JP2006180657A - Four-wheel-drive hybrid vehicle - Google Patents

Four-wheel-drive hybrid vehicle Download PDF

Info

Publication number
JP2006180657A
JP2006180657A JP2004373018A JP2004373018A JP2006180657A JP 2006180657 A JP2006180657 A JP 2006180657A JP 2004373018 A JP2004373018 A JP 2004373018A JP 2004373018 A JP2004373018 A JP 2004373018A JP 2006180657 A JP2006180657 A JP 2006180657A
Authority
JP
Japan
Prior art keywords
motor
driving force
motors
torque
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004373018A
Other languages
Japanese (ja)
Inventor
Takezo Yamaguchi
武蔵 山口
Hiroshi Iwano
岩野  浩
Seiji Shimodaira
誠司 下平
Hideaki Watanabe
英明 渡辺
Tetsuya Ikeda
哲也 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004373018A priority Critical patent/JP2006180657A/en
Publication of JP2006180657A publication Critical patent/JP2006180657A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain target fuel consumption as best mileage after driving force redistribution in four-wheel driving of an electric vehicle. <P>SOLUTION: When excess and deficiency in driving force of an engine 1 is regulated for a request driving force by means of a first motor 3 and a second motor 7, a motor torque of lowest power consumption is selected as a motor torque command value among a combination of motor torque within the range of each motor torque limit value. Since power consumption of the motor is reduced effectively, fuel consumption can be reduced during traveling. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、4輪駆動可能なハイブリッド車両に関し、特に、その駆動力配分の制御に関する。   The present invention relates to a hybrid vehicle capable of four-wheel drive, and more particularly to control of driving force distribution thereof.

特開平11−332020号公報は4輪駆動可能なハイブリッド車両を開示している。この車両においては、前後輪の駆動力を均一に設定しておき、一方の駆動輪にスリップが発生した場合には、スリップを収束させるべくスリップ輪の駆動力を低下させて、非スリップ輪にスリップ輪の低下分の駆動力を加算して車両の駆動力を一定に保つようにしている。
特開平11−332020号公報
Japanese Patent Application Laid-Open No. 11-332020 discloses a hybrid vehicle capable of four-wheel drive. In this vehicle, the driving force of the front and rear wheels is set to be uniform, and if slip occurs in one of the driving wheels, the driving force of the slip wheel is reduced to converge the slip, and the non-slip wheel is set. The driving force of the slip wheel is added to keep the driving force of the vehicle constant.
JP-A-11-332020

上記従来技術では、再配分は専らスリップを抑えて駆動力を一定にすることを目的として行われ、再配分後における燃費がどうなるかに関しては何も考慮されていない。スリップを抑えて駆動力を一定にする場合の駆動力配分は一通りではなく、再配分後の燃費に関してはなお向上させる余地がある。   In the above-described prior art, the redistribution is performed for the purpose of suppressing the slip and making the driving force constant, and nothing is taken into consideration regarding the fuel consumption after the redistribution. When the driving force is kept constant by suppressing the slip, the driving force distribution is not one way, and there is still room for improvement in the fuel efficiency after the redistribution.

本発明は、上記課題を鑑みてなされたものであり、4輪駆動ハイブリッド車両において駆動力の再配分を行うにあたり、再配分後の燃費を最良にすることを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to optimize the fuel efficiency after redistribution when redistributing driving force in a four-wheel drive hybrid vehicle.

要求駆動力に対するエンジン駆動力の過不足分を第1及び第2のモータで調整する際に、各モータトルク制限値の範囲内となるモータトルクの組合せの中から最も電力消費が少なくなるものを選択し、モータトルク指令値とする。   When adjusting the excess or deficiency of the engine driving force with respect to the required driving force with the first and second motors, the combination of motor torques within the range of each motor torque limit value has the least power consumption. Select the motor torque command value.

本発明によれば、駆動力再配分後のモータで消費する電力を効果的に低減し、その結果として走行中に消費する燃料量を低減することが可能となる。   According to the present invention, it is possible to effectively reduce the power consumed by the motor after redistribution of the driving force, and as a result, it is possible to reduce the amount of fuel consumed during traveling.

以下、添付図面を参照しながら本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1に本発明を適用するハイブリッド車両の構成を示す。パワートレインは、エンジン1、クラッチ2、前輪モータ3(第1のモータ)、無段変速機15、減速装置4、差動装置5および前輪6(第1の駆動輪)から構成される駆動力伝達経路と、後輪モータ7(第2のモータ)、減速装置8、差動装置9及び後輪10(第2の駆動輪)から構成される駆動力伝達経路を持ち、4輪駆動可能な車両である。エンジン1の出力軸およびクラッチ2の入力軸は互いに連結されており、また、クラッチ2の出力軸とモータ3の入力軸が連結されている。   FIG. 1 shows a configuration of a hybrid vehicle to which the present invention is applied. The power train includes a driving force including an engine 1, a clutch 2, a front wheel motor 3 (first motor), a continuously variable transmission 15, a reduction gear 4, a differential device 5, and a front wheel 6 (first driving wheel). It has a transmission path and a driving force transmission path composed of a rear wheel motor 7 (second motor), a reduction gear 8, a differential gear 9, and a rear wheel 10 (second driving wheel), and can drive four wheels. It is a vehicle. The output shaft of the engine 1 and the input shaft of the clutch 2 are connected to each other, and the output shaft of the clutch 2 and the input shaft of the motor 3 are connected.

クラッチ2締結時はエンジン1とモータ3が車両の推進源となり、クラッチ2解放時は前輪モータ3、後輪モータ7の一方、若しくは、双方が車両の推進源となる。エンジン1および/または前輪モータ3の駆動力は、無段変速機15、減速装置4および差動装置5を介して前輪6へ伝達される。また、後輪モータ7の駆動力は、減速装置8及び差動装置9を介して後輪10へ伝達される。   When the clutch 2 is engaged, the engine 1 and the motor 3 serve as a vehicle propulsion source, and when the clutch 2 is released, one or both of the front wheel motor 3 and the rear wheel motor 7 serve as a vehicle propulsion source. The driving force of the engine 1 and / or the front wheel motor 3 is transmitted to the front wheels 6 via the continuously variable transmission 15, the reduction gear 4 and the differential 5. Further, the driving force of the rear wheel motor 7 is transmitted to the rear wheel 10 via the speed reduction device 8 and the differential device 9.

無段変速機15は、ここではベルト式を用いるが、トロイダル式など他の方式の無段変速機であっても良く、また、無段変速機ではなく段階的に変速を行う有段変速機を用いても良い。無段変速機15には油圧装置17から油圧が供給され、ベルトのクランプと潤滑がなされる。油圧装置17のオイルポンプ(図示せず)は12Vで駆動される直流電動機モータ16により駆動される。   The continuously variable transmission 15 uses a belt type here, but may be a continuously variable transmission of another type such as a toroidal type, or a stepped transmission that performs a stepwise shift instead of a continuously variable transmission. May be used. The continuously variable transmission 15 is supplied with hydraulic pressure from the hydraulic device 17, and is clamped and lubricated. An oil pump (not shown) of the hydraulic device 17 is driven by a DC motor 16 driven at 12V.

クラッチ2はパウダークラッチであり伝達トルクを調節することができる。クラッチ2としては、パウダークラッチのほか、乾式単板クラッチや湿式多板クラッチを用いることもできる。   The clutch 2 is a powder clutch and can adjust the transmission torque. As the clutch 2, in addition to a powder clutch, a dry single plate clutch or a wet multi-plate clutch can also be used.

モータ3、7はそれぞれ、インバータ11、13により駆動される。モータ3、7はここでは交流電動機であるが、直流電動機を用いることもできる。なお、モータ3、7に直流電動機を用いる場合には、インバータの代わりにDC/DCコンバーターを用いる。インバータ11、13は共通のDCリンクを介して蓄電装置12に接続されており、蓄電装置12の直流充電電力を交流電力に変換してモータ3、7へ供給するとともに、モータ3、7の交流発電電力を直流電力に変換して蓄電装置12を充電する。蓄電装置12には、リチウム・イオン電池、ニッケル・水素電池、鉛電池などの各種電池や、電気二重層キャパシタいわゆるパワーキャパシターを用いることができる。   The motors 3 and 7 are driven by inverters 11 and 13, respectively. The motors 3 and 7 are AC motors here, but DC motors can also be used. In addition, when using a direct current motor for the motors 3 and 7, a DC / DC converter is used instead of an inverter. The inverters 11 and 13 are connected to the power storage device 12 through a common DC link. The inverters 11 and 13 convert the DC charging power of the power storage device 12 into AC power and supply it to the motors 3 and 7. The power generation device 12 is charged by converting the generated power into DC power. As the power storage device 12, various types of batteries such as lithium ion batteries, nickel / hydrogen batteries, lead batteries, and electric double layer capacitors, so-called power capacitors, can be used.

コントローラ14は、アクセル操作量センサ21で検出されるアクセルペダルの操作量、磁気式や光学式のエンコーダなどで構成される車速センサ22で検出される車速、温度センサ23、24で検出されるモータ3、7の温度等が入力され、これらに基づいて、エンジン1の運転状態、モータ3の運転状態をどうすべきか判断し、その判断結果とアクセル操作を介した運転者からの要求に答えるべく、エンジン1、クラッチ2、モータ3、7、無段変速機15に対する指令値を生成する。   The controller 14 includes an accelerator pedal operation amount detected by an accelerator operation amount sensor 21, a vehicle speed detected by a vehicle speed sensor 22 including a magnetic or optical encoder, and motors detected by temperature sensors 23 and 24. 3 and 7 are input, and based on these, it is determined what to do with the operating state of the engine 1 and the operating state of the motor 3, and the determination result and the request from the driver via the accelerator operation are to be answered The command values for the engine 1, the clutch 2, the motors 3 and 7, and the continuously variable transmission 15 are generated.

図2は、上記ハイブリッド車両において行われる駆動力配分処理の内容を示したフローチャートである。この処理は、コントローラ14において、例えば10[msec]毎といったように所定の周期で繰り返し演算される。   FIG. 2 is a flowchart showing the contents of the driving force distribution process performed in the hybrid vehicle. This process is repeatedly performed in the controller 14 at a predetermined cycle, for example, every 10 [msec].

まず、ステップS11では、アクセル操作量と車両速度から運転者が要求する駆動力(以下、要求駆動力)を算出する。   First, in step S11, a driving force requested by the driver (hereinafter, required driving force) is calculated from the accelerator operation amount and the vehicle speed.

ステップS12では、ステップS11で算出した要求駆動力を実現する際のエンジン1の動作点、無段変速機15の変速比の目標値、クラッチ2の締結/開放状態を求める。   In step S12, the operating point of the engine 1 when realizing the required driving force calculated in step S11, the target value of the transmission ratio of the continuously variable transmission 15, and the engagement / disengagement state of the clutch 2 are obtained.

ステップS13では、ステップS11で算出した要求駆動力をもとに過渡的に実現したい駆動力(以下、過渡要求駆動力)を算出する。   In step S13, a driving force to be transiently realized (hereinafter referred to as a transient required driving force) is calculated based on the required driving force calculated in step S11.

ステップS14では、ステップS12で算出した動作点を目標値とするエンジン1のトルクを推定し、エンジン1により発生中の駆動力を推定する。   In step S14, the torque of the engine 1 with the operating point calculated in step S12 as a target value is estimated, and the driving force being generated by the engine 1 is estimated.

ステップS15では、モータ3、7のトルク制限値をそれぞれ算出する。制限値の算出は図5に示すフローに従って行われ、これについては後述する。   In step S15, torque limit values of the motors 3 and 7 are calculated. The calculation of the limit value is performed according to the flow shown in FIG. 5 and will be described later.

ステップS16では、ステップS15で算出したモータトルク制限値をもとに、モータトルク制限値の範囲内で、かつ、高い効率(少ない電力消費)でもって過渡要求駆動力を実現する各輪のモータトルク指令値を算出する。制限値の算出は図7に示すフローに従って行われ、これについては後述する。   In step S16, based on the motor torque limit value calculated in step S15, the motor torque of each wheel that realizes the transient required driving force within the range of the motor torque limit value and with high efficiency (low power consumption). Calculate the command value. The limit value is calculated according to the flow shown in FIG. 7, which will be described later.

ステップS17では、ステップS12で求めた、エンジン1の動作点、無段変速機15の変速比の目標値、クラッチ2の締結/開放状態を実現するために、各アクチュエータを制御すると共に、ステップS16で求めたモータ3、モータ7のトルク指令値を実現するようインバータ11、13を制御する。   In step S17, each actuator is controlled in order to realize the operating point of the engine 1, the target value of the transmission ratio of the continuously variable transmission 15, and the engagement / disengagement state of the clutch 2 obtained in step S12. The inverters 11 and 13 are controlled so as to realize the torque command values of the motor 3 and the motor 7 obtained in the above.

以下、図2に示す各処理の詳細について説明する。   Details of each process shown in FIG. 2 will be described below.

ステップS11では、車速センサ22で検出した車両速度[km/h]とアクセル操作量センサ21で検出したアクセル操作量[deg]をもとに図3に示すマップを検索することにより要求駆動力Fd[N]を算出する。図3に示すマップは、車両速度が低いときほど大きな駆動力を算出する傾向を持ち、予め実験などから運転者の感覚に沿うようマップの値が調整される。   In step S11, the required driving force Fd is obtained by searching the map shown in FIG. 3 based on the vehicle speed [km / h] detected by the vehicle speed sensor 22 and the accelerator operation amount [deg] detected by the accelerator operation amount sensor 21. [N] is calculated. The map shown in FIG. 3 has a tendency to calculate a larger driving force as the vehicle speed is lower, and the value of the map is adjusted in advance so as to follow the driver's feeling from experiments or the like.

ステップS12では、エンジン1、クラッチ2、無段変速機15の各動作点を算出する。例えば、走行中に消費する燃料量を低減するよう各動作点を求める。この場合には、エンジンの燃料消費特性やモータの損失特性を考慮し、運転者の要求駆動力を実現するにあたって、燃料消費量あたりの蓄電装置への充電量(以下、運転効率)が最も高くなる動作点を用いることにより実現することができる。また、同様に走行中の蓄電装置12の充電状態を所望の範囲に推移させたい場合には、特開2003-171604のように充電状態と運転効率を対応付けることにより実現することが可能となる。   In step S12, the operating points of the engine 1, the clutch 2, and the continuously variable transmission 15 are calculated. For example, each operating point is obtained so as to reduce the amount of fuel consumed during traveling. In this case, taking into account the fuel consumption characteristics of the engine and the loss characteristics of the motor, the amount of charge to the power storage device per fuel consumption (hereinafter referred to as driving efficiency) is the highest in realizing the driver's required driving force. This can be realized by using the operating point. Similarly, when it is desired to change the state of charge of the traveling power storage device 12 to a desired range, it can be realized by associating the state of charge with operating efficiency as disclosed in JP-A-2003-171604.

ステップS13は、ステップS11で算出した要求駆動力をもとに、運転者の運転性向上のため駆動力の推移が滑らかに補正したり、加速感を演出するために駆動力の立ち上がりを補正することにより過渡要求駆動力Fdt[N]を算出する。図4に過渡要求駆動力の例を示す。   In step S13, based on the required driving force calculated in step S11, the transition of the driving force is corrected smoothly to improve the driving performance of the driver, or the rising of the driving force is corrected to produce an acceleration feeling. Thus, the transient required driving force Fdt [N] is calculated. FIG. 4 shows an example of the transient required driving force.

ステップ14では、エンジン1で発生中のトルクを推定する。ここでトルク推定値eTe[Nm]は、エンジン回転速度、吸気圧力と点火時期に対するエンジントルクの関係を予め実験により求め、マップを作成しておき、マップを検索することによりトルク基本値を算出する。また、この基本値に対して、トルク応答の時定数を持った一次遅れ処理を施すことによりトルク推定値eTe[Nm]を算出することができる。   In step 14, the torque being generated in the engine 1 is estimated. Here, the estimated torque value eTe [Nm] is obtained by experimenting in advance the relationship between the engine torque with respect to the engine rotational speed, the intake pressure and the ignition timing, a map is created, and the basic torque value is calculated by searching the map. . Further, the estimated torque value eTe [Nm] can be calculated by applying a first-order lag process having a torque response time constant to the basic value.

そして、次式により、エンジン1により発生中の駆動力eFeng[F]を求める。   Then, the driving force eFeng [F] generated by the engine 1 is obtained by the following equation.

Figure 2006180657
Figure 2006180657

図5は、図2のステップS15においてモータトルク制限値を算出する処理の詳細を示したものである。   FIG. 5 shows details of the process of calculating the motor torque limit value in step S15 of FIG.

これについて説明すると、ステップS21において、前後輪に備わった車速センサから各輪の車輪速を読み込む。   This will be described. In step S21, the wheel speed of each wheel is read from the vehicle speed sensors provided on the front and rear wheels.

ステップS22では、各輪の車輪速を用いて、路面摩擦係数μ[]を推定する。推定方法としては、例えば特開平11-78843号公報記載のように、タイヤと路面との間の摩擦係数の勾配である路面摩擦係数勾配を推定する技術や、特開平10-114263号公報記載のように、路面摩擦係数勾配と等価的に扱うことができる物理量として、スリップ速度に対する制動トルクの勾配や駆動トルクの勾配に基づいて推定する技術などが公知である。   In step S22, the road surface friction coefficient μ [] is estimated using the wheel speed of each wheel. As an estimation method, for example, as described in JP-A-11-78843, a technique for estimating a road surface friction coefficient gradient, which is a gradient of a friction coefficient between a tire and a road surface, or disclosed in JP-A-10-114263 is disclosed. As described above, as a physical quantity that can be handled equivalently to the road surface friction coefficient gradient, a technique for estimating based on a braking torque gradient or a driving torque gradient with respect to the slip speed is known.

ステップS23では、前後輪にかかる荷重とステップS22で推定した路面摩擦係数とを乗算することにより、過回転スリップを発生することなく各輪で発生可能な駆動力の最大値(以下、前後輪限界駆動力)を求める。ここで、前輪の限界駆動力をFfmax[N]、後輪の限界駆動力をFrmax[N]とする。   In step S23, the load applied to the front and rear wheels is multiplied by the road surface friction coefficient estimated in step S22, whereby the maximum value of the driving force that can be generated in each wheel without causing overspeed slip (hereinafter referred to as front and rear wheel limits). Driving force). Here, the limit driving force of the front wheels is Ffmax [N], and the limit driving force of the rear wheels is Frmax [N].

ステップS24では、ステップS14で求めたエンジン駆動力推定値eFengと前後輪の限界駆動力Ffmax、Frmaxから、モータトルク制限値を以下の式を用いて求める。   In step S24, a motor torque limit value is obtained from the engine drive force estimated value eFeng obtained in step S14 and the front and rear wheel limit drive forces Ffmax and Frmax using the following equation.

Figure 2006180657
Figure 2006180657

Figure 2006180657
Figure 2006180657

Figure 2006180657
Figure 2006180657

ここで、Tfmmax[Nm]は前輪限界駆動力を発生する際の前輪モータ3のトルク、Trmmax[Nm]は後輪限界駆動力を発生する際の後輪モータ7のトルクを示す。また、Gff[]はフロントファイナルギア比、Gfr[]はリアファイナルギア比、Rtire[m]はタイヤ有効半径、Ncvtin[rpm]は無段変速機15の入力回転速度、Ncvtout[rpm]はその出力回転速度を示している。   Here, Tfmmax [Nm] indicates the torque of the front wheel motor 3 when generating the front wheel limit driving force, and Trmmax [Nm] indicates the torque of the rear wheel motor 7 when generating the rear wheel limit driving force. Gff [] is the front final gear ratio, Gfr [] is the rear final gear ratio, Rtire [m] is the effective tire radius, Ncvtin [rpm] is the input rotational speed of the continuously variable transmission 15, and Ncvtout [rpm] is the The output rotation speed is shown.

なお、必ずしも路面摩擦係数μを推定する必要はなく、例えば、スリップが収束した駆動力を当該駆動輪の発生可能な限界駆動力として代用しても良い。この場合、スリップを起こしていない他方の駆動輪の発生可能な駆動力は当該スリップ輪の収束値を輪荷重配分により補正して代用する。   Note that it is not always necessary to estimate the road surface friction coefficient μ. For example, a driving force in which slip converges may be used as a limit driving force that can be generated by the driving wheel. In this case, the driving force that can be generated by the other driving wheel that has not slipped is substituted by correcting the convergence value of the slip wheel by wheel load distribution.

なお、ここではエンジン駆動力推定値と前後輪の限界駆動力から、モータトルク制限値を設定しているが、この設定方法に加えて、あるいは、この設定方法に代えて、モータの温度に応じてモータトルクを制限するようにしてもよい。これは、高温によるモータの性能劣化を防止するために行う。具体的には、モータ温度を代表するモータ冷却水温を温度センサ23、24で検出し、それに応じてモータ3、7のトルクを制限する。図6は、このとき用いられるマップの一例を示す。冷却水温に応じてモータ出力を段階的に制限し、モータ回転速度に応じたトルク制限値を検索することにより求めることができる。   In this case, the motor torque limit value is set from the estimated engine drive force value and the front and rear wheel limit drive force. In addition to this setting method or instead of this setting method, the motor torque limit value is set. Thus, the motor torque may be limited. This is done in order to prevent motor performance degradation due to high temperatures. Specifically, the motor cooling water temperature representing the motor temperature is detected by the temperature sensors 23 and 24, and the torque of the motors 3 and 7 is limited accordingly. FIG. 6 shows an example of the map used at this time. It can be obtained by limiting the motor output in a stepwise manner according to the coolant temperature and searching for a torque limit value in accordance with the motor rotation speed.

図7は、図2のステップS16における処理を示したものである。ステップS16では、モータトルク制限値の範囲内で高効率に過渡要求駆動力を実現する各輪のモータトルク指令値を算出する。   FIG. 7 shows the processing in step S16 of FIG. In step S16, a motor torque command value for each wheel that realizes the transient required driving force with high efficiency within the range of the motor torque limit value is calculated.

これについて説明すると、ステップS31ないしS33では、過渡要求駆動力Fdt[N]、エンジン発生駆動力eFeng[N]、前後輪モータ制限値Tfmmax[Nm]、Trmmax[Nm]をそれぞれ読み込む。   Explaining this, in steps S31 to S33, the transient required driving force Fdt [N], the engine generated driving force eFeng [N], and the front and rear wheel motor limit values Tfmmax [Nm] and Trmmax [Nm] are read.

ステップS34では、蓄電装置12の出力可能電力Pout[kw]を算出する。ここで、出力可能電力Pout[kW]は以下の式を用いることで求めることができる。Vmin[V]は蓄電装置12が利用可能な下限電圧、Vo[V]は蓄電装置12の現在の開放端電圧、R[Ω]は蓄電装置12の内部抵抗である。   In step S34, the output possible power Pout [kw] of the power storage device 12 is calculated. Here, the output power Pout [kW] can be obtained by using the following equation. Vmin [V] is a lower limit voltage that can be used by the power storage device 12, Vo [V] is a current open-circuit voltage of the power storage device 12, and R [Ω] is an internal resistance of the power storage device 12.

Figure 2006180657
Figure 2006180657

ステップS35では、これまでのステップで求めたモータトルク制限値の範囲内で過渡要求駆動トルクを実現する前後輪のモータトルクの組合せを算出する。実施例で示す車両構成において、前輪モータトルクをTfm[Nm]に設定した場合の、過渡要求駆動力を実現する後輪モータトルクTrm[Nm]は次に示す式により求めることができる。   In step S35, a combination of front and rear motor torques that achieves the transient required drive torque within the range of the motor torque limit value obtained in the previous steps is calculated. In the vehicle configuration shown in the embodiment, when the front wheel motor torque is set to Tfm [Nm], the rear wheel motor torque Trm [Nm] for realizing the transient required driving force can be obtained by the following equation.

Figure 2006180657
Figure 2006180657

ここで、eTe[N]はステップS14(エンジン駆動力推定ステップ)で推定したエンジントルク[Nm]である。この関係を用いて、モータトルク制限値の範囲内で、過渡要求駆動力を実現するモータトルクの組合せを算出する。   Here, eTe [N] is the engine torque [Nm] estimated in step S14 (engine driving force estimation step). Using this relationship, a combination of motor torques that realize the transient required driving force is calculated within the range of the motor torque limit value.

図8にモータトルクの組合せの一例を示す。前後輪のモータトルクは、式(6)に示す関係を用いて、過渡要求駆動力を実現するモータトルクの組合せを示し、縦の破線上の丸印で示す点はその一例を示したものである。横の破線で示すトルク制限値は、ステップS15で求めた制限値を示したものである。複数のトルク制限値を設定している場合は、モータトルクが多く制限される方(絶対値のより小さい方)を用いるようにすればよい。また、この制限値は少なくともモータの定格出力や最大トルクが守られることを前提とする。トルク制限値の範囲内で過渡要求駆動力を実現する範囲は図中矢印で示す範囲となる。   FIG. 8 shows an example of a combination of motor torques. The motor torque of the front and rear wheels indicates a combination of motor torques that realize the transient required driving force using the relationship shown in Expression (6), and the points indicated by the circles on the vertical broken lines show an example. The torque limit value indicated by the horizontal broken line indicates the limit value obtained in step S15. In the case where a plurality of torque limit values are set, the motor torque that is more limited (the one with a smaller absolute value) may be used. This limit value is based on the premise that at least the rated output and the maximum torque of the motor are protected. The range in which the transient required driving force is realized within the range of the torque limit value is a range indicated by an arrow in the figure.

ステップS36では、ステップS35で求めたモータトルクの組合せを実現した場合の電力消費をそれぞれ算出する。電力消費は、次式により求めることができる。   In step S36, the power consumption when the combination of the motor torque obtained in step S35 is realized is calculated. The power consumption can be obtained by the following equation.

Figure 2006180657
Figure 2006180657

Nfm[rpm]は前輪モータの回転速度、Nrm[rpm]は後輪モータの回転速度を示す。また、MAPpfloss(Tfm,Nfm)とMAPprloss(Trm,Nrm)は前後輪それぞれのモータ損失電力を算出するためのマップを検索した結果であり、予め実験などによりモータトルクと回転速度に対応する損失電力の関係を求めて図9に示すようなマップを作成し、これ検索することにより求めることができる。   Nfm [rpm] represents the rotational speed of the front wheel motor, and Nrm [rpm] represents the rotational speed of the rear wheel motor. MAPpfloss (Tfm, Nfm) and MAPprloss (Trm, Nrm) are the results of searching a map for calculating the motor power loss for each of the front and rear wheels. 9 can be obtained by creating a map as shown in FIG. 9 and retrieving it.

各組み合わせについて電力消費を演算によって求め、横軸に駆動力配分をとってプロットすれば、図8の三段目に示すようなグラフが得られる。なお、このグラフはある車速、要求駆動力におけるグラフであり、車速、要求駆動力が異なればグラフの形も異なり、運転条件によってはいずれか一方のモータのみで駆動力を発生させた方が電力消費が少なくなる場合もありうる。このグラフを検索すれば、トルク制限値の範囲内で過渡要求駆動力を最小の電力消費で実現するモータトルクの組合せを求めることができる。   If the power consumption is obtained by calculation for each combination and plotted with the driving force distribution on the horizontal axis, a graph as shown in the third row of FIG. 8 is obtained. This graph is a graph at a certain vehicle speed and required driving force, and the shape of the graph will differ if the vehicle speed and required driving force are different. Depending on the driving conditions, it is better to generate driving force with only one of the motors. There may be less consumption. By searching this graph, it is possible to obtain a combination of motor torques that realizes the transient required driving force with the minimum power consumption within the range of the torque limit value.

ステップS37では、出力可能電力Pout[kW]と、トルク制限値の範囲内で過渡要求駆動力を実現するモータトルクの組合せを実現した場合の電力消費の最小値(以下、最小電力消費)との大小関係を比較する。出力可能電力Pout[kW]が最小電力消費以上であると判断した場合には、ステップS39に進み、最小電力消費となる前後輪のモータトルクをそのままトルク指令値とする。   In step S37, the output possible power Pout [kW] and the minimum value of power consumption (hereinafter referred to as the minimum power consumption) when the combination of the motor torque that realizes the transient required driving force within the range of the torque limit value is realized. Compare magnitude relationships. If it is determined that the outputtable power Pout [kW] is equal to or greater than the minimum power consumption, the process proceeds to step S39, and the front and rear wheel motor torques that result in the minimum power consumption are directly used as torque command values.

一方、出力可能電力Pout[kW]が最小電力消費未満であると判断した場合にはステップS38に進み、過渡要求駆動力を所定量だけ減少補正し、ステップS35の処理に戻って電力消費の和を最小とするモータトルクの組み合わせを再度検索する。この処理は、ステップS37の条件が満たされるまで継続される。   On the other hand, if it is determined that the output possible power Pout [kW] is less than the minimum power consumption, the process proceeds to step S38, the transient required driving force is corrected to decrease by a predetermined amount, and the process returns to step S35 to return to the sum of power consumption. Search again for a combination of motor torques that minimizes. This process is continued until the condition of step S37 is satisfied.

最小電力消費が出力可能電力を超える場合に選択されるモータトルク指令値の一例を図10に示す。灰色で示す丸印のモータトルクの組合せでは出力可能電力を満たせないため、過渡要求駆動力を段階的に低く設定し、電力消費を最小とした場合に出力可能電力を実現するモータトルクの組合せを検索してモータトルク指令値とする。   An example of the motor torque command value selected when the minimum power consumption exceeds the output power is shown in FIG. The combination of motor torques indicated by the circles shown in gray does not satisfy the output possible power.Therefore, the combination of motor torques that realize the output possible power when the transient required driving force is set low in steps and the power consumption is minimized. Search for the motor torque command value.

なお、ステップS35では、モータ3、7を制御するインバータ11、13の電流値から各モータトルクを推定し、現在のモータトルクを中心とした所定範囲内のトルクの中から電力消費の和を最小にするモータトルクの組合せを算出する処理を追加するようにしても構わない。つまり、モータトルクの変動幅を制限するためのトルク制限値を追加する。これにより、モータトルクが大幅に変化することに伴う運転性の悪化を抑制することができる。   In step S35, each motor torque is estimated from the current values of the inverters 11 and 13 that control the motors 3 and 7, and the sum of power consumption is minimized from the torque within a predetermined range centered on the current motor torque. You may make it add the process which calculates the combination of the motor torque to make. That is, a torque limit value for limiting the fluctuation range of the motor torque is added. As a result, it is possible to suppress a deterioration in drivability associated with a significant change in motor torque.

ステップS17では、ステップS12で求められたエンジン動作点を実現するよう燃料噴射量制御アクチュエータやスロットル制御アクチュエータや、点火時期制御用アクチュエータを制御する。無段変速機15については、変速比制御用油圧アクチュエータを制御し、所望の変速比を実現する。クラッチ2については、締結/開放指令を実現するよう電流が制御される。前後輪のモータ3、7についてはステップS16で求めたトルクを実現するようインバータ11、13を制御する。   In step S17, the fuel injection amount control actuator, the throttle control actuator, and the ignition timing control actuator are controlled so as to realize the engine operating point obtained in step S12. For the continuously variable transmission 15, a gear ratio control hydraulic actuator is controlled to achieve a desired gear ratio. For the clutch 2, the current is controlled to realize the engagement / release command. For the front and rear wheel motors 3 and 7, the inverters 11 and 13 are controlled to realize the torque obtained in step S16.

次に、上記制御を行うことによる本発明の作用効果について説明する。   Next, the effect of the present invention by performing the above control will be described.

本発明によれば、要求駆動力に対するエンジン駆動力の過不足分を第1及び第2のモータ(モータ3、7)で調整する際に、各モータトルク制限値の範囲内となるモータトルクの組合せの中から最も電力消費が少なくなるものを選択し、モータトルク指令値とする。このため、モータ3、7で消費する電力を効果的に低減し、その結果として走行中に消費する燃料量を低減することが可能となる。   According to the present invention, when the excess and deficiency of the engine driving force relative to the required driving force is adjusted by the first and second motors (motors 3 and 7), the motor torque that falls within the range of each motor torque limit value. From the combinations, select the one that consumes the least amount of power and use it as the motor torque command value. For this reason, the electric power consumed by the motors 3 and 7 can be effectively reduced, and as a result, the amount of fuel consumed during traveling can be reduced.

図11は本発明を適用しない比較例におけるトルクの変更の例を示し、運転者の要求する駆動力に対して、エンジン1の出力により得られる駆動力を差し引いた分を、前輪モータ3、後輪モータ7に配分した場合を示している。縦に並ぶモータ3、7のトルクは要求駆動力を実現する組合せであり、三段目にはその組合せにおける両モータ3、7の電力消費の合計を示してある。出力制限にかからない場合は、電力消費が最も少なくなるトルクの組合せが選択されるが、この状態において出力が制限されると、制限により一方のモータの出力が減少する分だけ他方のモータの出力を増加させる。図11においては、前輪モータ3のトルクが制限される分だけ、後輪モータ7のトルクの出力を増加させており、この際の電力消費は制限前と比較して大幅に大きくなっている。このように、駆動力再配分後に選択されるモータ3、7の動作点は必ずしも高効率なものにはならず、電力消費量を増大させ、車両の燃費を悪化させる。   FIG. 11 shows an example of torque change in a comparative example to which the present invention is not applied. The amount obtained by subtracting the driving force obtained by the output of the engine 1 from the driving force required by the driver is calculated as the front wheel motor 3 and the rear The case where it distributes to the wheel motor 7 is shown. The torques of the motors 3 and 7 arranged vertically are combinations that achieve the required driving force, and the third stage shows the total power consumption of both the motors 3 and 7 in the combination. If the output is not limited, the torque combination that minimizes the power consumption is selected, but if the output is limited in this state, the output of the other motor is reduced by the amount that the output of one motor decreases due to the limitation. increase. In FIG. 11, the output of the torque of the rear wheel motor 7 is increased by the amount by which the torque of the front wheel motor 3 is limited, and the power consumption at this time is significantly larger than before the limit. As described above, the operating points of the motors 3 and 7 selected after redistribution of the driving force are not necessarily highly efficient, increasing the power consumption and deteriorating the fuel consumption of the vehicle.

これに対し、図12は本発明を適用した場合を示しており、同様の状況で、駆動力を再配分した後に選択されるモータトルクの組合せを示したものである。トルク制限値の範囲内で電力消費が最も少なくなるトルクの組み合わせが選択されるので、駆動力再配分後の消費電力の増加は抑えられ、図11に示した比較例と比較して電力消費が少なくなることがわかる。   On the other hand, FIG. 12 shows a case where the present invention is applied, and shows a combination of motor torques selected after redistributing the driving force in the same situation. Since the torque combination that minimizes the power consumption within the range of the torque limit value is selected, an increase in the power consumption after the driving force redistribution is suppressed, and the power consumption is lower than that in the comparative example shown in FIG. It turns out that it decreases.

また、駆動力再配分後の電力消費が最小となるようモータ3、7におけるモータトルクを求めた結果、電力消費が蓄電装置12の出力可能電力を上回る場合には、要求駆動力を減少補正した上で、電力消費を最小にするモータトルクの組み合わせを再検索する。これにより、電力消費は常に出力可能電力以下に抑えられるので蓄電装置12の過放電を防止することができ、制限の範囲内で最大限の駆動力を実現することができる。   Further, as a result of obtaining the motor torque in the motors 3 and 7 so that the power consumption after the redistribution of the driving force is minimized, if the power consumption exceeds the outputable power of the power storage device 12, the required driving force is corrected to decrease. Above, search again for a combination of motor torques that minimizes power consumption. As a result, the power consumption is always kept below the power that can be output, so that the power storage device 12 can be prevented from being overdischarged, and the maximum driving force can be realized within the limit range.

また、各駆動軸の出力可能な駆動力である前後輪限界駆動力を、例えば、路面摩擦係数を推定することによって求め、これに基づきモータトルクを制限するので、駆動力再配分後の過回転スリップを抑制しつつ、モータ3、7で消費する電力を効果的に低減し、その結果として走行中に消費する燃料量を低減することができる。   In addition, the front and rear wheel limit driving force that can be output by each driving shaft is obtained by, for example, estimating the road surface friction coefficient, and the motor torque is limited based on this. While suppressing slip, the power consumed by the motors 3 and 7 can be effectively reduced, and as a result, the amount of fuel consumed during traveling can be reduced.

また、モータトルク制限値をモータ3、7の温度に応じて制限することとしたため、温度上昇によるモータ性能の低下を抑制する範囲内で、モータ3、7で消費する電力を効果的に低減し、その結果として走行中に消費する燃料量を低減することができる。   In addition, since the motor torque limit value is limited according to the temperature of the motors 3 and 7, the power consumed by the motors 3 and 7 is effectively reduced within a range that suppresses the decrease in motor performance due to the temperature rise. As a result, the amount of fuel consumed during traveling can be reduced.

また、モータ3、7のトルクを推定し、推定した各モータトルクを中心とする所定のトルク範囲内で電力消費を最小とするようにモータトルク指令値を算出するようにしてもよく、これによればモータトルクが大幅に変化することに伴う運転性の悪化を抑制することができる。   Further, the torques of the motors 3 and 7 may be estimated, and the motor torque command value may be calculated so as to minimize power consumption within a predetermined torque range centered on each estimated motor torque. According to this, it is possible to suppress the deterioration of drivability associated with a significant change in motor torque.

本発明が適用されるハイブリッド車両の概略構成図である。1 is a schematic configuration diagram of a hybrid vehicle to which the present invention is applied. コントローラが行う駆動力配分処理の内容を示したフローチャートである。It is the flowchart which showed the content of the driving force distribution process which a controller performs. 車速とアクセル操作量に対する要求駆動力の関係を示したマップである。It is the map which showed the relationship of the required driving force with respect to vehicle speed and the amount of accelerator operation. 過渡要求駆動力を説明するための図である。It is a figure for demonstrating a transient required driving force. モータトルク制限値を算出処理の内容を示したフローチャートである。It is the flowchart which showed the content of the calculation process of a motor torque limit value. モータ温度とトルク制限値の関係を示したマップである。It is the map which showed the relationship between motor temperature and a torque limiting value. モータトルク指令値算出処理の内容を示したフローチャートである。It is the flowchart which showed the content of the motor torque command value calculation process. 過渡要求駆動力を実現するモータトルクの組み合わせの一例を示した図である。It is the figure which showed an example of the combination of the motor torque which implement | achieves a transient requirement drive force. モータ回転速度とモータトルクに対する損失電力の関係を示したマップである。It is the map which showed the relationship of the loss electric power with respect to motor rotational speed and a motor torque. モータの消費電力が蓄電装置の出力可能電力を超える場合にモータトルクが制限される場合を示す図である。It is a figure which shows the case where a motor torque is restrict | limited when the power consumption of a motor exceeds the electric power which can be output of an electrical storage apparatus. 本発明を適用しない場合において出力制限が行われ、モータトルクの組み合わせが変更された場合を示す図である。It is a figure which shows the case where output restriction | limiting is performed and the combination of motor torque is changed when not applying this invention. 本発明を適用する場合において出力制限が行われ、モータトルクの組み合わせが変更された場合を示す図である。It is a figure which shows the case where output restriction | limiting is performed in the case of applying this invention, and the combination of the motor torque is changed.

符号の説明Explanation of symbols

1 エンジン
2 クラッチ
3 前輪モータ(第1のモータ)
6 前輪(第1の駆動輪)
7 後輪モータ(第2のモータ)
10 後輪(第2の駆動輪)
11 インバータ
13 インバータ
14 コントローラ
15 無段変速機
21 アクセル操作量センサ
22 車速センサ
23 温度センサ
24 温度センサ
1 Engine 2 Clutch 3 Front wheel motor (first motor)
6 Front wheel (first drive wheel)
7 Rear wheel motor (second motor)
10 Rear wheel (second drive wheel)
REFERENCE SIGNS LIST 11 inverter 13 inverter 14 controller 15 continuously variable transmission 21 accelerator operation amount sensor 22 vehicle speed sensor 23 temperature sensor 24 temperature sensor

Claims (6)

第1の駆動輪に動力を伝達するエンジン及び第1のモータと、
第2の駆動輪に動力を伝達する第2のモータと、
前記第1及び第2のモータに接続されて前記第1及び第2のモータと電力の受け渡しを行う蓄電装置と、
運転者が要求する駆動力を演算する要求駆動力算出手段と、
前記第1及び第2のモータのトルク制限値を算出するモータトルク制限値算出手段と、
前記エンジンの動力により発生している駆動力を推定するエンジン駆動力推定手段と、
前記要求駆動力に対するエンジン駆動力の過不足分を前記第1及び第2のモータのトルクで調整する場合、前記モータトルク制限値の範囲内で前記第1及び第2のモータの電力消費の和を最小とする第1及び第2のモータトルクの組み合わせを検索し、検索した組み合わせを前記第1及び第2のモータの指令値として算出するモータトルク指令値算出手段と、
前記第1及び第2のモータのトルクがそれぞれ前記指令値となるように前記第1及び第2のモータを制御するモータ制御手段と、
を備えたことを特徴とするハイブリッド車両。
An engine and a first motor for transmitting power to the first drive wheels;
A second motor for transmitting power to the second drive wheel;
A power storage device connected to the first and second motors for transferring power to and from the first and second motors;
Requested driving force calculating means for calculating the driving force requested by the driver;
Motor torque limit value calculating means for calculating torque limit values of the first and second motors;
Engine driving force estimating means for estimating a driving force generated by the power of the engine;
When adjusting the excess or deficiency of the engine driving force relative to the required driving force with the torque of the first and second motors, the sum of the power consumption of the first and second motors within the range of the motor torque limit value. Motor torque command value calculating means for searching for a combination of the first and second motor torques that minimizes the value and calculating the searched combination as command values for the first and second motors;
Motor control means for controlling the first and second motors such that the torques of the first and second motors become the command values, respectively;
A hybrid vehicle characterized by comprising:
前記モータトルク指令値算出手段は、算出されたモータトルクの組み合わせによる消費電力が前記蓄電装置の出力可能電力を超える場合、前記要求駆動力を減少補正し、補正後の要求駆動力に基づき前記第1及び第2のモータの電力消費の和を最小とする第1及び第2のモータトルクの組み合わせを再度検索することを特徴とする請求項1に記載のハイブリッド車両。   The motor torque command value calculating means corrects the required driving force to be decreased when the power consumption due to the calculated combination of motor torques exceeds the power that can be output from the power storage device, and based on the corrected required driving force, 2. The hybrid vehicle according to claim 1, wherein a search is again made for a combination of the first and second motor torques that minimizes the sum of the power consumptions of the first and second motors. 過回転スリップが発生することなく第1及び第2の駆動輪で出力可能な駆動力の最大値をそれぞれ第1の駆動輪の限界駆動力、第2の駆動輪の限界駆動力として算出する限界駆動力算出手段を備え、
前記モータトルク制限値算出手段は、前記第1のモータに対しては、前記第1の駆動輪の限界駆動力から前記エンジンの動力により発生している駆動力を減じた駆動力を前記第1のモータで発生する場合の前記第1のモータのトルクを、前記第2のモータに対しては、前記第2の駆動輪の限界駆動力を前記モータで発生する場合の前記第2のモータのトルクをそれぞれモータトルク制限値として設定することを特徴とする請求項1または2に記載のハイブリッド車両。
Limits for calculating the maximum driving force that can be output from the first and second driving wheels without causing overspeed slip as the limiting driving force of the first driving wheel and the limiting driving force of the second driving wheel, respectively. A driving force calculating means;
For the first motor, the motor torque limit value calculating means obtains a driving force obtained by subtracting a driving force generated by the power of the engine from a limit driving force of the first driving wheel. The torque of the first motor when the motor is generated by the motor, and the second motor when the limit driving force of the second driving wheel is generated by the motor for the second motor. The hybrid vehicle according to claim 1 or 2, wherein each torque is set as a motor torque limit value.
前記限界駆動力算出手段は、走行中の路面摩擦係数を推定し、推定した路面摩擦係数に基づき前記第1及び第2の駆動輪の限界駆動力を算出することを特徴とする請求項3に記載のハイブリッド車両   The said limit drive force calculation means estimates the road surface friction coefficient during driving | running | working, and calculates the limit drive force of the said 1st and 2nd drive wheel based on the estimated road surface friction coefficient. The described hybrid vehicle 前記第1及び第2のモータの温度を検出する手段を備え、
前記モータトルク制限値算出手段は、検出された前記第1及び第2のモータの温度が高いほど前記モータトルク制限値の絶対値を小さくすることを特徴とする請求項1から4のいずれかひとつに記載のハイブリッド車両。
Means for detecting the temperature of the first and second motors;
5. The motor torque limit value calculating means reduces the absolute value of the motor torque limit value as the detected temperature of the first and second motors is higher. 6. The hybrid vehicle described in 1.
走行中の第1及び第2のモータのトルクを推定するモータトルク推定手段を備え、
推定した各モータトルクを中心とする所定トルク範囲で電力消費を最小とするモータトルク指令値を算出することを特徴とする請求項1から5のいずれかひとつに記載のハイブリッド車両。
Motor torque estimating means for estimating the torque of the first and second motors during running,
6. The hybrid vehicle according to claim 1, wherein a motor torque command value that minimizes power consumption is calculated within a predetermined torque range centered on each estimated motor torque.
JP2004373018A 2004-12-24 2004-12-24 Four-wheel-drive hybrid vehicle Pending JP2006180657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373018A JP2006180657A (en) 2004-12-24 2004-12-24 Four-wheel-drive hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373018A JP2006180657A (en) 2004-12-24 2004-12-24 Four-wheel-drive hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2006180657A true JP2006180657A (en) 2006-07-06

Family

ID=36734219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373018A Pending JP2006180657A (en) 2004-12-24 2004-12-24 Four-wheel-drive hybrid vehicle

Country Status (1)

Country Link
JP (1) JP2006180657A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149966A (en) * 2006-12-19 2008-07-03 Toyota Motor Corp Power output device, hybrid car equipped with the same, and method for controlling the power output device
JP2008213531A (en) * 2007-02-28 2008-09-18 Toyota Motor Corp Vehicle and its control method
WO2012111159A1 (en) 2011-02-18 2012-08-23 パイオニア株式会社 Torque distribution device, torque distribution method, torque distribution value generation method, and program
WO2012111160A1 (en) 2011-02-18 2012-08-23 パイオニア株式会社 Torque distribution device, torque distribution method, torque distribution value generation method, and program
WO2012144058A1 (en) 2011-04-21 2012-10-26 パイオニア株式会社 Torque distribution device, torque distribution method, torque distribution value generation method and program
CN103072461A (en) * 2013-01-22 2013-05-01 郑州宇通客车股份有限公司 Dual-motor multi-mode hybrid power driving system and control method thereof
JP2015226361A (en) * 2014-05-27 2015-12-14 富士重工業株式会社 Automobile
CN107531234A (en) * 2015-02-16 2018-01-02 标致雪铁龙汽车股份有限公司 Control method and control device of the hybrid power means of transport prime mover as the supplement of internal combustion engine are used according to control from view of profit
JP2021035273A (en) * 2019-08-28 2021-03-01 株式会社デンソーテン Motor control device and motor control method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149966A (en) * 2006-12-19 2008-07-03 Toyota Motor Corp Power output device, hybrid car equipped with the same, and method for controlling the power output device
JP2008213531A (en) * 2007-02-28 2008-09-18 Toyota Motor Corp Vehicle and its control method
JP4692498B2 (en) * 2007-02-28 2011-06-01 トヨタ自動車株式会社 Vehicle and control method thereof
US9014897B2 (en) 2011-02-18 2015-04-21 Pioneer Corporation Torque distribution apparatus, torque distribution method, torque distribution value generation method, and program
WO2012111160A1 (en) 2011-02-18 2012-08-23 パイオニア株式会社 Torque distribution device, torque distribution method, torque distribution value generation method, and program
US8935032B2 (en) 2011-02-18 2015-01-13 Pioneer Corporation Torque distribution apparatus, torque distribution method, torque distribution value generation method, and program
WO2012111159A1 (en) 2011-02-18 2012-08-23 パイオニア株式会社 Torque distribution device, torque distribution method, torque distribution value generation method, and program
WO2012144058A1 (en) 2011-04-21 2012-10-26 パイオニア株式会社 Torque distribution device, torque distribution method, torque distribution value generation method and program
US8849538B2 (en) 2011-04-21 2014-09-30 Pioneer Corporation Torque distribution apparatus, torque distribution method, torque distribution value generation method, and program
CN103072461A (en) * 2013-01-22 2013-05-01 郑州宇通客车股份有限公司 Dual-motor multi-mode hybrid power driving system and control method thereof
CN103072461B (en) * 2013-01-22 2015-11-18 郑州宇通客车股份有限公司 Double-motor multi-mode hybrid drive system and control method thereof
JP2015226361A (en) * 2014-05-27 2015-12-14 富士重工業株式会社 Automobile
CN107531234A (en) * 2015-02-16 2018-01-02 标致雪铁龙汽车股份有限公司 Control method and control device of the hybrid power means of transport prime mover as the supplement of internal combustion engine are used according to control from view of profit
CN107531234B (en) * 2015-02-16 2020-11-27 标致雪铁龙汽车股份有限公司 Control method and control device for controlling the use of a hybrid vehicle prime mover as a supplement to an internal combustion engine as a function of efficiency
JP2021035273A (en) * 2019-08-28 2021-03-01 株式会社デンソーテン Motor control device and motor control method

Similar Documents

Publication Publication Date Title
CN105523033B (en) Hybrid powertrain speed control
US9604623B2 (en) Drive control system for electric motor and method of controlling electric motor
JP3489475B2 (en) Driving force control device
CN106043291B (en) Input torque trim for transmission shift control during regenerative braking
JP5169433B2 (en) Power generation control method for hybrid vehicle
JP2014193714A (en) Hybrid vehicle control device
EP2699439B1 (en) Hybrid electric vehicle controller, hybrid electric vehicle and method of controlling a hybrid electric vehicle
JP2006226440A (en) Control device of electric oil pump of hybrid vehicle
US10393259B2 (en) Hybrid vehicle control using adaptive transmission torque converter clutch capacity estimation
JP2013121822A (en) Output control method of hybrid vehicle
US20180056790A1 (en) Regenerative braking power distribution
WO2011117994A1 (en) Regeneration control system for vehicle
KR20130064537A (en) Torque control method for green car and system thereof
CN113212171A (en) Regenerative braking/anti-lock braking control system
JP2006160104A (en) Controller of hybrid vehicle
JP2006246562A (en) Hybrid vehicle and its control method
CN107415933B (en) Hybrid vehicle and method of reducing engine overload
JP2006180657A (en) Four-wheel-drive hybrid vehicle
CN106989169B (en) System and method for controlling transmission shifting
JP5293268B2 (en) Clutch control device for hybrid vehicle
US9187084B2 (en) Hybrid vehicle
JP2005225282A (en) Driving force switching control device
JP2011073533A (en) Control device for vehicle
KR102237064B1 (en) Hybrid electric vehicle and controlling method thereof
JP2007099022A (en) Power generation controller of hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203