EP3430633B1 - Kabel zum übertragen von elektrischen signalen - Google Patents

Kabel zum übertragen von elektrischen signalen Download PDF

Info

Publication number
EP3430633B1
EP3430633B1 EP17711090.5A EP17711090A EP3430633B1 EP 3430633 B1 EP3430633 B1 EP 3430633B1 EP 17711090 A EP17711090 A EP 17711090A EP 3430633 B1 EP3430633 B1 EP 3430633B1
Authority
EP
European Patent Office
Prior art keywords
cable
wires
line
dielectric
relative permittivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17711090.5A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3430633A1 (de
Inventor
Gunnar Armbrecht
Thomas Schmid
Stephan Kunz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosenberger Hochfrequenztechnik GmbH and Co KG
Original Assignee
Rosenberger Hochfrequenztechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosenberger Hochfrequenztechnik GmbH and Co KG filed Critical Rosenberger Hochfrequenztechnik GmbH and Co KG
Publication of EP3430633A1 publication Critical patent/EP3430633A1/de
Application granted granted Critical
Publication of EP3430633B1 publication Critical patent/EP3430633B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/005Quad constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • H01B11/08Screens specially adapted for reducing cross-talk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Definitions

  • the invention relates to a cable for transmitting electrical signals with an outer jacket made of an electrically insulating material and at least N lines n with N ⁇ 2 and N ⁇ N . which are arranged inside the outer jacket, each line n with n ⁇ [1, N ] having a total of M wires made of an electrically conductive material with M ⁇ 1 and M ⁇ N .
  • a cable for transmitting electrical signals contains wires made of a conductive material, each of which is surrounded by an electrical insulator for the purpose of mutual electrical insulation.
  • Electrical insulators have dielectric properties and essentially determine the propagation or conduction properties of the cable for electrical signals, which are essentially are electromagnetic waves.
  • An essential property of dielectric materials or a dielectric is their permittivity ⁇ .
  • the permittivity ⁇ (from lat. Permittere: allow, leave, let through), also called “dielectric conductivity” or “dielectric function”, indicates the permeability of a material to electric fields.
  • a permittivity is also assigned to the vacuum, since electric fields can also set in the vacuum or electromagnetic fields can spread.
  • star quad cable In order to reduce the crosstalk of electric signals from one line to another line within a cable, without this necessarily an additional shielding casing for each line in the cable has to be the present, the so-called star quad cable has been proposed (engl .: T Wisted / Star Q uad (TQ); German: stranded star quad cable (hereinafter also referred to as "star quad").
  • the star quad cable is like the STP cable (S hielded T Wisted P air; dt .: shielded twisted pair), and the UTP cable (U nshielded T Wisted P air; unshielded twisted pair) to the balanced copper cables.
  • star quad cable two lines, each with two wires, each made of an electrically conductive material, are combined to form one cable.
  • Each wire is surrounded by a dielectric and the four wires are stranded together in a cross shape, with opposite wires each forming a pair of wires in the cross-section of the star-quad cable, so that the star-quad cable has two wire pairs or lines.
  • the four wires stranded together are surrounded by a common protective sheath, which can include braid or foil shielding.
  • This mechanical structure determines the transmission parameters such as near and far crosstalk.
  • This type of cable is characterized above all by its small diameter and the resulting small bending radius.
  • a further advantage of star quad stranding is the higher packing density than with pair stranding.
  • the star quad cable essentially corresponds to the UTP and STP cable and can be classified accordingly: Star quad cables in unshielded design are referred to as twisted quad (UTQ).
  • UTQ twisted quad
  • one wire with a jacket made of insulating material arranged around it forms a conductor and two wires or conductors each form a line.
  • Two pairs of conductors or two lines are twisted together and then form two cross-stranded double conductors (one double conductor corresponds to one line).
  • Two in the cross section of the star quad Opposing conductors or wires form a pair, an electrical signal being transmitted on each pair.
  • the four conductors or wires in the cross section of the star quad are arranged at the corners of a square, the conductors or wires of a pair being arranged at diagonally opposite corners.
  • conductor pairs or wire pairs standing perpendicular to one another it is meant that, seen in the cross section of the cable, a first straight line which runs through the center points of the conductors or wires of a pair is perpendicular to a second straight line which passes through the center points of the The other pair's conductor or wires run.
  • pamphlet US 2010/307790 A1 relates to a cable with at least one pair of core conductors, each of which is formed from a conductor and a dielectric surrounding this conductor.
  • the surrounding dielectric is formed in two parts with an inner dielectric and an outer dielectric.
  • pamphlet US 2010/307790 A1 deals with the problem that the dielectrics of the two conductors should be colored differently. This is according to US 2010/307790 A1 problematic because the introduction of different color pigments into the respective dielectric results in different permittivities for the dielectrics.
  • the core conductors are all identical and differ only in the color (“ hue ") of the outer dielectric.
  • pamphlet JP H11 25765 A deals with the problem of different signal propagation times on different stranded wire pairs, if for different ones Wire pairs of different stranding lengths are formed. Runtime differences between stranded wire pairs with different stranding lengths are reduced in that the permittivity for the dielectric is chosen to be 0.1 or more greater for a wire pair with the greatest stranding length compared to a wire pair with the smallest stranding length in a cable with several stranded wire pairs becomes. This is said to improve the attenuation of the near-end crosstalk (crosstalk at the end of the cable at which the signal is fed in), since different stranding lengths can be maintained.
  • the invention has for its object a cable of the above. kind of improving the crosstalk between two lines.
  • the dielectrics of the wires of one line show a
  • ⁇ r the relative permittivity of the respective dielectric surrounding the wires.
  • the value for k (s) is different for different values for s ( k (1) ⁇ k (2) ... ⁇ k ( N - j ))
  • the values of k (s) can also be identical for several subsets of values for s in the range from 1 to (Nj), so that, for example, there are three or more identical values for k (s) within a cable (if N is greater than or equal to) 4), the values for k (s) being different for different subsets.
  • of approximately 0.3 can be achieved in a particularly simple and cost-effective manner in that the dielectric of the wires of at least one line made of polypropylene (PP; ⁇ r ⁇ 2.1) and the dielectric of the wires of at least one other line made of polyethylene (PE, ⁇ r ⁇ 2.4) is produced.
  • PP polypropylene
  • PE polyethylene
  • a value that deviates in total for the relative permittivity ⁇ r of the dielectric of the wires of a line with a targeted setting of a value for k for the deviation of the value for the relative permittivity ⁇ r of the dielectric of the wires of another line can be achieved in a simple manner in that the dielectric of the wires of at least one line is made up of a concentric layer structure of two or more dielectric materials with different values for the relative permittivity ⁇ r .
  • a particularly advantageous setting of the value for the relative permittivity ⁇ r of the dielectric of the wires of a line with high effectiveness is achieved in that with the wires of at least one line there is a space between the wires of this line and the outer jacket facing the wires of this line with a additional dielectric material is filled, which has a different value for the relative permittivity ⁇ r than the dielectric surrounding the wires of this line.
  • the filling dielectric is in the area of high field strength densities and is therefore particularly effective.
  • An alternative possibility of changing the relative permittivity ⁇ r of the wires of individual lines without having to change the mechanical structure of the individual wires for this purpose is achieved by coating on an inside of the outer jacket which faces the wires of a line an additional dielectric is provided, which has a value for the relative permittivity ⁇ r that differs from the dielectric surrounding the wires of this line.
  • a particularly strong influence on the resulting relative permittivity ⁇ r for individual cores is achieved in that the additional dielectric is constructed as a layer sequence of dielectric materials with different values for the relative permittivity ⁇ r .
  • a high effect of the dielectric is achieved in that the dielectric of at least one wire is arranged in a space between the wire and the outer sheath in such a way that the cross section of the cable is parabolically delimited from the adjacent wires. As a result, the dielectric fills a room with a high field line density.
  • k (s) k ( s ) ⁇ [ -u, -w ] and k ( s ) ⁇ [ w, u ]
  • w 0.01, 0.03, 0.1, 0.2, 0.3, 0.5 , 0.7, 0.9, 1.0, 1.2, 1.4 or 1.6
  • u 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.2, 1.4, 1.6 or 1.8
  • Additional electromagnetic shielding is achieved by additionally providing a shield jacket made of an electrically conductive material, within which the lines are arranged.
  • This shielding jacket is arranged, for example, radially outside or inside the outer jacket or integrated in the outer jacket.
  • signal transmission with differential pairs of lines or differential conductor pairs is preferably used for fast data transmission.
  • a typical cable for such an application is the star quad cable.
  • a cable for electrical signal transmission has a tubular outer jacket made of an electrically insulating material. Furthermore, for example, a shield jacket made of an electrically conductive material is provided, which is coaxially surrounded by the outer jacket. Alternatively, the shield jacket is integrated in the outer jacket. Radially inside the shield jacket are N lines with N ⁇ 2 and N ⁇ N arranged, each line n with n ⁇ [1 , N ] a total of M wires made of an electrically conductive material with M ⁇ 1 and M ⁇ N . having.
  • n ⁇ N is of a dielectric with a predetermined value for the relative permittivity ⁇ r (m, n)> 1 surrounded. It is preferred here that the dielectrics of the different wires are designed with different colors, so that the wires can be uniquely identified at each end of the cable.
  • the value for the relative permittivity ⁇ r of the dielectrics of the total M cores of a line j deviates by a value k (s) from a value for the relative permittivity ⁇ r of the dielectrics of the M cores of at least one other line (j + s), for example the line (j + 1).
  • ⁇ r (m, j) ⁇ r (m, j + s) - k (s) with m ⁇ [1 , M ] , m ⁇ N . j ⁇ [1, N - 1] , j ⁇ N .
  • the value k (1) is a number whose amount
  • the value of k (s) for two other lines can be different or identical.
  • are, for example, 0.01, 0.03, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0.
  • the wires 16, 18 thus form a first pair of conductors or the first line and the wires 20, 22 form a second pair of conductors or the second line.
  • a first straight line 32 runs through the centers of the wires 16 and 18 of the first line and a second straight line 34 runs through the centers of the wires 20, 22 of the second line.
  • the two straight lines 32, 34 are at each location in a sectional plane parallel to the representation or the drawing plane in FIG Fig. 1 perpendicular to each other.
  • Each wire 16, 18, 20, 22 forms a conductor with the associated dielectric 24, 26, 28, 30.
  • the conductors 16/24, 18/26, 20/28, 22/30 are twisted or twisted together in a cross shape in the axial direction in such a way that the known star-quad arrangement results.
  • the conductors 16/24, 18/26, 20/28, 22/30 are stranded together around a central core 36.
  • Fig. 2 shows the star quad cable as a 4-port with a first end 38 and a second end 40.
  • the first line with the wires 16, 18 and the dielectrics 24, 26 ( Fig. 1 ) forms a first differential gate 42 at the first end 38 and a third differential gate 46 at the second end.
  • the second line with the wires 20, 22 and the dielectrics 28, 30 ( Fig. 1 ) forms a second differential gate 44 at the first end 38 and a fourth differential gate 48 at the second end.
  • the wave component measurable at the third gate 46 is a transmission.
  • the part of the wave measurable at the second gate 44 is a so-called "crosstalk" at the near end 38 "NEXT” (Near End Crosstalk) i.e. it is a crosstalk from the first line with the wires 16, 18 to the second line with the wires 20, 22 which is reflected back to the first end 38.
  • the shaft component that can be measured at the fourth gate is a so-called "crosstalk” at the far end 40 "FEXT” (Far End Crosstalk) i.e.
  • Fig. 3 In order to check whether the difference in the relative permittivities ⁇ r (m, n) brings an improvement with respect to the FEXT, this FEXT was calculated with a cable model for a star quad cable designed according to the invention, as described above. The result is in Fig. 3 shown.
  • Fig. 3 50 denotes a vertical axis on which the FEXT is plotted in [dB].
  • 52 denotes a horizontal axis on which a frequency f of the input signal at the first gate 42 ( Fig. 2 ) is plotted in [MHz].
  • a first graph 54 shows the course of the FEXT over the frequency with a conventional star quad cable, as it was actually measured.
  • the transmission property of the cable 10 can be improved by a difference k (s) of the relative permittivity ⁇ r (m, n) of the dielectrics 24, 26, 28, 30 without an additional shield sheath for each individual conductor pair 16, 18 and 20, 22 is necessary.
  • Fig. 4 shows a second preferred embodiment of a cable 10 according to the invention, parts having the same function having the same reference numerals as in FIG Fig. 1 , are referred to, so that to explain them refer to the above description of the Fig. 1 is referred.
  • Fig. 4 show different hatching or fillings of the dielectrics 24, 26, 28, 30 different values for the relative permittivity ⁇ r (m, n).
  • An outer jacket is in Fig. 4 not shown. It can thus be seen that the dielectrics 24, 26, 28, 30 are basically designed with the same value for the relative permittivity ⁇ r (m, n), but the dielectrics 24 and 26 are in two parts, each with two materials with different relative permittivity ⁇ r built up.
  • a first material with the same relative permittivity ⁇ r as the dielectrics 28 and 30 encases the wire 16, 18, but in addition there is a second material 70 with a different value for the relative permittivity ⁇ r radially between the wire 16, 18 and the first material, so that the dielectrics 24, 26 effectively have a different value for the relative permittivity ⁇ r than the dielectrics 28 and 30.
  • the first and second dielectric materials are arranged concentrically to one another and to the respective wires 16, 18.
  • Fig. 5 shows a third preferred embodiment of a cable 10 according to the invention, parts having the same function having the same reference numerals as in FIG Fig. 1 and 4 , are referred to, so that to explain them refer to the above description of the Fig. 1 and 4 is referred.
  • different hatches or fillings show different values for the relative permittivity ⁇ r .
  • An outer jacket is in Fig. 5 not shown.
  • the wires 16, 18, 20, 22 are surrounded by an identical dielectric, so that their relative permittivity ⁇ r is essentially identical.
  • a respective intermediate space between the conductors 16/24, 18/26, 20/28 and 22/30 and the shield jacket 14 is additionally filled with a further first dielectric 72 and a further second dielectric 74, each of which is provided by the dielectrics 24, 26 , 28, 30 and other values for the relative permittivity ⁇ r .
  • the effective value for the relative permittivity ⁇ r (m, n) of the line with wires 16, 18 differs from that for the relative permittivity ⁇ r (m, n) of the line with wires 20, 22.
  • the filling with the further first and second dielectrics 72 and 74 is such that in cross-section they fill an area which is parabolic from the respectively adjacent conductors 16/24, 18/26, 20/28 and 22/30 is delimited. In this way, the other dielectrics 72 and 74 are located precisely in areas with an increased field line density and thus have a great effect.
  • Fig. 6 shows a fourth preferred embodiment of a cable 10 according to the invention, parts with the same function having the same reference numerals as in FIG Fig. 1 . 4 and 5 , are referred to, so that to explain them refer to the above description of the Fig. 1 . 4 and 5 is referred.
  • different hatches or fillings show different values for the relative permittivity ⁇ r .
  • An outer jacket is in Fig. 6 not shown.
  • the wires 16, 18, 20, 22 are surrounded by an identical dielectric 24, 26, 28, 30, so that their relative permittivity ⁇ r is essentially identical.
  • the additional dielectrics 72 and 74 are arranged on the inside of the shielding jacket 14 and in each case in such a way that they are each located between a dielectric 24, 26, 28, 30 of the wires 16, 18, 20, 22 and the shielding jacket 14. In this way, the effective value for the relative permittivity ⁇ r (m, n) of the line with wires 16, 18 differs from that for the relative permittivity ⁇ r (m, n) of the line with wires 20, 22.
  • Fig. 7 shows a fifth preferred embodiment of a cable 10 according to the invention, parts having the same function having the same reference numerals as in FIG Fig. 1 . 4 . 5 and 6 , are referred to, so that to explain them refer to the above description of the Fig. 1 . 4 . 5 and 6 is referred.
  • different hatches or fillings show different values for the relative permittivity ⁇ r .
  • An outer jacket is in Fig. 7 not shown.
  • the wires 16, 18, 20, 22 are surrounded by an identical dielectric 24, 26, 28, 30, so that their relative permittivity ⁇ r is essentially identical.
  • the additional dielectrics 72 and 74 are arranged on the inside of the shielding jacket 14 and in each case in such a way that they are each located between a dielectric 24, 26, 28, 30 of the wires 16, 18, 20, 22 and the shielding jacket 14. In contrast to the fourth embodiment according to Fig. 6 the additional dielectrics 72 and 74 are built up in layers with the further dielectric 70. In this way, the effective value for the relative permittivity ⁇ r (m, n) of the line with wires 16, 18 differs from that for the relative permittivity ⁇ r (m, n) of the line with wires 20, 22.
  • Fig. 8 shows a sixth preferred embodiment of a cable 10 according to the invention, parts having the same function having the same reference numerals as in FIG Fig. 1 . 4 . 5 . 6 and 7 , are referred to, so that to explain them refer to the above description of the Fig. 1 . 4 . 5 . 6 and 7 is referred.
  • different hatches or fillings show different values for the relative permittivity ⁇ r .
  • An outer jacket is in Fig. 8 not shown.
  • the wires 16, 18, 20, 22 are exclusively surrounded by the further dielectric 72 to 74 and the dielectric 72, 74 extends in each case analogously to the second embodiment in accordance with Fig.
  • the effective values for the relative permittivity ⁇ r (m, n) of the line with wires 16, 18 differ from that for the relative permittivity ⁇ r (m, n) of the line with wires 20, 22 and the dielectrics 72, 74 fill exactly that space within the shield jacket 14 in which the highest field line density occurs.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Communication Cables (AREA)
  • Insulated Conductors (AREA)
EP17711090.5A 2016-03-15 2017-03-15 Kabel zum übertragen von elektrischen signalen Active EP3430633B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016003134.4A DE102016003134A1 (de) 2016-03-15 2016-03-15 Kabel zum Übertragen von elektrischen Signalen
PCT/EP2017/000339 WO2017157521A1 (de) 2016-03-15 2017-03-15 Kabel zum übertragen von elektrischen signalen

Publications (2)

Publication Number Publication Date
EP3430633A1 EP3430633A1 (de) 2019-01-23
EP3430633B1 true EP3430633B1 (de) 2020-01-22

Family

ID=58347311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17711090.5A Active EP3430633B1 (de) 2016-03-15 2017-03-15 Kabel zum übertragen von elektrischen signalen

Country Status (8)

Country Link
US (1) US10347397B2 (ko)
EP (1) EP3430633B1 (ko)
JP (1) JP2019508858A (ko)
KR (1) KR20180121535A (ko)
CN (1) CN108885925B (ko)
DE (1) DE102016003134A1 (ko)
TW (1) TW201805959A (ko)
WO (1) WO2017157521A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800010156A1 (it) * 2018-11-08 2020-05-08 Prysmian Spa Cavo di segnalazione ferroviario resistente al fuoco
DE102019112926A1 (de) * 2019-05-16 2020-11-19 Friedrich-Alexander-Universität Erlangen-Nürnberg Multikabel aus Mehrzahl von dielektrischen Wellenleitern
US11075488B2 (en) 2019-11-25 2021-07-27 TE Connectivity Services Gmbh Impedance control connector with dielectric seperator rib
US11146010B2 (en) 2019-12-09 2021-10-12 TE Connectivity Services Gmbh Overmolded contact assembly
US11011875B1 (en) 2019-12-10 2021-05-18 TE Connectivity Services Gmbh Electrical cable braid positioning clip
US10978832B1 (en) 2020-02-07 2021-04-13 TE Connectivity Services Gmbh Protection member to protect resilient arms of a contact assembly from stubbing
US11296464B2 (en) 2020-02-14 2022-04-05 TE Connectivity Services Gmbh Impedance control connector
JP7233617B2 (ja) * 2020-09-11 2023-03-06 三菱電機株式会社 ケーブル信号伝送システム
US11915839B2 (en) * 2022-01-26 2024-02-27 Dell Products L.P. Data communications cable that utilizes multiple dielectric materials associated with different relative permittivities
IT202200010544A1 (it) 2022-05-20 2023-11-20 Prysmian Spa Data transmission cable

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB609558A (en) * 1945-03-30 1948-10-04 Standard Telephones Cables Ltd Communication cables and method of making them
DE1106385B (de) * 1955-02-19 1961-05-10 Siemens Ag Verfahren zur Herstellung von verdrillten Fernmeldekabel-Adergruppen, insbesondere Sternvierern, mit schaumstoffisolierten Adern
DE9218768U1 (de) * 1992-04-28 1995-10-26 Dätwyler AG Kabel und Systeme, Altdorf Kabel
US6169251B1 (en) * 1997-03-31 2001-01-02 The Whitaker Corporation Quad cable
GB9707300D0 (en) * 1997-04-10 1997-05-28 Plastic Insulated Cables Ltd Communications cable
JPH1125765A (ja) * 1997-06-27 1999-01-29 Furukawa Electric Co Ltd:The 多対ケーブル
US6403887B1 (en) * 1997-12-16 2002-06-11 Tensolite Company High speed data transmission cable and method of forming same
GB9930509D0 (en) * 1999-12-24 2000-02-16 Plastic Insulated Cables Ltd Communications cable
US7030321B2 (en) * 2003-07-28 2006-04-18 Belden Cdt Networking, Inc. Skew adjusted data cable
CN1902717B (zh) * 2003-10-31 2010-05-12 Adc公司 偏置填料以及包括所述偏置填料的电缆和电缆组
CN100396165C (zh) * 2003-11-08 2008-06-18 鸿富锦精密工业(深圳)有限公司 消除高速板串扰的差分线组合方式
US7763802B2 (en) * 2006-09-13 2010-07-27 Schlumberger Technology Corporation Electrical cable
US20080105449A1 (en) 2006-11-06 2008-05-08 E. I. Du Pont De Nemours And Company Periodic Variation of Velocity of Propagation to Reduce Additive Distortion Along Cable Length
US8445787B2 (en) * 2009-05-06 2013-05-21 Panduit Corp. Communication cable with improved electrical characteristics
JP5012854B2 (ja) * 2009-06-08 2012-08-29 住友電気工業株式会社 平衡ケーブル
US8981216B2 (en) * 2010-06-23 2015-03-17 Tyco Electronics Corporation Cable assembly for communicating signals over multiple conductors
DE202011005273U1 (de) * 2011-04-14 2011-08-23 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Sternvierer-Kabel mit Schirm

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20190080823A1 (en) 2019-03-14
US10347397B2 (en) 2019-07-09
TW201805959A (zh) 2018-02-16
CN108885925B (zh) 2019-11-19
WO2017157521A1 (de) 2017-09-21
EP3430633A1 (de) 2019-01-23
KR20180121535A (ko) 2018-11-07
CN108885925A (zh) 2018-11-23
DE102016003134A1 (de) 2017-09-21
JP2019508858A (ja) 2019-03-28

Similar Documents

Publication Publication Date Title
EP3430633B1 (de) Kabel zum übertragen von elektrischen signalen
DE875054C (de) Elektrischer Leiter
EP3172741B1 (de) Datenkabel für high-speed datenübertragungen
EP2697804B1 (de) Sternvierer-kabel mit schirm
DE112016006142T5 (de) Kommunikationskabel
EP3132513B1 (de) Kabelanordnung
EP0915486B1 (de) Datenübertragungskabel
DE102014223119B4 (de) Datenkabel sowie Verfahren zur Herstellung eines Datenkabels
DE3008953A1 (de) Geschuetztes mehradriges kabel
DE112018000634T5 (de) Kommunikationskabel
DE29703112U1 (de) Datenkabel
EP2989641B1 (de) Hochgeschwindigkeitsdatenkabel
EP2697803B1 (de) Sternvierer-kabel mit schirm
WO2021185983A1 (de) Kabel
EP0568048A2 (de) Datenübertragungskabel
EP3595099B1 (de) Adernkreuzer
DE102018103607B4 (de) Zweidrahtleitung mit verschachtelter Isolierung, sowie Verfahren und Vorrichtung zum Herstellen einer Zweidrahtleitung
DE892007C (de) Fernmeldekabel mit mehreren ungeschirmren verdrillten Adergruppen für die Mehrfach-Trägerfrequenzubertragung über große Entfernungen
WO2018228911A1 (de) Datenkabel für explosionsgefährdete bereiche
DE202011002731U1 (de) Kabel mit verseilten Leiterpaaren
DE2503463A1 (de) Nachrichtenkabel
DD290737A5 (de) Hochfrequenz-vielfachleitung
DE102016221661A1 (de) Kabel, insbesondere Datenkabel
DE2653668A1 (de) Element eines telefonkabels
DE1101553B (de) Mehrleiter-Fernmeldekabel und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01B 7/02 20060101ALI20190827BHEP

Ipc: H01B 11/00 20060101AFI20190827BHEP

Ipc: H01B 3/30 20060101ALN20190827BHEP

INTG Intention to grant announced

Effective date: 20190911

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1227446

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017003530

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200122

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200614

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200522

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200423

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017003530

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

26N No opposition filed

Effective date: 20201023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200315

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1227446

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017003530

Country of ref document: DE

Representative=s name: KANDLBINDER, MARKUS, DIPL.-PHYS., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 8

Ref country code: GB

Payment date: 20240319

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240326

Year of fee payment: 8

Ref country code: IT

Payment date: 20240321

Year of fee payment: 8

Ref country code: FR

Payment date: 20240326

Year of fee payment: 8