EP3433148A1 - Method for controlling an electric assistance torque - Google Patents

Method for controlling an electric assistance torque

Info

Publication number
EP3433148A1
EP3433148A1 EP17708853.1A EP17708853A EP3433148A1 EP 3433148 A1 EP3433148 A1 EP 3433148A1 EP 17708853 A EP17708853 A EP 17708853A EP 3433148 A1 EP3433148 A1 EP 3433148A1
Authority
EP
European Patent Office
Prior art keywords
torque
offset
static
control method
assistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17708853.1A
Other languages
German (de)
French (fr)
Inventor
Jean-Martin RUEL
Loic Le Roy
Frédéric Roudeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP3433148A1 publication Critical patent/EP3433148A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/085Changing the parameters of the control units, e.g. changing limit values, working points by control input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present invention relates to the management of energy in a hybrid vehicle, in particular the energy distribution of an electric assist torque at acceleration on a parallel hybrid powertrain vehicle (GMP).
  • GMP parallel hybrid powertrain vehicle
  • the electric machine of a hybrid powertrain comprising at least one thermal engine and an electric traction machine that can operate as a generator for recharging batteries by recovering energy while driving.
  • a heat engine capable of providing torque to the wheel
  • an electric machine capable of providing torque to the wheel.
  • the torque demand of the driver is satisfied by the sum of the torques provided by these two motor sources.
  • LGE law of energy management
  • a parallel hybrid GMP also offers the benefit of providing extra torque to the wheel, compared to the power of the heat engine alone. This extra torque, or additional electrical torque, is provided by the electric machine.
  • the publication FR 3 001 427 discloses a method for limiting the energy of the assisting torque to the acceleration of a hybrid vehicle.
  • the described method aims to control the GMP overall consumption, including energy expenditure related to couple assistance, based on energy capacity. We strive not to penalize the gain in consumption provided by hybridization.
  • a coefficient of limitation of the electric assist torque available for torque assistance is introduced. This coefficient is between zero and one, depending on the amount of electrical energy remaining in an energy range of the battery reserved for torque assistance.
  • the application of the assistance torque limitation coefficient, or "overtorque”, is imposed on the GMP, regardless of its energy cost.
  • the aim of the invention is to improve the overall energy performance of a hybrid GMP with limited electric torque assistance as a function of the energy available for this function, by placing the activation of the torque assist function in dependence on the energy recovery mode in the battery.
  • the invention provides that the assistance requested by the torque request is authorized, or not, depending on the cost of fuel consumption, of the electrical energy recovered by the batteries through the electrical machine in phase. recharge.
  • the assistance torque is divided between a static component that makes it possible to supplement the static maximum torque of the heat engine to increase the maximum torque of the GMP that can be reached in the static phase, and a dynamic component that makes it possible to compensate for the dynamic limitations imposed by the heat engine. transitional phase.
  • This invention redefines the static and dynamic limits of the GMP, using the thermal and electrical torques to improve the overall performance of the GMP.
  • Other features and advantages of the present invention will be better understood on reading the following description of a non-limiting embodiment thereof, in which:
  • FIG. 1A shows the role of the "static overtorque", during the static phase of torque assistance
  • Figure 1B shows the role of the "dynamic overtorque" during the transitional phase of couple assistance.
  • the engine torque setpoint supplied to the GMP increases rapidly.
  • the torque setpoint is most often filtered to reduce the discomfort of too much reactivity, while maintaining an acceptable response time.
  • the static additional torque provided by the electric machine makes it possible to increase the maximum torque of the GMP, which can be reached in the static phase. It is called “static overtorque”, here offset 1. It completes the maximum static torque of the engine.
  • dynamic overtorque makes it possible to compensate for the dynamic limitations imposed by the engine in the transient phase (smoke limitation, response time of the air chain, etc.); this dynamic component, called here offset 2, makes it possible to compensate for the dynamic limitations imposed by the thermal engine in transient phase.
  • the invention provides to fully, or only partially, the maximum torque of the electric machine Cmax stat elec, that of the engine.
  • This method relies on the definition of a quantity of electrical torque that can be added as a static overtorque to the torque of the heat engine.
  • the carto quantity depends on the engine speed and the gear ratio. In the context of the invention, it can be determined from adjustable maps.
  • the objective of limiting the static overtorque with respect to the total available electrical torque, is to make a compromise between the performance and the repeatability of the assistance. This measure is particularly justified on a light hybridization GMP, in which the amount of electrical energy available for assistance is always limited.
  • carto 1 f (scheme, BV report)
  • the amount of available torque carto 1 for the static component (offset 1) is a function of the engine speed and the gear ratio.
  • the static overtorque is then defined as the product of the minimum value between carto 1 and the maximum electric static torque by the weighting coefficient C:
  • offset 1 MIN (map 1, Cmax stat elec) x C
  • the static offset component 1 is therefore equal to the product MIN (map 1, Cmax stat elec) x C, of the limiting coefficient C by the minimum between a quantity of available torque carto 1 and the maximum static torque of the electric machine.
  • the additional dynamic torque, or dynamic overtorque makes it possible to compensate for the dynamic limitations imposed by the transient phase motor. It is an addition, of electrical origin, to the maximum dynamic torque of the thermal engine Cmax dyn thermal, to realize the dynamic maximum dynamic torque of the GMP Cmax dyn GMP. For the reasons stated above concerning the static overtorque, it is not always desirable to use all of the available electrical torque for the dynamic overtorque.
  • a quantity of electric torque, which can be added in the form of a dynamic overtorque is therefore determined to the dynamic torque of the heat engine. It is distinguished from the dynamic torque actually added, or dynamic overtorque offset 2, highlighted in Figure 1B.
  • the offset 2 is a complement to the maximum dynamic torque of the engine, to reach the maximum static torque more quickly.
  • the carto quantity 2 is introduced to control the amplitude of the dynamic offset correction 2, whatever the driving conditions (altitude, high air temperature, etc.), especially when the maximum static torque of the heat engine decreases, carto 2, Depends as Carto 1, Diet and Box Report. It is also determined from maps. We adopt the following terms,
  • carto 2 f (scheme, BV report)
  • the dynamic overtorque offset 2 is the product of the maximum value between carto 2 and the maximum electric static torque by the limiting coefficient C:
  • offset 2 MAX (chart 2 (speed, ratio BV), offset 1) x C
  • the amount of torque (cart 2) available for the dynamic component (offset 2) is a function of the engine speed and the gear ratio.
  • the dynamic component of the offset assist torque 2 is therefore equal to the product MAX (carto 2 (speed, ratio BV), offset 1) x C), the limiting coefficient by the maximum between a quantity of available torque (carto 2 ( speed, ratio_BV) and the static component (offset_l) of the assistance torque.
  • the dynamic offset component 2 must always be greater than or equal to the static component offset_l, to ensure that the additional dynamic torque achieves in all cases the static maximum torque of the static GMP Cmax GMP, which integrates the static additional torque. . Thanks to the offset 2 ⁇ offset 1 condition, the static overtorque is always accompanied by dynamic overtorque, but the converse is not true.
  • the control of the acceleration electric assist torque provided in response to an increase in the driver's torque demand relates to the electric machine of a hybrid powertrain comprising at least one heat engine and an electric traction machine capable of operating as a generator for recharging batteries by recovering energy while driving.
  • the GMP uses the engine to recharge the battery, and consumes a surplus of fuel to perform this refill.
  • the first type of energy is considered less expensive than the second.
  • the invention proposes to link the authorization of the static and dynamic overtorque, at the cost of the recovered energy, when it is solicited by raising the torque demand of the driver.
  • the assistance requested by the torque request is authorized or not, depending on the cost in consumption of fuel, electrical energy recovered by the batteries through the electric machine in the charging phase.
  • the calibration of the limitation coefficient C makes it possible to link the authorization of the overtorque to the types of energy mentioned above, for example according to the driving mode of the vehicle. It is thus possible to limit the amount of energy expended in electric torque assistance, depending on the mode of driving adopted. If the driver has the choice for example between an economic mode “eco”, favoring a low consumption of the GMP, a "normal” mode and a “sport” mode focusing on performance, one can calibrate differently the weighting coefficient C, according to the adopted mode. The assistance in couple is weighted differently, according to the adoption of a mode of conduct favoring a low overall consumption of the GMP, or its performance.
  • table name f (C) allows to calculate a factor included in [0 ... 1], for the normal mode
  • FIGS. 2A to 2C The settings proposed in this example are illustrated by FIGS. 2A to 2C:
  • This setting does not allow additional torque in eco mode. It favors energy saving, compared to improving the performance of the GMP.
  • offset_2 MAX (carto_2, offset_2j x C

Abstract

The invention relates to a method for controlling electric acceleration assistance torque provided in response to an increase in the torque demand of the driver, by the electric motor of a hybrid power train comprising at least a heat engine and an electric drive motor which can operate as a generator in order to recharge batteries by recovering energy during driving, characterised in that the assistance requested by the torque demand is authorised or not, as a function of the cost in terms of fuel consumption, and of the electric energy recovered by the batteries via the electric motor during the recharge phase.

Description

PROCEDE DE CONTROLE D ' UN COUPLE D ' ASSISTANCE ELECTRIQUE  METHOD OF CONTROLLING ELECTRIC ASSISTANCE TORQUE
La présente invention se rapporte à la gestion de l'énergie dans un véhicule hybride, en particulier la distribution énergétique d'un couple d'assistance électrique à l'accélération sur un véhicule à groupe motopropulseur (GMP) hybride parallèle. The present invention relates to the management of energy in a hybrid vehicle, in particular the energy distribution of an electric assist torque at acceleration on a parallel hybrid powertrain vehicle (GMP).
Plus précisément, elle a pour objet un procédé de contrôle du couple d'assistance électrique à l'accélération fourni en réponse à une élévation de la demande de couple du conducteur, par la machine électrique d'un groupe motopropulseur hybride, comportant au moins un moteur thermique et une machine électrique de traction pouvant fonctionner en générateur pour recharger des batteries par récupération d'énergie en roulage.  More specifically, it relates to a method of controlling the acceleration electric assist torque provided in response to an increase in the driver's torque demand, by the electric machine of a hybrid powertrain, comprising at least one thermal engine and an electric traction machine that can operate as a generator for recharging batteries by recovering energy while driving.
Dans un véhicule avec GMP hybride parallèle, on dispose d'au moins deux actionneurs capables de fournir du couple à la roue : un moteur thermique et une machine électrique. La demande de couple du conducteur est satisfaite par la somme des couples fournis par ces deux sources motrices.  In a vehicle with GMP hybrid parallel, there are at least two actuators capable of providing torque to the wheel: a heat engine and an electric machine. The torque demand of the driver is satisfied by the sum of the torques provided by these two motor sources.
Lorsque l'objectif prioritaire est d'améliorer la consommation globale d'énergie du véhicule, en optimisant la répartition de couple entre les deux actionneurs, une loi de gestion d'énergie (LGE) permet d'atteindre cet objectif. C'est elle qui détermine le point de fonctionnement de chacune des sources motrices, en respectant la demande d'accélération du conducteur .  When the priority objective is to improve the overall energy consumption of the vehicle, by optimizing the distribution of torque between the two actuators, a law of energy management (LGE) makes it possible to achieve this objective. It determines the operating point of each of the motor sources, respecting the acceleration request of the driver.
Un GMP hybride parallèle offre aussi la prestation de fournir un surplus de couple à la roue, par rapport à la puissance du moteur thermique seul. Ce surplus de couple, ou couple électrique additionnel, est fourni par la machine électrique .  A parallel hybrid GMP also offers the benefit of providing extra torque to the wheel, compared to the power of the heat engine alone. This extra torque, or additional electrical torque, is provided by the electric machine.
Par la publication FR 3 001 427, on connaît un procédé de limitation énergétique du couple d'assistance à l'accélération d'un véhicule hybride. La méthode décrite vise à contrôler la consommation globale du GMP, y compris les dépenses énergétiques liées à l'assistance en couple, en fonction des capacités énergétiques. On s'efforce de ne pas pénaliser le gain de consommation assuré par l'hybridation. Pour y parvenir, on introduit un coefficient de limitation du couple d'assistance électrique disponible pour l'assistance en couple. Ce coefficient est compris entre zéro et un, selon la quantité d'énergie électrique restante dans une plage énergétique de la batterie réservée pour l'assistance en couple. The publication FR 3 001 427 discloses a method for limiting the energy of the assisting torque to the acceleration of a hybrid vehicle. The described method aims to control the GMP overall consumption, including energy expenditure related to couple assistance, based on energy capacity. We strive not to penalize the gain in consumption provided by hybridization. To achieve this, a coefficient of limitation of the electric assist torque available for torque assistance is introduced. This coefficient is between zero and one, depending on the amount of electrical energy remaining in an energy range of the battery reserved for torque assistance.
Dans cette méthode, l'application du coefficient de limitation de couple d'assistance, ou « overtorque » s'impose au GMP, indépendamment de son coût énergétique.  In this method, the application of the assistance torque limitation coefficient, or "overtorque", is imposed on the GMP, regardless of its energy cost.
L'invention vise à améliorer la performance énergétique globale d'un GMP hybride à assistance de couple électrique limitée en fonction de l'énergie disponible pour cette fonction, en plaçant l'activation de la fonction d'assistance en couple, dans la dépendance du mode de récupération énergétique dans la batterie .  The aim of the invention is to improve the overall energy performance of a hybrid GMP with limited electric torque assistance as a function of the energy available for this function, by placing the activation of the torque assist function in dependence on the energy recovery mode in the battery.
Dans ce but, l'invention prévoit que l'assistance sollicitée par la demande de couple soit autorisée, ou non, en fonction du coût en consommation de carburant, de l'énergie électrique récupérée par les batteries au travers de la machine électrique en phase de recharge.  For this purpose, the invention provides that the assistance requested by the torque request is authorized, or not, depending on the cost of fuel consumption, of the electrical energy recovered by the batteries through the electrical machine in phase. recharge.
Le couple d'assistance se décompose entre une composante statique permettant de compléter le couple maximum statique du moteur thermique pour augmenter le couple maximum du GMP atteignable en phase statique, et une composante dynamique qui permet de compenser les limitations dynamiques imposées par le moteur thermique en phase transitoire.  The assistance torque is divided between a static component that makes it possible to supplement the static maximum torque of the heat engine to increase the maximum torque of the GMP that can be reached in the static phase, and a dynamic component that makes it possible to compensate for the dynamic limitations imposed by the heat engine. transitional phase.
Cette invention permet de redéfinir les limites statiques et dynamiques du GMP, en utilisant les couples thermique et électrique pour améliorer les performances globales du GMP. D'autres caractéristiques et avantages de la présente invention seront mieux compris à la lecture de la description suivante d'un mode de réalisation non limitatif de celle-ci, sur lesquels : This invention redefines the static and dynamic limits of the GMP, using the thermal and electrical torques to improve the overall performance of the GMP. Other features and advantages of the present invention will be better understood on reading the following description of a non-limiting embodiment thereof, in which:
la figures 1A montre le rôle de l' « overtorque statique », pendant la phase statique de l'assistance en couple, et  FIG. 1A shows the role of the "static overtorque", during the static phase of torque assistance, and
la figure 1B montre le rôle de l' « overtorque dynamique », pendant la phase transitoire de l'assistance en couple .  Figure 1B shows the role of the "dynamic overtorque" during the transitional phase of couple assistance.
Lorsqu'un conducteur appuie sur la pédale d'accélérateur, la consigne de couple moteur fournie au GMP augmente rapidement. La consigne de couple est le plus souvent filtrée pour atténuer 1' inconfort d'une trop forte réactivité, tout en conservant un temps de réponse acceptable. On distingue en effet une phase transitoire, qui dure quelques centaines de ms, pendant laquelle la consigne de couple évolue rapidement, et une phase statique, où la consigne filtrée a atteint le niveau ciblé correspondant à l'appui de la pédale d'accélérateur.  When a driver depresses the accelerator pedal, the engine torque setpoint supplied to the GMP increases rapidly. The torque setpoint is most often filtered to reduce the discomfort of too much reactivity, while maintaining an acceptable response time. There is indeed a transient phase, which lasts a few hundred ms, during which the torque setpoint changes rapidly, and a static phase, where the filtered setpoint has reached the target level corresponding to the support of the accelerator pedal.
Le couple additionnel statique fourni par la machine électrique, permet d'augmenter le couple maximum du GMP, atteignable en phase statique. On l'appelle « overtorque statique », ici offset 1. Il complète le couple maximum statique du moteur thermique.  The static additional torque provided by the electric machine makes it possible to increase the maximum torque of the GMP, which can be reached in the static phase. It is called "static overtorque", here offset 1. It completes the maximum static torque of the engine.
Le couple additionnel dynamique, appelé « overtorque dynamique » permet de compenser les limitations dynamiques imposées par le moteur en phase transitoire (limitation fumées, temps de réponse de la chaîne d'air,...) ; cette composante dynamique, appelée ici offset 2, permet de compenser les limitations dynamiques imposées par le moteur thermique en phase transitoire .  The dynamic additional torque, called "dynamic overtorque" makes it possible to compensate for the dynamic limitations imposed by the engine in the transient phase (smoke limitation, response time of the air chain, etc.); this dynamic component, called here offset 2, makes it possible to compensate for the dynamic limitations imposed by the thermal engine in transient phase.
Pour réduire le couple d'assistance électrique disponible, sur un véhicule hybride, il est également possible d' introduire un coefficient de limitation C, compris entre 0 et 1, du couple d'assistance électrique disponible selon la quantité d'énergie restante qui est réservée dans la batterie pour l'assistance en couple. Ce coefficient se calcule par exemple, mais sans obligation, selon la méthode proposée dans la publication FR 3 001 427. To reduce the available electric assist torque, on a hybrid vehicle, it is also possible to introduce a limiting coefficient C, between 0 and 1, the electric assist torque available according to the amount of energy remaining that is reserved in the battery for assistance in torque. This coefficient is calculated for example, but without obligation, according to the method proposed in the publication FR 3 001 427.
Lorsque l'assistance en couple, ou overtorque, est sollicitée, l'invention prévoit d'additionner entièrement, ou seulement en partie, le couple max potentiel de la machine électrique Cmax stat elec, à celui du moteur thermique. Cette méthode repose sur la définition, d'une quantité de couple électrique carto_l, pouvant être ajoutée en overtorque statique au couple du moteur thermique. La quantité carto 1, dépend du régime du moteur thermique et du rapport de boîte. Dans le cadre de l'invention, elle peut être déterminée à partir de cartographies réglables. L'objectif de limiter l' overtorque statique par rapport à la totalité du couple électrique disponible, est de réaliser un compromis entre la performance et la répétabilité de l'assistance. Cette mesure se justifie particulièrement sur un GMP à hybridation légère, dans lequel la quantité d'énergie électrique disponible pour l'assistance est toujours limitée.  When torque assistance, or overtorque, is requested, the invention provides to fully, or only partially, the maximum torque of the electric machine Cmax stat elec, that of the engine. This method relies on the definition of a quantity of electrical torque that can be added as a static overtorque to the torque of the heat engine. The carto quantity 1, depends on the engine speed and the gear ratio. In the context of the invention, it can be determined from adjustable maps. The objective of limiting the static overtorque with respect to the total available electrical torque, is to make a compromise between the performance and the repeatability of the assistance. This measure is particularly justified on a light hybridization GMP, in which the amount of electrical energy available for assistance is always limited.
On adopte les termes suivants :  The following terms are adopted:
carto 1 = f (régime, rapport BV)  carto 1 = f (scheme, BV report)
C = coefficient de pondération, fonction du mode de conduite, par exemple économique, normal ou sport,  C = weighting coefficient, function of the driving mode, for example economic, normal or sport,
Cmax stat GMP = couple max statique GMP, Cmax stat GMP = static max torque GMP,
Cmax stat thermique = couple max statique thermique (potentiel maxi) Cmax thermal stat = max static thermal torque (max potential)
Cmax stat elec = couple max statique électrique, (potentiel maxi) .  Cmax stat elec = max static electric torque, (max potential).
Comme indiqué sur la figure 1A, le couple additionnel statique offset 1, s'ajoute au couple maximum statique thermique pour réaliser le couple maximum statique du GMP. Ce complément apparaît dans la relation : Cmax stat GMP = Cmax stat thermique + offset 1 As shown in FIG. 1A, the additional static offset torque 1 is added to the maximum static thermal torque in order to achieve the maximum static torque of the GMP. This complement appears in the relation: Cmax stat GMP = Cmax thermal stat + offset 1
La quantité de couple disponible carto 1 pour la composante statique (offset 1) est fonction du régime du moteur thermique et du rapport de boîte. L' overtorque statique se définit alors comme le produit de la valeur minimum entre carto 1 et le couple maxi statique électrique par le coefficient de pondération C :  The amount of available torque carto 1 for the static component (offset 1) is a function of the engine speed and the gear ratio. The static overtorque is then defined as the product of the minimum value between carto 1 and the maximum electric static torque by the weighting coefficient C:
offset 1 = MIN (carto 1, Cmax stat elec) x C La composante statique offset 1 est donc égale au produit MIN (carto 1, Cmax stat elec) x C, du coefficient de limitation C par le minimum entre une quantité de couple disponible carto 1 et le couple statique maximum de la machine électrique.  offset 1 = MIN (map 1, Cmax stat elec) x C The static offset component 1 is therefore equal to the product MIN (map 1, Cmax stat elec) x C, of the limiting coefficient C by the minimum between a quantity of available torque carto 1 and the maximum static torque of the electric machine.
Le couple additionnel dynamique, ou overtorque dynamique, permet de compenser les limitations dynamiques imposées par le moteur en phase transitoire. C'est un complément, d'origine électrique, au couple dynamique maximum du moteur thermique Cmax dyn thermique, pour réaliser le couple dynamique maximum dynamique du GMP Cmax dyn GMP. Pour les raisons indiquées précédemment au sujet de l' overtorque statique, il n'est pas toujours souhaitable d'utiliser la totalité du couple électrique disponible pour l' overtorque dynamique. On détermine donc une quantité de couple électrique carto_2, pouvant être ajoutée sous forme d' overtorque dynamique, au couple dynamique du moteur thermique. On le distingue du couple dynamique effectivement ajouté, ou overtorque dynamique offset 2, mis en évidence sur la figure 1B. L' offset 2 est un complément apporté au couple dynamique maximum du moteur thermique, pour rejoindre le couple maximum statique plus rapidement. La quantité carto 2 est introduite pour maîtriser l'amplitude de la correction dynamique offset 2, quelles que soient les conditions de roulage (altitude, température air élevée...) , notamment lorsque le couple maximum statique du moteur thermique diminue, carto 2, dépend comme carto 1, du régime et du rapport de boîte. Elle se détermine aussi à partir de cartographies . On adopte les termes suivants, The additional dynamic torque, or dynamic overtorque, makes it possible to compensate for the dynamic limitations imposed by the transient phase motor. It is an addition, of electrical origin, to the maximum dynamic torque of the thermal engine Cmax dyn thermal, to realize the dynamic maximum dynamic torque of the GMP Cmax dyn GMP. For the reasons stated above concerning the static overtorque, it is not always desirable to use all of the available electrical torque for the dynamic overtorque. A quantity of electric torque, which can be added in the form of a dynamic overtorque, is therefore determined to the dynamic torque of the heat engine. It is distinguished from the dynamic torque actually added, or dynamic overtorque offset 2, highlighted in Figure 1B. The offset 2 is a complement to the maximum dynamic torque of the engine, to reach the maximum static torque more quickly. The carto quantity 2 is introduced to control the amplitude of the dynamic offset correction 2, whatever the driving conditions (altitude, high air temperature, etc.), especially when the maximum static torque of the heat engine decreases, carto 2, Depends as Carto 1, Diet and Box Report. It is also determined from maps. We adopt the following terms,
carto 2 = f (régime, rapport BV)  carto 2 = f (scheme, BV report)
C = coefficient de pondération, fonction du mode (éco / normal / sport) [qui peut être le même que pour l'overtorque statique]  C = weighting coefficient, mode function (eco / normal / sport) [which may be the same as for the static overtorque]
Cmax dyn GMP = couple max dynamique GMP  Cmax dyn GMP = dynamic max torque GMP
Cmax dyn thermique = couple max dynamique thermique (potentiel maxi)  Cmax thermal dyn = max thermal dynamic torque (max potential)
Cmax dyn elec = couple max dyn électrique (potentiel maxi ) .  Cmax dyn elec = maximum dyn electric torque (maximum potential).
L' overtorque dynamique offset 2 est le produit de la valeur maximum entre carto 2 et le couple maxi statique électrique par le coefficient de limitation C :  The dynamic overtorque offset 2 is the product of the maximum value between carto 2 and the maximum electric static torque by the limiting coefficient C:
offset 2 = MAX (carto 2 (régime, rapport BV) , offset 1) x C La quantité de couple (cart 2) disponible pour la composante dynamique (offset 2) est fonction du régime du moteur thermique et du rapport de boîte. L'équation de couple dynamique s'écrit alors : Cmax dyn GMP = Cmax dyn thermique + MIN (offset_2, Cmax_stat_elec) . offset 2 = MAX (chart 2 (speed, ratio BV), offset 1) x C The amount of torque (cart 2) available for the dynamic component (offset 2) is a function of the engine speed and the gear ratio. The dynamic torque equation is then written: Cmax dyn GMP = Cmax thermal dyn + MIN (offset_2, Cmax_stat_elec).
La composante dynamique du couple d'assistance offset 2 est donc égale au produit MAX (carto 2 (régime, rapport BV) , offset 1) x C), du coefficient de limitation par le maximum entre une quantité de couple disponible (carto 2 (régime, rapport_BV) et la composante statique (offset_l) du couple d'assistance.  The dynamic component of the offset assist torque 2 is therefore equal to the product MAX (carto 2 (speed, ratio BV), offset 1) x C), the limiting coefficient by the maximum between a quantity of available torque (carto 2 ( speed, ratio_BV) and the static component (offset_l) of the assistance torque.
La composante dynamique offset 2 doit toujours être supérieure ou égale à la composante statique offset_l, pour s'assurer que le couple additionnel dynamique permette d'atteindre dans tous les cas le couple maxi statique du GMP Cmax statique GMP, qui intègre le couple additionnel statique. Grâce à la condition offset 2 ≥ offset 1, l' overtorque statique est toujours accompagné d' overtorque dynamique, mais l'inverse n'est pas vrai. Le contrôle du couple d'assistance électrique à l'accélération fourni en réponse à une élévation de la demande de couple du conducteur, concerne la machine électrique d'un groupe motopropulseur hybride comportant au moins un moteur thermique et une machine électrique de traction pouvant fonctionner en générateur pour recharger des batteries par récupération d'énergie en roulage. Dans un GMP hybride, où la machine électrique permet de récupérer de l'énergie cinétique pour la stocker dans la batterie sous forme d'énergie électrique immédiatement disponible pour la traction, on peut distinguer deux types d'énergie récupérée. La distinction est établie en fonction de la consommation de carburant par le moteur thermique impliquée par la récupération, selon les circonstances : The dynamic offset component 2 must always be greater than or equal to the static component offset_l, to ensure that the additional dynamic torque achieves in all cases the static maximum torque of the static GMP Cmax GMP, which integrates the static additional torque. . Thanks to the offset 2 ≥ offset 1 condition, the static overtorque is always accompanied by dynamic overtorque, but the converse is not true. The control of the acceleration electric assist torque provided in response to an increase in the driver's torque demand relates to the electric machine of a hybrid powertrain comprising at least one heat engine and an electric traction machine capable of operating as a generator for recharging batteries by recovering energy while driving. In a hybrid GMP, where the electric machine can recover kinetic energy to store it in the battery in the form of electrical energy immediately available for traction, two types of recovered energy can be distinguished. The distinction is based on the fuel consumption by the heat engine involved in the recovery, depending on the circumstances:
l'énergie récupérée au cours d'une décélération, lorsque le conducteur lève le pied de la pédale d' accélérateur : la machine électrique passe alors en mode générateur, et on autorise un niveau de décélération plus important sur le véhicule, qui permet de convertir une partie de l'énergie cinétique en énergie électrique ;  the energy recovered during a deceleration, when the driver lifts his foot off the accelerator pedal: the electric machine then goes into generator mode, and a higher level of deceleration is allowed on the vehicle, which enables the driver to convert part of the kinetic energy into electrical energy;
l'énergie générée en mode de recharge forcée, lorsque le conducteur appuie sur la pédale d'accélérateur, et que le niveau de SOC (charge batterie) batterie devient faible (à cause par exemple de consommateurs électriques comme la climatisation, les feux de signalisation...) : dans cette situation, le GMP utilise le moteur thermique pour recharger la batterie, et consomme un surplus de carburant pour effectuer cette recharge.  the energy generated in the forced charging mode, when the driver depresses the accelerator pedal, and the SOC (battery charge) battery level becomes low (for example because of electrical consumers such as air conditioning, traffic lights ...): in this situation, the GMP uses the engine to recharge the battery, and consumes a surplus of fuel to perform this refill.
Le premier type d'énergie est considéré comme moins onéreux que le second. L'invention prévoit de lier l'autorisation de l' overtorque statique et dynamique, au coût de l'énergie récupérée, lors de sa sollicitation par l'élévation de la demande de couple du conducteur. Conformément à l'invention, l'assistance sollicitée par la demande de couple est autorisée ou non, en fonction du coût en consommation de carburant, de l'énergie électrique récupérée par les batteries au travers de la machine électrique en phase de recharge. The first type of energy is considered less expensive than the second. The invention proposes to link the authorization of the static and dynamic overtorque, at the cost of the recovered energy, when it is solicited by raising the torque demand of the driver. In accordance with the invention, the assistance requested by the torque request is authorized or not, depending on the cost in consumption of fuel, electrical energy recovered by the batteries through the electric machine in the charging phase.
La calibration du coefficient de limitation C permet de lier l'autorisation de l' overtorque aux types d'énergie mentionnés ci-dessus, par exemple selon le mode de conduite du véhicule. On peut ainsi limiter ainsi la quantité d'énergie dépensée en assistance de couple électrique, selon le mode de conduite adopté. Si le conducteur a le choix par exemple entre un mode économique « éco », privilégiant une faible consommation du GMP, un mode « normal » et un mode « sport » privilégiant la performance, on peut calibrer différemment le coefficient de pondération C, selon le mode adopté. L'assistance en couple est ainsi pondérée différemment, selon l'adoption d'un mode de conduite privilégiant une faible consommation globale du GMP, ou bien sa performance.  The calibration of the limitation coefficient C makes it possible to link the authorization of the overtorque to the types of energy mentioned above, for example according to the driving mode of the vehicle. It is thus possible to limit the amount of energy expended in electric torque assistance, depending on the mode of driving adopted. If the driver has the choice for example between an economic mode "eco", favoring a low consumption of the GMP, a "normal" mode and a "sport" mode focusing on performance, one can calibrate differently the weighting coefficient C, according to the adopted mode. The assistance in couple is weighted differently, according to the adoption of a mode of conduct favoring a low overall consumption of the GMP, or its performance.
Dans l'application non limitative décrite ci-dessous, on choisit de privilégier :  In the nonlimiting application described below, we choose to favor:
en mode éco, l'utilisation du premier type d'énergie uniquement ,  in eco mode, the use of the first type of energy only,
en mode normal, également,  in normal mode, too,
en mode sport, l'utilisation des deux types d'énergie pour maximiser la disponibilité du couple additionnel.  in sport mode, the use of both types of energy to maximize the availability of additional torque.
Les tables ci-dessous se rapportant à cet exemple, illustrent l'adaptation du facteur de pondération C aux trois modes de conduite :  The tables below relating to this example illustrate the adaptation of the weighting factor C to the three modes of driving:
table nom = f (C) permet de calculer un facteur compris dans [0...1], pour le mode normal  table name = f (C) allows to calculate a factor included in [0 ... 1], for the normal mode
table eco = f (C) idem pour le mode éco  eco = f (C) ditto for eco mode
table sport = f (C) idem pour le mode sport  sport table = f (C) ditto for sport mode
Les réglages proposés dans cet exemple sont illustrés par les figures 2A à 2C : The settings proposed in this example are illustrated by FIGS. 2A to 2C:
table nom (cf. fig. 2A) : Avec ce réglage, on autorise en mode normal la consommation de 30 Wh en couple électrique additionnel. Une fois cette énergie consommé, il faut recharger la batterie, et décrémenter le facteur C. table name (see Fig. 2A): With this setting, the consumption of 30 Wh in additional electrical torque is allowed in normal mode. Once this energy is consumed, it is necessary to recharge the battery, and to decrement the factor C.
table sport (cf. fig. 2B) : sports table (see Fig. 2B):
Avec ce réglage, on autorise la dépense de 80 Wh avec le couple électrique additionnel. On privilégie ainsi l'amélioration de la performance du GMP, par rapport à l'économie d'énergie. table eco (cf. fig. 2C) :  With this setting, 80 Wh is allowed with the additional electrical torque. The focus is on improving the performance of the GMP, compared to saving energy. eco table (see Fig. 2C):
Ce réglage n'autorise pas le couple additionnel en mode éco. Il privilégie l'économie d'énergie, par rapport à l'amélioration de la performance du GMP.  This setting does not allow additional torque in eco mode. It favors energy saving, compared to improving the performance of the GMP.
Les valeurs de C pondèrent l' overtorque statique (offset 2), et l'overtorque dynamique (offset 2) comme indiqué plus haut :  The values of C weight the static overtorque (offset 2), and the dynamic overtorque (offset 2) as indicated above:
• Cmax stat GMP = Cmax stat thermique + offset 1 x C, avec offset 1 = MIN (carto 2, Cmax stat elec) x C  • Cmax stat GMP = Cmax thermal stat + offset 1 x C, with offset 1 = MIN (map 2, Cmax stat elec) x C
• Cmax_dyn_GMP = Cmax_dyn_thermique + MIN (offset_2, Cmax_stat_elec) ,  • Cmax_dyn_GMP = Cmax_dyn_thermic + MIN (offset_2, Cmax_stat_elec),
avec offset_2 = MAX (carto_2, offset_2j x C with offset_2 = MAX (carto_2, offset_2j x C
Les avantages de l'invention sont nombreux. Parmi ceux- ci, on peut citer  The advantages of the invention are numerous. Among these, we can quote
l'amélioration des performances du GMP, et la répétabilité des séquences d'assistance en couple, grâce à la répartition de l' overtorque entre une composante statique et une composante dynamique, et  improving the performance of the GMP, and the repeatability of the assistance sequences in pairs, thanks to the distribution of the overtorque between a static component and a dynamic component, and
l'ajustement du compromis perfo / gain conso, en fonction du mode sélectionné par le conducteur (éco / normal / sport) .  the adjustment of the perfo / conso gain compromise, according to the mode selected by the driver (eco / normal / sport).

Claims

REVENDICATIONS
1. Procédé de contrôle du couple d'assistance électrique à l'accélération fourni en réponse à une élévation de la demande de couple du conducteur, par la machine électrique d'un groupe motopropulseur hybride comportant au moins un moteur thermique et une machine électrique de traction pouvant fonctionner en générateur pour recharger des batteries par récupération d'énergie en roulage, caractérisé en ce que l'assistance sollicitée par la demande de couple est autorisée ou non, en fonction du coût en consommation de carburant, de l'énergie électrique récupérée par les batteries au travers de la machine électrique en phase de recharge. A method of controlling the acceleration electric assist torque provided in response to an increase in driver torque demand, by the electric machine of a hybrid power train having at least one heat engine and an electric machine. traction that can operate as a generator for recharging batteries by energy recovery while taxiing, characterized in that the assistance requested by the torque request is authorized or not, depending on the cost of fuel consumption, of the recovered electrical energy by the batteries through the electric machine in the charging phase.
2. Procédé de contrôle de couple d'assistance selon la revendication 1, caractérisé en ce que l'assistance en couple est pondérée par un coefficient de limitation (C) calibré différemment selon l'adoption d'un mode de conduite privilégiant une faible consommation globale du groupe motopropulseur, ou sa performance .  2. Assist torque control method according to claim 1, characterized in that the torque assist is weighted by a limiting coefficient (C) calibrated differently according to the adoption of a driving mode favoring low consumption overall powertrain, or performance.
3. Procédé de contrôle de couple d'assistance selon la revendication 2, caractérisé en ce que la calibration du coefficient de limitation (C) limite la quantité d'énergie dépensée en assistance de couple électrique, en fonction du mode de conduite.  3. An assist torque control method according to claim 2, characterized in that the calibration of the limiting coefficient (C) limits the amount of energy expended in electric torque assistance, depending on the driving mode.
4. Procédé de contrôle de couple d'assistance selon la revendication 1, 2 ou 3, caractérisé en ce qu'il a une composante statique (offet 1) permettant de compléter le couple maximum statique du moteur thermique pour augmenter le couple maximum du groupe motopropulseur atteignable en régime statique.  4. An assist torque control method according to claim 1, 2 or 3, characterized in that it has a static component (offet 1) to complete the static maximum torque of the engine to increase the maximum torque of the group drivable drivetrain in static mode.
5. Procédé de contrôle de couple d'assistance selon l'une des revendications précédentes, caractérisée en ce qu'il a une composante dynamique (offset 2) qui permet de compenser les limitations dynamiques imposées par le moteur thermique en phase transitoire. 5. Assist torque control method according to one of the preceding claims, characterized in that it has a dynamic component (offset 2) which makes it possible to compensate for the dynamic limitations imposed by the transient phase heat engine.
6. Procédé de contrôle de couple d'assistance selon la revendication 4 et 5, caractérisé en ce que la composante dynamique {offset_2) est toujours supérieure ou égale à la composante statique (offset_l) . 6. Assistance torque control method according to claim 4 and 5, characterized in that the dynamic component {offset_2) is always greater than or equal to the static component (offset_l).
7. Procédé de contrôle de couple d'assistance selon la revendication 4, caractérisé en ce que la composante statique (offset_l) est égale au produit MIN (carto_l , Cmax_stat_elec) x C, du coefficient de limitation (C) par le minimum entre une quantité de couple disponible {carto_l) et le couple statique maximum de la machine électrique.  7. Assist torque control method according to claim 4, characterized in that the static component (offset_l) is equal to the product MIN (carto_l, Cmax_stat_elec) x C, the limiting coefficient (C) by the minimum between a amount of torque available {carto_l) and the maximum static torque of the electric machine.
8. Procédé de contrôle de couple d'assistance selon la revendication 5, caractérisé en ce que la composante dynamique 8. Assist torque control method according to claim 5, characterized in that the dynamic component
(offset 2) est égale au produit MAX (carto 2 (régime, rapport BV) , offset 1) x C) , du coefficient de limitation C par le maximum entre une quantité de couple disponible (carto 2(offset 2) is equal to the product MAX (carto 2 (speed, ratio BV), offset 1) x C), the limiting coefficient C by the maximum between a quantity of available torque (carto 2
(régime, rapport BV) et la composante statique (offset 1) du couple d'assistance. (speed, ratio BV) and the static component (offset 1) of the assistance torque.
9. Procédé de contrôle de couple d'assistance selon la revendication 8, caractérisé en ce que la quantité de couple disponible (cart_l) pour la composante statique (offset_l) est fonction du régime du moteur thermique et du rapport de boîte.  9. Assist torque control method according to claim 8, characterized in that the amount of available torque (cart_l) for the static component (offset_l) is a function of the engine speed and the gear ratio.
10. Procédé de contrôle de couple d'assistance selon la revendication 9, caractérisé en ce que la quantité de couple (cart 2) disponible pour la composante dynamique (offset 2) est fonction du régime du moteur thermique et du rapport de boîte.  10. An assist torque control method according to claim 9, characterized in that the amount of torque (cart 2) available for the dynamic component (offset 2) is a function of the engine speed and the gear ratio.
EP17708853.1A 2016-03-23 2017-02-02 Method for controlling an electric assistance torque Withdrawn EP3433148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1652470A FR3049249B1 (en) 2016-03-23 2016-03-23 METHOD OF CONTROLLING A TORQUE OF ELECTRICAL ASSISTANCE
PCT/FR2017/050231 WO2017162934A1 (en) 2016-03-23 2017-02-02 Method for controlling an electric assistance torque

Publications (1)

Publication Number Publication Date
EP3433148A1 true EP3433148A1 (en) 2019-01-30

Family

ID=56008759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17708853.1A Withdrawn EP3433148A1 (en) 2016-03-23 2017-02-02 Method for controlling an electric assistance torque

Country Status (5)

Country Link
EP (1) EP3433148A1 (en)
CN (1) CN108778875B (en)
BR (1) BR112018068564A2 (en)
FR (1) FR3049249B1 (en)
WO (1) WO2017162934A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3079802B1 (en) * 2018-04-09 2022-02-11 Psa Automobiles Sa CONTROL SYSTEM FOR HYBRID VEHICLE
US10543739B1 (en) * 2018-07-25 2020-01-28 Fca Us Llc Mode transition control techniques for an electrically all-wheel drive hybrid vehicle
CN111775924B (en) * 2020-07-23 2021-05-04 厦门金龙联合汽车工业有限公司 Brake energy recovery maximization control method of series-parallel hybrid power system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8585540B2 (en) * 2007-11-02 2013-11-19 GM Global Technology Operations LLC Control system for engine torque management for a hybrid powertrain system
US8494732B2 (en) * 2007-11-04 2013-07-23 GM Global Technology Operations LLC Method for determining a preferred engine operation in a hybrid powertrain system during blended braking
US9067580B2 (en) * 2011-06-01 2015-06-30 Toyota Jidosha Kabushiki Kaisha Control device for vehicle drive device
US9126587B2 (en) * 2011-12-15 2015-09-08 Ford Global Technologies, Llc Hybrid vehicle drive control system and method for providing motor torque boost compensating for engine delay and torque exceeding maximum engine torque
GB201201221D0 (en) * 2012-01-25 2012-03-07 Jaguar Cars Hybrid electric vehicle and method of control thereof
FR3001427B1 (en) * 2013-01-31 2016-01-22 Renault Sas METHOD FOR ENERGETIC LIMITATION OF THE ACCELERATION ASSISTANCE TORQUE OF A HYBRID VEHICLE
JP6213334B2 (en) * 2014-03-26 2017-10-18 トヨタ自動車株式会社 Hybrid vehicle

Also Published As

Publication number Publication date
CN108778875B (en) 2022-08-16
BR112018068564A2 (en) 2019-02-12
FR3049249B1 (en) 2019-06-14
WO2017162934A1 (en) 2017-09-28
FR3049249A1 (en) 2017-09-29
CN108778875A (en) 2018-11-09

Similar Documents

Publication Publication Date Title
US7267191B2 (en) System and method for battery protection strategy for hybrid electric vehicles
US8140205B2 (en) Driving system for hybrid vehicle
WO2017098799A1 (en) Vehicle control device
EP2951069B1 (en) Method for reducing the energy of the acceleration-boosting torque of a hybrid vehicle
EP2885147B1 (en) Method for limiting the torque of an electric machine of a hybrid vehicle comprising a speed control system
US8151918B2 (en) Method for controlling energy in the traction chain of a hybrid vehicle and hybrid vehicle
FR3049249B1 (en) METHOD OF CONTROLLING A TORQUE OF ELECTRICAL ASSISTANCE
JP2004135417A (en) Control device for vehicle
JP2006160104A (en) Controller of hybrid vehicle
FR2994545A1 (en) METHOD OF LIMITING A TORQUE OF AN ELECTRIC MACHINE OF A HYBRID VEHICLE, IN THE CASE OF A STRONG TORQUE REQUEST
JP2005151721A (en) Controller of vehicle
FR2990672A1 (en) METHOD AND DEVICE FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
US9187084B2 (en) Hybrid vehicle
JP4218683B2 (en) Control device for hybrid drive
JP2010173361A (en) Hybrid automobile
FR3015411A1 (en) TORQUE SETTING CALCULATION METHOD FOR AN ELECTRIC MACHINE COUPLED TO A THERMAL MOTOR OF A HYBRID VEHICLE
JP2006180657A (en) Four-wheel-drive hybrid vehicle
JP4655408B2 (en) Electric car
JP2004328961A (en) Charging and discharging control device for vehicle
KR20100011736A (en) Braking control method of hybrid electric vehicle
JP3873808B2 (en) Car
JP2002285880A (en) Hybrid power train control device for vehicle
EP4021749B1 (en) Method for protecting a clutch of a hybrid vehicle against overheating by load stopping
JP2009017721A (en) Vehicle and control method thereof, and electricity storing device
KR20220091685A (en) Hybrid vehicle and method of controlling gear-shift for the same

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220517

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220928