EP2772326B1 - Casting device and method - Google Patents
Casting device and method Download PDFInfo
- Publication number
- EP2772326B1 EP2772326B1 EP14156236.3A EP14156236A EP2772326B1 EP 2772326 B1 EP2772326 B1 EP 2772326B1 EP 14156236 A EP14156236 A EP 14156236A EP 2772326 B1 EP2772326 B1 EP 2772326B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- melt
- casting
- runners
- mold cavity
- casting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005266 casting Methods 0.000 title claims description 90
- 238000000034 method Methods 0.000 title claims description 14
- 239000000155 melt Substances 0.000 claims description 62
- 230000005672 electromagnetic field Effects 0.000 claims description 17
- 230000007423 decrease Effects 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 239000011796 hollow space material Substances 0.000 claims 2
- 239000012530 fluid Substances 0.000 claims 1
- 238000004512 die casting Methods 0.000 description 7
- 230000002028 premature Effects 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/08—Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
- B22D17/10—Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with horizontal press motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/08—Controlling, supervising, e.g. for safety reasons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/20—Accessories: Details
- B22D17/22—Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
- B22D17/2272—Sprue channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/20—Accessories: Details
- B22D17/30—Accessories for supplying molten metal, e.g. in rations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/20—Accessories: Details
- B22D17/32—Controlling equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/02—Use of electric or magnetic effects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D35/00—Equipment for conveying molten metal into beds or moulds
- B22D35/04—Equipment for conveying molten metal into beds or moulds into moulds, e.g. base plates, runners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D45/00—Equipment for casting, not otherwise provided for
Definitions
- the invention relates to a manufacturing method of cast components with a casting apparatus, wherein a metallic melt is introduced in the flowable state from a filling chamber over a plurality of runners in a mold cavity having a cavity and wherein the casting runs have different lengths or different cross-sections.
- the invention further relates to a device for carrying out the method.
- a metallic melt usually in the form of a liquid alloy, is provided.
- the melt is cached in a filling chamber as a reservoir and kept there liquid by supplying heat. Via a gating unit, the melt reaches a mold cavity, which represents the negative mold of the cast part to be cast.
- An important criterion for high-quality castings is a turbulence-free, gas-free and uniform supply of liquid melt.
- electromagnetic pumps are known which generate a laminar movement of the liquid melt in the pump tube.
- the flow rate of the melt can be influenced in several ways.
- a braking and accelerating electrically conductive melts is known that goes back to electromagnetic alternating fields.
- EP 0 778 099 A2 an induction coil is used in a die casting device to initially enrich liquid metal on the pressure pin of the piston and the gas on the opposite side, so that the die casting is done with a few gas errors.
- the run requires a dependent on its length and the flow rate of the melt minimum cross-section, in order not to let these solidify without external power supply.
- the casting mass grows, so that a larger part of the melt is lost.
- the object of the present invention is to improve the prior art and in particular to provide a method for influencing the melt, which avoids the disadvantages mentioned above. It continues Object of the invention to develop a casting process that avoids uncontrolled mold filling even in complex castings and to provide a device which is suitable for carrying out said casting process.
- the object is achieved by a method of the generic type, wherein the casting runs have different lengths or different cross-sections and the individual melt runs are heated, slowed or accelerated to different degrees in the casting runs by means of electromagnetic fields that the melt front then reaches the mold cavity in all runs when a casting chamber is completely filled by an advancing casting piston.
- the entire melt is not exposed to an electromagnetic alternating field of equal strength, but there is a spatially delimited, matched to the melt geometry influencing the melt, only to change the properties of one or more melt flows in relation to other melt runs.
- the flow rate of individual melt flows can be increased or decreased in the mold cavities filling the mold cavity or in the mold cavity itself, whereby their filling can be favorably influenced.
- the changing alternating electromagnetic fields induce eddy currents in each conductor forming an electrical conductor.
- the magnetic field exerts forces whose strength depends on the spatial change in the magnetic flux density.
- the melt therefore experiences a force directed towards lower magnetic flux density.
- Electromagnetic fields should be understood as a time-varying electric or magnetic field.
- the electromagnetic fields are preferably generated by coils. When current flows through, they generate a magnetic field that induces eddy currents locally in the melt.
- One or more coils enclose the individual runs, for example over their entire length. Alternatively, they only enclose them on sections. Even areas of thinner diameter of the mold cavity can be enclosed by coils.
- the electromagnetic alternating fields locally reduce the flow velocity so that the melt front remains almost or completely.
- a non-contact valve is formed.
- the stopping of the melt front usually does not have to take place at all G confuselaufqueritesen so that not all casting runs are necessarily provided with such a valve.
- Such valves may be provided in addition to or instead of the speed of the melt changing coils. In the first case, they can prevent a premature filling of the mold cavity as a securing mechanism, in the second case, they provide a suitable mechanism for similarly long casting runs, which require no complex control or regulation.
- field shapers can be used which concentrate the force action on a specific area.
- a field shaper is formed as a conductor cut along the coil axis, which is offset with short current pulses. The short impulses penetrate due of the skin effect hardly in the head itself and can therefore act on the close flowing melt with a very high field strength.
- an electromagnetic traveling field can be achieved by an inductor according to the principle of the linear motor.
- the respective melt thus forms the secondary part of a linear motor, ie the "runner".
- the melt is not delayed in any of the casting runs.
- the individual runs are thus accelerated or experience no change in speed through the alternating fields.
- This embodiment is advantageous on the one hand for rapid shaping.
- the coils can act due to the skin effect particularly effective on the outer edge layers of the casting run and thus accelerate the melt especially where the hydrodynamic pressure is the lowest. Their effect is therefore particularly effective.
- due to the internal friction caused by the eddy currents they counteract the temperature gradient in the melt cross section and thus an edge layer solidification. Due to the higher temperature, the viscosity generally decreases, which also indirectly improves the flow properties.
- the strength of the electromagnetic fields must be tuned to the center of the run as the hydrodynamic pressure is greatest here, as well as the depth of penetration of the fields decreases. These fields must be comparatively large, which requires comparatively large currents and coils.
- the eddy currents responsible for accelerating or decelerating the melt also increase their temperature due to the internal friction of the melt.
- the resulting heat has a favorable influence on the casting, as a premature solidification can be prevented.
- this effect can also be used to prevent premature solidification without aiming to change the flow rate.
- castings with wall thicknesses of less than 3 mm or with long flow paths can be reliably formed into a mold.
- the flow rate can also be increased up to the maximum suitable value for the casting, which allows a reduction in the casting cross sections.
- the thus increasing influence of the heat transfer to the wall surface relative to the heat input through the flow can be counteracted.
- an ideally circular shaped runner that is reduced to half the diameter has a cross sectional area of only 25% of the original cross sectional area, while the wall area decreases by 50%.
- the doubled at the same flow rate heat loss on the wall surfaces is partially, fully or overcompensated by the higher flow velocity from the volume flow of the melt.
- the local temperature increase not only prevents premature solidification, but also reduces the hydrodynamic resistance locally on thin runs.
- the centrally initiated casting pressure must be so high that a uniform filling of these critical areas is always ensured. Due to the local reduction of the hydrodynamic resistance, therefore, the central casting pressure can be significantly reduced, which allows less expensive casting devices.
- the electromagnetic fields of the hydrodynamic resistance can be at least reduced so that the required casting pressure drops and thus also the closing force required for closing the mold cavity is reduced.
- the casting device can thus be made much cheaper. In particular, for the production of large-area and thin-walled structural parts, the effect is advantageous.
- the coils can be energized permanently or after a stored in an electronic control algorithm.
- a control or regulation of the coil currents depending on specific input variables or in the case of control also output variables such as casting speed, geometry of the casting system, gate system, shape of the casting, location of the melt front, type, temperature or temperature gradient of the melt.
- Particularly advantageous is a control that tunes the speed of the melt runs so that the mold cavity is filled at the same time at all watering runs and an optimal supply of heat is available at each location.
- the filling content can serve as a control variable.
- the melt feed rate can be controlled as a function of the foam model volume to be gasified.
- the metallic melt is introduced in the flowable state from a filling chamber over a plurality of runners in a mold cavity having a plurality of gate portions having a cavity.
- the plurality of runners serve to fill the mold cavity of a single casting. So that a fast mold filling takes place and the second casting phase can be started simultaneously at all gate regions, the individual casting runs preferably have a different length and / or a different geometric shape.
- the flow speed of the melt in the individual runs can be changed by means of the electromagnetic fields so that the melt front reaches the mold cavity in all runners when, for example, a casting chamber is completely filled by an advancing casting piston.
- the casting method is particularly suitable for casting, preferably die casting, large-area components.
- tuning the individual fronts of the meltings is difficult solely by the geometry of the runners.
- the invention therefore also allows complex runner units with many runners.
- a direct casting takes place in a casting mold which has a horizontal or a vertical separating surface.
- the casting chamber is filled with the melt.
- the melt front is retained until the advancing casting piston has increased the filling level of the casting chamber to 100%.
- a wear-free retaining device is provided which retains the melt by means of electromagnetic fields instead of a shut-off.
- the eddy currents generated by the electromagnetic fields and the temperature increase generated thereby counteract premature surface layer solidification.
- rapid mold filling can take place by accelerating the melt.
- melts based on aluminum or magnesium are provided.
- the melt to be cast is an over- or hypoeutectic Al-Si alloy.
- the invention is also applicable to various casting processes such as hot chamber or cold chamber die casting processes. Due to the different flow speeds, in particular a possible acceleration of melt runs, it allows a more flexible design of the runner unit and a shortening of the runners. The casting result is improved and the casting weight is reduced.
- FIG. 1 shows a casting apparatus 1 for die casting of magnesium or aluminum melts.
- the melt 2 is passed from a melting furnace as a storage container 7 via a feed line 8 in a filling chamber 4.
- the filling chamber 4 forms a reservoir for a predetermined amount of the melt 2.
- the melt 2 can leave the filling chamber 4 via a plurality of runners 10, 11, 12 and flow into a mold cavity 3.
- the mold cavity 3 is formed as a cavity 13 by two half-molds 14, 15 and is formed in a known manner, the enlarged by the Schwindjan negative mold of the diecast product to be produced. Both mold halves 14, 15 have a vertical parting surface 9 for later removal of the casting.
- the filling chamber 4 is filled with a metered quantity of the melt 2.
- An exact dosage ensures that the mold cavity 3 is filled later full and the resulting press residue does not burst.
- a casting piston 6 forces the melt 2 by flow pressure on the casting runs 10, 11, 12 in the mold cavity 3. With the slow advancing of the casting piston 6 is achieved that the air from the runs 10, 11, 12 is displaced until the front of the Melt 2 reach the gate.
- the casting runs 10, 11, 12 have different lengths and different sized cross sections, so that the individual fronts of the melt runs 20, 21, 22 in the Gellotuln 10, 11, 12 would reach the gate areas without further action at different times.
- the runners 10, 11, 12 are at partial lengths of each differently designed coils 30, 31, 32 surrounded, which can be energized via a control or regulating unit, not shown, and can generate eddy currents in the melt 2.
- the runners 10, 11, 12 and the coils 30, 31, 32 are designed as part of the Angussaku 5 so that with appropriate energization, the individual melt runs 20, 21, 22 can be delayed or accelerated so that they the gate areas at the same time to reach.
- one of the casting runs 12 has an electromagnetically operating retention device 32. With it, the front of the melt 22 can be effectively retained even if the gate area is reached prematurely. Due to the induced eddy currents, the melt front is simultaneously heated, so that their surface layers do not solidify prematurely.
- the second casting phase begins in which the filling of the mold cavity 3 takes place.
- the controlled mold filling takes place relatively quickly and under high pressure, due to the large number of runners 10, 11, 12, even in thin-walled and large castings a uniform filling is ensured.
- coils 34 are arranged on or around the mold cavity 3, which locally cause a temperature increase in the casting and thus lower the hydrodynamic resistance.
- An acceleration or deceleration of the melt front within the mold cavity 3 is conceivable. Due to the hydrodynamic pressure, the melt 2 finally fills the mold cavity 3 evenly and accurately.
- the only schematically illustrated coils 30, 31, 32, 34 are each representative of a coil set, which acts on each of the individual melt runs 20, 21, 22.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Continuous Casting (AREA)
Description
Die Erfindung betrifft ein Herstellungsverfahren von Gussbauteilen mit einer Gießvorrichtung, wobei eine metallische Schmelze im fließfähigen Zustand aus einer Füllkammer über mehrere Gießläufe in eine einen Hohlraum aufweisende Formkavität eingebracht wird und wobei die Gießläufe unterschiedliche Längen oder unterschiedliche Querschnitte aufweisen. Die Erfindung betrifft ferner eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a manufacturing method of cast components with a casting apparatus, wherein a metallic melt is introduced in the flowable state from a filling chamber over a plurality of runners in a mold cavity having a cavity and wherein the casting runs have different lengths or different cross-sections. The invention further relates to a device for carrying out the method.
Zur Urformung metallischer Gussteile wird eine metallische Schmelze, üblicherweise in Form einer flüssigen Legierung, bereitgestellt. Die Schmelze wird in einer Füllkammer als einem Reservoir zwischengespeichert und dort durch Zuführung von Wärme flüssig gehalten. Über eine Angusseinheit gelangt die Schmelze zu einer Formkavität, welche die Negativform des zu gießenden Gussteils darstellt.For the forming of metallic castings, a metallic melt, usually in the form of a liquid alloy, is provided. The melt is cached in a filling chamber as a reservoir and kept there liquid by supplying heat. Via a gating unit, the melt reaches a mold cavity, which represents the negative mold of the cast part to be cast.
Ein wichtiges Kriterium für hochwertige Gusserzeugnisse ist eine turbulenzfreie, gasfreie und gleichmäßige Zuführung der flüssigen Schmelze. Zum gleichmäßigen Transport der Schmelze sind beispielsweise elektromagnetische Pumpen bekannt, die im Pumpenrohr eine laminare Bewegung der flüssigen Schmelze erzeugen.An important criterion for high-quality castings is a turbulence-free, gas-free and uniform supply of liquid melt. For uniform transport of the melt, for example, electromagnetic pumps are known which generate a laminar movement of the liquid melt in the pump tube.
Die Fließgeschwindigkeit der Schmelze kann auf mehrere Weisen beeinflusst werden. Aus
Aus
In
Während des gesamten Füllvorgangs muss sichergestellt sein, dass die Schmelze an keiner Stelle erstarrt. Der Gießlauf benötigt deshalb einen von seiner Länge und der Fließgeschwindigkeit der Schmelze abhängigen Mindestquerschnitt, um diese ohne externe Energiezufuhr nicht erstarren zu lassen. Andererseits wächst bei einem großen Gießlaufquerschnitt die Abgussmasse, so dass ein größerer Teil der Schmelze verloren ist.During the entire filling process, it must be ensured that the melt does not solidify at any point. Therefore, the run requires a dependent on its length and the flow rate of the melt minimum cross-section, in order not to let these solidify without external power supply. On the other hand, in a large runner cross-section, the casting mass grows, so that a larger part of the melt is lost.
Großflächige Gussteile mit mehreren Anschnittbereichen oder besonders dünnwandige Gussteile benötigen mehrere Gießläufe, um eine Erstarrung in der Gießform zu verhindern, bevor diese vollständig gefüllt ist. Mehrere Gießläufe müssen so angeordnet werden, dass beim Gießvorgang möglichst wenig Verwirbelungen entstehen. Zur gleichmäßigen Befüllung weisen die einzelnen Gießläufe daher im Allgemeinen unterschiedliche Längen oder Querschnitte auf. Dadurch wird auf nachteilige Weise der Anteil des Umlaufmaterials oder die Abgussmasse erhöht, und ein gleichzeitiger Beginn der zweiten Gießphase kann nicht immer sichergestellt werden. Ferner sind hohe Gießdrücke und hohe Temperaturen der Schmelze erforderlich, die sich am Gießlauf mit dem geringsten Querschnitt und an den dünnwandigsten Strukturen des Gussteils orientieren.Large-area castings with multiple gate areas or very thin-walled castings require multiple runs to prevent solidification in the mold before it is completely filled. Several runs must be arranged so that as little as possible turbulence during casting. For uniform filling, the individual casting runs therefore generally have different lengths or cross sections. As a result, the proportion of the circulating material or the casting material is disadvantageously increased, and a simultaneous start of the second casting phase can not always be ensured. Furthermore, high casting pressures and high temperatures of the melt are required, which are based on the casting with the lowest cross-section and on the thin-walled structures of the casting.
Aufgabe der vorliegenden Erfindung ist es, den Stand der Technik zu verbessern und insbesondere ein Verfahren zur Beeinflussung der Schmelze bereitzustellen, welches die vorstehend genannten Nachteile vermeidet. Weiterhin ist es Aufgabe der Erfindung, ein Gießverfahren zu entwickeln, das eine unkontrollierte Formfüllung auch bei komplexen Gusserzeugnissen vermeidet sowie eine Vorrichtung zu schaffen, die zur Durchführung der genannten Gießverfahren geeignet ist.The object of the present invention is to improve the prior art and in particular to provide a method for influencing the melt, which avoids the disadvantages mentioned above. It continues Object of the invention to develop a casting process that avoids uncontrolled mold filling even in complex castings and to provide a device which is suitable for carrying out said casting process.
Die Aufgabe wird gelöst durch ein Verfahren der gattungsgemäßen Art, wobei die Gießläufe unterschiedliche Längen oder unterschiedliche Querschnitte aufweisen und die einzelnen Schmelzläufe in den Gießläufen mittels elektromagnetischer Felder unterschiedlich stark erhitzt, gebremst oder beschleunigt werden, dass die Schmelzefront in allen Gießläufen die Formkavität dann erreicht, wenn eine Gießkammer durch einen vorfahrenden Gießkolben vollständig gefüllt ist.The object is achieved by a method of the generic type, wherein the casting runs have different lengths or different cross-sections and the individual melt runs are heated, slowed or accelerated to different degrees in the casting runs by means of electromagnetic fields that the melt front then reaches the mold cavity in all runs when a casting chamber is completely filled by an advancing casting piston.
Erfindungsgemäß wird nicht die gesamte Schmelze einem elektromagnetischen Wechselfeld gleicher Stärke ausgesetzt, sondern es erfolgt eine räumlich abgegrenzte, auf die Schmelzlaufgeometrie abgestimmte Beeinflussung der Schmelze, um lediglich die Eigenschaften eines oder mehrerer Schmelzläufe im Verhältnis zu anderen Schmelzläufen zu ändern. Dadurch kann insbesondere die Fließgeschwindigkeit einzelner Schmelzläufe in den die Formkavität befüllenden Gießläufen oder in der Formkavität selbst erhöht oder herabgesetzt werden, wodurch ihre Füllung günstig beeinflusst werden kann.According to the invention, the entire melt is not exposed to an electromagnetic alternating field of equal strength, but there is a spatially delimited, matched to the melt geometry influencing the melt, only to change the properties of one or more melt flows in relation to other melt runs. As a result, in particular, the flow rate of individual melt flows can be increased or decreased in the mold cavities filling the mold cavity or in the mold cavity itself, whereby their filling can be favorably influenced.
Die sich ändernden elektromagnetischen Wechselfelder induzieren Wirbelströme in jedem einen elektrischen Leiter bildenden Schmelzlauf. Auf die Wirbelströme übt das Magnetfeld Kräfte aus, deren Stärke von der räumlichen Änderung der magnetischen Flussdichte abhängt. Die Schmelze erfährt deshalb eine zur geringeren magnetischen Flussdichte gerichtete Kraft. Analog zur auf einen festen Körper wirkenden Lorentzkraft, die diesen räumlich verschiebt, wird je nach Flussdichtengradient der Schmelzestrom beschleunigt oder abgebremst.
erforderlich, der einem deutlichen Verschleiß unterliegen würde.The changing alternating electromagnetic fields induce eddy currents in each conductor forming an electrical conductor. On the eddy currents, the magnetic field exerts forces whose strength depends on the spatial change in the magnetic flux density. The melt therefore experiences a force directed towards lower magnetic flux density. Analogous to the Lorentz force acting on a solid body, which displaces it spatially, the melt flow is accelerated or decelerated depending on the flux density gradient.
required, which would be subject to significant wear.
Unter elektromagnetischen Feldern soll ein sich zeitlich änderndes elektrisches oder magnetisches Feld verstanden werden. Die elektromagnetischen Felder werden vorzugsweise durch Spulen erzeugt. Stromdurchflossen erzeugen sie ein Magnetfeld, das in der Schmelze lokal Wirbelströme induziert. Eine oder mehrere Spulen umschließen die einzelnen Gießläufe beispielsweise über ihre gesamte Länge. Alternativ umschließen sie diese nur auf Teilstücken. Auch Bereichen dünneren Durchmessers der Formkavität können von Spulen umschlossen sein.Electromagnetic fields should be understood as a time-varying electric or magnetic field. The electromagnetic fields are preferably generated by coils. When current flows through, they generate a magnetic field that induces eddy currents locally in the melt. One or more coils enclose the individual runs, for example over their entire length. Alternatively, they only enclose them on sections. Even areas of thinner diameter of the mold cavity can be enclosed by coils.
In einer Ausgestaltung setzen die elektromagnetischen Wechselfelder die Fließgeschwindigkeit lokal so weit herab, dass die Schmelzfront nahezu oder vollständig verharrt. Dadurch ist ein kontaktlos arbeitendes Ventil gebildet. Das Stoppen der Schmelzefront muss in der Regel nicht an allen Gießlaufquerschnitten erfolgen, so dass nicht alle Gießläufe notwendigerweise mit einem derartigen Ventil versehen sind. Derartige Ventile können zusätzlich zu oder anstatt von die Geschwindigkeit der Schmelze ändernden Spulen vorgesehen sein. Im ersten Fall können sie als Sicherungsmechanismus ein vorzeitiges Befüllen der Formkavität verhindern, im zweiten Fall stellen sie einen geeigneten Mechanismus für ähnlich lange Gießläufe dar, die keiner komplexen Steuerung oder Regelung bedürfen.In one embodiment, the electromagnetic alternating fields locally reduce the flow velocity so that the melt front remains almost or completely. As a result, a non-contact valve is formed. The stopping of the melt front usually does not have to take place at all Gießlaufquerschnitten so that not all casting runs are necessarily provided with such a valve. Such valves may be provided in addition to or instead of the speed of the melt changing coils. In the first case, they can prevent a premature filling of the mold cavity as a securing mechanism, in the second case, they provide a suitable mechanism for similarly long casting runs, which require no complex control or regulation.
Damit die Spulenabmessungen der die Gießläufe oder Randschichtbereiche der Formkavität umgebenden Spulen nicht zu groß werden, können Feldformer verwendet werden, die die Krafteinwirkung auf einen bestimmten Bereich konzentrieren. Ein Feldformer ist beispielsweise als ein längs zur Spulenachse geschnittener Leiter ausgebildet, der mit kurzen Strompulsen versetzt wird. Die kurzen Impulse dringen aufgrund des Skineffekts kaum in den Leiter selbst ein und können deshalb auf die dicht vorbeiströmende Schmelze mit einer sehr hohen Feldstärke einwirken.In order that the coil dimensions of the coils surrounding the runners or edge layer areas of the mold cavity are not too large, field shapers can be used which concentrate the force action on a specific area. For example, a field shaper is formed as a conductor cut along the coil axis, which is offset with short current pulses. The short impulses penetrate due of the skin effect hardly in the head itself and can therefore act on the close flowing melt with a very high field strength.
Zur Beschleunigung der Schmelze in einem Gießlauf kann durch einen Induktor nach dem Prinzip des Linearmotors ein elektromagnetisches Wanderfeld erreicht werden. Der jeweilige Schmelzlauf bildet somit den Sekundärteil eines Linearmotors, also den "Läufer".To accelerate the melt in a casting run an electromagnetic traveling field can be achieved by an inductor according to the principle of the linear motor. The respective melt thus forms the secondary part of a linear motor, ie the "runner".
In einer Ausgestaltung der Erfindung wird die Schmelze in keinem der Gießläufe verzögert. Die einzelnen Gießläufe werden also beschleunigt oder erfahren keine Geschwindigkeitsänderung durch die Wechselfelder. Diese Ausgestaltung ist zum einen für eine schnelle Formung vorteilhaft. Zum anderen können die Spulen aufgrund des Skineffekts besonders effektiv auf die äußeren Randschichten des Gießlaufs einwirken und damit den Schmelzlauf vor allem dort beschleunigen, wo der hydrodynamische Druck am geringsten ist. Ihre Wirkung ist deshalb so besonders effektiv. Gleichzeitig wirken sie aufgrund der durch die Wirbelströme verursachten inneren Reibung dem Temperaturgradienten im Schmelzenquerschnitt und damit einer Randschichterstarrung entgegen. Durch die höhere Temperatur sinkt in der Regel die Viskosität, was die Fließeigenschaft auch indirekt verbessert.In one embodiment of the invention, the melt is not delayed in any of the casting runs. The individual runs are thus accelerated or experience no change in speed through the alternating fields. This embodiment is advantageous on the one hand for rapid shaping. On the other hand, the coils can act due to the skin effect particularly effective on the outer edge layers of the casting run and thus accelerate the melt especially where the hydrodynamic pressure is the lowest. Their effect is therefore particularly effective. At the same time, due to the internal friction caused by the eddy currents, they counteract the temperature gradient in the melt cross section and thus an edge layer solidification. Due to the higher temperature, the viscosity generally decreases, which also indirectly improves the flow properties.
In einer Weiterbildung ermöglichen besonders große elektromagnetische Felder einen sehr steilen Temperaturgradienten zwischen Schmelzenrand und Gießlaufwandung, was sich günstig auf die Lebensdauer der Gießlaufwandung auswirken kann.In a further development, particularly large electromagnetic fields enable a very steep temperature gradient between the edge of the melt and the casting runway, which can have a favorable effect on the service life of the runner wall.
Für ein Verzögern oder Anhalten des Schmelzenstroms muss die Stärke der elektromagnetischen Felder auf die Mitte des Gießlaufs abgestimmt werden, da hier der hydrodynamische Druck am größten ist, gleichzeitig die Eindringtiefe der Felder abnimmt. Diese Felder müssen vergleichsweise groß sein, was vergleichsweise große Ströme und Spulen erfordert.In order to retard or stop the melt flow, the strength of the electromagnetic fields must be tuned to the center of the run as the hydrodynamic pressure is greatest here, as well as the depth of penetration of the fields decreases. These fields must be comparatively large, which requires comparatively large currents and coils.
Die für das Beschleunigen oder Abbremsen der Schmelze verantwortlichen Wirbelströme erhöhen aufgrund der inneren Reibung der Schmelze auch deren Temperatur. Die entstehende Wärme hat insofern einen günstigen Einfluss auf das Gießen, als ein vorzeitiges Erstarren unterbunden werden kann. Bei Gießläufen sehr geringen Querschnitts oder auch bei dünnwandigen Abschnitten des zu gießenden Gussstücks kann dieser Effekt auch genutzt werden, um eine vorzeitige Erstarrung zu verhindern, ohne eine Änderung der Fließgeschwindigkeit zu bezwecken. Insbesondere können auch Gussstücke mit Wandstärken unter 3mm oder mit langen Fließwegen prozesssicher urgeformt werden.The eddy currents responsible for accelerating or decelerating the melt also increase their temperature due to the internal friction of the melt. The resulting heat has a favorable influence on the casting, as a premature solidification can be prevented. In very small cross-section or even thin-walled runs of the casting to be cast, this effect can also be used to prevent premature solidification without aiming to change the flow rate. In particular, castings with wall thicknesses of less than 3 mm or with long flow paths can be reliably formed into a mold.
Die Fließgeschwindigkeit kann auch bis zum für das Gussstück maximal geeigneten Wert erhöht werden, was eine Verringerung der Gießlaufquerschnitte ermöglicht. Dem dadurch größer werdenden Einfluss des Wärmeübergangs an der Wandfläche gegenüber der Wärmeinbringung durch den Volumenstrom kann so entgegengewirkt werden. Beispielsweise weist ein ideal rund gestalteter Gießlauf, der auf den halben Durchmesser verkleinert wird, eine Querschnittsfläche von nur noch 25% der ursprünglichen Querschnittsfläche auf, während die Wandfläche um 50% abnimmt. Dem bei gleicher Strömungsgeschwindigkeit verdoppelten Wärmeverlust an den Wandflächen wird durch die höhere Fließgeschwindigkeit aus dem Volumenstrom der Schmelze teil-, voll- oder überkompensiert.The flow rate can also be increased up to the maximum suitable value for the casting, which allows a reduction in the casting cross sections. The thus increasing influence of the heat transfer to the wall surface relative to the heat input through the flow can be counteracted. For example, an ideally circular shaped runner that is reduced to half the diameter has a cross sectional area of only 25% of the original cross sectional area, while the wall area decreases by 50%. The doubled at the same flow rate heat loss on the wall surfaces is partially, fully or overcompensated by the higher flow velocity from the volume flow of the melt.
Wie erwähnt, verhindert die lokale Temperaturerhöhung nicht nur ein vorzeitiges Erstarren, sondern mindert auch den hydrodynamischen Widerstand lokal an dünnen Gießläufen. Der zentral eingeleitete Gießdruck muss so hoch sein, dass ein gleichmäßiges Befüllen auch dieser kritischen Bereiche stets sichergestellt ist. Durch die lokale Herabsetzung des hydrodynamischen Widerstandes kann daher der zentrale Gießdruck deutlich herabgesetzt werden, was unaufwändigere Gießvorrichtungen ermöglicht.As mentioned, the local temperature increase not only prevents premature solidification, but also reduces the hydrodynamic resistance locally on thin runs. The centrally initiated casting pressure must be so high that a uniform filling of these critical areas is always ensured. Due to the local reduction of the hydrodynamic resistance, therefore, the central casting pressure can be significantly reduced, which allows less expensive casting devices.
Wird der hydrodynamische Widerstand aufgrund der elektromagnetischen Kraft allein überwunden, kann gegebenenfalls auch auf einen zentralen Gießantrieb ganz verzichtet werden. Damit wird durch die elektromagnetischen Felder ein direkter elektromagnetischer Gießantrieb bereitgestellt.If the hydrodynamic resistance alone is overcome due to the electromagnetic force, it is also possible, if necessary, to dispense entirely with a central casting drive. Thus, a direct electromagnetic casting drive is provided by the electromagnetic fields.
Mittels der elektromagnetischen Felder kann der hydrodynamische Widerstand zumindest so herabgesetzt werden, dass der erforderliche Gießdruck sinkt und damit ebenfalls die für das Schließen der Formkavität erforderliche Schließkraft reduziert wird. Die Gießvorrichtung kann damit deutlich günstiger hergestellt werden. Insbesondere zur Herstellung großflächiger und dünnwandiger Strukturteile ist der Effekt vorteilhaft.By means of the electromagnetic fields of the hydrodynamic resistance can be at least reduced so that the required casting pressure drops and thus also the closing force required for closing the mold cavity is reduced. The casting device can thus be made much cheaper. In particular, for the production of large-area and thin-walled structural parts, the effect is advantageous.
Die Spulen können permanent oder nach einem in einer Steuerelektronik hinterlegten Algorithmus bestromt werden. Alternativ erfolgt eine Steuerung oder eine Regelung der Spulenströme in Abhängigkeit bestimmter Eingangsgrößen oder im Falle der Regelung auch Ausgangsgrößen wie beispielsweise Gießgeschwindigkeit, Geometrie des Gießsystems, Anschnittsystem, Gestalt des Gussteils, Ort der Schmelzefront, Art, Temperatur oder Temperaturgradient der Schmelze. Besonders vorteilhaft ist eine Regelung, die die Geschwindigkeit der Schmelzläufe so abstimmt, dass die Formkavität zeitgleich an allen Gießläufen gefüllt wird und an jedem Ort ein optimales Wärmeangebot zur Verfügung steht. Auch kann der Füllgehalt als Regelungsgröße dienen. Beispielsweise kann die Schmelzenzufuhrgeschwindigkeit in Abhängigkeit des zu vergasenden Schaumstoffmodellvolumens geregelt werden.The coils can be energized permanently or after a stored in an electronic control algorithm. Alternatively, a control or regulation of the coil currents depending on specific input variables or in the case of control also output variables such as casting speed, geometry of the casting system, gate system, shape of the casting, location of the melt front, type, temperature or temperature gradient of the melt. Particularly advantageous is a control that tunes the speed of the melt runs so that the mold cavity is filled at the same time at all watering runs and an optimal supply of heat is available at each location. Also, the filling content can serve as a control variable. For example, the melt feed rate can be controlled as a function of the foam model volume to be gasified.
Die metallische Schmelze wird im fließfähigen Zustand aus einer Füllkammer über mehrere Gießläufe in eine einen Hohlraum aufweisende Formkavität mit mehreren Anschnittbereichen eingebracht. Die mehreren Gießläufe dienen zum Befüllen der Formkavität eines einzelnen Gussteils. Damit eine schnelle Formfüllung erfolgen und die zweite Gießphase an allen Anschnittbereichen gleichzeitig gestartet werden kann, weisen die einzelnen Gießläufe vorzugsweise eine unterschiedliche Länge und/oder eine unterschiedliche geometrische Gestalt auf. Die Fließgeschwindigkeit der Schmelze in den einzelnen Gießläufen kann mittels der elektromagnetischen Felder so verändert werden, dass die Schmelzefront in allen Gießläufen die Formkavität dann erreicht, wenn beispielsweise eine Gießkammer durch einen vorfahrenden Gießkolben vollständig gefüllt ist.The metallic melt is introduced in the flowable state from a filling chamber over a plurality of runners in a mold cavity having a plurality of gate portions having a cavity. The plurality of runners serve to fill the mold cavity of a single casting. So that a fast mold filling takes place and the second casting phase can be started simultaneously at all gate regions, the individual casting runs preferably have a different length and / or a different geometric shape. The flow speed of the melt in the individual runs can be changed by means of the electromagnetic fields so that the melt front reaches the mold cavity in all runners when, for example, a casting chamber is completely filled by an advancing casting piston.
Das Gießverfahren eignet sich insbesondere zum Gießen, vorzugsweise Druckgießen, großflächiger Bauteile. Insbesondere wenn viele Gießläufe die Formkavität füllen, ist ein Abstimmen der einzelnen Fronten der Schmelzläufe allein durch die Geometrie der Gießläufe schwierig. Die Erfindung ermöglicht daher auch komplexe Angusseinheiten mit vielen Gießläufen.The casting method is particularly suitable for casting, preferably die casting, large-area components. In particular, when many runners fill the mold cavity, tuning the individual fronts of the meltings is difficult solely by the geometry of the runners. The invention therefore also allows complex runner units with many runners.
In einer Weiterbildung ist vorgesehen, die einzelnen Gießläufe so zu verkürzen oder im Querschnitt so zu verringern, dass ein gleichzeitiges Formfüllen ohne den Einfluss der elektromagnetischen Felder nicht möglich ist. Durch die Trennung der Fließgeschwindigkeit von der durchströmten Querschnittsfläche muss deshalb nicht mehr in Kauf genommen werden, einzelne Gießläufe zu verlängern und somit den Anteil des Umlaufmaterials zu erhöhen. Auch eine eigentlich unerwünschte Querschnittsvergrößerung, die ein höheres Abgussgewicht zur Folge hätte, kann unterbleiben. Durch den gezielten Einsatz der elektromagnetischen Felder können die jeweils kürzesten Gießläufe mit einem geringen Querschnitt gewählt werden, was die Auslegung der Gießvorrichtung vereinfacht.In a further development, it is provided to shorten the individual runners so or to reduce in cross-section so that a simultaneous mold filling without the influence of the electromagnetic fields is not possible. Due to the separation of the flow velocity from the flow-through cross-sectional area, it therefore no longer has to be accepted to extend individual runs and thus increase the proportion of circulating material. Even a really unwanted cross-sectional enlargement, which would have a higher casting weight result, can be omitted. Through the targeted use of electromagnetic fields, the shortest casting runs with a small Cross section are selected, which simplifies the design of the casting apparatus.
In einer weiteren Ausgestaltung der Erfindung erfolgt ein direktes Angießen in eine Gussform, die eine horizontale oder eine vertikale Trennfläche aufweist. Während der ersten Gießphase wird die Gießkammer mit der Schmelze befüllt. Dabei wird die Schmelzefront so lange zurückgehalten, bis der vorfahrende Gießkolben den Füllgrad der Gießkammer auf 100% erhöht hat. Bevor die Gießkammer vollständig gefüllt ist, wird eine vorzeitige Formfüllung der Formkavität unterbunden. Dazu ist eine verschleißfreie Rückhaltevorrichtung vorgesehen, die anstatt eines Absperrblechs die Schmelze mittels elektromagnetischer Felder zurückhält. Die durch die elektromagnetischen Felder erzeugten Wirbelströme und der durch diese erzeugte Temperaturerhöhung wirken gleichzeitig einer vorzeitigen Randschichterstarrung entgegen. Nach Beginn der zweiten Gießphase kann eine schnelle Formfüllung durch ein Beschleunigen der Schmelze erfolgen.In a further embodiment of the invention, a direct casting takes place in a casting mold which has a horizontal or a vertical separating surface. During the first casting phase, the casting chamber is filled with the melt. The melt front is retained until the advancing casting piston has increased the filling level of the casting chamber to 100%. Before the casting chamber is completely filled, premature mold filling of the mold cavity is prevented. For this purpose, a wear-free retaining device is provided which retains the melt by means of electromagnetic fields instead of a shut-off. At the same time, the eddy currents generated by the electromagnetic fields and the temperature increase generated thereby counteract premature surface layer solidification. After the start of the second casting phase, rapid mold filling can take place by accelerating the melt.
Die vorgestellten Verfahren und Gießvorrichtungen eignen sich prinzipiell für alle elektrisch leitfähigen Schmelzen. Insbesondere sind Schmelzen auf Aluminium- oder Magnesiumbasis vorgesehen. Beispielsweise handelt es sich bei der zu gießenden Schmelze um eine über- oder untereutektische Al-Si-Legierung.The presented methods and casting devices are suitable in principle for all electrically conductive melts. In particular, melts based on aluminum or magnesium are provided. For example, the melt to be cast is an over- or hypoeutectic Al-Si alloy.
Die Erfindung ist auch auf verschiedene Gießverfahren wie beispielsweise Warmkammer- oder Kaltkammerdruckgießverfahren anwendbar. Sie erlaubt aufgrund der unterschiedlichen Fließgeschwindigkeiten, insbesondere einer möglichen Beschleunigung von Schmelzläufen, eine flexiblere Ausgestaltung der Angusseinheit und eine Verkürzung der Gießläufe. Das Gussergebnis wird verbessert, und das Abgussgewicht wird reduziert.The invention is also applicable to various casting processes such as hot chamber or cold chamber die casting processes. Due to the different flow speeds, in particular a possible acceleration of melt runs, it allows a more flexible design of the runner unit and a shortening of the runners. The casting result is improved and the casting weight is reduced.
Die Erfindung ist auf verschiedene Gießverfahren anwendbar. Nachfolgend wird die Erfindung am Ausführungsbeispiel des Druckgießens näher beschrieben. Die einzige Abbildung zeigt:
-
Figur 1 eine schematische Darstellung einer Vorrichtung zum Druckgießen einer metallischen Schmelze.
-
FIG. 1 a schematic representation of an apparatus for die casting a metallic melt.
In der ersten Gießphase wird die Füllkammer 4 mit einer dosierten Menge der Schmelze 2 befüllt. Eine exakte Dosierung sichert, dass die Formkavität 3 später voll gefüllt wird und der dann entstandene Pressrest nicht platzt.In the first casting phase, the filling chamber 4 is filled with a metered quantity of the melt 2. An exact dosage ensures that the
Ein Gießkolben 6 zwängt die Schmelze 2 durch Strömungsdruck über die Gießläufe 10, 11, 12 in die Formkavität 3. Mit dem langsamen Vorlaufen des Gießkolbens 6 wird erreicht, dass die Luft aus den Gießläufen 10, 11, 12 verdrängt wird, bis die Fronten der Schmelze 2 den Anschnitt erreichen.A casting piston 6 forces the melt 2 by flow pressure on the casting runs 10, 11, 12 in the
Die Gießläufe 10, 11, 12 weisen unterschiedliche Längen und unterschiedlich große Querschnitte auf, so dass die einzelnen Fronten der Schmelzläufe 20, 21, 22 in den Gießläufen 10, 11, 12 die Anschnittbereiche ohne weitere Maßnahmen zu unterschiedlichen Zeitpunkten erreichen würden.The casting runs 10, 11, 12 have different lengths and different sized cross sections, so that the individual fronts of the melt runs 20, 21, 22 in the
Die Gießläufe 10, 11, 12 sind auf Teillängen von jeweils unterschiedlich ausgestalteten Spulen 30, 31, 32 umgeben, die über eine nicht dargestellte Steuer- oder Regeleinheit bestrombar sind und Wirbelströme in der Schmelze 2 erzeugen können. Die Gießläufe 10, 11, 12 und die Spulen 30, 31, 32 sind als Teil der Angusseinheit 5 so ausgestaltet, dass bei geeigneter Bestromung die einzelnen Schmelzläufe 20, 21, 22 so verzögert oder beschleunigt werden können, dass sie die Anschnittbereiche zum gleichen Zeitpunkt erreichen.The
Als zusätzliche Sicherung weist einer der Gießläufe 12 eine elektromagnetisch arbeitende Rückhaltevorrichtung 32 auf. Mit ihr lässt sich der Front des Schmelzlaufs 22 auch bei vorzeitigem Erreichen des Anschnittbereichs wirksam zurückhalten. Durch die induzierten Wirbelströme wird die Schmelzefront gleichzeitig erwärmt, so dass ihre Randschichten nicht vorzeitig erstarren.As an additional safeguard, one of the casting runs 12 has an electromagnetically
Nach dem gleichzeitigen Erreichen der Anschnitte beginnt die zweite Gießphase, in der die Füllung der Formkavität 3 erfolgt. Die kontrollierte Formfüllung erfolgt relativ schnell und unter hohem Druck, wobei aufgrund der Vielzahl der Gießläufe 10, 11, 12 auch bei dünnwandigen und großflächigen Gusserzeugnissen ein gleichmäßiges Befüllen sichergestellt wird.After the simultaneous reaching of the gates, the second casting phase begins in which the filling of the
In dünnwandigen Randschichtbereichen sind an der oder um die Formkavität 3 wiederum Spulen 34 angeordnet, die lokal im Gussteil eine Temperaturerhöhung bewirken und damit den hydrodynamischen Widerstand senken. Auch ein Beschleunigen oder Verzögern der Schmelzlauffront innerhalb der Formkavität 3 ist denkbar. Durch den hydrodynamischen Druck füllt die Schmelze 2 die Formkavität 3 schließlich gleichmäßig und genau aus.In thin-walled boundary layer areas, in turn, coils 34 are arranged on or around the
Die nur skizzenhaft dargestellten Spulen 30, 31, 32, 34 stehen je stellvertretend für einen Spulensatz, der jeweils auf die einzelnen Schmelzläufe 20, 21, 22 einwirkt.The only schematically illustrated
Bezugszahlenliste
- 1
- Gießvorrichtung
- 2
- Schmelze
- 3
- Formkavität
- 4
- Füllkammer
- 5
- Angusseinheit
- 6
- Gießkolben
- 7
- Vorratsbehältnis
- 8
- Zuführleitung
- 9
- Trennfläche
- 10
- erster Gießlauf
- 11
- zweiter Gießlauf
- 12
- dritter Gießlauf
- 13
- Hohlraum
- 14
- Gussformhalbschale
- 15
- Gussformhalbschale
- 20
- erster Schmelzlauf
- 21
- zweiter Schmelzlauf
- 22
- dritter Schmelzlauf
- 30
- Spule
- 31
- Spule
- 32
- Rückhaltevorrichtung
- 34
- Spule
- 1
- caster
- 2
- melt
- 3
- mold cavity
- 4
- filling chamber
- 5
- Angus unit
- 6
- casting plunger
- 7
- storage container
- 8th
- feed
- 9
- interface
- 10
- first watering run
- 11
- second run
- 12
- third watering
- 13
- cavity
- 14
- Mold half shell
- 15
- Mold half shell
- 20
- first melting
- 21
- second melt
- 22
- third melt
- 30
- Kitchen sink
- 31
- Kitchen sink
- 32
- Restraint
- 34
- Kitchen sink
Claims (9)
- A method for manufacturing cast components with a casting device (1), wherein a metal melt (2) in a fluid state is brought from a filling chamber (4) via several casting runners (10, 11, 12) into a mold cavity (3) having a hollow space (13), characterized in that the casting runners (10, 11, 12) have different lengths or different cross-sections and the flow velocity of the melt currents (20, 21, 22) in the respective runners (10, 11, 12) is increased or decreased by means of electromagnetic fields so that a melt front in each of the runners (10, 11, 12) reaches the mold cavity (3) when the filling chamber (4) has been completely filled by an advancing plunger (6).
- The method according to claim 1, characterized in that the electromagnetic fields are controlled or regulated as a function of the mold cavity (3), a temperature or a melt composition.
- The method according to claim 1 or 2, characterized in that by locally increasing the temperature, the electromagnetic fields reduce a hydrodynamic resistance of sections of the melt (2) with a small cross-section in such a manner that a required casting pressure drops and a closing force of the casting device (1) is reduced.
- The method according to one of the claims 1 to 3, characterized in that the electromagnetic fields reduce the hydrodynamic resistance of sections of the melt (2) with a small cross-section, in order to decrease a casting drive force.
- The method according to one of the claims 1 to 4, characterized in that the individual melt currents (20, 21, 22) in the runners (10, 11, 12) are heated, decelerated and/or accelerated to different degrees.
- A casting device (1) for a metal melt (2) for implementing a method according to claims 1 to 5, having: a mold cavity (3) forming a hollow space (13) for the cast part, a filling chamber (4) as a reservoir for a metal melt (2), an advanceable plunger (6) for filling the filling chamber (4), a gate unit (5) with at least two runners (10, 11, 12), characterized in that the runners (10, 11, 12) have different lengths or different cross-sections, the individual runners (10, 11, 12) connect the filling chamber (4) with the mold cavity (3) and the casting device has means for influencing the flow velocity of the melt, which act only onto a part of the gate unit (5), the runners (10, 11, 12) or the mold cavity (3), so that a melt front in each runner (10, 11, 12) reaches the mold cavity (3).
- The casting device according to claim 6, characterized in that the individual runners (10, 11, 12) are surrounded by different coils (30, 31, 32).
- The casting device according to claim 6 or 7, characterized in that the mold cavity (3) has one or more coils in a surface area (14).
- The casting device according to one of the claims 6 to 8, characterized in that the casting device (1) has an electromagnetic retaining device (34) configured to retain the melt (2).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013101962.5A DE102013101962B3 (en) | 2013-02-27 | 2013-02-27 | Casting device and casting process |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2772326A1 EP2772326A1 (en) | 2014-09-03 |
EP2772326B1 true EP2772326B1 (en) | 2016-11-09 |
Family
ID=50156612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14156236.3A Active EP2772326B1 (en) | 2013-02-27 | 2014-02-21 | Casting device and method |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140238633A1 (en) |
EP (1) | EP2772326B1 (en) |
CN (1) | CN104001860A (en) |
DE (1) | DE102013101962B3 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013105433B3 (en) | 2013-05-27 | 2014-05-22 | Schuler Pressen Gmbh | Casting device with a loop and casting process |
DE102015212224A1 (en) * | 2015-06-30 | 2017-01-05 | Breuckmann GmbH & Co. KG | METHOD AND GYFORM FOR PRODUCING A RUNNER |
CN105081294B (en) * | 2015-08-17 | 2018-01-30 | 共慧冶金设备科技(苏州)有限公司 | A kind of magnesium alloy valve type casting system |
FR3044943B1 (en) * | 2015-12-11 | 2020-12-04 | Adm28 S Ar L | INJECTION TIP FOR A CASTING MACHINE, MACHINE AND CASTING PROCESS USING SUCH A TIP |
DE102016123491B4 (en) * | 2016-12-05 | 2019-12-24 | Schuler Pressen Gmbh | Casting device, press and method for casting a component |
CN107486551B (en) * | 2017-08-29 | 2019-06-14 | 中国兵器工业第五九研究所 | A kind of casting technique and solidified structure regulation method of aluminium alloy thin-walled cabin casting |
CN108543939B (en) * | 2018-05-24 | 2019-12-31 | 苏州市永利成模具制造有限公司 | Production facility machinery intelligence control system |
CN109047740B (en) * | 2018-08-09 | 2020-06-12 | 盐城宝风机械科技有限公司 | Multi-position die casting device for metal processing |
CN110947932B (en) * | 2018-09-26 | 2022-05-13 | 重庆波热智慧科技有限公司 | Cavity heat-conducting die-casting die for cavity heat-conducting die-casting head |
CN109434063B (en) * | 2018-10-15 | 2021-03-05 | 瑞安市顺星汽摩配件有限公司 | Hydraulic casting equipment with temperature control function |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3346039A (en) * | 1965-07-16 | 1967-10-10 | United Aircraft Corp | Mold heater |
CH665369A5 (en) * | 1984-03-07 | 1988-05-13 | Concast Standard Ag | METHOD FOR CONTROLLING THE FLOW OF A METAL MELT IN CONTINUOUS CASTING, AND A DEVICE FOR IMPLEMENTING THE METHOD. |
US4714102A (en) * | 1986-01-11 | 1987-12-22 | Toshiba Machine Co., Ltd. | Casting method and an apparatus therefor |
WO1995026243A1 (en) * | 1994-03-29 | 1995-10-05 | Nippon Steel Corporation | Method of controlling flow in casting mold by using dc magnetic field |
DE19545177B4 (en) * | 1995-12-04 | 2005-11-17 | Leifeld Metal Spinning Gmbh | Method for spin forming a workpiece |
JPH09155533A (en) * | 1995-12-07 | 1997-06-17 | Toyota Motor Corp | Casting method with die casting machine and casting apparatus with die casting machine |
EP0936010A1 (en) * | 1998-02-12 | 1999-08-18 | Didier-Werke Ag | Method and apparatus for pressure casting metals |
EP1201335B1 (en) * | 2000-10-31 | 2006-05-31 | Oskar Frech GmbH + Co. KG | Device for producing pressure die castings, especially from non-ferrous metals |
DE102006008432B4 (en) * | 2006-02-23 | 2007-08-30 | Forschungszentrum Dresden - Rossendorf E.V. | Controlled filling of casting mold with non-ferrous metal in presence of magnetic field, relates magnetic induction to measured casting parameters |
US7828042B2 (en) * | 2006-11-16 | 2010-11-09 | Ford Global Technologies, Llc | Hot runner magnesium casting system and apparatus |
US7810549B2 (en) * | 2007-01-05 | 2010-10-12 | Ford Global Technologies, Llc | Adaptive and universal hot runner manifold for die casting |
DE102009035241B4 (en) | 2008-08-07 | 2014-06-12 | Tmt Tapping-Measuring-Technology Gmbh | Methods and apparatus for controlling the flow rate and decelerating nonferromagnetic, electrically conductive liquids and melts |
-
2013
- 2013-02-27 DE DE102013101962.5A patent/DE102013101962B3/en not_active Expired - Fee Related
-
2014
- 2014-02-18 CN CN201410054836.XA patent/CN104001860A/en active Pending
- 2014-02-21 EP EP14156236.3A patent/EP2772326B1/en active Active
- 2014-02-26 US US14/190,117 patent/US20140238633A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20140238633A1 (en) | 2014-08-28 |
CN104001860A (en) | 2014-08-27 |
EP2772326A1 (en) | 2014-09-03 |
DE102013101962B3 (en) | 2014-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2772326B1 (en) | Casting device and method | |
EP1201335B1 (en) | Device for producing pressure die castings, especially from non-ferrous metals | |
EP2640537B1 (en) | Diecasting die and diecasting method | |
DE69832538T2 (en) | MAGNESIUM CASTING | |
DE102013105435B3 (en) | Casting valve with a recompression piston | |
EP3570992B1 (en) | Casting mould for casting complexly shaped cast parts and use of such a casting mould | |
EP3113337B1 (en) | Method and casting mould for manufacturing a rotor | |
DE102015210403A1 (en) | Angular system for a die-casting mold | |
WO2007048260A1 (en) | Diecasting process and diecasting device | |
WO2007028265A2 (en) | Diecasting method | |
EP3423215B1 (en) | Diecasting die system | |
DE102013105433B3 (en) | Casting device with a loop and casting process | |
DE102008055506A1 (en) | Pressure die-casting the parts made of metal alloy e.g. aluminum using horizontal cold chamber die-casting machine, comprises filling respective dosage of metal melt into casting chamber and subsequently pressing the melt by casting piston | |
AT515969B1 (en) | Device and method for creating at least one metallic component | |
DE2144025A1 (en) | Method of pouring melts | |
DE102014111032B3 (en) | Casting valve and pouring device | |
EP3456437B1 (en) | Method for producing a a metallic material casting having gas-filled pores using hot chamber die-casting | |
DE102005051169A1 (en) | Pressure casting using a horizontal cold chamber pressure casting machine useful for casting workpieces involves metering a metal melt into a casting chamber, compacting the melt into a cating piston and withdrawal of the cast part | |
EP3164236B1 (en) | Method and device for casting at least one component | |
DE1958517A1 (en) | Casting method and device for carrying out the method | |
EP2062667B1 (en) | Plunger bar for a casting machine | |
DE2024747C3 (en) | Process for semicontinuous continuous casting, in particular of steel, and device for carrying out the process * | |
CH557710A (en) | Gravity-die casting of iron-carbon alloys - for small castings, with combined tipping of crucible and mould |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140221 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
R17P | Request for examination filed (corrected) |
Effective date: 20140902 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20160419 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160803 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 843415 Country of ref document: AT Kind code of ref document: T Effective date: 20161115 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014001882 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20161109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170209 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170309 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170309 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014001882 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170209 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
26N | No opposition filed |
Effective date: 20170810 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 843415 Country of ref document: AT Kind code of ref document: T Effective date: 20190221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161109 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230307 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230228 Year of fee payment: 10 Ref country code: DE Payment date: 20230126 Year of fee payment: 10 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |