an der ersten Elektrode (18) anliegt, 1. Ignition device (10) for igniting an air-fuel mixture in a combustion chamber, in particular an internal combustion engine, with a spark plug (12) having a first electrode (18) and a second electrode (20), with a high voltage source (14) for Generating a high voltage electrical pulse at an output (22) of the high voltage source and a high frequency voltage source (16) for generating a high frequency electrical AC voltage at an output (26) of the high frequency voltage source (16), wherein the output (22) of the high voltage source (14) the first electrode (18) of the spark plug (12) is electrically connected via a first electrical conduction path (24) such that the high voltage pulse is applied to the first electrode (18),
d a d u r c h g e k e n n z e i c h n e t ,  characterized ,
dass der Ausgang (26) der Hochfrequenzspannungsquelle (16) mit der zweiten Elektrode (20) über einen zweiten elektrischen Leitungspfad (28) derart elektrisch verbunden ist, dass die Hochfrequenz-Wechselspannung an der zweiten Elektrode (20) anliegt.  in that the output (26) of the high-frequency voltage source (16) is electrically connected to the second electrode (20) via a second electrical conduction path (28) such that the high-frequency AC voltage is applied to the second electrode (20).
2. Zündvorrichtung (10) nach Anspruch 1 , dadurch gekennzeichnet, dass die Hochspannungsquelle (14) als Zündspule ausgebildet ist. 2. Ignition device (10) according to claim 1, characterized in that the high voltage source (14) is designed as an ignition coil.
3. Zündvorrichtung (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in dem zweiten elektrischen Leitungspfad (28) zwischen der zweiten Elektrode (20) der Zündkerze (12) und dem Ausgang (26) der Hochfrequenzspannungsquelle (16) eine Schutzschaltung (30) elektrisch eingeschleift ist, welche ein Durchschlagen des Hochspannungsimpulses von der Hochspannungsquelle (14) zum Ausgang (26) der Hochfrequenzspannungsquelle (16) blockiert. 3. ignition device (10) according to claim 1 or 2, characterized in that in the second electrical conduction path (28) between the second electrode (20) of the spark plug (12) and the output (26) of the high-frequency power source (16) a protective circuit ( 30) is electrically connected, which blocks a breakdown of the high voltage pulse from the high voltage source (14) to the output (26) of the high frequency power source (16).
4. Zündvorrichtung (10) nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in dem zweiten elektrischen Leitungspfad (28) zwischen der zweiten Elektrode (20) der Zündkerze (12) und dem Ausgang (26) der Hochfrequenzspannungsquelle (16) ein Trennelement (32) in Form eines frequenzselektiven Filters, insbesondere in Form eines Bandpassfilters, elektrisch eingeschleift ist. 4. ignition device (10) according to at least one of the preceding claims, characterized in that in the second electrical conduction path (28) between the second electrode (20) of the spark plug (12) and the output (26) of the high-frequency voltage source (16) a separating element (32) in the form of a frequency-selective filter, in particular in the form of a bandpass filter, is electrically connected.
5. Zündvorrichtung (10) nach Anspruch 3 und 4, dadurch gekennzeichnet, dass das Trennelement (32) zwischen der Schutzschaltung (30) und dem Ausgang (26) der Hochfrequenzspannungsquelle (6) in den zweiten elektrischen Leitungspfad (28) eingeschleift ist. 5. ignition device (10) according to claim 3 and 4, characterized in that the separating element (32) between the protective circuit (30) and the output (26) of the high-frequency power source (6) in the second electrical conduction path (28) is looped.
6. Zündvorrichtung (10) nach Anspruch 3 und 4, dadurch gekennzeichnet, dass das Trennelement (32) zwischen der Schutzschaltung (30) und der zweiten Elektrode (20) in den zweiten elektrischen Leitungspfad (28) eingeschleift ist. 6. ignition device (10) according to claim 3 and 4, characterized in that the separating element (32) between the protective circuit (30) and the second electrode (20) in the second electrical conduction path (28) is looped.
7. Zündvorrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in dem ersten elektrischen Leitungspfad (24) zwischen dem Ausgang (22) der Hochspannungsquelle (14) und der ersten Elektrode (18) der Zündkerze (12) eine Schutzschaltung (31) elektrisch eingeschleift ist, welche einen Massebezug für die HF darstellt. 7. Ignition device according to at least one of the preceding claims, characterized in that in the first electrical conduction path (24) between the output (22) of the high voltage source (14) and the first electrode (18) of the spark plug (12) a protective circuit (31) is electrically connected, which represents a ground reference for the HF.
8. Zündvorrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an der ersten Elektrode (18) einzig der Hochspannungsimpuls anliegt und dass an der zweiten Elektrode (20) einzig die Hochfrequenz-Wechselspannung anliegt. 8. Ignition device according to at least one of the preceding claims, characterized in that at the first electrode (18) only the high voltage pulse is present and that at the second electrode (20) only the high frequency AC voltage is applied.
EP17715623.9A 2016-03-29 2017-03-23 Ignition device for igniting an air fuel in a combustion chamber Active EP3436686B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016003793.8A DE102016003793A1 (en) 2016-03-29 2016-03-29 Ignition device for igniting an air-fuel mixture in a combustion chamber
PCT/EP2017/000363 WO2017167438A1 (en) 2016-03-29 2017-03-23 Ignition device for igniting an air/fuel mixture in a combustion chamber

Publications (2)

Publication Number Publication Date
EP3436686A1 true EP3436686A1 (en) 2019-02-06
EP3436686B1 EP3436686B1 (en) 2020-07-29

Family

ID=58489281

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17715623.9A Active EP3436686B1 (en) 2016-03-29 2017-03-23 Ignition device for igniting an air fuel in a combustion chamber

Country Status (8)

Country Link
US (1) US10982641B2 (en)
EP (1) EP3436686B1 (en)
JP (1) JP2019511670A (en)
KR (1) KR20180124908A (en)
CN (1) CN109312707B (en)
DE (1) DE102016003793A1 (en)
TW (1) TW201734304A (en)
WO (1) WO2017167438A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110500222A (en) * 2019-09-20 2019-11-26 韦伟平 A kind of high-frequency resonant firing circuit of lean combustion engine and its work, control method
CN114109692B (en) * 2021-11-26 2022-09-27 山东大学 Fast pulse multipoint discharge system and engine combustion control method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1335797A (en) * 1920-04-06 of toledo
JPS5328568B1 (en) * 1971-03-06 1978-08-15
JPS5152653Y2 (en) * 1971-09-02 1976-12-16
US3934566A (en) * 1974-08-12 1976-01-27 Ward Michael A V Combustion in an internal combustion engine
US4297983A (en) * 1978-12-11 1981-11-03 Ward Michael A V Spherical reentrant chamber
US4369756A (en) * 1980-01-11 1983-01-25 Nissan Motor Co., Ltd. Plasma jet ignition system for internal combustion engine
DE3145169A1 (en) * 1981-11-13 1983-05-26 Marcel 68390 Sausheim-Battenheim Blanchard Arrangement for producing a high voltage
US5777867A (en) * 1995-09-14 1998-07-07 Suitomo Electric Industries, Ltd. Electric discharge method and apparatus
DE19723784C1 (en) * 1997-06-06 1998-08-20 Daimler Benz Ag Circuit for ignition system of IC engine supplying high voltage to spark plug electrodes
DE102004058925A1 (en) 2004-12-07 2006-06-08 Siemens Ag High-frequency plasma ignition device for internal combustion engines, in particular for directly injecting gasoline engines
JP2008082286A (en) * 2006-09-28 2008-04-10 Toyota Central R&D Labs Inc Internal combustion engine, and its igniter
DE102008051185A1 (en) 2008-02-14 2009-11-12 Stanislav Tkadlec Ignition method for generating discharge plasma by high frequency field and direct current impulse, particularly for internal combustion engine, involves supplying high frequency voltage on spark electrode and counter electrode
JP5152653B2 (en) * 2008-05-20 2013-02-27 株式会社エーイーティー Ignition system using spark discharge ignition method and microwave plasma ignition method in combination
JP5413186B2 (en) * 2009-12-25 2014-02-12 株式会社デンソー High frequency plasma ignition device
KR101441834B1 (en) * 2010-09-07 2014-09-18 니혼도꾸슈도교 가부시키가이샤 Ignition system and spark plug
JP6082877B2 (en) * 2011-01-18 2017-02-22 イマジニアリング株式会社 Plasma generator and internal combustion engine
WO2012124671A2 (en) 2011-03-14 2012-09-20 イマジニアリング株式会社 Internal combustion engine
JP5954812B2 (en) * 2011-10-31 2016-07-20 ダイハツ工業株式会社 Control device for spark ignition internal combustion engine
JP5469229B1 (en) * 2012-10-26 2014-04-16 三菱電機株式会社 Ignition coil device for high frequency discharge
JP5805125B2 (en) 2013-03-18 2015-11-04 三菱電機株式会社 Ignition device
CN105264218B (en) * 2013-06-04 2017-06-23 三菱电机株式会社 The igniter of spark-ignited internal combustion engine

Also Published As

Publication number Publication date
DE102016003793A1 (en) 2017-10-05
US20200011283A1 (en) 2020-01-09
EP3436686B1 (en) 2020-07-29
CN109312707B (en) 2019-11-26
JP2019511670A (en) 2019-04-25
TW201734304A (en) 2017-10-01
CN109312707A (en) 2019-02-05
KR20180124908A (en) 2018-11-21
US10982641B2 (en) 2021-04-20
WO2017167438A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
DE3137239C2 (en) Plasma ignition device for an internal combustion engine
EP3436688A1 (en) Ignition device for igniting an air-fuel mixture in a combustion chamber
DE2535960A1 (en) COMBUSTION ENGINE IGNITION SYSTEM
DE102016006350A1 (en) Spark plug for a high-frequency ignition system
EP2058909B1 (en) Resonant assembly
DE102010015344B4 (en) A method for igniting a fuel-air mixture of a combustion chamber, in particular in an internal combustion engine by generating a corona discharge
DE2501248B2 (en) Ignition distributor for internal combustion engines with an interference suppression device
DE102013105682B4 (en) Method for controlling a corona ignition device
WO2012130649A1 (en) Method and device for extending the combustion duration of a spark ignited by a spark plug in an internal combustion engine
DE10331418A1 (en) Plasma jet spark plug
EP3436686B1 (en) Ignition device for igniting an air fuel in a combustion chamber
EP2847456B1 (en) High-frequency plasma ignition device
EP4148988A1 (en) Pulse generator for a hpem pulse
DE102010045174B4 (en) Circuit arrangement for an HF ignition of internal combustion engines
DE102010024396B4 (en) A method for igniting a fuel-air mixture of a combustion chamber, in particular in an internal combustion engine by generating a corona discharge
EP0139911B1 (en) Spark plug for internal-combustion engine
DE1902199C3 (en) Spark plug connector
EP2782244A1 (en) Device for generating microwaves
DE2739413A1 (en) SPARK PLUG
DE102012210391B4 (en) detonator
DE102015112217B3 (en) Method for controlling a corona ignition device
DE1751892C3 (en) Electrical pulse generator
DE10143194B4 (en) High-frequency ignition for internal combustion engines
DE102016006782A1 (en) Ignition device and method for igniting an air-fuel mixture
DD210106A5 (en) IONIZING SELF-HEATING COMMUTATOR OF HIGH VOLTAGE PULSE ENERGY FOR THE ATTACHMENT SYSTEM OF A CARBURETOR MOTOR

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191108

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200429

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1296102

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017006422

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017006422

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210323

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230323

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1296102

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230317

Year of fee payment: 7

Ref country code: IT

Payment date: 20230321

Year of fee payment: 7

Ref country code: GB

Payment date: 20230321

Year of fee payment: 7

Ref country code: DE

Payment date: 20230328

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170323

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017006422

Country of ref document: DE

Representative=s name: KANDLBINDER, MARKUS, DIPL.-PHYS., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729