JP2006160104A - Controller of hybrid vehicle - Google Patents

Controller of hybrid vehicle Download PDF

Info

Publication number
JP2006160104A
JP2006160104A JP2004355231A JP2004355231A JP2006160104A JP 2006160104 A JP2006160104 A JP 2006160104A JP 2004355231 A JP2004355231 A JP 2004355231A JP 2004355231 A JP2004355231 A JP 2004355231A JP 2006160104 A JP2006160104 A JP 2006160104A
Authority
JP
Japan
Prior art keywords
driving force
motor
clutch
road surface
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004355231A
Other languages
Japanese (ja)
Inventor
Takezo Yamaguchi
武蔵 山口
Hiroshi Iwano
岩野  浩
Seiji Shimodaira
誠司 下平
Hideaki Watanabe
英明 渡辺
Tetsuya Ikeda
哲也 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004355231A priority Critical patent/JP2006160104A/en
Publication of JP2006160104A publication Critical patent/JP2006160104A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18172Preventing, or responsive to skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller of a hybrid vehicle which improves following capability to a drive force which demands from the vehicle. <P>SOLUTION: In the controller of the hybrid vehicle of a four-wheel drive in which a clutch 2 is provided between an engine 1 and a motor 3, and which has front wheels 6 driven by the drive force supplied from the engine 1 and the motor 3, and rear wheels 10 driven by a force supplied from a motor 7, the maximum drive force of the rear wheel 10 is calculated based on a predicted road surface friction coefficient μa, and the drive force of the front wheel 6 is calculated from the demanded drive force and the maximum drive force of the rear wheel 10. When the motor 3 cannot realize the drive force of the front wheel 6, the clutch 2 is judged to be engaged. And, when the demanded drive force is distributed, the demand drive force is distributed to the clutch 2 based on the engagement judgment, the engine 1, the clutch 2 and the motors 3 and 7 are controlled. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はハイブリッド車両の制御装置に関するものである。   The present invention relates to a control device for a hybrid vehicle.

従来四輪駆動のハイブリッド車両において駆動輪にスリップが生じた場合に、スリップが発生した駆動輪で不足する駆動力を他の駆動輪で補い、ドライバの要求する駆動力を全体として確保することが可能なものが、特許文献1に開示されている。
特開平11−332020号公報
In a conventional four-wheel drive hybrid vehicle, when a slip occurs in the drive wheel, the drive force that is insufficient in the drive wheel in which the slip has occurred can be compensated by the other drive wheel to ensure the drive force required by the driver as a whole. What is possible is disclosed in US Pat.
JP-A-11-332020

スリップ発生時においてトルク応答の速いモータのみを用いて要求駆動力を実現できる場合には、スリップが発生する場合も不足する駆動力を他の駆動輪で補い、駆動力を速やかに実現できる。しかしながら、走行状況によっては駆動力を補うためにエンジン出力が必要となる場合がある。この場合、エンジンの始動やクラッチの締結の動作が必要なため、エンジン出力を駆動軸に伝達する間に遅れが生じ、速やかに要求駆動力を実現できないという問題点があった。   When the required driving force can be realized using only a motor with a fast torque response when slip occurs, the driving force that is insufficient even when slip occurs can be compensated for by other driving wheels, and the driving force can be realized quickly. However, engine output may be required to supplement the driving force depending on the traveling situation. In this case, since it is necessary to start the engine and engage the clutch, there is a problem that a delay occurs while the engine output is transmitted to the drive shaft, and the required driving force cannot be realized quickly.

本発明は、上記の問題点に鑑みなされたもので、走行状況に寄らずスリップ発生する場合においてもエンジンの始動やクラッチの締結による応答遅れ、すなわち要求駆動力に対する追従性を良くし、要求駆動力を速やかに実現するハイブリッド車両の制御装置を提供することを目的とする。   The present invention has been made in view of the above problems. Even when slipping occurs regardless of the driving situation, the response delay due to engine start-up and clutch engagement, that is, the followability to the required driving force is improved, and the required driving is achieved. An object of the present invention is to provide a control device for a hybrid vehicle that quickly realizes force.

本発明では、エンジンと第1モータとの間にクラッチを備え、エンジンと第1モータで発生した動力によって駆動する第1駆動輪と、第2モータで発生した動力によって駆動する第2駆動輪と、第1モータと第2モータに電力を供給し、かつ第1モータと第2モータで発電された電力を蓄える蓄電装置と、を備え、四輪駆動可能なハイブリッド車両の制御装置において、車両に要求される要求駆動力を演算する要求駆動力演算手段と、走行路面の路面摩擦係数を推定する路面摩擦係数推定手段と、路面摩擦係数に基づいて、第2駆動輪でスリップを発生することのないスリップ防止駆動力を算出するスリップ防止駆動力算出手段と、スリップ防止駆動力と要求駆動力に基づいて第1駆動輪への第1駆動力を算出する第1駆動力算出手段と、第1駆動力を第1モータで実現できるか否かを判断し、第1駆動力を第1モータのみによって実現できない場合に、クラッチによるエンジンと第1モータとの締結を判断するクラッチ締結判断手段と、クラッチ締結判断手段に基づいて、第1駆動輪と第2駆動輪がスリップを生ずることがないように要求駆動力を第1駆動輪と第2駆動輪に分配する分配駆動力を算出する分配駆動力算出手段と、クラッチ締結判断手段に基づいてクラッチを締結または開放し、分配駆動力に基づいてエンジンと第1モータと第2モータから供給される駆動力を制御する駆動力制御手段と、を備える。   In the present invention, a clutch is provided between the engine and the first motor, the first driving wheel driven by the power generated by the engine and the first motor, and the second driving wheel driven by the power generated by the second motor, And a power storage device that supplies electric power to the first motor and the second motor and stores the electric power generated by the first motor and the second motor. A required driving force calculating means for calculating a required driving force, a road surface friction coefficient estimating means for estimating a road surface friction coefficient of a traveling road surface, and generating slip on the second driving wheel based on the road surface friction coefficient. An anti-slip driving force calculating means for calculating an anti-slip driving force, a first driving force calculating means for calculating a first driving force to the first driving wheel based on the anti-slip driving force and the required driving force, A clutch engagement determining means for determining whether or not the driving force can be realized by the first motor, and for determining the engagement between the engine and the first motor by the clutch when the first driving force cannot be realized by only the first motor; Based on the clutch engagement determining means, a distributed drive that calculates a distributed drive force that distributes the required drive force to the first drive wheel and the second drive wheel so that the first drive wheel and the second drive wheel do not slip. A force calculating means; and a driving force control means for engaging or disengaging the clutch based on the clutch engagement determining means and controlling the driving force supplied from the engine, the first motor, and the second motor based on the distributed driving force. Prepare.

本発明によると、エンジンと第1モータで発生した動力によって駆動する第1駆動輪(前輪)と、第2モータで発生した動力によって駆動する第2駆動輪(後輪)と、第1モータと第2モータに電力を供給し、かつ第1モータと第2モータで発電された電力を蓄える蓄電装置と、を備え、四輪駆動可能なハイブリッド車両の制御装置において、路面摩擦係数に基づいて第2駆動輪がスリップを生じない範囲でのスリップ防止駆動力を算出し、要求駆動力とスリップ防止駆動力から第1駆動力を算出する。そして第1駆動力を第1モータで実現できるか否かによってクラッチの締結判断を行う。また、要求駆動力を第1駆動輪と第2駆動輪とに分配する場合にはクラッチの締結/開放判断に基づいて分配し、クラッチ、エンジン、第1モータ、第2モータを制御するので、エンジンからの駆動力の供給が必要となる場合には、エンジンの始動、クラッチの締結による駆動力の応答遅れをなくし、要求駆動力への追従性を良くすることができる。   According to the present invention, the first driving wheel (front wheel) driven by the power generated by the engine and the first motor, the second driving wheel (rear wheel) driven by the power generated by the second motor, the first motor, And a power storage device that supplies electric power to the second motor and stores the electric power generated by the first motor and the second motor. A control device for a hybrid vehicle capable of four-wheel drive is provided based on a road surface friction coefficient. The anti-slip driving force in a range in which the two drive wheels do not slip is calculated, and the first driving force is calculated from the required driving force and the anti-slip driving force. The clutch is determined to be engaged depending on whether the first driving force can be realized by the first motor. Further, when the required driving force is distributed to the first driving wheel and the second driving wheel, it is distributed based on the clutch engagement / disengagement determination, and the clutch, engine, first motor, and second motor are controlled. When it is necessary to supply the driving force from the engine, the response delay of the driving force due to the start of the engine and the engagement of the clutch can be eliminated, and the followability to the required driving force can be improved.

本発明の第1実施形態のハイブリッド車両について図1の概略構成図を用いて説明する。この実施形態のハイブリッド車両のパワートレインは、エンジン1などから構成され、第1駆動輪6を駆動する第1駆動力伝達経路20と、モータ7などから構成され、第2駆動輪10を駆動する第2駆動力伝達経路21と、モータ3、7に電力を供給する電力供給経路22と、から構成される四輪駆動可能なハイブリッド車両である。   A hybrid vehicle according to a first embodiment of the present invention will be described with reference to the schematic configuration diagram of FIG. The power train of the hybrid vehicle according to this embodiment includes the engine 1 and the like, and includes the first driving force transmission path 20 that drives the first driving wheels 6 and the motor 7 and the like, and drives the second driving wheels 10. It is a hybrid vehicle capable of four-wheel drive that includes a second driving force transmission path 21 and a power supply path 22 that supplies power to the motors 3 and 7.

第1駆動力伝達経路20は、内燃機関であるエンジン1と、エンジン1と同一にまたは単独に車両の動力となるモータ(第1モータ)3と、エンジン1とモータ3間の動力の伝達を切り換えるクラッチ2と、エンジン1とモータ3から動力を伝達する出力軸の回転速度、回転半径を変化させる無段変速機15と、無段変速機15から伝達された回転速度を減速する減速装置4と、減速装置4を介して伝達されたトルクを第1駆動輪6に伝達する差動装置5を備える。   The first driving force transmission path 20 transmits the power between the engine 1 that is an internal combustion engine, a motor (first motor) 3 that is the same as or independent of the engine 1, and power of the vehicle, and between the engine 1 and the motor 3. The clutch 2 for switching, the continuously variable transmission 15 for changing the rotational speed and rotational radius of the output shaft for transmitting power from the engine 1 and the motor 3, and the speed reducing device 4 for reducing the rotational speed transmitted from the continuously variable transmission 15. And a differential device 5 that transmits the torque transmitted through the reduction gear 4 to the first drive wheels 6.

クラッチ2は、パウダークラッチであり、伝達トルクを調整することができる。なお、パウダークラッチの代わりに乾式単板クラッチや湿式多板クラッチを用いてもよい。   The clutch 2 is a powder clutch and can adjust the transmission torque. A dry single plate clutch or a wet multi-plate clutch may be used instead of the powder clutch.

無段変速機15はベルト式の無段変速機を用いるが、ベルト式の他にトロイダル式無段変速機、または段階的に変速する変速機、さらには、遊星歯車を用いた変速機でも良い。   The continuously variable transmission 15 uses a belt-type continuously variable transmission, but in addition to the belt-type, a toroidal continuously variable transmission, a transmission that changes in stages, or a transmission that uses planetary gears may be used. .

第2駆動力伝達経路21は、車両の動力となるモータ(第2モータ)7と、モータ7から伝達された回転速度を減速する減速装置8と、減速装置8を介して伝達されたトルクを第2駆動輪10に伝達する差動装置8を備える。   The second driving force transmission path 21 includes a motor (second motor) 7 that serves as power for the vehicle, a reduction device 8 that reduces the rotational speed transmitted from the motor 7, and torque that is transmitted via the reduction device 8. A differential device 8 for transmitting to the second drive wheel 10 is provided.

モータ3、7は交流電動機を用いるが、この代わりに直流電動機を用いてもよい。   Although the motors 3 and 7 use AC motors, DC motors may be used instead.

電力供給経路22は、モータ3、7と電気的に接続し、モータ3、7に電力を供給する蓄電装置12と、モータ3と蓄電装置12との間に配置されるインバータ11と、モータ7と蓄電装置12との間に配置されるインバータ13と、を備える。   The power supply path 22 is electrically connected to the motors 3 and 7, the power storage device 12 that supplies power to the motors 3 and 7, the inverter 11 disposed between the motor 3 and the power storage device 12, and the motor 7 And an inverter 13 disposed between the power storage device 12 and the power storage device 12.

蓄電装置3は、例えばリチウム・イオン電池、ニッケル・水素電池、鉛蓄電池などの各種電池や、電気二重層キャパシタ、いわゆるパワーキャパシタを用いる。   The power storage device 3 uses, for example, various types of batteries such as lithium ion batteries, nickel / hydrogen batteries, lead storage batteries, and electric double layer capacitors, so-called power capacitors.

インバータ11は、蓄電装置12の直流充電電力を交流に変換してモータ3に電力を供給し、またモータ3の交流発電電力を直流電力に変化して蓄電装置3を充電する。インバータ13は蓄電装置12の直流充電電力を交流に変換してモータ7に電力を供給し、またモータ7の交流発電電力を直流電力に変化して蓄電装置3を充電する。なお、モータ3、7に直流電動機を用いる場合にはインバータ11、13の代わりにDC/DCコンバータを用いる。   The inverter 11 converts the DC charging power of the power storage device 12 into AC and supplies the power to the motor 3, and changes the AC generated power of the motor 3 to DC power to charge the power storage device 3. The inverter 13 converts the DC charging power of the power storage device 12 into AC and supplies the motor 7 with power, and changes the AC generated power of the motor 7 to DC power to charge the power storage device 3. In the case where a DC motor is used for the motors 3 and 7, DC / DC converters are used instead of the inverters 11 and 13.

また、図外のドライバからのアクセル操作や、図示しない車輪速センサからの車速信号に基づいて、エンジン1の運転状態、モータ3、7の運転状態をどうすべきか判断し、その判断結果とアクセル操作を介したドライバからの要求に応じてエンジン1、クラッチ2、モータ3、7、無断変速機15に対する指令値を生成する統合コントローラ14を備える。   Further, based on an accelerator operation from a driver (not shown) and a vehicle speed signal from a wheel speed sensor (not shown), it is determined what to do with the operating state of the engine 1 and the operating states of the motors 3 and 7, and the determination result and the accelerator An integrated controller 14 is provided that generates command values for the engine 1, the clutch 2, the motors 3 and 7, and the continuously variable transmission 15 in response to a request from the driver through operation.

ここで本発明の実施形態におけるハイブリッド車両の制御方法で特に有効となる場合について説明する。   Here, a case that is particularly effective in the hybrid vehicle control method according to the embodiment of the present invention will be described.

通常ハイブリッド車両は停車時には通常アイドリングストップを行なっている。そしてドライバによりアクセル操作がなされて発進する場合、発進時のエンジン運転効率は良くないので急加速で無い限りモータから供給される駆動力により発進し、所定の速度もしくは所定の要求駆動力に達するまで、つまりモータの高効率運転の限界、もしくは出力の限界になるまでモータで走行を続ける。   Normally, a hybrid vehicle normally performs idling stop when stopped. And when the driver starts the accelerator operation, the engine operation efficiency at the time of starting is not good, so unless the vehicle is suddenly accelerated, it starts with the driving force supplied from the motor until it reaches a predetermined speed or a predetermined required driving force. In other words, the motor continues running until it reaches the limit of high-efficiency operation of the motor or the limit of output.

この際、停止中のエンジンをモータにより回転させてしまうとフリクションロスが発生するのでクラッチを解放している。そして、所定の速度、又は所定の要求駆動力に達すると、エンジンの始動を開始し、クラッチを締結し、エンジンから供給される駆動力による走行に切り替える。なおエンジンの始動はエンジン走行に速やかに切り替えるために多少の余裕を持って速めに始動する。   At this time, if the stopped engine is rotated by the motor, a friction loss occurs, so the clutch is released. When a predetermined speed or a predetermined required driving force is reached, the engine is started, the clutch is engaged, and the driving is switched to the driving force supplied from the engine. It should be noted that the engine is started quickly with some margin in order to quickly switch to engine running.

以上が一般的なハイブリッド車両の発進である。   The above is the start of a general hybrid vehicle.

前後輪(第1駆動輪6、第2駆動輪10)にモータ(モータ3、7)を備えたハイブリッド車両の場合、上記モータ走行の限界の速度もしくは要求駆動力は前後輪のモータの能力の合計となる。例えば車両の後輪荷重の方が前輪荷重に比べて軽い場合を想定すると、路面摩擦係数μが低い場合には駆動輪においてスリップが発生する可能性がある。この場合には後輪荷重が軽いので、まずは後輪がスリップを開始する。その場合後輪の駆動力が低減するので、要求駆動力に満たない駆動力分は輪荷重が重く摩擦限界に余裕のある前輪に配分される。   In the case of a hybrid vehicle in which the front and rear wheels (first driving wheel 6 and second driving wheel 10) are provided with motors (motors 3 and 7), the speed limit or required driving force of the motor travel is the capability of the motors of the front and rear wheels. Total. For example, assuming that the rear wheel load of the vehicle is lighter than the front wheel load, if the road surface friction coefficient μ is low, slip may occur on the drive wheels. In this case, since the rear wheel load is light, the rear wheel starts to slip first. In this case, since the driving force of the rear wheels is reduced, the driving force less than the required driving force is distributed to the front wheels having a heavy wheel load and a margin of friction.

しかし、前輪を駆動するモータに対する駆動要求がモータの性能を超えるものであった場合、前輪で不足する要求駆動力に対してエンジン始動、クラッチ締結をしてエンジン駆動力を配分する必要があり、エンジン始動などの時間ロス分の要求駆動力を満たすことができず、運転性を悪化させてしまう。なお、このような現象は例えば後輪の輪荷重が軽い場合に限らず、前輪を駆動させるモータ(モータ3)に比べて後輪を駆動させるモータ(モータ7)の性能を向上させた車両の場合にも発生する。つまり、モータ走行において前輪と後輪の駆動力に差があり、モータ走行の限界付近では後輪モータへの依存度が高くなる。このような場合、前輪モータも限界に近いので、摩擦限界には余裕があるにもかかわらず、エンジンの始動を待たなければ駆動力を分配することができない。   However, if the drive request for the motor that drives the front wheels exceeds the performance of the motor, it is necessary to distribute the engine drive force by starting the engine and engaging the clutch for the required drive force that is insufficient for the front wheels, The required driving force for the time loss such as engine start cannot be satisfied, and the drivability is deteriorated. Such a phenomenon is not limited to the case where the wheel load of the rear wheels is light, for example, and the performance of the motor (motor 7) that drives the rear wheels compared to the motor (motor 3) that drives the front wheels is improved. It also occurs in some cases. That is, there is a difference in driving force between the front wheels and the rear wheels during motor travel, and the dependence on the rear wheel motor increases near the limit of motor travel. In such a case, since the front wheel motor is also close to the limit, the driving force cannot be distributed without waiting for the engine to start even though there is a margin in the friction limit.

この実施形態では、例えば際2駆動輪10のスリップが予想される場合には、モータ走行の限界を超える前にエンジン1を始動し、クラッチ2の締結を行なっておくことで、第1駆動輪6の駆動力に余裕が生まれ、ハイブリッド車両の運転性を向上することができる。   In this embodiment, for example, when slipping of the second driving wheel 10 is expected, the first driving wheel is started by starting the engine 1 and engaging the clutch 2 before exceeding the limit of motor driving. The driving force of 6 can be afforded, and the drivability of the hybrid vehicle can be improved.

次に統合コントローラ14におけるハイブリッド車両の駆動力制御について図2のフローチャートを用いて説明する。なお、このフローチャートは所定時間毎、例えば10msec毎に行われる。   Next, the driving force control of the hybrid vehicle in the integrated controller 14 will be described using the flowchart of FIG. This flowchart is performed every predetermined time, for example, every 10 msec.

ステップS100では磁気式や光学のエンコーダなどの図示しない車速センサからの出力から求めた車両速度(km/h)と、図示しないアクセルポジションセンサからの出力から求めたアクセル開度(deg)をもとに図3に示すマップを検索することにより要求駆動力F(N)を算出する。図3のマップは車両速度が低いほど大きな駆動力が得られる傾向を持つが、詳細な設定については予め実験などからドライバの感覚に沿うようマップの値を調整することで求めておけばよい。また、求めた値に対して一次遅れ処理を施してもよい(ステップS100が要求駆動力演算手段を構成する)。   In step S100, based on a vehicle speed (km / h) obtained from an output from a vehicle speed sensor (not shown) such as a magnetic or optical encoder, and an accelerator opening (deg) obtained from an output from an accelerator position sensor (not shown). The required driving force F (N) is calculated by searching the map shown in FIG. The map of FIG. 3 has a tendency that a larger driving force is obtained as the vehicle speed is lower. However, the detailed setting may be obtained in advance by adjusting the value of the map so as to follow the driver's feeling through experiments or the like. Further, a first-order lag process may be performed on the obtained value (step S100 constitutes a required driving force calculation means).

ステップS101では、車速センサを用いて算出する車輪の回転速度を用いて路面摩擦係数μを推定する。推定方法としては、例えば特開平11−78843号公報記載のように、タイヤと路面との間の摩擦係数の勾配である路面摩擦係数勾配を推定する方法や、特開平10−114263号公報記載のように、路面摩擦係数勾配と等価的に扱うことのできる物理量として、スリップ速度に対する制動トルクの勾配や駆動トルクの勾配に基づいて推定する方法がある(ステップS101が路面摩擦係数推定手段を構成する)。   In step S101, the road surface friction coefficient μ is estimated using the rotational speed of the wheel calculated using the vehicle speed sensor. As an estimation method, for example, as described in JP-A-11-78843, a method for estimating a road surface friction coefficient gradient, which is a gradient of a friction coefficient between a tire and a road surface, or JP-A-10-114263 is described. As described above, as a physical quantity that can be handled equivalently to a road surface friction coefficient gradient, there is a method of estimating based on a braking torque gradient or a driving torque gradient with respect to a slip speed (step S101 constitutes a road surface friction coefficient estimating unit). ).

ステップS102では、これから走行する道路の予想路面摩擦係数μaを推定する。予想路面摩擦係数μaの推定にあたっては、図示しない外気温センサ(気象情報検知手段)からの出力を用い、例えば、ステップS101で推定した路面摩擦係数μがドライ路面相当で外気温が10℃以上であれば、雪や氷氷結路面に変化する頻度は極めて低いと考えられるので、ウェット路面相当の路面摩擦係数まで変化することを想定できる。また、ワイパー動作の状況から雨若しくは雪の天候が想定され、気温が10℃以上であれば雪や氷結路面に変化する頻度は極めて低いと考えられるので、路面摩擦係数が小さくなったとしてもウェット路面相当の範囲であると想定できる。また、気温が10℃未満であれば雪や氷結路相当の路面摩擦係数に変化することを想定することができる。また、ラジオやインターネット等外部情報を入手する手段を用いて気象情報を得れば、路面摩擦係数変化の想定もより確度が高いものとなる。以上の情報を基に予測路面摩擦係数μaを推定する。なお、例では気温10℃を境として予測路面摩擦係数μaを推定したが、必ず10℃である必要はなく、確度高く想定できるように調整した値を用いればよい(ステップS102が路面摩擦係数変化推定手段を構成する)。   In step S102, the predicted road surface friction coefficient μa of the road to be traveled is estimated. In estimating the expected road surface friction coefficient μa, an output from an outside air temperature sensor (weather information detecting means) (not shown) is used. For example, the road surface friction coefficient μ estimated in step S101 is equivalent to a dry road surface and the outside air temperature is 10 ° C. or higher. If there is, it is considered that the frequency of change to the snow or ice / ice freezing road surface is extremely low, so it can be assumed that the road surface friction coefficient corresponding to the wet road surface changes. In addition, rain or snow weather is assumed from the condition of the wiper operation, and if the temperature is 10 ° C or higher, it is considered that the frequency of change to snow or icing road surface is very low. It can be assumed that the range is equivalent to the road surface. Further, if the temperature is less than 10 ° C., it can be assumed that the road surface friction coefficient is equivalent to snow or icy road. Further, if weather information is obtained using means for obtaining external information such as radio or the Internet, the assumption of a change in the friction coefficient of the road surface is more accurate. The predicted road friction coefficient μa is estimated based on the above information. In the example, the predicted road friction coefficient μa is estimated at a temperature of 10 ° C., but it is not necessarily 10 ° C., and a value adjusted so that it can be assumed with high accuracy may be used (step S102 is a change in road friction coefficient). Constitutes an estimation means).

ステップS103では、ステップS102で推定した予測路面摩擦係数μaとなった場合にクラッチ2を締結し、モータ3、7による駆動力の供給に加えてエンジン1からの駆動力の供給が必要か否かを判断する。以下において、ステップS103で行うクラッチ締結/開放判断制御について図4のフローチャートを用いて説明する。   In step S103, when the predicted road surface friction coefficient μa estimated in step S102 is reached, the clutch 2 is engaged, and whether or not the driving force from the engine 1 is required in addition to the driving force supplied by the motors 3 and 7 is determined. Judging. Hereinafter, the clutch engagement / disengagement determination control performed in step S103 will be described with reference to the flowchart of FIG.

ステップS200では、ステップS100で算出した要求駆動力Fを読み出し、ステップS201では、ステップS102で推定した予測路面摩擦係数μaを読み出す。   In step S200, the required driving force F calculated in step S100 is read, and in step S201, the predicted road surface friction coefficient μa estimated in step S102 is read.

ステップS202では、予測路面摩擦係数μaにおいて第1駆動輪6と第2駆動輪10で発生可能な最大駆動力を、
Ffa_lmt=μa・Mf・g 式(1)
Fra_lmt=μa・Mr・g 式(2)
によって算出する。なお、以下において第1駆動輪6を前輪6とし、第2駆動輪10を後輪10とする。Ffa_lmtは予測路面摩擦係数μaにおいてスリップが発生しない範囲で発生することが可能な前輪6の最大駆動力であり、Fra_lmtは予測路面摩擦係数μaにおいてスリップが発生しない範囲で発生することが可能な後輪10の最大駆動力(スリップ防止駆動力)である。また、Mfは前輪6に掛かる荷重であり、Mrは後輪10に掛かる荷重であり、gは重力加速度である。つまり、Ffa_lmtは、モータ3とエンジン1によって前輪6を駆動する場合に前輪6がスリップしない最大駆動力であり、Fra_lmtは、モータ7によって後輪10を駆動する場合に後輪10がスリップしない最大駆動力である(ステップS202がスリップ防止駆動力算出手段を構成する)。
In step S202, the maximum driving force that can be generated by the first driving wheel 6 and the second driving wheel 10 at the predicted road surface friction coefficient μa,
Ffa_lmt = μa · Mf · g Formula (1)
Fra_lmt = μa · Mr · g Formula (2)
Calculated by In the following description, the first driving wheel 6 is referred to as a front wheel 6, and the second driving wheel 10 is referred to as a rear wheel 10. Ffa_lmt is the maximum driving force of the front wheel 6 that can be generated within a range where no slip occurs in the predicted road surface friction coefficient μa, and Fra_lmt is after the possible generation in a range where no slip occurs in the predicted road surface friction coefficient μa This is the maximum driving force of the wheel 10 (anti-slip driving force). Further, Mf is a load applied to the front wheel 6, Mr is a load applied to the rear wheel 10, and g is a gravitational acceleration. That is, Ffa_lmt is the maximum driving force at which the front wheel 6 does not slip when the front wheel 6 is driven by the motor 3 and the engine 1, and Fra_lmt is the maximum at which the rear wheel 10 does not slip when the rear wheel 10 is driven by the motor 7. It is a driving force (Step S202 constitutes a slip prevention driving force calculating means).

ステップS203では、スリップが生じないよう前輪6と後輪10で発生する駆動力の配分を変更した場合において、速やかに要求駆動力Fを満たすことができるか否かを判断する。ここで行う要求駆動力Fを満たすことができるか否かの判断は、予測路面摩擦係数μaにおいてスリップが発生しない範囲で前輪6と後輪10に駆動力を配分した場合に、エンジン1からの駆動力を用いずにモータ3、7からの駆動力のみによって車両を駆動できるか否かを判断する。   In step S203, when the distribution of the driving force generated at the front wheels 6 and the rear wheels 10 is changed so that no slip occurs, it is determined whether or not the required driving force F can be satisfied quickly. The determination as to whether or not the required driving force F can be satisfied here is made from the engine 1 when the driving force is distributed to the front wheels 6 and the rear wheels 10 within a range where the predicted road surface friction coefficient μa does not cause a slip. It is determined whether or not the vehicle can be driven only by the driving force from the motors 3 and 7 without using the driving force.

ここでは、要求駆動力Fから後輪10でスリップを発生させずに供給可能な最大駆動力Fra_lmtを減算した偏差(第1駆動力)が、モータ3によって供給可能な最大駆動力よりも大きいか否かで判断する。そして、要求駆動力Fと後輪10の最大駆動力Fra_lmtとの偏差がモータ3の最大駆動力よりも大きい場合にはステップS204へ進み、要求駆動力Fと後輪10の最大駆動力Fra_lmtとの偏差がモータ3の最大駆動力よりも小さい場合にはステップS205へ進む(ステップS203が第1駆動力算出手段を構成する)。   Here, whether the deviation (first driving force) obtained by subtracting the maximum driving force Fra_lmt that can be supplied without causing slip at the rear wheel 10 from the required driving force F is larger than the maximum driving force that can be supplied by the motor 3. Judge by no. When the deviation between the required driving force F and the maximum driving force Fra_lmt of the rear wheel 10 is larger than the maximum driving force of the motor 3, the process proceeds to step S204, where the required driving force F and the maximum driving force Fra_lmt of the rear wheel 10 are Is smaller than the maximum driving force of the motor 3, the process proceeds to step S205 (step S203 constitutes the first driving force calculating means).

ステップS203の制御では後輪10における駆動力を最大駆動力Fra_lmtとして、要求駆動力と最大駆動力Fra_lmtの偏差をモータ3から供給可能な最大駆動力と比較する。つまりモータ7によって駆動される後輪10への駆動力を優先的に使用し、前輪6に要求される駆動力を小さくする。前輪6に要求される駆動力が小さくなると、要求された駆動力に対して、エンジン1から供給される駆動力を用いずにモータ3のみから供給される駆動力によって車両を駆動することができる場合が増加する。すなわちモータ3とモータ7から供給される駆動力によって車両を駆動する場合が増加する。   In the control of step S203, the driving force at the rear wheel 10 is set as the maximum driving force Fra_lmt, and the deviation between the required driving force and the maximum driving force Fra_lmt is compared with the maximum driving force that can be supplied from the motor 3. That is, the driving force applied to the rear wheel 10 driven by the motor 7 is preferentially used, and the driving force required for the front wheel 6 is reduced. When the driving force required for the front wheels 6 is reduced, the vehicle can be driven by the driving force supplied only from the motor 3 without using the driving force supplied from the engine 1 with respect to the required driving force. The case increases. That is, the number of cases where the vehicle is driven by the driving force supplied from the motor 3 and the motor 7 increases.

要求駆動力Fを配分した際にエンジン1からの駆動力を用いる必要がある場合には、エンジン1の始動とエンジン1のトルクを伝達するためのクラッチ2の締結処理が必要となり、要求駆動力Fへの追従性が悪くなる。一方で、前輪6と後輪10に備わったモータ3、7から供給される駆動力で要求駆動力Fを満たすことができる場合には、エンジン1からトルクを伝達する場合と比較して速やかなトルク応答により要求駆動力Fを満たすことができる。   When it is necessary to use the driving force from the engine 1 when the required driving force F is distributed, it is necessary to start the engine 1 and to engage the clutch 2 for transmitting the torque of the engine 1. The followability to F becomes worse. On the other hand, when the required driving force F can be satisfied with the driving force supplied from the motors 3 and 7 provided in the front wheels 6 and the rear wheels 10, the speed is faster than when torque is transmitted from the engine 1. The required driving force F can be satisfied by the torque response.

ステップS203の制御によりエンジン1からクラッチ2を開放する回数を多くすることができ、エンジン1から駆動力を供給する回数を少なくすることができる。そのためエンジン1の動作回数(時間)を少なくすることができ、エンジン1における燃料消費量を低減することができる。   The number of times of releasing the clutch 2 from the engine 1 can be increased by the control in step S203, and the number of times of supplying the driving force from the engine 1 can be decreased. Therefore, the number of operations (time) of the engine 1 can be reduced, and fuel consumption in the engine 1 can be reduced.

ステップS204では、要求駆動力Fと後輪10の最大駆動力Fra_lmtとの偏差がモータ3の最大駆動力よりも大きい、つまり要求駆動力Fがモータ3、7によって実現可能な最大駆動力よりも大きいので、その不足分を補うためにエンジン1から駆動力を供給するためのクラッチ2の締結判断を行う。クラッチ2の締結判断をステップS103によって予測された予測路面摩擦係数μaによって行うので、後述する駆動力分配算出制御において路面摩擦係数μの変化に備え、予めクラッチ2を締結した駆動力配分を行うことができるので、エンジン1の始動とクラッチ2を締結する処理で発生する駆動力応答の遅れがなく、路面摩擦係数変化後も速やかに要求駆動力を実現することができる。   In step S204, the deviation between the required driving force F and the maximum driving force Fra_lmt of the rear wheel 10 is larger than the maximum driving force of the motor 3, that is, the required driving force F is greater than the maximum driving force that can be realized by the motors 3 and 7. Since it is large, in order to make up for the shortage, it is determined whether the clutch 2 for supplying driving force from the engine 1 is engaged. Since the determination of engagement of the clutch 2 is performed based on the predicted road surface friction coefficient μa predicted in step S103, the driving force distribution with the clutch 2 engaged in advance is performed in preparation for a change in the road surface friction coefficient μ in the driving force distribution calculation control described later. Therefore, there is no delay in the driving force response generated in the process of starting the engine 1 and engaging the clutch 2, and the required driving force can be realized promptly even after the road surface friction coefficient changes.

一方、ステップS202において要求駆動力Fと後輪10の最大駆動力Fra_lmtとの偏差がモータ3から供給可能な最大駆動力よりも小さい、つまり要求駆動力Fがモータ3、7から供給される駆動力によって実現可能であると判断すると、ステップS205において、要求駆動力Fをモータ3、7によって実現した場合にモータ3、7によって消費される電力P(kW)と、現在の蓄電装置12に蓄えられている蓄電量P0(kW)、つまり出力可能電力P0とを比較する。そしてモータ3、7によって消費される電力Pが蓄電装置12に蓄えられている蓄電量P0よりも大きい場合にはステップS206に進み、モータ3、7によって消費される電力Pが蓄電装置12に蓄えられている蓄電量P0よりも小さい場合にはステップS207へ進む(ステップS205が入出力可能電力算出手段を構成する)。   On the other hand, in step S202, the deviation between the required driving force F and the maximum driving force Fra_lmt of the rear wheel 10 is smaller than the maximum driving force that can be supplied from the motor 3, that is, the driving in which the required driving force F is supplied from the motors 3 and 7. If it is determined that the required driving force F is realized by the motors 3 and 7 in step S205, the power P (kW) consumed by the motors 3 and 7 and the current power storage device 12 are stored. The stored power amount P0 (kW), that is, outputable power P0 is compared. If the power P consumed by the motors 3 and 7 is larger than the stored amount P0 stored in the power storage device 12, the process proceeds to step S206, and the power P consumed by the motors 3 and 7 is stored in the power storage device 12. If it is smaller than the stored power amount P0, the process proceeds to step S207 (step S205 constitutes an input / output available power calculation means).

なお、モータ3、7によって消費される電力Pは、モータ3、7の各動作点に損失特性を予めマップ化し、そのマップから損失電力を含んだモータ3、7で消費される電力Pを精度良く求めることができる。一方、蓄電装置12に蓄えられている蓄電量P0は、
P0=Vmin×(V0−Vmin)/R/1000 式(3)
によって算出する。なお、Vmin(V)は蓄電装置12が利用可能な下限電圧であり、V0(V)は蓄電装置12の現在の開放電圧であり、R(Ω)は蓄電装置12の内部抵抗である。
The power P consumed by the motors 3 and 7 is mapped in advance to the operating characteristics of the motors 3 and 7, and the power P consumed by the motors 3 and 7 including the lost power is accurately determined from the map. You can ask well. On the other hand, the amount P0 of electricity stored in the electricity storage device 12 is
P0 = Vmin × (V0−Vmin) / R / 1000 Formula (3)
Calculated by Vmin (V) is a lower limit voltage that can be used by power storage device 12, V0 (V) is a current open circuit voltage of power storage device 12, and R (Ω) is an internal resistance of power storage device 12.

ステップS206ではモータ3、7によって消費される電力Pを蓄電装置12の蓄電量P0によって供給することができない、つまりモータ3、7から供給される駆動力によって要求駆動力Fを供給することができないので、その不足分を補うためにエンジン1から駆動力を供給するためのクラッチ2の締結判断を行う。   In step S206, the electric power P consumed by the motors 3 and 7 cannot be supplied by the electric storage amount P0 of the electric storage device 12, that is, the required driving force F cannot be supplied by the driving force supplied from the motors 3 and 7. Therefore, in order to make up for the shortage, it is determined whether the clutch 2 for supplying driving force from the engine 1 is engaged.

ステップS205では蓄電装置12の蓄電量P0とモータ3、7によって消費される電力Pを比較したが、モータ3、7の運転効率が悪くなる場合、つまりエンジン1から供給される駆動力を加えた方が、モータ3、7のみで駆動させるよりもエネルギー効率が良い場合には、ステップS206へ進み、クラッチ2の締結判断を行っても良い。   In step S205, the amount P0 stored in the power storage device 12 and the power P consumed by the motors 3 and 7 were compared. However, when the operating efficiency of the motors 3 and 7 deteriorates, that is, the driving force supplied from the engine 1 was added. However, if the energy efficiency is better than driving with only the motors 3 and 7, the process proceeds to step S206, and the engagement determination of the clutch 2 may be performed.

ステップS207では、モータ3、7によって消費される電力Pを蓄電装置12の蓄電量P0によって供給することができるので、クラッチ2の開放判断を行う(ステップS203からステップS207がクラッチ締結判断手段を構成する)。   In step S207, the electric power P consumed by the motors 3 and 7 can be supplied by the electric storage amount P0 of the electric storage device 12, so that the clutch 2 is determined to be disengaged (steps S203 to S207 constitute the clutch engagement determination means). To do).

以上の制御によって、予測路面摩擦係数μa、つまり予測される路面の状況に基づいて、または蓄電装置12の蓄電状況からクラッチ2の締結、開放判断を行うことにより、後述する駆動力分配算出制御において、要求駆動力Fを分配する場合に、予めクラッチ2を締結した駆動力配分を行うことができるので、エンジン1の始動とクラッチ2を締結する処理で発生する駆動力応答の遅れがなく、路面摩擦係数変化後も速やかに要求駆動力を実現することができる。   In the driving force distribution calculation control to be described later, based on the predicted road surface friction coefficient μa, that is, the predicted road surface condition, or by determining whether the clutch 2 is engaged or disengaged from the power storage state of the power storage device 12 by the above control. When the required driving force F is distributed, the driving force distribution with the clutch 2 engaged in advance can be performed, so that there is no delay in the driving force response generated in the process of starting the engine 1 and engaging the clutch 2, and the road surface The required driving force can be realized quickly even after the friction coefficient is changed.

次にステップS104では実際に前輪6と後輪10に分配する駆動力(分配駆動力)を算出する駆動力分配算出制御を行う。以下において、図5のフローチャートを用いて駆動力配分算出制御について説明する(ステップS104が分配駆動力算出手段を構成する)。   Next, in step S104, driving force distribution calculation control for calculating the driving force (distributed driving force) that is actually distributed to the front wheels 6 and the rear wheels 10 is performed. Hereinafter, the driving force distribution calculation control will be described with reference to the flowchart of FIG. 5 (step S104 constitutes the distributed driving force calculation means).

ステップS300では、ステップS100で算出した要求駆動力Fを読み込み、ステップS301では、ステップS101で推定した路面摩擦係数μを読み込む。また、ステップS302では、ステップS103によって判断したクラッチ2の締結または開放判断を読み込む。   In step S300, the required driving force F calculated in step S100 is read, and in step S301, the road surface friction coefficient μ estimated in step S101 is read. In step S302, the clutch 2 engagement / disengagement determination determined in step S103 is read.

ステップS303では、ステップS301で読み込んだ路面摩擦係数μに基づいて前輪6と後輪10で発生可能な最大駆動力を、
Ff_lmt=μ・Mf・g 式(4)
Fr_lmt=μ・Mr・g 式(5)
によって算出する。なお、Ff_lmtは予測路面摩擦係数μにおいてスリップが発生しない範囲で発生することが可能な前輪6の最大駆動力であり、Fr_lmtは路面摩擦係数μにおいてスリップが発生しない範囲で発生することが可能な後輪10の最大駆動力である。
In step S303, the maximum driving force that can be generated in the front wheels 6 and the rear wheels 10 based on the road surface friction coefficient μ read in step S301,
Ff_lmt = μ · Mf · g Formula (4)
Fr_lmt = μ · Mr · g Formula (5)
Calculated by Note that Ff_lmt is the maximum driving force of the front wheel 6 that can be generated in the range where no slip occurs in the predicted road surface friction coefficient μ, and Fr_lmt can be generated in the range where no slip occurs in the road surface friction coefficient μ. This is the maximum driving force of the rear wheel 10.

ステップS304では、前輪6と後輪10の最大駆動力の合計値F_lmtとステップS300で読み込んだ要求駆動力Fよりも大きいか否か判断する。そして、前輪6と後輪10の最大駆動力の合計値F_lmtが要求駆動力Fよりも大きい場合にはステップS305へ進み、前輪6と後輪10の最大駆動力の合計値F_lmtが要求駆動力Fよりも小さい場合にはステップS308へ進む。   In step S304, it is determined whether or not the total value F_lmt of the maximum driving force of the front wheels 6 and the rear wheels 10 is greater than the requested driving force F read in step S300. If the total value F_lmt of the maximum driving force of the front wheel 6 and the rear wheel 10 is larger than the required driving force F, the process proceeds to step S305, where the total value F_lmt of the maximum driving force of the front wheel 6 and the rear wheel 10 is the required driving force. If smaller than F, the process proceeds to step S308.

ステップS305では、ステップS302で読み込んだクラッチ2の締結または開放判断が開放判断であったか否か判断する。そして、クラッチ2が開放判断であった場合にはステップS306へ進み、クラッチ2が締結判断であった場合にはステップS307へ進む。   In step S305, it is determined whether or not the engagement or disengagement determination of the clutch 2 read in step S302 is the disengagement determination. If the clutch 2 is determined to be released, the process proceeds to step S306. If the clutch 2 is determined to be engaged, the process proceeds to step S307.

ステップS306では、ステップS303によって算出した前輪6、後輪10がスリップを生じない駆動力の範囲で要求駆動力Fを満たすよう前輪6と後輪10へ分配される駆動力を算出する。ここでは、ステップS305でクラッチ2は開放と判断されているので、モータ3、7から供給される駆動力によって要求駆動力Fを満たすことができる。なお、前輪6と後輪10への駆動力、つまりモータ3とモータ7が供給する駆動力は、要求駆動力Fを満たすような駆動力配分であれば、どのような配分であっても良いが、蓄電装置12からの放電電力が小さくなるような配分で走行することが望ましい。   In step S306, the driving force distributed to the front wheels 6 and the rear wheels 10 is calculated so as to satisfy the required driving force F within the range of the driving force in which the front wheels 6 and rear wheels 10 calculated in step S303 do not cause slip. Here, since it is determined that the clutch 2 is released in step S305, the required driving force F can be satisfied by the driving force supplied from the motors 3 and 7. The driving force applied to the front wheels 6 and the rear wheels 10, that is, the driving force supplied by the motor 3 and the motor 7 may be any distribution as long as the driving force distribution satisfies the required driving force F. However, it is desirable to travel in such a distribution that the discharge power from the power storage device 12 is reduced.

ステップS307では、クラッチ2を締結し、要求駆動力Fをエンジン1と、モータ3、7から供給する場合の前輪6と後輪10への駆動力配分、つまりエンジン1とモータ3によって供給される前輪6への駆動力と、モータ7によって供給される後輪10への駆動力を算出する。なお、走行中のエンジン1の燃料消費量を低減するために、可能な限りエンジン1で消費する燃料量に対して蓄電装置12への充電電力が多くなる(放電電力が少なくなることも含む)配分とすることが望ましい。このような配分は図6に示すエンジンの燃料消費特性や図7に示すモータの損失特性から求めることが可能であるため、走行状況に応じた配分データを記憶装置に記憶し、走行中にデータを読み込むことで実現することができる。   In step S307, the clutch 2 is engaged, and the required driving force F is supplied to the front wheels 6 and the rear wheels 10 when the required driving force F is supplied from the engine 1 and the motors 3 and 7, that is, supplied by the engine 1 and the motor 3. The driving force to the front wheel 6 and the driving force to the rear wheel 10 supplied by the motor 7 are calculated. In addition, in order to reduce the fuel consumption of the running engine 1, the charging power to the power storage device 12 is increased as much as possible with respect to the fuel consumed by the engine 1 (including that the discharging power is reduced). Distribution is desirable. Since such distribution can be obtained from the fuel consumption characteristics of the engine shown in FIG. 6 and the loss characteristics of the motor shown in FIG. 7, the distribution data corresponding to the driving situation is stored in the storage device, and the data during the driving is stored. This can be realized by reading

ステップS304において、前輪6と後輪10の最大駆動力の合計値が要求駆動力Fよりも小さいと判断した場合には、ステップS308において、前輪6の駆動力を最大駆動力Ff_lmtとし、後輪10の駆動力を最大駆動力Fr_lmtとして設定し、前輪6において最大駆動力Ff_lmtを実現するためのモータ3とエンジン1との駆動力分配を行う。モータ3とエンジン1における駆動力分配は蓄電装置12からの放電電力が小さくなるような配分で走行することが望ましい。   If it is determined in step S304 that the total value of the maximum driving forces of the front wheels 6 and the rear wheels 10 is smaller than the required driving force F, the driving force of the front wheels 6 is set to the maximum driving force Ff_lmt in step S308, and the rear wheels The driving force of 10 is set as the maximum driving force Fr_lmt, and the driving force is distributed between the motor 3 and the engine 1 for realizing the maximum driving force Ff_lmt in the front wheels 6. It is desirable that the driving force distribution in the motor 3 and the engine 1 travels in such a distribution that the discharge power from the power storage device 12 becomes small.

ステップS105では、ステップS104の駆動力分配算出制御によって算出された駆動力となるようにモータ3、7とエンジン1のトルク、無段変速機15の変速比を制御する(ステップS105が駆動力制御手段を構成する)。   In step S105, the torques of the motors 3 and 7 and the engine 1 and the gear ratio of the continuously variable transmission 15 are controlled so as to be the driving force calculated by the driving force distribution calculation control in step S104 (step S105 is the driving force control). Means).

なお、路面摩擦係数変化後もエンジン1とモータ3、7のトルク変化により、速やかに要求駆動力Fを実現するため、無段変速機15の変速比を制御する。図8は、走行中に路面摩擦係数μが低下し、前輪6への駆動力配分が増加した場合のエンジン動作点変化のイメージを示したものである。破線は等出力線であり、(a)と(b)の動作点では等出力を発生している。矢印は路面摩擦係数変化後にトルク増加した場合の動作点変化を示し、(a)では、最大トルクの制限があり、要求駆動力を実現できていないことがわかる。この場合、回転数の増加による出力の増加が必要となるため、速やかに要求駆動力を実現することができなくなる。一方で、(b)においては最大トルクの制限範囲で要求トルクを実現している。このようにエンジン1で等出力を発生している場合においても、路面摩擦係数変化後を想定した動作点の選択が必要となる。以上、ではエンジン動作点について説明したが、クラッチ締結時にはエンジン回転数と同回転で動作するモータ3についても同様に、トルク増加により要求駆動力を満足するよう、変速比により動作点を選択する必要がある。この実施形態では路面摩擦係数変化後もトルク増加により要求駆動力を実現可能な(b)の動作点で運転するよう変速比を設定する。   Even after the road surface friction coefficient is changed, the speed ratio of the continuously variable transmission 15 is controlled in order to quickly realize the required driving force F by the torque change of the engine 1 and the motors 3 and 7. FIG. 8 shows an image of changes in the engine operating point when the road surface friction coefficient μ decreases during traveling and the driving force distribution to the front wheels 6 increases. A broken line is an equal output line, and an equal output is generated at the operating points (a) and (b). The arrow indicates the change in operating point when the torque increases after the change in the road surface friction coefficient. In (a), it can be seen that there is a limit on the maximum torque and the required driving force cannot be realized. In this case, since it is necessary to increase the output by increasing the rotation speed, the required driving force cannot be realized quickly. On the other hand, in (b), the required torque is realized within the limit range of the maximum torque. Thus, even when the engine 1 generates equal output, it is necessary to select an operating point assuming that the road surface friction coefficient has changed. Although the engine operating point has been described above, it is necessary to select the operating point based on the gear ratio so that the motor 3 that operates at the same rotation speed as the engine speed when the clutch is engaged similarly satisfies the required driving force by increasing the torque. There is. In this embodiment, the gear ratio is set so as to operate at the operating point (b) where the required driving force can be achieved by increasing the torque even after the road surface friction coefficient changes.

以上の制御によって、クラッチ2の締結/開放状態、または蓄電装置12の蓄電量に応じてエンジン1、モータ3、7から供給する駆動力を制御し、要求駆動力Fへの追従性を良くすることができる。   With the above control, the driving force supplied from the engine 1 and the motors 3 and 7 is controlled according to the engaged / disengaged state of the clutch 2 or the amount of power stored in the power storage device 12, and the followability to the required driving force F is improved. be able to.

本発明の第1実施形態の効果について説明する。   The effect of 1st Embodiment of this invention is demonstrated.

走行路面の予測路面摩擦係数μaによって後輪10の最大駆動力Fra_lmtを算出し、車両に要求される要求駆動力Fと最大駆動力Fra_lmtとの偏差をモータ3によって供給可能な駆動力と比較し、偏差がモータ3によって供給できない場合には、クラッチ2を締結する判断を行う。そして要求駆動力Fを前輪6と後輪10に分配する場合に、クラッチ2に締結/開放判断に基づいて要求駆動力Fを分配し、クラッチ2の締結/開放を制御し、エンジン1とモータ3、7のトルクを制御することで前輪6と後輪10の駆動力を制御する。これによって、モータ3、7から供給される駆動力だけでは、要求駆動力Fを満たすことができない場合にエンジン1から素早く駆動力を供給することができ、要求駆動力Fへの追従性を良くすることができる。   The maximum driving force Fra_lmt of the rear wheel 10 is calculated from the predicted road surface friction coefficient μa of the traveling road surface, and the deviation between the required driving force F required for the vehicle and the maximum driving force Fra_lmt is compared with the driving force that can be supplied by the motor 3. When the deviation cannot be supplied by the motor 3, it is determined to engage the clutch 2. When the required driving force F is distributed to the front wheels 6 and the rear wheels 10, the required driving force F is distributed to the clutch 2 based on the engagement / disengagement determination, and the engagement / disengagement of the clutch 2 is controlled, and the engine 1 and the motor The driving forces of the front wheels 6 and the rear wheels 10 are controlled by controlling the torques of 3 and 7. As a result, when only the driving force supplied from the motors 3 and 7 cannot satisfy the required driving force F, the driving force can be quickly supplied from the engine 1 and the followability to the required driving force F is improved. can do.

クラッチ2の締結/開放判断をする場合に、要求駆動力Fから後輪10の最大駆動力Fra_lmtとの偏差をとり、その偏差をモータ3によって供給可能な駆動力か判断する。つまり、後輪10の駆動力を優先的に使用するようにし、さらにその駆動力を最大とすることで前輪6の駆動力を小さくし、クラッチ2の締結を少なくする。これによって、クラッチ2の締結、つまりエンジン1からの駆動力供給を少なくし、エンジン1による燃料消費量を少なくすることができる。   When the clutch 2 is determined to be engaged / disengaged, a deviation from the required driving force F to the maximum driving force Fra_lmt of the rear wheel 10 is determined, and it is determined whether the deviation is a driving force that can be supplied by the motor 3. In other words, the driving force of the rear wheel 10 is preferentially used, and further, the driving force of the front wheel 6 is reduced by maximizing the driving force, and the engagement of the clutch 2 is reduced. As a result, the engagement of the clutch 2, that is, the supply of driving force from the engine 1, can be reduced, and the amount of fuel consumed by the engine 1 can be reduced.

また、要求駆動力Fをモータ3、モータ7で実現するために必要な電力Pが蓄電装置12に蓄えられた蓄電量P0よりも大きい場合には、クラッチ2の締結判断をすることでエンジン1から素早く駆動力を供給することができ、要求駆動力Fへの追従性を良くすることができる。   Further, when the electric power P necessary for realizing the required driving force F by the motor 3 and the motor 7 is larger than the electric storage amount P0 stored in the electric storage device 12, the engine 1 is determined by determining whether the clutch 2 is engaged. Thus, the driving force can be quickly supplied, and the followability to the required driving force F can be improved.

クラッチ2の締結/開放判断を走行する路面から予測される予想路面摩擦係数μaから判断し、クラッチ2の締結/開放判断に基づいて前輪6、後輪10への駆動力配分を行うのでクラッチ2の締結する場合には素早くクラッチ2を締結することができ、エンジン1から前輪6に駆動力を素早く供給することができる。これによってクラッチ2の応答遅れ時間をなくし、要求駆動力Fへの追従性を良くすることができる。   The clutch 2 is determined to be engaged / disengaged from the predicted road friction coefficient μa predicted from the road surface to be driven, and the driving force is distributed to the front wheels 6 and the rear wheels 10 based on the clutch 2 engagement / disengagement determination. Therefore, the clutch 2 can be quickly engaged, and the driving force can be quickly supplied from the engine 1 to the front wheels 6. As a result, the response delay time of the clutch 2 can be eliminated, and the followability to the required driving force F can be improved.

路面摩擦係数μが変化した場合にエンジン1とモータ3のトルク増加のみにより前輪6に配分された駆動力を実現できるよう走行中の無段変速機15の変速比を制御することとしたので、エンジン1やモータ3のトルク上限値に制限されることなく路面摩擦係数μの変化後も速やかに要求駆動力Fを実現することができる。   Since the driving ratio distributed to the front wheels 6 can be realized only by increasing the torque of the engine 1 and the motor 3 when the road surface friction coefficient μ changes, the gear ratio of the continuously variable transmission 15 that is running is controlled. The required driving force F can be quickly realized even after the change of the road surface friction coefficient μ without being limited to the torque upper limit value of the engine 1 or the motor 3.

本発明は上記した実施形態に限定されるものではなく、その技術的思想の範囲内でなしうるさまざまな変更、改良が含まれることは言うまでもない。   It goes without saying that the present invention is not limited to the above-described embodiments, and includes various modifications and improvements that can be made within the scope of the technical idea.

四輪駆動のハイブリッド車両に利用することができる。   It can be used for a four-wheel drive hybrid vehicle.

本発明のハイブリッド車両の概略構成図である。It is a schematic block diagram of the hybrid vehicle of this invention. 本発明の駆動力制御を示すフローチャートである。It is a flowchart which shows the driving force control of this invention. 本発明において要求駆動力を算出するマップである。3 is a map for calculating a required driving force in the present invention. 本発明のクラッチ締結/開放判断制御のフローチャートである。4 is a flowchart of clutch engagement / disengagement determination control according to the present invention. 本発明の駆動力分配算出制御のフローチャートである。It is a flowchart of the driving force distribution calculation control of the present invention. 本発明のエンジンの燃料消費特性を示すマップである。It is a map which shows the fuel consumption characteristic of the engine of this invention. 本発明のモータの損失特性を示すマップである。It is a map which shows the loss characteristic of the motor of this invention. 路面摩擦係数が変化した場合のエンジン動作点変化を示すマップである。It is a map which shows an engine operating point change when a road surface friction coefficient changes.

符号の説明Explanation of symbols

1 エンジン
2 クラッチ
3 モータ(第1モータ)
6 前輪(第1駆動輪)
7 モータ(第2モータ)
10 後輪(第2モータ)
12 蓄電装置
14 統合コントローラ
20 第1駆動力伝達経路
21 第2駆動力伝達経路
22 電力供給経路
1 Engine 2 Clutch 3 Motor (first motor)
6 Front wheel (first drive wheel)
7 Motor (second motor)
10 Rear wheel (second motor)
12 power storage device 14 integrated controller 20 first driving force transmission path 21 second driving force transmission path 22 power supply path

Claims (7)

エンジンと第1モータとの間にクラッチを備え、エンジンと第1モータで発生した動力によって駆動する第1駆動輪と、
第2モータで発生した動力によって駆動する第2駆動輪と、
前記第1モータと前記第2モータに電力を供給し、かつ前記第1モータと前記第2モータで発電された電力を蓄える蓄電装置と、を備え、四輪駆動可能なハイブリッド車両の制御装置において、
車両に要求される要求駆動力を演算する要求駆動力演算手段と、
走行路面の路面摩擦係数を推定する路面摩擦係数推定手段と、
前記推定した路面摩擦係数に基づいて、前記第2駆動輪でスリップを発生することのないスリップ防止駆動力を算出するスリップ防止駆動力算出手段と、
前記スリップ防止駆動力と前記要求駆動力に基づいて前記第1駆動輪への第1駆動力を算出する第1駆動力算出手段と、
前記第1駆動力を前記第1モータで実現できるか否かを判断し、前記第1駆動力を前記第1モータのみによって実現できない場合に、前記クラッチによる前記エンジンと前記第1モータとの締結を判断するクラッチ締結判断手段と、
前記クラッチ締結判断手段に基づいて、前記第1駆動輪と前記第2駆動輪がスリップを生ずることがないように前記要求駆動力を前記第1駆動輪と前記第2駆動輪に分配する分配駆動力を算出する分配駆動力算出手段と、
前記クラッチ締結判断手段に基づいて前記クラッチを締結または開放し、前記分配駆動力に基づいて前記エンジンと前記第1モータと前記第2モータから供給される駆動力を制御する駆動力制御手段と、備えたことを特徴とするハイブリッド車両の制御装置。
A first drive wheel provided with a clutch between the engine and the first motor, and driven by power generated by the engine and the first motor;
A second drive wheel driven by the power generated by the second motor;
In a control device for a hybrid vehicle capable of four-wheel drive, comprising: a power storage device that supplies electric power to the first motor and the second motor and stores electric power generated by the first motor and the second motor. ,
Requested driving force calculating means for calculating required driving force required for the vehicle;
Road surface friction coefficient estimating means for estimating the road surface friction coefficient of the traveling road surface;
An anti-slip driving force calculating means for calculating an anti-slip driving force that does not cause a slip on the second driving wheel based on the estimated road surface friction coefficient;
First driving force calculating means for calculating a first driving force to the first driving wheel based on the anti-slip driving force and the required driving force;
It is determined whether or not the first driving force can be realized by the first motor. When the first driving force cannot be realized only by the first motor, the clutch and the first motor are fastened by the clutch. Clutch engagement determination means for determining
Distributing drive that distributes the required driving force to the first driving wheel and the second driving wheel so that the first driving wheel and the second driving wheel do not slip based on the clutch engagement determination means. Distributed driving force calculating means for calculating force;
Driving force control means for engaging or disengaging the clutch based on the clutch fastening determination means, and controlling driving force supplied from the engine, the first motor, and the second motor based on the distributed driving force; A control device for a hybrid vehicle, comprising:
前記第1駆動力算出手段は、前記要求駆動力から前記スリップ防止駆動力を減算することを特徴とする請求項1に記載のハイブリッド車両の制御装置。   2. The hybrid vehicle control device according to claim 1, wherein the first driving force calculation unit subtracts the anti-slip driving force from the required driving force. 3. 前記スリップ防止駆動力が、前記第2駆動輪が前記スリップを起こさない範囲の最大駆動力であることを特徴とする請求項1または2に記載のハイブリッド車両の制御装置。   The hybrid vehicle control device according to claim 1, wherein the anti-slip driving force is a maximum driving force within a range in which the second driving wheel does not cause the slip. 前記蓄電装置の入出力可能な電力を算出する入出力可能電力算出手段を備え、
前記クラッチ締結判断手段は、前記第1駆動力を前記第1モータで実現するための電力を前記蓄電装置から供給できない場合に、前記クラッチによる前記エンジンと前記第1モータとの締結を判断することを特徴とする請求項1から3のいずれか一つに記載のハイブリッド車両の制御装置。
Input / output possible power calculation means for calculating power that can be input / output of the power storage device,
The clutch engagement determining means determines engagement of the engine and the first motor by the clutch when electric power for realizing the first driving force by the first motor cannot be supplied from the power storage device. The control apparatus of the hybrid vehicle as described in any one of Claim 1 to 3 characterized by these.
前記ハイブリッド車両は、前記第1モータと前記エンジンと連結し、前記第1モータと前記エンジンで発生した前記動力を前記第1の駆動軸に伝達する無段変速機を備えたハイブリッド車両であり、
前記駆動力制御手段は、
前記第1駆動輪に分配された前記分配駆動力を実現するための前記無段変速機の変速比を算出する変速比算出手段と、
前記無段変速機の変速比を変更する変速比制御手段と、を備えたことを特徴とする請求項1から4のいずれか一つに記載のハイブリッド車両の制御装置。
The hybrid vehicle is a hybrid vehicle including a continuously variable transmission that is connected to the first motor and the engine and transmits the power generated by the first motor and the engine to the first drive shaft.
The driving force control means includes
Gear ratio calculating means for calculating a gear ratio of the continuously variable transmission for realizing the distributed driving force distributed to the first drive wheels;
The hybrid vehicle control device according to any one of claims 1 to 4, further comprising: a gear ratio control unit that changes a gear ratio of the continuously variable transmission.
前記走行路面の前記路面摩擦係数の変化を推定する路面摩擦係数変化推定手段を備え、
前記スリップ防止駆動力算出手段は、前記路面摩擦係数変化推定手段によって推定される前記路面摩擦係数の変化後の値によって前記スリップ防止駆動力を算出することを特徴とする請求項1から5のいずれか一つに記載のハイブリッド車両の制御装置。
Road surface friction coefficient change estimating means for estimating a change in the road surface friction coefficient of the traveling road surface,
6. The anti-slip driving force calculating unit calculates the anti-slip driving force based on a value after the change of the road surface friction coefficient estimated by the road surface friction coefficient change estimating unit. The control apparatus of the hybrid vehicle as described in any one.
前記路面摩擦係数変化推定手段は、気象情報を検知する気象情報検知手段を備え、
前記気象情報に基づいて前記路面摩擦係数の変化を推定することを特徴とする請求項6に記載のハイブリッド車両の制御装置。
The road surface friction coefficient change estimating means includes weather information detecting means for detecting weather information,
The hybrid vehicle control device according to claim 6, wherein a change in the road surface friction coefficient is estimated based on the weather information.
JP2004355231A 2004-12-08 2004-12-08 Controller of hybrid vehicle Pending JP2006160104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004355231A JP2006160104A (en) 2004-12-08 2004-12-08 Controller of hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004355231A JP2006160104A (en) 2004-12-08 2004-12-08 Controller of hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2006160104A true JP2006160104A (en) 2006-06-22

Family

ID=36662585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355231A Pending JP2006160104A (en) 2004-12-08 2004-12-08 Controller of hybrid vehicle

Country Status (1)

Country Link
JP (1) JP2006160104A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078459A1 (en) 2006-12-27 2008-07-03 Bosch Corporation Method of controlling hybrid vehicle
WO2009041138A1 (en) * 2007-09-27 2009-04-02 Daihatsu Motor Co., Ltd. Hybrid vehicle controlling method
WO2009069637A1 (en) 2007-11-30 2009-06-04 Bosch Corporation Hybrid system control method
WO2010111881A1 (en) * 2009-04-01 2010-10-07 奇瑞汽车股份有限公司 Power system for hybrid automobile and control method thereof
JP2010242545A (en) * 2009-04-02 2010-10-28 Toyota Motor Corp Control device for vehicle
CN101898558A (en) * 2010-08-10 2010-12-01 奇瑞汽车股份有限公司 Method for controlling drive modes of four-wheel drive strong hybrid automobile
WO2011033889A1 (en) 2009-09-15 2011-03-24 日立オートモティブシステムズ株式会社 Drive control device
CN102390249A (en) * 2011-09-30 2012-03-28 广州汽车集团股份有限公司 Hybrid system of four-wheel drive hybrid car with one-way clutch
JP2012101771A (en) * 2010-11-15 2012-05-31 Mitsubishi Motors Corp Control device of hybrid electric vehicle
RU2457959C2 (en) * 2010-07-08 2012-08-10 Государственное образовательное учреждение высшего профессионального образования Московский государственный технический университет "МАМИ" Hybrid automobile combined power plant
RU2466036C1 (en) * 2011-04-14 2012-11-10 Федор Валентинович Шарутин Single-machine electromechanical transmission
CN101186209B (en) * 2007-09-04 2013-01-16 深圳先进技术研究院 Mixed power system using electrical system to implement series-parallel power distribution
CN103158524A (en) * 2011-12-14 2013-06-19 北汽福田汽车股份有限公司 Driving assembly used for hybrid electric automobile
KR101475873B1 (en) * 2010-03-24 2014-12-23 삼성테크윈 주식회사 Electric power device for vehicle
CN104260720A (en) * 2014-10-24 2015-01-07 哈尔滨理工大学 Series-parallel hybrid power control system and control method achieved by adopting same
CN104828067A (en) * 2014-12-19 2015-08-12 北汽福田汽车股份有限公司 Four-wheel drive hybrid electric vehicle travelling power generation control method and power system thereof
US20150298678A1 (en) * 2014-04-22 2015-10-22 Ford Global Technologies, Llc Traction control for a hybrid electric powertrain
JP2018058446A (en) * 2016-10-04 2018-04-12 株式会社ジェイテクト Control device of drive force transmission device and road face state determination device
CN110667365A (en) * 2019-09-12 2020-01-10 东风商用车有限公司 Power device of hybrid vehicle
US11760338B2 (en) 2020-09-29 2023-09-19 Subaru Corporation Vehicle control apparatus

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078459A1 (en) 2006-12-27 2008-07-03 Bosch Corporation Method of controlling hybrid vehicle
CN101186209B (en) * 2007-09-04 2013-01-16 深圳先进技术研究院 Mixed power system using electrical system to implement series-parallel power distribution
WO2009041138A1 (en) * 2007-09-27 2009-04-02 Daihatsu Motor Co., Ltd. Hybrid vehicle controlling method
JPWO2009041138A1 (en) * 2007-09-27 2011-01-20 ダイハツ工業株式会社 Control method of hybrid vehicle
WO2009069637A1 (en) 2007-11-30 2009-06-04 Bosch Corporation Hybrid system control method
US8649924B2 (en) 2007-11-30 2014-02-11 Bosch Corporation Torque control map to initiate engine startup processing in a hybrid vehicle
WO2010111881A1 (en) * 2009-04-01 2010-10-07 奇瑞汽车股份有限公司 Power system for hybrid automobile and control method thereof
JP2010242545A (en) * 2009-04-02 2010-10-28 Toyota Motor Corp Control device for vehicle
CN104044466A (en) * 2009-09-15 2014-09-17 日立汽车系统株式会社 Driving control device
WO2011033889A1 (en) 2009-09-15 2011-03-24 日立オートモティブシステムズ株式会社 Drive control device
CN102481924A (en) * 2009-09-15 2012-05-30 日立汽车系统株式会社 Drive control device
JP2011063038A (en) * 2009-09-15 2011-03-31 Hitachi Automotive Systems Ltd Drive controller
US8473138B2 (en) 2009-09-15 2013-06-25 Hitachi Automotive Systems, Ltd. Driving control device
KR101475873B1 (en) * 2010-03-24 2014-12-23 삼성테크윈 주식회사 Electric power device for vehicle
RU2457959C2 (en) * 2010-07-08 2012-08-10 Государственное образовательное учреждение высшего профессионального образования Московский государственный технический университет "МАМИ" Hybrid automobile combined power plant
CN101898558A (en) * 2010-08-10 2010-12-01 奇瑞汽车股份有限公司 Method for controlling drive modes of four-wheel drive strong hybrid automobile
JP2012101771A (en) * 2010-11-15 2012-05-31 Mitsubishi Motors Corp Control device of hybrid electric vehicle
RU2466036C1 (en) * 2011-04-14 2012-11-10 Федор Валентинович Шарутин Single-machine electromechanical transmission
CN102390249A (en) * 2011-09-30 2012-03-28 广州汽车集团股份有限公司 Hybrid system of four-wheel drive hybrid car with one-way clutch
CN103158524A (en) * 2011-12-14 2013-06-19 北汽福田汽车股份有限公司 Driving assembly used for hybrid electric automobile
US20150298678A1 (en) * 2014-04-22 2015-10-22 Ford Global Technologies, Llc Traction control for a hybrid electric powertrain
US11097711B2 (en) * 2014-04-22 2021-08-24 Ford Global Technologies, Llc Traction control for a hybrid electric powertrain
CN104260720A (en) * 2014-10-24 2015-01-07 哈尔滨理工大学 Series-parallel hybrid power control system and control method achieved by adopting same
CN104828067A (en) * 2014-12-19 2015-08-12 北汽福田汽车股份有限公司 Four-wheel drive hybrid electric vehicle travelling power generation control method and power system thereof
JP2018058446A (en) * 2016-10-04 2018-04-12 株式会社ジェイテクト Control device of drive force transmission device and road face state determination device
CN110667365A (en) * 2019-09-12 2020-01-10 东风商用车有限公司 Power device of hybrid vehicle
US11760338B2 (en) 2020-09-29 2023-09-19 Subaru Corporation Vehicle control apparatus

Similar Documents

Publication Publication Date Title
JP2006160104A (en) Controller of hybrid vehicle
US9849869B2 (en) Systems and methods for implementing dynamic operating modes and control policies for hybrid electric vehicles
JP5996167B2 (en) Oil pump control apparatus and method for hybrid vehicle
US8210986B2 (en) Hybrid vehicle drive control apparatus
EP1762452A2 (en) Engine starting control device and method
JP2013252845A (en) Engine clutch transmission torque learning apparatus and method of environment friendly vehicle
US8151918B2 (en) Method for controlling energy in the traction chain of a hybrid vehicle and hybrid vehicle
JP6242863B2 (en) Electric drive device used for engine-driven vehicle
JP2007022118A (en) Control unit of hybrid vehicle
JP2008150014A (en) Electric power generation control method used when hybrid electric is idling-charged
WO2012053594A1 (en) Vehicle, control method, and program
US9252630B2 (en) Battery charge control apparatus
KR101500351B1 (en) Method for controlling of hybrid vehicle and method thereof
JP2005151721A (en) Controller of vehicle
JP5092363B2 (en) Vehicle start control device
JP4258513B2 (en) Control device for driving device
JP2012240566A (en) Electric travel controller for hybrid vehicle
KR20220048509A (en) Hybrid vehicle and method of controlling the same
US10821839B1 (en) Power management of electrical vehicles using range extending turbines
CN110271432B (en) Vehicle equipped with power generator and power generation control method for vehicle-mounted power generator
JP4534934B2 (en) Power generation control device for hybrid vehicle
JP2021109603A (en) Assist control device
JP6365067B2 (en) Control device for electric four-wheel drive vehicle
JP2006180657A (en) Four-wheel-drive hybrid vehicle
JP6880991B2 (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104