EP3423215B1 - Diecasting die system - Google Patents

Diecasting die system Download PDF

Info

Publication number
EP3423215B1
EP3423215B1 EP16834173.3A EP16834173A EP3423215B1 EP 3423215 B1 EP3423215 B1 EP 3423215B1 EP 16834173 A EP16834173 A EP 16834173A EP 3423215 B1 EP3423215 B1 EP 3423215B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
melt
diecasting
sprue
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16834173.3A
Other languages
German (de)
French (fr)
Other versions
EP3423215A1 (en
Inventor
Igor Kusic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferrofacta GmbH
Original Assignee
Ferrofacta GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ferrofacta GmbH filed Critical Ferrofacta GmbH
Publication of EP3423215A1 publication Critical patent/EP3423215A1/en
Application granted granted Critical
Publication of EP3423215B1 publication Critical patent/EP3423215B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/02Hot chamber machines, i.e. with heated press chamber in which metal is melted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/02Hot chamber machines, i.e. with heated press chamber in which metal is melted
    • B22D17/04Plunger machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2023Nozzles or shot sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2038Heating, cooling or lubricating the injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2272Sprue channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2272Sprue channels
    • B22D17/2281Sprue channels closure devices therefor

Definitions

  • the present invention relates to a die-casting method and a die-casting nozzle system for use in a hot-chamber system for die-casting molten metal, comprising a hot-chamber die-casting machine with a pouring vessel and a melt distributor which distributes the melt evenly from a machine nozzle to evenly heated die-casting nozzles.
  • At least one non-return valve is arranged between a sprue area of the die-casting nozzle and the casting container, the non-return valve preventing the backflow of the melt away from the sprue area in the direction of the casting container.
  • the sprue as a by-product of casting which solidifies in the channels between the die-casting nozzle and the casting mold in conventional die-casting processes and ultimately joins the cast parts together after demoulding in an undesirable manner, entails additional material expenditure, which usually accounts for between 40% and 100% of the weight of the casting. Even if the sprue is melted down again for material recycling, this is associated with energy and quality losses due to the slag and oxide components that are produced. Sprueless die casting avoids these disadvantages.
  • Backflow into the crucible can be prevented by valves, but also in a particularly advantageous manner by a plug of solidified melt which closes the sprue opening in the die-casting nozzle.
  • Nozzle systems with melt distributors, heated nozzles and closing devices are known from the prior art.
  • these work with actively controlled valve elements as in the publications DE 103 54 456 A1 , DE 103 59 692 A1 and U.S. 2003/209532 A1 is described.
  • a plug formation is used, for example from the references U.S. 2007/181281 A1 and U.S. 2007/221352 A1 known.
  • Closure devices between the last branch of the melt manifold and the gate area of the nozzles are off the pamphlet U.S. 2003/209532 A1 , where an actively controlled valve element is provided, as well as from the references U.S. 2007/181281 A1 and U.S. 2007/221352 A1 known.
  • non-return valves are also known in hot chamber systems of hot chamber die casting machines, for example from the publication DE 198 07568A1 , where the non-return valve is arranged as usual around the pump area (piston, piston housing) and thus far in front of any melt distributor.
  • a die-casting nozzle system for use in a hot-chamber system for die-casting molten metal, in the hot-chamber process in which the melt is held in liquid state at a sprue of a mold
  • the hot-chamber system comprising a hot-chamber die-casting machine with a casting container and a machine nozzle, via which the melt enters the die-casting nozzle system
  • the die-casting nozzle system comprising at least one upper and at least one lower die-casting nozzle, each with a sprue area
  • a melt distributor which distributes the melt evenly from the machine nozzle to the die-casting nozzles, with at least one check valve between the sprue area of the die-casting nozzles and the pouring container, wherein the non-return valve prevents the backflow of the melt away from the sprue area in the direction of the pouring container.
  • the non-return valve is arranged between the sprue area of at least the at least one upper die-casting nozzle and a last branch of melt channels in the melt distributor of the hot chamber system to each of the die-casting nozzles, in particular to the at least one upper die-casting nozzle. This prevents melt from escaping from the die-casting nozzles at all times if no melt shoots in via the melt distributor, which would lead to contamination and danger, especially when the mold is open.
  • melt channels in the melt distributor form communicating tubes and as a result melt flows back from a die-casting nozzle arranged in the upper area of the melt distributor and accordingly melt flows out of a die-casting nozzle arranged in the lower area of the melt distributor due to the effect of gravity could.
  • this is prevented by the non-return valve in the area between the sprue area of the die-casting nozzle and the last branch in the melt distributor, at least to the die-casting nozzle, for example in the upper die-casting nozzle itself.
  • the die-casting nozzles can be heated from the inside and/or from the outside in the area of a nozzle body and include sprue areas that have at least the thermal conductivity of the melt to be processed itself and/or can be heated separately. It is particularly advantageous if the heating takes place from the outside and the heat is passed on to the sprue areas, so that there is no need for internal heating. Provision is therefore made for the die-casting nozzle to be externally heated, with the external heating also being able to be designed as a printed heating (thick film heating).
  • the external heater can be formed by a heat-shrinkable brass or stainless steel sleeve containing the heater.
  • the die-casting nozzle can thus be heated indirectly, in that the heat from the heated nozzle body flows over into the sprue area.
  • the highest possible thermal conductivity, but not lower than that of the melt itself e.g. Zn > 100 W/mK, Mg around > 60, Al around 235 W/mK
  • suitable material selection for example a molybdenum alloy, tungsten or a thermally conductive ceramics.
  • the die-casting nozzle is internally heated, which is also covered by the invention.
  • thermal insulation in the sprue area is particularly suitable for this.
  • Thermal insulation can be used for this purpose, which can be used as an insulating ring made of a material with low thermal conductivity surrounding the sprue area, such as e.g. titanium alloys or ceramics, as an insulating layer of air, gas or vacuum within the gate area and/or as a constant layer of air between the body of the die and the mold forming a uniform or circumferential air gap as an insulating space.
  • the insulation serves to prevent heat loss and minimize the heating output.
  • the sprue area of the mold preferably has insulation that reduces the outflow of heat into the mold.
  • the insulation is part of the nozzle and is not formed by the mold or the melt as is the case with plastic injection molding.
  • the melt remains liquid in the sprue area and does not have to be melted again after the cast part has been torn off. This leads to simple heating of the nozzle, despite all the advantages of holding the melt in the nozzle.
  • counter-heating is provided in order to reduce the heat dissipation.
  • This counter-heating is preferably designed as a separately heatable segment arranged around the sprue and/or as a separately heatable sprue area. Counter-heating that uses a highly dynamic CO 2 cycle process for its operation has proven to be particularly advantageous.
  • a melt channel which has a tear-off edge in the area of the sprue area of the die-casting nozzle that is designed in such a way that it forms a cross-section-reducing predetermined breaking point in the melt that has solidified in the sprue area, ensures high product quality .
  • the tear-off edge is arranged on one side either circumferentially on the outside of a central conductor or on the inside of the melt conductor, in each case at the lower end lying towards the sprue area.
  • a two-sided arrangement is also provided.
  • a temperature sensor is arranged in the sprue area. This temperature sensor produces readings that can be used to control the nozzle heater. Controlled nozzle heating enables optimal process control, increases productivity and product quality and reduces wear on the die-casting nozzle.
  • a suitable non-return valve has a freely movable ball, preferably in a cage, which interacts with a valve seat.
  • the nozzle has a specific sprue geometry.
  • a ring ensures a clean demolition, cross or star shapes are also provided. If the central conductor forming the ring is given a longitudinal bore that leads through the sprue area. This enables a better flow of the melt with just as good tear-off. The quality of the tear-off is further improved by a tear-off edge, which can be arranged inside and/or outside in the sprue area.
  • the die-casting nozzle thus advantageously has a sprue geometry that is adapted to the respective requirements.
  • the gate cools only when the heat flows into the casting, the product, and cools the gate area as long as the casting remains bonded to the gate area.
  • the sprue area does not cool down too much because, due to thermal insulation in the sprue area of the nozzle, only little heat flows directly into the mould. As a result, the heat flow is channeled essentially via the liquid or solidified melt.
  • Such a method does not require the formation of a sealing melt slug in the sprue area, so that the cycle frequency during die-casting can be increased and the alternating thermal stress on the die-casting nozzle can be reduced. In addition, security against escaping melt is increased.
  • An advantageous embodiment of the method provides that the die-casting nozzle can be heated from the inside and/or from the outside in the area of a body of the die-casting nozzle and includes the sprue area, the material of which has a thermal conductivity of at least the thermal conductivity of the melt itself and/or can be heated separately.
  • FIG. 1 shows a schematic representation of a hot chamber system 1, comprising an embodiment of a die-casting nozzle system 10 according to the invention, connected to a well-known hot-chamber die-casting machine 2. This is moved downwards by a piston 5, driven by a piston drive 6, so that the melt 4 reaches the die-casting nozzle system 10 via a machine nozzle 7.
  • the melt 4 is first pressed into the melt distributor 20, which distributes the melt 4 to the individual die-casting nozzles 40.
  • the die casting nozzles 40 are directly connected to the fixed mold half 32 as part of the casting mold 30 .
  • a Movable mold half 34 Between the fixed mold half 32 and a Movable mold half 34 is a cavity 36 in which the product is formed after the injection of the melt 4 and its solidification.
  • FIG. 2 shows a schematic sectional view of an embodiment of a die-casting nozzle system 10 according to the invention with two die-casting nozzles 40, one upper and one lower.
  • the die casting nozzles 40 are inserted into the fixed mold half 32 of the casting mold 30 and connected to the melt distributor 20 .
  • the sealing function of the front radial seat 24 can also be improved by an additional sealing element, not shown here. The function of this space becomes 3 described in more detail.
  • the machine nozzle is located on a machine nozzle extension 12 and is attached to the melt distributor 20 under mechanical pressure and is thus tightly connected.
  • the melt can get from the casting container into a melt channel 22 of the melt distributor 20 and to the die-casting nozzles 40 in their respective nozzle channel 41 .
  • the melt flows from the nozzle channel 41 through the check valve 48, which opens in the direction of flow, to the sprue region 42, where it shoots into the cavity 36. There, after the melt has solidified, the product is formed in the cavity.
  • the melt can also solidify in the sprue area 42 since the heat of the melt is dissipated via the (often additionally cooled) casting mold 30 .
  • the check valve is designed as a ball valve and in such a way that the ball is light in weight and has a short stroke, for example one millimeter. This property ensures high dynamics in the function of the die-casting nozzle according to the invention.
  • the movable mold half 34 In order to be able to remove the finished product, the movable mold half 34 is lifted off. In the process, the product tears off the sprue area 42 of the die-casting nozzle 40 . With the demolition of the product and the removal of the movable mold half 34, there is no flow of heat into the casting mold 30. The heat generated by a nozzle heater 43 and given off to the die-casting nozzle 40 then heats the sprue area 42 to such an extent that the in the sprue area 42 solidified melt melts again.
  • the nozzle heater 43 is designed here as a sleeve, for example made of brass or stainless steel, which contains the heater and which is pushed onto the body of the die-cast nozzle 40 .
  • the sprue area in the die-casting nozzles 40 is thus open again for the melt to exit.
  • the melt would be prevented from exiting by capillary forces or a lack of pressure equalization.
  • air can enter the upper die-casting nozzle 40 through the sprue area 42 .
  • the incoming air then leads to pressure equalization in the melt channel 22 of the melt distributor 20, so that the melt flows back from the upper die-casting nozzle 40 to the melt channel 22 from the lower die-casting nozzle 40 in an undesired manner. a. can escape when the mold 30 is open.
  • this also applies if the melt does not solidify in the sprue area, but remains free-flowing.
  • the non-return valve 48 is provided according to the invention, which prevents the melt from flowing back to the melt channel 22 of the melt distributor 20 .
  • the sprue area 42 also of the lower nozzle in each case remains as a result even without an additional measure for closure, such as e.g. B. a solidified melt plug or a nozzle needle, practically tight.
  • FIG 3 shows a schematic sectional view of an embodiment of the die-casting nozzle 40 of the die-casting nozzle system 10 according to the invention, including a detailed view of the sprue area 42.
  • the die-casting nozzle 40 is connected to the melt distributor 20, so that there is a connection between its melt channel 22 and the nozzle channel 41.
  • the non-return valve 48 is also advantageously arranged in the nozzle channel 41, shown here schematically. However, it could also be arranged at any desired position in the section of the melt channel 22 shown.
  • the nozzle heater 43 is shown and (only in the detailed representation) a part of the fixed mold half 32 on which the die casting nozzle 40 is supported.
  • a thermal insulation provided.
  • this consists of an air space 58 which surrounds a substantial part of the die-casting nozzle 40 and, above all, of a sprue insulation 50 .
  • the sprue insulation 50 is arranged directly in the sprue region 42 . It consists of a cavity filled with air, another gas, or an insulating material.
  • the sprue area is made from a different material that has reduced thermal conductivity, for example from a ceramic.
  • the sprue insulation 50 can be achieved by the form-locking or material-locking joining together of correspondingly designed parts that delimit the cavity.
  • the sprue insulation 50 is particularly effective in preventing a large part of the heat dissipation via the radial seat 24. This makes it possible to heat the sprue area 42 and melt the melt that has solidified there via the existing nozzle heater 43, without having to arrange an additional heater in the sprue area 42.
  • an alternative solution which has a separate nozzle heater for the sprue area, is also encompassed by the present invention.
  • the detailed illustration also shows, by means of drawn-in dotted lines with arrows, how the melt flow takes place in the last section of the nozzle channel 41 up to the sprue area 42 .
  • the sprue region 42 has an annular sprue geometry. This is formed in that the melt channel 41 has a central conductor 61 in the vicinity of the sprue region 42, which guides the melt outwards into a cylindrical gap, from which the ring-shaped sprue geometry results. Shows other advantageous sprue geometries 8 .
  • FIG 4 shows a schematic sectional view of an embodiment of a detail of the die-casting nozzle 40 according to the invention in the sprue area 42.
  • the melt flow in the nozzle channel 41 marked.
  • the gate area 42 An important feature of the die casting nozzle 40 of the present invention is shown in the gate area 42 .
  • This includes a tear-off edge 60, which can be designed on one side or both sides, ie inside on the central conductor 61 and/or outside on the lower section of the melt conductor 41 as a circumferential elevation in each case. Shown is a two-sided design indoors and outdoors, where the Tear-off edge 60 causes a cross-sectional reduction between the product, consisting of the solidified melt, and the "frozen" sprue area, the melt slug formed there. This reduction in cross-section forms a predetermined breaking point at which the product tears off the melt slug in the sprue area in a defined manner and ensures that the product has a clean sprue that does not require any reworking.
  • figure 5 shows a schematic representation of an embodiment of the die casting nozzle system 10 according to the invention, similar to the representation from FIG 3 with a detailed view of the sprue area 42, which shows the movable mold half 34 and the cavity 36 in addition to the fixed mold half 32.
  • a part of the fixed mold half 32 is shown at the sprue area 42 and is designed in such a way that an insulating air space 58 is formed between this and the die-casting nozzle 40 . Furthermore, a temperature sensor 62, connected via a feed line 63, is arranged in this area. The duct for the supply line can also be used for a supply line for the heating in the detailed view.
  • FIG. 6 shows in a schematic sectional view, including a detailed view, an embodiment of the die-casting nozzle system 10 according to the invention, which is the in the Figures 3 and 5 illustrated differs again in the type of heating and the design of the sprue area 42.
  • An insulating ring 59 for example made of titanium alloy, is used in the sprue region 42 to improve the thermal insulation with respect to the fixed mold half 32 . This is arranged on the sprue area 42 and surrounds it in the area of the radial seat 24.
  • the die-casting nozzle 40 is heated via a printed nozzle heater 45 which is applied in a spiral shape to the body of the die-casting nozzle 40 and is protected by a movable protective sleeve.
  • FIG. 7 shows a further embodiment of a die-casting nozzle 40' according to the invention in a schematic sectional representation, which differs significantly from the embodiments described above. It has a nozzle heater 46, which is designed as an internal heating element. The nozzle heater 46 is surrounded by the nozzle channel 41, which as a result has the shape of a hollow cylinder. As a result, the thermal heat can very easily be brought directly up to the sprue area 42, without the heat dissipation having to be counteracted by special measures for thermal insulation.
  • This embodiment is particularly advantageous for the use of melts with a melting temperature of over 600° C. or in the case of a multiple sprue, with which several closely spaced cavities can be supplied with melt from a die-casting nozzle.
  • the hollow-cylindrical nozzle channel 41 has no non-return valve; this is to be arranged in the melt channel of the melt distributor when such a die-casting nozzle 40' is used.
  • the nozzle channel 41 transitions into the sprue area 42, which in the present exemplary embodiment has a punctiform design.
  • More sprue molds are in the 8 shown.
  • View a shows a gate geometry of a multi-nozzle, which makes it possible to fill a multi-mould. The melt then not only shoots into one cavity, but into several closely spaced cavities, so that several parts can be manufactured with one nozzle.
  • View b shows a sprue geometry, as shown in section from the Figures 2 to 6 emerges and is designed as an annular sprue with a large cross section for short casting times.
  • the point inside the ring, the central conductor 61 (cf. Figures 3 and 4 ), ensures heat conduction from the heated nozzle body into the sprue area and is made of a particularly thermally conductive material, for example a suitable alloy.
  • any solidified melt in the sprue area is quickly melted again, so that a new die-casting cycle for the production of another product can begin.
  • View c supplements the ring-shaped sprue with a punctiform sprue arranged centrally in the ring, so that an even larger melt volume flow can be achieved.
  • a punctiform sprue can also be provided without the additional annular sprue. Such a variant can already be found in the in 7 die-casting nozzle 40 shown.
  • Views d) to f) each show a sprue geometry that promises faster injection of the melt into the cavity with similar stability in the sprue area, especially if it has a larger volume.
  • grooves in the sprue area starting laterally from the ring-shaped sprue geometry are used in the form of a line, two crossed lines or as a star-shaped sprue geometry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Description

Die vorliegende Erfindung betrifft ein Druckgussverfahren und ein Druckgussdüsensystem zum Einsatz in einem Warmkammersystem für den Druckguss von metallischer Schmelze, umfassend eine Warmkammerdruckgussmaschine mit einem Gießbehälter und einem Schmelzeverteiler, der die Schmelze gleichmäßig aus einer Maschinendüse auf gleichmäßig beheizte Druckgussdüsen verteilt. Dabei ist wenigstens ein Rückschlagventil zwischen einem Angussbereich der Druckgussdüsen und dem Gießbehälter angeordnet, wobei das Rückschlagventil den Rückfluss der Schmelze von dem Angussbereich weg in Richtung Gießbehälter verhindert.The present invention relates to a die-casting method and a die-casting nozzle system for use in a hot-chamber system for die-casting molten metal, comprising a hot-chamber die-casting machine with a pouring vessel and a melt distributor which distributes the melt evenly from a machine nozzle to evenly heated die-casting nozzles. At least one non-return valve is arranged between a sprue area of the die-casting nozzle and the casting container, the non-return valve preventing the backflow of the melt away from the sprue area in the direction of the casting container.

Der Anguss als Nebenprodukt des Gießens, der bei herkömmlichen Druckgussverfahren in den Kanälen zwischen der Druckgussdüse und der Gießform erstarrt und die Gussteile nach dem Entformen in letztlich unerwünschter Weise miteinander verbindet, bringt zusätzlichen Materialaufwand mit sich, der in der Regel zwischen 40 % und 100 % des Gewichts des Gussteils beträgt. Selbst wenn der Anguss zum Materialrecycling wieder eingeschmolzen wird, ist dies mit Energie- und Qualitätsverlusten durch entstehende Schlacke- und Oxidanteile verbunden. Der angusslose Druckguss vermeidet diese Nachteile.The sprue as a by-product of casting, which solidifies in the channels between the die-casting nozzle and the casting mold in conventional die-casting processes and ultimately joins the cast parts together after demoulding in an undesirable manner, entails additional material expenditure, which usually accounts for between 40% and 100% of the weight of the casting. Even if the sprue is melted down again for material recycling, this is associated with energy and quality losses due to the slag and oxide components that are produced. Sprueless die casting avoids these disadvantages.

Für den angusslosen Druckguss ist es erforderlich, die Schmelze im flüssigen Zustand entweder für jeden Guss aus dem Schmelztiegel an die Form heran- und danach wieder zurückzuführen, was jedoch auch zu Qualitätseinbußen, zumindest aber zu Zeitverlust führt, oder die Schmelze in flüssigem Zustand am Anguss der Form vorzuhalten. Letzteres geschieht beim Warmkammerverfahren, wo alle Kanäle bis zum Anguss so beheizt sind, dass die Schmelze flüssig bleibt und günstigenfalls zugleich am Rückfluss zum Schmelztiegel gehindert wird.For sprueless die casting, it is necessary to either bring the melt in the liquid state from the crucible to the mold for each casting and then return it again, which also leads to a loss of quality, or at least to loss of time, or the melt in the liquid state at the sprue to keep the shape. The latter happens in the hot chamber process, where all channels up to the sprue are heated in such a way that the melt remains liquid and, ideally, is prevented from flowing back to the crucible.

Der Rückfluss in den Schmelztiegel kann durch Ventile verhindert werden, aber auch in besonders vorteilhafter Weise durch einen Pfropfen erstarrter Schmelze, der die Angussöffnung in der Druckgussdüse verschließt.Backflow into the crucible can be prevented by valves, but also in a particularly advantageous manner by a plug of solidified melt which closes the sprue opening in the die-casting nozzle.

Düsensysteme mit Schmelzeverteilern, beheizten Düsen und Einrichtungen zum Verschließen sind aus dem Stand der Technik bekannt. Diese arbeiten jedoch mit aktiv gesteuerten Ventilelementen, wie dies in den Druckschriften DE 103 54 456 A1 , DE 103 59 692 A1 und US 2003/209532 A1 beschrieben ist. Alternativ dazu wird eine Pfropfenbildung genutzt, beispielsweise aus den Druckschriften US 2007/181281 A1 und US 2007/221352 A1 bekannt. Einrichtungen zum Verschließen zwischen dem letzten Abzweig des Schmelzeverteilers und dem Angußbereich der Düsen sind aus der Druckschrift US 2003/209532 A1 , wo ein aktiv gesteuertes Ventilelement vorgesehen ist, sowie aus den Druckschriften US 2007/181281 A1 und US 2007/221352 A1 bekannt. Auch die Verwendung von Rückschlagventilen ist in Warmkammersystemen der Warmkammerdruckgussmaschinen bekannt, beispielsweise aus der Druckschrift DE 198 07568A1 , wo das Rückschlagventil aber wie üblich um den Pumpenbereich (Kolben, Kolbengehäuse) und damit weit vor einem etwaigen Schmelzeverteiler angeordnet ist.Nozzle systems with melt distributors, heated nozzles and closing devices are known from the prior art. However, these work with actively controlled valve elements, as in the publications DE 103 54 456 A1 , DE 103 59 692 A1 and U.S. 2003/209532 A1 is described. Alternatively, a plug formation is used, for example from the references U.S. 2007/181281 A1 and U.S. 2007/221352 A1 known. Closure devices between the last branch of the melt manifold and the gate area of the nozzles are off the pamphlet U.S. 2003/209532 A1 , where an actively controlled valve element is provided, as well as from the references U.S. 2007/181281 A1 and U.S. 2007/221352 A1 known. The use of non-return valves is also known in hot chamber systems of hot chamber die casting machines, for example from the publication DE 198 07568A1 , where the non-return valve is arranged as usual around the pump area (piston, piston housing) and thus far in front of any melt distributor.

Herkömmliche Ventile verhindern zwar einen Rückfluss der Schmelze bis in den Schmelzetiegel, sind aber bei Mehrfachsystemen ungeeignet, ein Auslaufen höher liegender Stränge in niedriger liegende Stränge und dem Austritt aus der Druckgussdüse zu verhindern. Dies wird zwar durch Verschluss mittels eines Pfropfens erstarrter Schmelze verhindert, jedoch ist es wegen der notwendigen schnellen Wechsel zwischen Aufschmelzen und Erstarren kompliziert, mit diesem Verfahren kurze Taktzeiten für eine hohe Dynamik zu erreichen.Although conventional valves prevent the melt from flowing back into the crucible, in multiple systems they are unsuitable for preventing higher-lying strands from leaking into lower-lying strands and from escaping from the die-casting nozzle. Although this is prevented by sealing with a plug of solidified melt, it is complicated to achieve short cycle times for high dynamics with this method because of the necessary rapid change between melting and solidification.

Aus diesem Problem resultiert die Aufgabe, ein Druckgussdüsensystem zum Einsatz in einem Druckgussheißkammersystem für Metallschmelzen anzubieten, das eine einfache Temperaturführung und einen einfachen Aufbau ermöglicht.This problem results in the task of offering a die-casting nozzle system for use in a die-casting hot-chamber system for molten metal, which allows simple temperature control and a simple structure.

Die Aufgabe wird gelöst durch ein Druckgussdüsensystem zum Einsatz in einem Warmkammersystem für den Druckguss von metallischer Schmelze, im Warmkammerverfahren, bei welchem die Schmelze in flüssigem Zustand an einem Anguss einer Form vorgehalten wird, das Warmkammersystem umfassend eine Warmkammerdruckgussmaschine mit einem Gießbehälter und eine Maschinendüse, über die die Schmelze in das Druckgussdüsensystem gelangt, das Druckgussdüsensystem umfassend wenigstens eine obere und wenigstens eine untere Druckgussdüse, jeweils mit einem Angussbereich, und einen Schmelzeverteiler, der die Schmelze gleichmäßig aus der Maschinendüse auf die Druckgussdüsen verteilt, wobei wenigstens ein Rückschlagventil zwischen dem Angussbereich der Druckgussdüsen und dem Gießbehälter angeordnet ist, wobei das Rückschlagventil den Rückfluss der Schmelze von dem Angussbereich weg in Richtung Gießbehälter verhindert. Es sind hierbei in erster Linie niedrigviskose Schmelzen, v. a. von Nichteisenmetallen, vorgesehen, bis hin zur Schmelztemperatur von Aluminium. Nach dem Stand der Technik kann jedoch die flüssige Schmelze aus einer oberen Düse zurückgezogen werden und durch die Scherkraft zugleich in unerwünschter Weise aus eine unteren Düse auslaufen.The object is achieved by a die-casting nozzle system for use in a hot-chamber system for die-casting molten metal, in the hot-chamber process in which the melt is held in liquid state at a sprue of a mold, the hot-chamber system comprising a hot-chamber die-casting machine with a casting container and a machine nozzle, via which the melt enters the die-casting nozzle system, the die-casting nozzle system comprising at least one upper and at least one lower die-casting nozzle, each with a sprue area, and a melt distributor, which distributes the melt evenly from the machine nozzle to the die-casting nozzles, with at least one check valve between the sprue area of the die-casting nozzles and the pouring container, wherein the non-return valve prevents the backflow of the melt away from the sprue area in the direction of the pouring container. Primarily low-viscosity melts, especially of non-ferrous metals, are intended here, up to the melting point of aluminum. According to the prior art, however, the liquid melt from an upper nozzle are pulled back and at the same time leak out of a lower nozzle in an undesired manner due to the shearing force.

Erfindungsgemäß ist es zur Lösung dieses Problems vorgesehen, dass das Rückschlagventil jeweils zwischen dem Angussbereich zumindest der wenigstens einen oberen Druckgussdüse und einem letzten Abzweig von Schmelzekanälen in dem Schmelzeverteiler des Warmkammersystems zu jeder der Druckgussdüsen, insbesondere zu der wenigstens einen oberen Druickgussdüse angeordnet ist. Dadurch wird jederzeit verhindert, dass Schmelze aus den Druckgussdüsen austritt, wenn keine Schmelze über den Schmelzeverteiler einschießt, was insbesondere bei geöffneter Form zu Verunreinigungen und Gefahren führen würde. Das Risiko, dass Schmelze austreten kann, resultiert daraus, dass die Schmelzekanäle im Schmelzeverteiler kommunizierende Röhren bilden und dadurch Schmelze aus einer im oberen Bereich des Schmelzeverteilers angeordneten Druckgussdüse zurückfließen und dementsprechend Schmelze aus einer im unteren Bereich des Schmelzeverteilers angeordneten Druckgussdüse durch die Wirkung der Schwerkraft ausfließen könnte. Dies verhindert jedoch das Rückschlagventil im Bereich zwischen dem Angussbereich der Druckgussdüse und dem letzten Abzweig in dem Schmelzeverteiler zumindest zu der Druckgussdüse, beispielsweise in der oberen Druckgussdüse selbst.According to the invention, it is provided to solve this problem that the non-return valve is arranged between the sprue area of at least the at least one upper die-casting nozzle and a last branch of melt channels in the melt distributor of the hot chamber system to each of the die-casting nozzles, in particular to the at least one upper die-casting nozzle. This prevents melt from escaping from the die-casting nozzles at all times if no melt shoots in via the melt distributor, which would lead to contamination and danger, especially when the mold is open. The risk of melt escaping results from the fact that the melt channels in the melt distributor form communicating tubes and as a result melt flows back from a die-casting nozzle arranged in the upper area of the melt distributor and accordingly melt flows out of a die-casting nozzle arranged in the lower area of the melt distributor due to the effect of gravity could. However, this is prevented by the non-return valve in the area between the sprue area of the die-casting nozzle and the last branch in the melt distributor, at least to the die-casting nozzle, for example in the upper die-casting nozzle itself.

Eine vorteilhafte Ausführungsform sieht vor, dass die Druckgussdüsen von innen und/oder von außen im Bereich eines Düsenkörpers beheizbar sind und Angussbereiche umfassen, die mindestens eine Wärmeleitfähigkeit der zu verarbeitenden Schmelze selbst aufweisen und/oder gesondert beheizbar sind. Besonders vorteilhaft ist es, wenn die Beheizung von außen erfolgt und die Wärme in die Angussbereiche weitergeleitet wird, sodass auf eine Innenheizung verzichtet werden kann. Es ist somit vorgesehen, dass die Druckgussdüse außenbeheizt ist, wobei die Außenheizung auch als bedruckte Heizung (Dickschichtheizung) ausgeführt sein kann. Die Außenheizung kann durch eine aufschrumpfbare Messing- oder Edelstahlhülse gebildet werden, die die Heizung enthält.An advantageous embodiment provides that the die-casting nozzles can be heated from the inside and/or from the outside in the area of a nozzle body and include sprue areas that have at least the thermal conductivity of the melt to be processed itself and/or can be heated separately. It is particularly advantageous if the heating takes place from the outside and the heat is passed on to the sprue areas, so that there is no need for internal heating. Provision is therefore made for the die-casting nozzle to be externally heated, with the external heating also being able to be designed as a printed heating (thick film heating). The external heater can be formed by a heat-shrinkable brass or stainless steel sleeve containing the heater.

Wegen des geringen Wärmeabflusses aus dem Angussbereich kann die Druckgussdüse somit indirekt beheizt werden, indem die Heizwärme aus dem beheizten Düsenkörper in den Angussbereich überströmt. Die möglichst hohe Wärmeleitfähigkeit, jedoch nicht kleiner als die der Schmelze selbst (z. B. Zn >100 W/mK, Mg um > 60, A1 um 235 W/mK) wird durch geeignete Materialauswahl, beispielsweise eine Molybdänlegierung, Wolfram oder eine wärmeleitfähige Keramik, ermöglicht. Alternativ oder zusätzlich ist die Druckgussdüse innenbeheizt, was ebenfalls von der Erfindung umfasst ist.Due to the low heat dissipation from the sprue area, the die-casting nozzle can thus be heated indirectly, in that the heat from the heated nozzle body flows over into the sprue area. The highest possible thermal conductivity, but not lower than that of the melt itself (e.g. Zn > 100 W/mK, Mg around > 60, Al around 235 W/mK) is achieved through suitable material selection, for example a molybdenum alloy, tungsten or a thermally conductive ceramics. Alternatively or additionally, the die-casting nozzle is internally heated, which is also covered by the invention.

Weiter vorteilhaft ist eine im Angussbereich jeder Druckgussdüse vorgesehene thermische Schutzeinrichtung, die einen Wärmeabfluss aus dem Angussbereich in Richtung Gießform reduziert. Besonders geeignet hierfür ist eine thermische Isolierung im Angussbereich. Hierfür kommt eine thermische Isolierung in Frage, die als Isolierring aus einem den Angussbereich umgebenden Material mit geringer Wärmeleitfähigkeit, wie z. B. Titanlegierungen oder Keramik, als eine isolierende Luft-, Gas- oder Vakuumschicht innerhalb des Angussbereichs und/oder als konstante Luftschicht zwischen dem Körper der Druckgussdüse und der Gießform, die einen gleichmäßigen oder umlaufenden Luftspalt als Isolierraum bildet, ausgeführt ist. Die Isolierung dient zur Vermeidung von Wärmeverlusten und einer Minimierung der Heizleistung.Also advantageous is a thermal protection device provided in the sprue area of each die-casting nozzle, which reduces heat dissipation from the sprue area in the direction of the casting mold. Thermal insulation in the sprue area is particularly suitable for this. Thermal insulation can be used for this purpose, which can be used as an insulating ring made of a material with low thermal conductivity surrounding the sprue area, such as e.g. titanium alloys or ceramics, as an insulating layer of air, gas or vacuum within the gate area and/or as a constant layer of air between the body of the die and the mold forming a uniform or circumferential air gap as an insulating space. The insulation serves to prevent heat loss and minimize the heating output.

Bevorzugt weist der Angussbereich der Form eine Isolierung auf, die den Wärmeabfluss in die Form verringert. Die Isolierung ist Teil der Düse und wird nicht durch die Form oder die Schmelze gebildet, wie dies beim Kunststoffspritzguss der Fall ist. Zudem ist es alternativ oder zusätzlich zur Wärmeisolierung auch vorgesehen, den Angussbereich der Form zu beheizen, gewissermaßen als eine "aktive Isolierung", um den Wärmeabfluss aus dem Angussbereich auch durch diese Maßnahmen zu verringern. Dadurch bleibt die Schmelze im Angussbereich flüssig und muss nicht nach dem Abriss des Gussteils erneut aufgeschmolzen werden. Dies führt zu einer einfachen Beheizung der Düse, trotz aller Vorteile, die ein Vorhalten der Schmelze in der Düse mit sich bringt. Es ist hierzu auch vorgesehen, die Düsenfront aus isolierendem Material herzustellen.The sprue area of the mold preferably has insulation that reduces the outflow of heat into the mold. The insulation is part of the nozzle and is not formed by the mold or the melt as is the case with plastic injection molding. In addition, it is also provided as an alternative or in addition to thermal insulation, the To heat the sprue area of the mold, so to speak as an "active insulation" to reduce the heat dissipation from the sprue area through these measures. As a result, the melt remains liquid in the sprue area and does not have to be melted again after the cast part has been torn off. This leads to simple heating of the nozzle, despite all the advantages of holding the melt in the nozzle. For this purpose, it is also provided to produce the nozzle front from insulating material.

Alternativ ist eine weitere Ausführungsform einer Gegenheizung vorgesehen, um den Wärmeabfluss zu vermindern. Diese Gegenheizung ist vorzugsweise als separat temperierbares, um den Anguss herum angeordnetes Segment und/oder als gesondert beheizbarer Angussbereich ausgeführt. Als besonders vorteilhaft hat sich eine Gegenheizung erwiesen, die zu ihrem Betrieb einen hochdynamischen CO2-Kreisprozess nutzt.Alternatively, a further embodiment of counter-heating is provided in order to reduce the heat dissipation. This counter-heating is preferably designed as a separately heatable segment arranged around the sprue and/or as a separately heatable sprue area. Counter-heating that uses a highly dynamic CO 2 cycle process for its operation has proven to be particularly advantageous.

Für eine hohe Erzeugnisqualität sorgt ein Schmelzekanal, der im Bereich des Angussbereichs der Druckgussdüse eine Abrisskante aufweist, die so gestaltet ist, dass sie eine querschnittmindernde Sollbruchstelle in der in dem Angussbereich erstarrten Schmelze ausbildet, an der beim Abheben des Angussbereichs von der Form der Artikel abreißt. Die Abrisskante ist einseitig entweder an der Außenseite eines Zentralleiters umlaufend angeordnet oder an der Innenseite des Schmelzeleiters, jeweils am unteren, zum Angussbereich hin liegenden Ende. Auch eine beidseitige Anordnung ist vorgesehen.A melt channel, which has a tear-off edge in the area of the sprue area of the die-casting nozzle that is designed in such a way that it forms a cross-section-reducing predetermined breaking point in the melt that has solidified in the sprue area, ensures high product quality . The tear-off edge is arranged on one side either circumferentially on the outside of a central conductor or on the inside of the melt conductor, in each case at the lower end lying towards the sprue area. A two-sided arrangement is also provided.

Weiterhin hat es sich als günstig erwiesen, wenn ein Temperaturfühler im Angussbereich angeordnet ist. Dieser Temperaturfühler erzeugt Messwerte, die zur Steuerung der Düsenheizung verwendet werden können. Eine gesteuerte Düsenheizung ermöglicht eine optimale Verfahrensführung, erhöht die Produktivität und die Erzeugnisqualität und vermindert den Verschleiß der Druckgussdüse. Der Temperaturfühler in dem Frontbereich der Düse, dem angussnahen Bereich, unterstützt somit einen optimierten Betrieb der Heizung, indem seine Messwerte zur Steuerung der Düsenheizung eingesetzt werden.Furthermore, it has proven advantageous if a temperature sensor is arranged in the sprue area. This temperature sensor produces readings that can be used to control the nozzle heater. Controlled nozzle heating enables optimal process control, increases productivity and product quality and reduces wear on the die-casting nozzle. The temperature sensor in the front area of the nozzle, the area close to the sprue, thus supports optimized operation of the heater by using its measured values to control the nozzle heater.

Als besonders vorteilhaft hat es sich erwiesen, wenn das Rückschlagventil in dem Düsenkanal der Druckgussdüse selbst angeordnet ist. Ein geeignetes Rückschlagventil weist eine, bevorzugt in einem Käfig, frei bewegliche Kugel auf, die mit einem Ventilsitz zusammenwirkt.It has proven to be particularly advantageous if the check valve is arranged in the nozzle channel of the die-casting nozzle itself. A suitable non-return valve has a freely movable ball, preferably in a cage, which interacts with a valve seat.

Es ist günstig, wenn die Düse eine bestimmte Angussgeometrie aufweist. So sorgt ein Ring für einen sauberen Abriss, Kreuz- oder Sternformen sind ebenfalls vorgesehen. Wenn der den Ring bildende Zentralleiter eine Längsbohrung erhält, die bis durch den Angussbereich hindurch führt. Hierdurch wird ein besserer Durchfluss der Schmelze bei ebenso gutem Abriss ermöglicht. Die Qualität des Abrisses wird weiter verbessert durch eine Abrisskante, die innen und/oder außen im Angussbereich angeordnet sein kann. Vorteilhafterweise verfügt die Druckgussdüse somit über eine an die jeweiligen Erfordernisse angepasste Angussgeometrie.It is favorable if the nozzle has a specific sprue geometry. A ring ensures a clean demolition, cross or star shapes are also provided. If the central conductor forming the ring is given a longitudinal bore that leads through the sprue area. This enables a better flow of the melt with just as good tear-off. The quality of the tear-off is further improved by a tear-off edge, which can be arranged inside and/or outside in the sprue area. The die-casting nozzle thus advantageously has a sprue geometry that is adapted to the respective requirements.

Der Anguss kühlt nur ab, wenn die Wärme in das Gussteil, das Erzeugnis, fließt und den Angussbereich auskühlt, solange das Gussteil mit dem Angussbereich verbunden bleibt. Der Angussbereich kühlt aber nicht zu stark aus, weil bedingt durch eine thermische Isolierung im Angussbereich der Düse nur wenig Wärme unmittelbar in die Form abfließt. Dadurch erfolgt eine Kanalisierung des Wärmeflusses im Wesentlichen über die flüssige oder erstarrte Schmelze.The gate cools only when the heat flows into the casting, the product, and cools the gate area as long as the casting remains bonded to the gate area. However, the sprue area does not cool down too much because, due to thermal insulation in the sprue area of the nozzle, only little heat flows directly into the mould. As a result, the heat flow is channeled essentially via the liquid or solidified melt.

Erfindungsgemäß ist auch ein Druckgussverfahren unter Einsatz eines Druckgussdüsensystems gemäß oben ausgeführter Beschreibung. Das Druckgussverfahren umfasst die Verfahrensschritte:

  • Aufsetzen der permanent und gleichmäßig beheizten Druckgussdüse auf die Gießform;
  • Öffnen des Rückschlagventils beim Einschießen der Schmelze durch den Schmelzekanal und den Angussbereich bis in die Gießform;
  • Erstarren der Schmelze zu einem Erzeugnis in der Gießform bis in den Angussbereich hinein, wobei Wärme aus dem Angussbereich in das Erzeugnis strömt;
  • Abheben der Druckgussdüse, Abriss des Erzeugnisses und ausbleibender Abfluss der Wärme aus dem Angussbereich;
  • Aufschmelzen der erstarrten Schmelze in dem Angussbereich aller Druckgussdüsen durch aus dem Düsenkörper nachströmende Wärme, wobei ein Ausfließen der Schmelze aus dem unteren Düsen im Verteiler, die aus den oberen Düsen über den Verteiler strömt, verhindert wird, indem die Rückschlagventile im Bereich der oberen Düsen schließen.
According to the invention is also a die-casting method using a die-casting nozzle system as described above. The die casting process includes the following process steps:
  • Placing the permanently and evenly heated die-casting nozzle on the casting mold;
  • Opening of the non-return valve when injecting the melt through the melt channel and the sprue area into the casting mold;
  • solidifying the melt into a product in the mold up to the sprue area with heat flowing from the sprue area into the product;
  • Lifting of the die casting nozzle, tearing of the product and failure to dissipate the heat from the sprue area;
  • Melting of the solidified melt in the sprue area of all die-casting nozzles by heat flowing from the nozzle body, whereby the melt from the lower nozzle in the distributor, which flows from the upper nozzles via the distributor, is prevented from flowing out by closing the non-return valves in the area of the upper nozzles .

Ein solches Verfahren kommt ohne die Ausbildung eines dichtenden Schmelzepfropfens im Angussbereich aus, sodass die Taktfrequenz beim Druckgussgießen erhöht und die thermische Wechselbelastung der Druckgussdüse vermindert werden kann. Zudem wird die Sicherheit gegen austretende Schmelze erhöht.Such a method does not require the formation of a sealing melt slug in the sprue area, so that the cycle frequency during die-casting can be increased and the alternating thermal stress on the die-casting nozzle can be reduced. In addition, security against escaping melt is increased.

Eine vorteilhafte Ausgestaltung des Verfahrens sieht vor, dass die Druckgussdüse von innen und/oder von außen im Bereich eines Körpers der Druckgussdüse beheizbar ist und den Angussbereich umfasst, dessen Material eine Wärmeleitfähigkeit von wenigstens der Wärmeleitfähigkeit der Schmelze selbst aufweist und/oder gesondert beheizbar ist.An advantageous embodiment of the method provides that the die-casting nozzle can be heated from the inside and/or from the outside in the area of a body of the die-casting nozzle and includes the sprue area, the material of which has a thermal conductivity of at least the thermal conductivity of the melt itself and/or can be heated separately.

Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen mit Bezugnahme auf die zugehörigen Zeichnungen. Es zeigen:

  • Fig. 1: in schematischer Darstellung ein erfindungsgemäßes Druckgussdüsensystem;
  • Fig. 2: in schematischer Schnittdarstellung ein erfindungsgemäßes Druckgussdüsensystem mit zwei Druckgussdüsen;
  • Fig. 3: eine weitere Ausführungsform der Druckgussdüse;
  • Fig. 4: eine Ausführungsform eines Details der erfindungsgemäßen Druckgussdüse im Angussbereich;
  • Fig. 5: eine weitere Ausführungsform des erfindungsgemäßen Druckgussdüsensystems;
  • Fig. 6: eine weitere Ausführungsform des erfindungsgemäßen Druckgussdüsensystems;
  • Fig. 7: eine weitere Ausführungsform der erfindungsgemäßen Druckgussdüse und
  • Fig. 8: mehrere unterschiedliche Angussgeometrien.
Further details, features and advantages of the invention result from the following description of exemplary embodiments with reference to the associated drawings. Show it:
  • 1 : a schematic representation of a die casting nozzle system according to the invention;
  • 2 : a schematic sectional view of a die-casting nozzle system according to the invention with two die-casting nozzles;
  • 3 : another embodiment of the die casting nozzle;
  • 4 : an embodiment of a detail of the die-casting nozzle according to the invention in the gate area;
  • figure 5 : another embodiment of the die casting nozzle system according to the invention;
  • 6 : another embodiment of the die casting nozzle system according to the invention;
  • 7 : another embodiment of the die-casting nozzle according to the invention and
  • 8 : several different gate geometries.

Fig. 1 zeigt in schematischer Darstellung ein Warmkammersystem 1, umfassend eine Ausführungsform eines erfindungsgemäßen Druckgussdüsensystems 10, verbunden mit einer bereits allgemein bekannten Warmkammerdruckgussmaschine 2. Die Warmkammerdruckgussmaschine 2 umfasst einen Gießbehälter 3, der Schmelze 4 enthält. Diese wird durch einen Kolben 5, angetrieben durch einen Kolbenantrieb 6 und nach unten bewegt, so dass die Schmelze 4 über eine Maschinendüse 7 in das Druckgussdüsensystem 10 gelangt. 1 shows a schematic representation of a hot chamber system 1, comprising an embodiment of a die-casting nozzle system 10 according to the invention, connected to a well-known hot-chamber die-casting machine 2. This is moved downwards by a piston 5, driven by a piston drive 6, so that the melt 4 reaches the die-casting nozzle system 10 via a machine nozzle 7.

In dem Druckgussdüsensystem 10 wird die Schmelze 4 zunächst in den Schmelzeverteiler 20 gedrückt, der die Schmelze 4 auf die einzelnen Druckgussdüsen 40 verteilt. Die Druckgussdüsen 40 sind unmittelbar mit der fixen Formhälfte 32 als ein Teil der Gießform 30 verbunden. Zwischen der fixen Formhälfte 32 und einer beweglichen Formhälfte 34 befindet sich eine Kavität 36, in der nach dem Einschießen der Schmelze 4 und deren Erstarren das Erzeugnis gebildet wird.In the die-casting nozzle system 10, the melt 4 is first pressed into the melt distributor 20, which distributes the melt 4 to the individual die-casting nozzles 40. The die casting nozzles 40 are directly connected to the fixed mold half 32 as part of the casting mold 30 . Between the fixed mold half 32 and a Movable mold half 34 is a cavity 36 in which the product is formed after the injection of the melt 4 and its solidification.

Fig. 2 zeigt in schematischer Schnittdarstellung eine Ausführungsform eines erfindungsgemäßen Druckgussdüsensystems 10 mit zwei Druckgussdüsen 40, eine obere und eine untere. Die Druckgussdüsen 40 sind in die fixe Formhälfte 32 der Gießform 30 eingesetzt und mit dem Schmelzeverteiler 20 verbunden. Zwei Radialsitze 24 und ein Axialsitz 26, an denen die Druckgussdüse 40 abgestützt wird, sichern deren Position innerhalb der Gießform 30. Die Dichtfunktion des vorderen Radialsitzes 24 kann daneben auch durch ein zusätzliches, hier nicht dargestelltes Dichtelement verbessert werden. Die Funktion dieses Zwischenraums wird zu Fig. 3 näher beschrieben. 2 shows a schematic sectional view of an embodiment of a die-casting nozzle system 10 according to the invention with two die-casting nozzles 40, one upper and one lower. The die casting nozzles 40 are inserted into the fixed mold half 32 of the casting mold 30 and connected to the melt distributor 20 . Two radial seats 24 and an axial seat 26, on which the die casting nozzle 40 is supported, secure its position within the casting mold 30. The sealing function of the front radial seat 24 can also be improved by an additional sealing element, not shown here. The function of this space becomes 3 described in more detail.

Ist das Druckgussdüsensystem 10 in Betrieb, befindet sich an einem Maschinendüsenansatz 12 die Maschinendüse und ist darüber an den Schmelzeverteiler 20 unter mechanischem Druck angesetzt und somit dicht verbunden. Dadurch kann die Schmelze aus dem Gießbehälter in einen Schmelzekanal 22 des Schmelzeverteilers 20 und zu den Druckgussdüsen 40 in deren jeweiligen Düsenkanal 41 gelangen. Von dem Düsenkanal 41 strömt die Schmelze durch das in Strömungsrichtung öffnende Rückschlagventil 48 bis zum Angussbereich 42, wo es in die Kavität 36 einschießt. Dort bildet sich nach dem Erstarren der Schmelze das Erzeugnis in der Kavität. Zudem kann die Schmelze auch in dem Angussbereich 42 erstarren, da die Wärme der Schmelze über die (häufig zusätzlich gekühlte) Gießform 30 abgeführt wird.If the die-casting nozzle system 10 is in operation, the machine nozzle is located on a machine nozzle extension 12 and is attached to the melt distributor 20 under mechanical pressure and is thus tightly connected. As a result, the melt can get from the casting container into a melt channel 22 of the melt distributor 20 and to the die-casting nozzles 40 in their respective nozzle channel 41 . The melt flows from the nozzle channel 41 through the check valve 48, which opens in the direction of flow, to the sprue region 42, where it shoots into the cavity 36. There, after the melt has solidified, the product is formed in the cavity. In addition, the melt can also solidify in the sprue area 42 since the heat of the melt is dissipated via the (often additionally cooled) casting mold 30 .

Das Rückschlagventil ist bei einer besonders vorteilhaften Ausführungsform als Kugelventil und in der Weise ausgeführt, dass die Kugel ein geringes Gewicht aufweist und einen kurzen Hub, beispielsweise einen Millimeter, ausführt. Diese Eigenschaft sorgt für eine hohe Dynamik bei der erfindungsgemäßen Funktion der Druckgussdüse.In a particularly advantageous embodiment, the check valve is designed as a ball valve and in such a way that the ball is light in weight and has a short stroke, for example one millimeter. This property ensures high dynamics in the function of the die-casting nozzle according to the invention.

Um das fertige Erzeugnis entnehmen zu können, wird die bewegliche Formhälfte 34 abgehoben. Dabei reißt das Erzeugnis vom Angussbereich 42 der Druckgussdüse 40 ab. Mit dem Abriss des Erzeugnisses und der Entfernung der beweglichen Formhälfte 34 entfällt zugleich der Abfluss von Wärme in die Gießform 30. Die von einer Düsenheizung 43 erzeugte und an die Druckgussdüse 40 abgegebene Wärme erwärmt danach den Angussbereich 42 so weit, dass die im Angussbereich 42 erstarrte Schmelze wieder aufschmilzt. Die Düsenheizung 43 ist hier ausgeführt als eine Hülse, beispielsweise aus Messing oder Edelstahl bestehend, die die Heizung enthält und die auf den Körper der Druckgussdüse 40 aufgeschoben wird.In order to be able to remove the finished product, the movable mold half 34 is lifted off. In the process, the product tears off the sprue area 42 of the die-casting nozzle 40 . With the demolition of the product and the removal of the movable mold half 34, there is no flow of heat into the casting mold 30. The heat generated by a nozzle heater 43 and given off to the die-casting nozzle 40 then heats the sprue area 42 to such an extent that the in the sprue area 42 solidified melt melts again. The nozzle heater 43 is designed here as a sleeve, for example made of brass or stainless steel, which contains the heater and which is pushed onto the body of the die-cast nozzle 40 .

Damit ist der Angussbereich in den Druckgussdüsen 40 wieder offen für den Austritt der Schmelze. Solange nur eine Druckgussdüse 40 vorhanden ist, würde die Schmelze durch Kapillarkräfte bzw. fehlenden Druckausgleich am Austritt gehindert. Sobald aber mehrere, vor allem übereinander angeordnete Druckgussdüsen vorhanden sind, kann in die obere Druckgussdüse 40 Luft durch den Angussbereich 42 eintreten. Die eintretende Luft führt dann zum Druckausgleich im Schmelzekanal 22 des Schmelzeverteilers 20, so dass die Schmelze von der oberen Druckgussdüse 40 zum Schmelzekanal 22 zurückfließen aus der unteren Druckgussdüse 40 in unerwünschter Weise v. a. bei offener Gießform 30 austreten kann. Dies trifft natürlich gleichermaßen zu, wenn die Schmelze nicht im Angussbereich erstarrt, sondern fließfähig bleibt.The sprue area in the die-casting nozzles 40 is thus open again for the melt to exit. As long as there is only one die-casting nozzle 40, the melt would be prevented from exiting by capillary forces or a lack of pressure equalization. However, as soon as a plurality of die-casting nozzles are present, above all arranged one above the other, air can enter the upper die-casting nozzle 40 through the sprue area 42 . The incoming air then leads to pressure equalization in the melt channel 22 of the melt distributor 20, so that the melt flows back from the upper die-casting nozzle 40 to the melt channel 22 from the lower die-casting nozzle 40 in an undesired manner. a. can escape when the mold 30 is open. Of course, this also applies if the melt does not solidify in the sprue area, but remains free-flowing.

Um ein Ausfließen von Schmelze zu verhindern, ist nach der Erfindung das Rückschlagventil 48 vorgesehen, das einen Rückfluss der Schmelze zum Schmelzekanal 22 des Schmelzeverteilers 20 unterbindet. Dadurch kann mangels Druckausgleich auch keine Schmelze aus der unteren Druckgussdüse 40 austreten. Der Angussbereich 42 auch der jeweils unteren Düsen bleibt dadurch auch ohne eine zusätzliche Maßnahme zum Verschluss, wie z. B. ein erstarrter Schmelzepfropfen oder eine Düsennadel, praktisch dicht.In order to prevent melt from flowing out, the non-return valve 48 is provided according to the invention, which prevents the melt from flowing back to the melt channel 22 of the melt distributor 20 . As a result, due to a lack of pressure equalization, no melt can escape from the lower die-casting nozzle 40 either. The sprue area 42 also of the lower nozzle in each case remains as a result even without an additional measure for closure, such as e.g. B. a solidified melt plug or a nozzle needle, practically tight.

Fig. 3 zeigt in schematischer Schnittdarstellung eine Ausführungsform der Druckgussdüse 40 des erfindungsgemäßen Druckgussdüsensystems 10, einschließlich einer Detaildarstellung des Angussbereichs 42. Die Druckgussdüse 40 ist an den Schmelzeverteiler 20 angeschlossen, sodass eine Verbindung zwischen dessen Schmelzekanal 22 und dem Düsenkanal 41 besteht. In dem Düsenkanal 41 ist auch, hier schematisch dargestellt, vorteilhafter Weise das Rückschlagventil 48 angeordnet. Es könnte jedoch ebenso an beliebiger Position in dem dargestellten Abschnitt des Schmelzekanals 22 angeordnet sein. 3 shows a schematic sectional view of an embodiment of the die-casting nozzle 40 of the die-casting nozzle system 10 according to the invention, including a detailed view of the sprue area 42. The die-casting nozzle 40 is connected to the melt distributor 20, so that there is a connection between its melt channel 22 and the nozzle channel 41. The non-return valve 48 is also advantageously arranged in the nozzle channel 41, shown here schematically. However, it could also be arranged at any desired position in the section of the melt channel 22 shown.

Weiter ist die Düsenheizung 43 dargestellt und (nur in der Detaildarstellung) ein Teil der fixen Formhälfte 32, an dem sich die Druckgussdüse 40 abstützt. Um den Wärmeabfluss von der Druckgussdüse 40 auf die fixe Formhälfte 32 über die Abstützung im Angussbereich 42, den Radialsitz 24, zu vermeiden, ist eine thermische Isolierung vorgesehen. Diese besteht im dargestellten Beispiel aus einem Luftraum 58, der einem wesentlichen Teil der Druckgussdüse 40 umgibt, und vor allem aus einer Angussisolierung 50. Die Angussisolierung 50 ist unmittelbar im Angussbereich 42 angeordnet. Sie besteht aus einem Hohlraum, in den Luft, ein anderes Gas oder ein isolierendes Material eingebracht ist. Darüber hinaus ist es vorgesehen, dass der Angussbereich aus einem anderen Material gefertigt, das eine verminderte Wärmeleitfähigkeit aufweist, beispielsweise aus einer Keramik. Die Angussisolierung 50 kann durch das form- oder stoffschlüssige Zusammenfügen entsprechend ausgebildeter, den Hohlraum abgrenzender Teile erfolgen.Furthermore, the nozzle heater 43 is shown and (only in the detailed representation) a part of the fixed mold half 32 on which the die casting nozzle 40 is supported. A thermal insulation provided. In the example shown, this consists of an air space 58 which surrounds a substantial part of the die-casting nozzle 40 and, above all, of a sprue insulation 50 . The sprue insulation 50 is arranged directly in the sprue region 42 . It consists of a cavity filled with air, another gas, or an insulating material. In addition, it is provided that the sprue area is made from a different material that has reduced thermal conductivity, for example from a ceramic. The sprue insulation 50 can be achieved by the form-locking or material-locking joining together of correspondingly designed parts that delimit the cavity.

Die Angussisolierung 50 verhindert besonders effektiv einen großen Teil des Wärmeabflusses über den Radialsitz 24. Dadurch wird die Beheizung des Angussbereichs 42 und das Aufschmelzen dort erstarrter Schmelze über die vorhandene Düsenheizung 43 möglich, ohne dass eine zusätzliche Heizung im Angussbereich 42 angeordnet werden müsste. Jedoch ist auch eine solche alternative Lösung, die eine gesonderte Düsenheizung für den Angussbereich aufweist, von der vorliegenden Erfindung umfasst.The sprue insulation 50 is particularly effective in preventing a large part of the heat dissipation via the radial seat 24. This makes it possible to heat the sprue area 42 and melt the melt that has solidified there via the existing nozzle heater 43, without having to arrange an additional heater in the sprue area 42. However, such an alternative solution, which has a separate nozzle heater for the sprue area, is also encompassed by the present invention.

Die Detaildarstellung lässt zudem durch eingezeichnete Punktlinien mit Pfeilen erkennen, wie der Schmelzefluss im letzten Abschnitt des Düsenkanals 41 bis zum Angussbereich 42 erfolgt. Der Angussbereich 42 weist im dargestellten Ausführungsbeispiel eine ringförmige Angussgeometrie auf. Diese bildet sich heraus, indem der Schmelzekanal 41 in der Nähe des Angussbereichs 42 einen Zentralleiter 61 aufweist, der die Schmelze nach außen in einen zylinderischen Spalt einleitet, aus dem die ringförmige Angussgeometrie resultiert. Weitere vorteilhafte Angussgeometrien zeigt Fig. 8.The detailed illustration also shows, by means of drawn-in dotted lines with arrows, how the melt flow takes place in the last section of the nozzle channel 41 up to the sprue area 42 . In the exemplary embodiment shown, the sprue region 42 has an annular sprue geometry. This is formed in that the melt channel 41 has a central conductor 61 in the vicinity of the sprue region 42, which guides the melt outwards into a cylindrical gap, from which the ring-shaped sprue geometry results. Shows other advantageous sprue geometries 8 .

Fig. 4 zeigt in schematischer Schnittdarstellung eine Ausführungsform eines Details der erfindungsgemäßen Druckgussdüse 40 im Angussbereich 42. Hier ist, wie auch schon in Fig. 3, der Schmelzefluss im Düsenkanal 41 gekennzeichnet. 4 shows a schematic sectional view of an embodiment of a detail of the die-casting nozzle 40 according to the invention in the sprue area 42. Here, as already in FIG 3 , the melt flow in the nozzle channel 41 marked.

Ein wichtiges Merkmal der erfindungsgemäßen Druckgussdüse 40 wird im Angussbereich 42 gezeigt. Dieser umfasst eine Abrisskante 60, die einseitig oder beidseitig ausgeführt sein kann, also innen an dem Zentralleiter 61 und/oder außen an dem unteren Abschnitt des Schmelzeleiters 41 als jeweils umlaufende Erhabenheit. Dargestellt ist eine beidseitige Ausführung im Innen- und Außenbereich, wobei die Abrisskante 60 eine Querschnittsverringerung zwischen dem Erzeugnis, bestehend aus der erstarren Schmelze, und dem "eingefrorenen" Angussbereich, dem dort ausgebildeten Schmelzepfropfen, hervorruft. Diese Querschnittsverringerung bildet eine Sollbruchstelle, an der das Erzeugnis von dem Schmelzepfropfen im Angussbereich definiert abreißt und dafür sorgt, dass am Erzeugnis ein sauberer Anguss entsteht, der keine Nacharbeit erfordert.An important feature of the die casting nozzle 40 of the present invention is shown in the gate area 42 . This includes a tear-off edge 60, which can be designed on one side or both sides, ie inside on the central conductor 61 and/or outside on the lower section of the melt conductor 41 as a circumferential elevation in each case. Shown is a two-sided design indoors and outdoors, where the Tear-off edge 60 causes a cross-sectional reduction between the product, consisting of the solidified melt, and the "frozen" sprue area, the melt slug formed there. This reduction in cross-section forms a predetermined breaking point at which the product tears off the melt slug in the sprue area in a defined manner and ensures that the product has a clean sprue that does not require any reworking.

Fig. 5 zeigt in schematischer Darstellung eine Ausführungsform des erfindungsgemäßen Druckgussdüsensystems 10, ähnlich der Darstellung aus Fig. 3 mit einer Detaildarstellung des Angussbereichs 42, die neben der fixen Formhälfte 32 auch die bewegliche Formhälfte 34 und die Kavität 36 zeigt. figure 5 shows a schematic representation of an embodiment of the die casting nozzle system 10 according to the invention, similar to the representation from FIG 3 with a detailed view of the sprue area 42, which shows the movable mold half 34 and the cavity 36 in addition to the fixed mold half 32.

Gegenüber dem Ausführungsbeispiel aus Fig. 3 liegt jedoch eine Reihe von Unterschieden vor. Diese betreffen die Umgebung des Angussbereichs 42 und die Düsenheizung 44. Letztere ist in eine Umlaufnut im Körper der Druckgussdüse 40 eingelegt.Compared to the embodiment 3 however, there are a number of differences. These relate to the surroundings of the sprue area 42 and the nozzle heater 44. The latter is placed in a peripheral groove in the body of the die-casting nozzle 40.

Am Angussbereich 42 ist ein Teil der fixen Formhälfte 32 dargestellt, der so ausgebildet ist, dass sich zwischen dieser und der Druckgussdüse 40 ein isolierender Luftraum 58 ausbildet. Weiterhin ist in diesem Bereich ein Temperaturfühler 62, angeschlossen über eine Zuleitung 63, angeordnet. Der Kanal für die Zuleitung kann in der Detaildarstellung auch für eine Versorgungsleitung der Heizung genutzt werden.A part of the fixed mold half 32 is shown at the sprue area 42 and is designed in such a way that an insulating air space 58 is formed between this and the die-casting nozzle 40 . Furthermore, a temperature sensor 62, connected via a feed line 63, is arranged in this area. The duct for the supply line can also be used for a supply line for the heating in the detailed view.

Fig. 6 zeigt in schematischer geschnittener Darstellung, einschließlich Detaildarstellung, eine Ausführungsform des erfindungsgemäßes Druckgussdüsensystem 10, welches sich den in den Figuren 3 und 5 dargestellten gegenüber wiederum in der Art der Beheizung und der Gestaltung des Angussbereichs 42 unterscheidet. Der Angussbereich 42 wird zur Verbesserung der thermischen Isolation gegenüber der fixen Formhälfte 32 ein Isolierring 59, beispielsweise aus Titanlegierung gefertigt, eingesetzt. Dieser ist am Angussbereich 42 angeordnet und umgibt diesen im Bereich des Radialsitzes 24. 6 shows in a schematic sectional view, including a detailed view, an embodiment of the die-casting nozzle system 10 according to the invention, which is the in the Figures 3 and 5 illustrated differs again in the type of heating and the design of the sprue area 42. An insulating ring 59 , for example made of titanium alloy, is used in the sprue region 42 to improve the thermal insulation with respect to the fixed mold half 32 . This is arranged on the sprue area 42 and surrounds it in the area of the radial seat 24.

Zur Beheizung der Druckgussdüse 40 erfolgt bei dem dargestellten Ausführungsbeispiel über eine bedruckte Düsenheizung 45, die auf den Körper der Druckgussdüse 40 spiralförmig aufgebracht und durch eine bewegliche Schutzhülse geschützt ist.In the exemplary embodiment shown, the die-casting nozzle 40 is heated via a printed nozzle heater 45 which is applied in a spiral shape to the body of the die-casting nozzle 40 and is protected by a movable protective sleeve.

Fig. 7 zeigt in schematischer geschnittener Darstellung eine weitere Ausführungsform einer erfindungsgemäßen Druckgussdüse 40', die sich wesentlich von den zuvor beschriebenen Ausführungsformen unterscheidet. Sie weist eine Düsenheizung 46 auf, die als ein innenliegender Heizstab ausgeführt ist. Die Düsenheizung 46 ist umgeben von dem Düsenkanal 41, der dadurch die Form eines Hohlzylinders aufweist. Dadurch kann die Heizwärme sehr leicht unmittelbar bis an den Angussbereich 42 herangeführt werden, ohne dass durch besondere Maßnahmen zur thermischen Isolierung dem Wärmeabfluss entgegengewirkt werden muss. Diese Ausführungsform ist besonders vorteilhaft für den Einsatz von Schmelzen mit einer Schmelztemperatur von über 600 °C oder bei einem Mehrfachanguss, mit dem mehrere eng beieinanderliegende Kavitäten aus einer Druckgussdüse mit Schmelze versorgt werden können. 7 shows a further embodiment of a die-casting nozzle 40' according to the invention in a schematic sectional representation, which differs significantly from the embodiments described above. It has a nozzle heater 46, which is designed as an internal heating element. The nozzle heater 46 is surrounded by the nozzle channel 41, which as a result has the shape of a hollow cylinder. As a result, the thermal heat can very easily be brought directly up to the sprue area 42, without the heat dissipation having to be counteracted by special measures for thermal insulation. This embodiment is particularly advantageous for the use of melts with a melting temperature of over 600° C. or in the case of a multiple sprue, with which several closely spaced cavities can be supplied with melt from a die-casting nozzle.

Der hohlzylindrische Düsenkanal 41 weist kein Rückschlagventil auf, dieses ist bei Einsatz einer solchen Druckgussdüse 40' im Schmelzekanal des Schmelzeverteilers anzuordnen.The hollow-cylindrical nozzle channel 41 has no non-return valve; this is to be arranged in the melt channel of the melt distributor when such a die-casting nozzle 40' is used.

Der Düsenkanal 41 geht in den Angussbereich 42 über, der im vorliegenden Ausführungsbeispiel punktförmig ausgeführt ist.The nozzle channel 41 transitions into the sprue area 42, which in the present exemplary embodiment has a punctiform design.

Weitere Angussformen sind in der Fig. 8 dargestellt.More sprue molds are in the 8 shown.

Ansicht a) zeigt eine Angussgeometrie einer Mehrfachdüse, die es ermöglicht, eine Mehrfachform zu befüllen. Die Schmelze schießt dann nicht nur in eine Kavität ein, sondern in mehrere, eng beieinanderliegende Kavitäten, sodass mit einer Düse mehrere Teile gefertigt werden können.View a) shows a gate geometry of a multi-nozzle, which makes it possible to fill a multi-mould. The melt then not only shoots into one cavity, but into several closely spaced cavities, so that several parts can be manufactured with one nozzle.

Ansicht b) zeigt eine Angussgeometrie, wie sie im Schnitt aus den Figuren 2 bis 6 hervorgeht und als ringförmiger Anguss mit einem großen Querschnitt für kurze Gießzeiten ausgebildet ist. Die im Inneren des Rings angeordnete Spitze, der Zentralleiter 61 (vgl. Figuren 3 und 4), sorgt für eine Wärmeleitung aus dem beheizten Düsenkörper in den Angussbereich und ist hierzu aus einem besonders wärmeleitfähigen Material, beispielsweise einer geeigneten Legierung, gefertigt. Dadurch wird nach dem Abriss des Erzeugnisses und damit Wegfall der Wärmesenke die ggf. erstarrte Schmelze im Angussbereich schnell wieder aufgeschmolzen, sodass ein neuer Druckgusszyklus zur Fertigung eines weiteren Erzeugnisses beginnen kann.View b) shows a sprue geometry, as shown in section from the Figures 2 to 6 emerges and is designed as an annular sprue with a large cross section for short casting times. The point inside the ring, the central conductor 61 (cf. Figures 3 and 4 ), ensures heat conduction from the heated nozzle body into the sprue area and is made of a particularly thermally conductive material, for example a suitable alloy. As a result, after the product is torn off and the heat sink is no longer available, any solidified melt in the sprue area is quickly melted again, so that a new die-casting cycle for the production of another product can begin.

Hierzu trägt insbesondere auch bei, wenn der gesamte Angussbereich aus dem besonders wärmeleitfähigen Material gefertigt ist.This also contributes in particular if the entire sprue area is made of the particularly thermally conductive material.

Ansicht c) ergänzt den ringförmigen Anguss um einen zentral im Ring angeordneten punktförmigen Anguss, sodass ein noch größerer Schmelzevolumenstrom erreichbar ist. Ein punktförmiger Anguss kann auch ohne den zusätzlichen ringförmigen Anguss vorgesehen sein. Eine solche Variante geht bereits aus der in Fig. 7 dargestellten Druckgussdüse 40 hervor.View c) supplements the ring-shaped sprue with a punctiform sprue arranged centrally in the ring, so that an even larger melt volume flow can be achieved. A punctiform sprue can also be provided without the additional annular sprue. Such a variant can already be found in the in 7 die-casting nozzle 40 shown.

Die Ansichten d) bis f) zeigen jeweils eine Angussgeometrie, die bei ähnlicher Stabilität im Angussbereich einen schnelleren Einschuss der Schmelze in die Kavität verspricht, vor allem, wenn diese ein größeres Volumen aufweist. Hierzu dienen seitlich von der ringförmigen Angussgeometrie ausgehende Nuten im Angussbereich in Form einer Linie, zweier gekreuzter Linien oder als sternförmige Angussgeometrie.Views d) to f) each show a sprue geometry that promises faster injection of the melt into the cavity with similar stability in the sprue area, especially if it has a larger volume. For this purpose, grooves in the sprue area starting laterally from the ring-shaped sprue geometry are used in the form of a line, two crossed lines or as a star-shaped sprue geometry.

BezugszeichenlisteReference List

11
Warmkammersystemwarm chamber system
22
Warmkammerdruckgussmaschinehot chamber die casting machine
33
Gießbehältercasting container
44
Schmelzemelt
55
KolbenPistons
66
Kolbenantriebpiston drive
77
Maschinendüsemachine nozzle
1010
Druckgussdüsensystemdie-cast nozzle system
1212
Maschinendüsenansatzmachine nozzle approach
2020
Schmelzeverteilermelt spreader
2222
Schmelzekanalmelt channel
2424
Radialsitzradial seat
2626
Axialsitzaxial fit
3030
Gießformmold
3232
fixe Formhälftefixed mold half
3434
bewegliche Formhälftemovable mold half
3636
Kavitätcavity
36'36'
Erzeugnisproduct
40,40'40,40'
Druckgussdüsedie cast nozzle
4141
Düsenkanalnozzle channel
4242
Angussbereichsprue area
4343
Düsenheizung (Hülse)Nozzle heater (sleeve)
4444
Düsenheizung (Umlaufnut)Nozzle heater (circumferential groove)
4545
Düsenheizung (bewegliche Hülse)Nozzle heater (movable sleeve)
4646
Düsenheizung (Innenheizung)Nozzle heater (internal heater)
4848
Rückschlagventilcheck valve
5050
Angussisolierungsprue insulation
5858
Isolierraumisolation room
5959
Isolierringinsulating ring
6060
Abrisskantetear-off edge
6161
Zentralleitercentral leader
6262
Temperaturfühlertemperature sensor
6363
Zuleitungsupply line

Claims (11)

  1. A diecasting nozzle system (10) for use in a hot-chamber system (1) for diecasting metal melt (4) according to the hot-chamber approach, in which the melt is held in a liquid state at a sprue of a mold, the hot-chamber system (1) comprising a hot-chamber diecasting machine (2) with a casting vessel (3) and a machine nozzle (7), via which the melt enters the diecasting nozzle system (10), the diecasting nozzle system (10) comprising at least one upper and at least one lower diecasting nozzle (40), each having a sprue region (42), and a melt distributor (20) which distributes the melt (4) uniformly from the machine nozzle (7) among the diecasting nozzles (40), wherein at least one nonreturn valve (48) is arranged between the sprue region (42) of the diecasting nozzles (40) and the casting vessel (3), wherein the nonreturn valve (48) prevents the melt (4) from flowing back away from the sprue region (42) in the direction of the casting vessel (3), characterized in that the nonreturn valve (48) is in each case arranged between the sprue region (42) of at least the at least one upper diecasting nozzle (40) and a last branch of melt runners (22) in the melt distributor (20) of the hot-chamber system (1) to the at least one upper diecasting nozzle (40).
  2. The diecasting nozzle system according to claim 1, wherein a thermal protective device, which reduces heat dissipation from the sprue region (42) in the direction of a casting mold (30), is provided in the sprue region (42) of each diecasting nozzle (40).
  3. The diecasting nozzle system according to claim 2, wherein the thermal protective device is configured as a thermal insulator (58, 59) in the sprue region (42) or as a counter-heater arranged in the sprue region to reduce heat dissipation, wherein the counter-heater is configured as a segment that is arranged around the sprue region (42) and can be temperature-controlled separately, and/or as a separately heated sprue region (42).
  4. The diecasting nozzle system according to claim 3, wherein the thermal insulator is configured as an insulating ferrule (58) made of a material with a low heat conductivity surrounding the sprue region (42), as a sprue insulator (50) configured as an insulating air, gas or vacuum layer inside the sprue region (42), and/or as an insulating space (58) between the body of the diecasting nozzle (40) and the casting mold (30).
  5. The diecasting nozzle system according to claim 4, wherein a device that uses a CO2 cycle is provided for operation of the counter-heater.
  6. The diecasting nozzle system according to any of claims 1 to 5, wherein a nozzle channel (41) in the sprue region (42) of the diecasting nozzle (40) includes a separation edge (60) at an outer circumference of a central duct (61) and/or at an inner circumference of the nozzle channel (41), wherein said separation edge (60) is designed such that it forms a breaking point in the melt (4) solidified in the sprue region (42) where a product (36') separates when the sprue region (42) is lifted off the casting mold (30).
  7. The diecasting nozzle system according to any of claims 1 to 6, wherein a temperature sensor (62) is arranged in the sprue region (42).
  8. The diecasting nozzle system according to any of claims 1 to 7, wherein the nonreturn valve is arranged in the nozzle channel (41) of the diecasting nozzle (40).
  9. The diecasting nozzle system according to any of claims 1 to 8, wherein the nonreturn valve is configured as a freely moving ball cooperating with a valve seat.
  10. A diecasting method, which uses a diecasting nozzle system according to any of claims 1 to 9, characterized by the following method steps:
    • fitting the permanently and uniformly heated diecasting nozzles (40) onto the casting mold (30);
    • opening the at least one nonreturn valve (48) during injection of the melt (4) through the melt runner (41) and the sprue region (42) into the casting mold (30);
    • solidifying the melt (4) to obtain a product (36') inside the casting mold (30) including the sprue region (42), wherein heat flows from the sprue region (42) into the product;
    • lifting off the diecasting nozzle (40), separating the product (36'), and non-occurrence of heat dissipation from the sprue region (42);
    • melting the solidified melt in the sprue region (42) of each of the diecasting nozzles (40) through continued heat flow from the diecasting nozzle (40), wherein melt (4) flowing from the upper diecasting nozzles (40) via the melt distributor (20) is prevented from flowing out of the at least one lower diecasting nozzle (40) in the melt distributor (20) by closing at least the nonreturn valve (48) in the region of the at least one upper diecasting nozzle (40).
  11. The diecasting method according to claim 10, wherein the diecasting nozzle (40) can be heated from inside and/or from outside in the region of a body of the diecasting nozzle (40) and comprises the sprue region (42) made of a material that has a heat conductivity corresponding at least to the heat conductivity of the melt and/or can be heated separately.
EP16834173.3A 2016-03-01 2016-12-19 Diecasting die system Active EP3423215B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016103618 2016-03-01
PCT/DE2016/100598 WO2017148457A1 (en) 2016-03-01 2016-12-19 Diecasting die system

Publications (2)

Publication Number Publication Date
EP3423215A1 EP3423215A1 (en) 2019-01-09
EP3423215B1 true EP3423215B1 (en) 2022-08-24

Family

ID=57965610

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16834173.3A Active EP3423215B1 (en) 2016-03-01 2016-12-19 Diecasting die system

Country Status (13)

Country Link
US (1) US11161172B2 (en)
EP (1) EP3423215B1 (en)
JP (1) JP6772278B2 (en)
KR (1) KR102152765B1 (en)
CN (1) CN108778566B (en)
BR (1) BR112018017092B1 (en)
CA (1) CA3015242C (en)
DE (1) DE112016006531A5 (en)
ES (1) ES2929466T3 (en)
MX (1) MX2018010552A (en)
PL (1) PL3423215T3 (en)
RU (1) RU2697294C1 (en)
WO (1) WO2017148457A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020105941A1 (en) * 2020-03-05 2021-09-09 Eberspächer Climate Control Systems GmbH Process for the production of a metal cast heat exchanger housing for a vehicle heater
DE102020215665A1 (en) 2020-12-10 2022-06-15 Oskar Frech Gmbh + Co. Kg Die casting machine with shut-off valve in the melt inlet channel and method of operation
DE102021132870A1 (en) 2021-12-14 2023-06-15 Ferrofacta Gmbh Die casting mold, hot chamber system, method of die casting metal and use of a die casting mold

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3010156A (en) * 1959-02-13 1961-11-28 Paul M Smith Automatic valve and degate nozzle for thermoplastic injection machines
JPH06126412A (en) * 1992-10-20 1994-05-10 Seikichi Nakajima Formation of product by meltable material and hot runner and hot tip
JPH06210672A (en) * 1993-01-18 1994-08-02 Toyota Motor Corp Hot runner device for injecting mold
JPH10235463A (en) 1997-02-25 1998-09-08 Ykk Corp Injection molding machine and injection molding method
JP3420017B2 (en) * 1997-03-27 2003-06-23 河口湖精密株式会社 Die casting nozzle device
DE10080726B4 (en) * 1999-02-10 2007-03-01 Ju-Oh Inc., Hiratsuka Mold for a hot sprue injection molding machine and method of making the same
US6357511B1 (en) * 2000-10-26 2002-03-19 Husky Injection Molding Systems, Ltd. Injection nozzle for a metallic material injection-molding machine
ES2262479T3 (en) * 2000-10-31 2006-12-01 Oskar Frech Gmbh + Co. Kg DEVICE FOR THE MANUFACTURE OF PRESSED MOLDED METAL PARTS, IN PARTICULAR NON-FERREAL METALS.
US6683283B2 (en) 2002-05-10 2004-01-27 Dynisco Hot Runners Inc. Canada Apparatus and method for heating injection molding fluid
US7137807B2 (en) 2002-11-21 2006-11-21 Mold-Masters Limited Hot runner nozzle with a tip, a tip surrounding piece and an alignment piece
CA2453170C (en) * 2002-12-20 2012-02-21 Mold-Masters Limited Lateral gating injection molding apparatus
RU2297303C2 (en) * 2003-03-06 2007-04-20 Хаски Инджекшн Моулдинг Системз Лтд. Center runner unit
CN1243622C (en) * 2004-06-06 2006-03-01 象山昌荣机械模具厂 Central running-gate mould cavity of extruding mould
DE102005035803B4 (en) * 2005-07-27 2010-11-25 A & E Applikation Und Entwicklung Gmbh Device for producing multi-component injection molded parts
US20070131375A1 (en) * 2005-12-09 2007-06-14 Husky Injection Molding Systems Ltd. Thixo-molding shot located downstream of blockage
US7387154B2 (en) 2006-02-24 2008-06-17 Husky Injection Molding Systems Ltd. Metallic-molding-material runner having equilibrated flow
KR100857028B1 (en) 2007-03-06 2008-09-05 유도실업주식회사 Hotrunner system
DE102011050149A1 (en) * 2010-11-17 2012-05-24 Ferrofacta Gmbh Die casting nozzle and die casting process
DE102012102549A1 (en) 2011-11-15 2013-05-16 Ferrofacta Gmbh Die casting nozzle and method for operating the die casting nozzle

Also Published As

Publication number Publication date
EP3423215A1 (en) 2019-01-09
CN108778566A (en) 2018-11-09
WO2017148457A1 (en) 2017-09-08
ES2929466T3 (en) 2022-11-29
PL3423215T3 (en) 2023-01-16
CA3015242C (en) 2023-09-12
KR20180118742A (en) 2018-10-31
JP6772278B2 (en) 2020-10-21
CA3015242A1 (en) 2017-09-08
JP2019507019A (en) 2019-03-14
RU2697294C1 (en) 2019-08-13
BR112018017092B1 (en) 2021-08-31
KR102152765B1 (en) 2020-09-08
MX2018010552A (en) 2018-11-09
US20190054522A1 (en) 2019-02-21
US11161172B2 (en) 2021-11-02
BR112018017092A2 (en) 2019-01-15
CN108778566B (en) 2020-11-27
DE112016006531A5 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
EP1201335B1 (en) Device for producing pressure die castings, especially from non-ferrous metals
DE10359692B4 (en) Injection molding device with side gating system
DE102013105435B3 (en) Casting valve with a recompression piston
EP3423215B1 (en) Diecasting die system
DE4104433C2 (en) Injection molding process and device for carrying out this process
DE4137720C2 (en) Injection molding nozzle with conical heating element near the gate
EP3302851B1 (en) Sprue system for a diecasting die
EP2772326B1 (en) Casting device and method
DE4137664B4 (en) Injection molding with a separate heating element in the mold cavity forming insert
DE102011050149A1 (en) Die casting nozzle and die casting process
DE19521733A1 (en) One-piece die-cast insert with a cooling chamber provided with radial ribs
EP2506999B1 (en) Injection unit for a die-casting machine
DE69124681T2 (en) Horizontal continuous casting device with adjustable mold
DE102005050360A1 (en) Injection molding apparatus for e.g. molded syringe, comprises mold cavity in fluid communication with nozzle melt channel for receiving melt stream through mold gate along edge of mold cavity, recess and valve pin
EP3122494B1 (en) Device for die casting a metal component
AT519391B1 (en) Mold divider for installation in a mold
EP3233331B1 (en) Delivery device for a metal bath in a diecasting unit
AT515969B1 (en) Device and method for creating at least one metallic component
DE19544716A1 (en) Method for temperature control in die-casting machine with a filling chamber
DE102014111032B3 (en) Casting valve and pouring device
EP1302261B1 (en) Shot sleeve for diecasting metals
AT228415B (en) Method and device for the continuous production of pipes
DE1952968C (en) Die casting machine for casting refractory metals
DE10039591A1 (en) Process for die casting metallic moldings comprises preparing a metallic material, accumulating, injecting into a die casting tool, closing the nozzle after the injection
EP3871805A1 (en) Device and method for pressure casting metallic material in thixotropic state

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190404

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220330

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1513293

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016015218

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2929466

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221129

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016015218

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230525

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230704

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231228

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231212

Year of fee payment: 8

Ref country code: SE

Payment date: 20231228

Year of fee payment: 8

Ref country code: RO

Payment date: 20231124

Year of fee payment: 8

Ref country code: IE

Payment date: 20231228

Year of fee payment: 8

Ref country code: FR

Payment date: 20231228

Year of fee payment: 8

Ref country code: CZ

Payment date: 20231110

Year of fee payment: 8

Ref country code: AT

Payment date: 20231221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231205

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240104

Year of fee payment: 8

Ref country code: CH

Payment date: 20240110

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231229

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824