EP3418235B1 - Détermination d'un mouvement de passager au-dessus d'une zone d'atterrissage d'ascenseur - Google Patents

Détermination d'un mouvement de passager au-dessus d'une zone d'atterrissage d'ascenseur Download PDF

Info

Publication number
EP3418235B1
EP3418235B1 EP18178834.0A EP18178834A EP3418235B1 EP 3418235 B1 EP3418235 B1 EP 3418235B1 EP 18178834 A EP18178834 A EP 18178834A EP 3418235 B1 EP3418235 B1 EP 3418235B1
Authority
EP
European Patent Office
Prior art keywords
elevator
wireless signal
passenger
landing area
mobile terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18178834.0A
Other languages
German (de)
English (en)
Other versions
EP3418235A1 (fr
Inventor
Wenbo HUANG
Xiaofei GUO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otis Elevator Co
Original Assignee
Otis Elevator Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otis Elevator Co filed Critical Otis Elevator Co
Publication of EP3418235A1 publication Critical patent/EP3418235A1/fr
Application granted granted Critical
Publication of EP3418235B1 publication Critical patent/EP3418235B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/02Control systems without regulation, i.e. without retroactive action
    • B66B1/06Control systems without regulation, i.e. without retroactive action electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3476Load weighing or car passenger counting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/46Adaptations of switches or switchgear
    • B66B1/468Call registering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/10Details with respect to the type of call input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/40Details of the change of control mode
    • B66B2201/46Switches or switchgear
    • B66B2201/4607Call registering systems
    • B66B2201/4653Call registering systems wherein the call is registered using portable devices

Definitions

  • the present invention belongs to the field of Elevator intelligent control technologies and relates to determining the movement of a passenger relative to an elevator landing area by using wireless interaction between a wireless signal module installed in an elevator car and a personal mobile terminal.
  • one common elevator calling operation manner is as follows: a passenger manually presses a certain elevator calling button on an elevator calling control panel installed in one elevator landing area to input an elevator calling request command for traveling upward or traveling downward; then after entering a certain elevator car, the passenger manually presses a certain floor button on a destination floor registration control panel installed in each elevator car to input a destination floor.
  • Such an elevator calling operation manner needs to be completed manually, and especially when the passenger cannot freely press the button as above with two hands (for example, when the passenger is carrying things in two hands or the passenger who is unable to walk sits on a wheelchair), the elevator calling operation becomes difficult, which affects passengers' experience.
  • CN204980676U discloses an elevator passenger wireless location system using WiFi.
  • EP3116200 discloses a beacon system for directing a passenger to a destination.
  • JP2012062190 discloses a system for determining when a passenger boards or gets off an elevator. However, due to the uncertainty of the passenger's action or movement, it might be easy to cause an ineffective elevator calling.
  • an automatic elevator calling system as claimed in claim 1.
  • the first wireless signal further comprises a data signal of current traveling direction information of the elevator car, wherein the traveling direction information comprises: “travel upward”, “travel downward”, and “not traveled”; and the information regarding the movement comprises the movement of the passenger from the elevator car into the elevator landing area after the passenger takes the elevator, which is determined when: the signal strength of the received first wireless signal changes from greater than or equal to the relatively strong first predetermined value to zero or relatively weak and the traveling direction information received prior to the change changes from "travel upward” or "travel downward” to "not traveled”.
  • the first wireless signal comprises the data signal of the information of the first floor where the elevator car is currently located; wherein the information regarding the movement comprises the movement of the passenger from the elevator car into the elevator landing area after the passenger takes the elevator, which is determined when: the signal strength of the first wireless signal received by the personal mobile terminal changes from greater than or equal to the relatively strong first predetermined value to zero or relatively weak and the first floor information received by the personal mobile terminal upon the change differs from the first floor information received prior to the change.
  • the automatic elevator calling system further comprises: a second wireless signal module installed in the elevator landing area, which is used for broadcasting a second wireless signal, the second wireless signal comprising a data signal of information of a second floor where the second wireless signal module is located.
  • the first wireless signal comprises the data signal of the information of the first floor where the elevator car is currently located; wherein the information regarding the movement comprises the movement of the passenger from the elevator car into the elevator landing area where the second wireless signal module is installed after the passenger takes the elevator, which is determined when: the signal strength of the received first wireless signal changes from greater than or equal to the relatively strong first predetermined value to zero or relatively weak, second floor information of the second wireless signal is not received prior to the change, and the second floor information of the second wireless signal received after the change does not differ from the first floor information of the first wireless signal received previously.
  • the information regarding the movement comprises the movement of the passenger to a location that is substantially outside the elevator landing area, which is determined when: a signal strength of the second wireless signal received by the personal mobile terminal changes from greater than or equal to a second predetermined value to zero or relatively weak.
  • the automatic elevator calling system further comprises: a second wireless signal module installed in the elevator landing area, which is used for broadcasting a second wireless signal and automatically establishing a second wireless connection with the personal mobile terminal based on the second wireless signal, and receiving, upon the establishment of the second wireless connection, an elevator calling request command regarding an elevator calling direction transmitted from the personal mobile terminal.
  • a second wireless signal module installed in the elevator landing area, which is used for broadcasting a second wireless signal and automatically establishing a second wireless connection with the personal mobile terminal based on the second wireless signal, and receiving, upon the establishment of the second wireless connection, an elevator calling request command regarding an elevator calling direction transmitted from the personal mobile terminal.
  • the first wireless signal module is further used for automatically establishing a first wireless connection with the personal mobile terminal based on the first wireless signal, and receiving, upon the establishment of the first wireless connection, a destination floor registration command transmitted from the personal mobile terminal.
  • the second wireless signal module and/or the first wireless signal module is a Bluetooth low energy module.
  • an elevator system as claimed in claim 7.
  • the first wireless signal further comprises a data signal of current traveling direction information of the elevator car, wherein the traveling direction information comprises: “travel upward”, “travel downward”, and “not traveled”; and in the step of determining the movement, the movement of the passenger from the elevator car into the elevator landing area after the passenger takes the elevator is determined when the signal strength of the received first wireless signal changes from greater than or equal to the relatively strong first predetermined value to zero or relatively weak and the traveling direction information received prior to the change changes from "travel upward” or "travel downward” to "not traveled”.
  • the first wireless signal comprises a data signal of information of a first floor where the elevator car is currently located
  • the movement of the passenger from the elevator car into the elevator landing area after the passenger takes the elevator is determined when the signal strength of the received first wireless signal changes from greater than or equal to the relatively strong first predetermined value to zero or relatively weak and the first floor information received upon the change differs from the first floor information received prior to the change.
  • the method further comprises a step of receiving a second wireless signal, wherein the second wireless signal is broadcasted from a location point in the elevator landing area outside the elevator car, and the second wireless signal comprises a data signal of information of a second floor where the second wireless signal module is located.
  • the first wireless signal comprises a data signal of information of a first floor where the elevator car is currently located; wherein in the step of determining the movement, the movement of the passenger from the elevator car into the elevator landing area where the second wireless signal module is located after the passenger takes the elevator is determined when the signal strength of the received first wireless signal changes from greater than or equal to the relatively strong first predetermined value to zero or relatively weak, second floor information of the second wireless signal is not received prior to the change, and the second floor information of the second wireless signal received after the change does not differ from the first floor information of the first wireless signal received previously.
  • the method further comprises determining a signal strength of the received second wireless signal.
  • the method further comprises a step of determining the movement of the passenger to a location that is substantially outside the elevator landing area when the signal strength of the received second wireless signal changes from greater than or equal to a second predetermined value to zero or relatively weak.
  • the method further comprises a step of automatically entering a sleep mode when the movement of the passenger to the location that is substantially outside the elevator landing area is determined.
  • the signal strength of the first wireless signal changing from greater than or equal to the relatively strong first predetermined value to zero or relatively weak refers to substantially progressively changing from greater than or equal to the relatively strong first predetermined value to zero or relatively weak.
  • transmission of an elevator calling request command regarding an elevator calling direction is suspended when the movement of the passenger from the elevator car into the elevator landing area is determined.
  • a third wireless connection is actively established with the corresponding second wireless signal module installed in the elevator landing area when the movement of the passenger from the elevator car into the elevator landing area is determined, so as to transmit a determination result that the passenger moves from the elevator car into the elevator landing area.
  • the computer apparatus comprises a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the processor executes the program to achieve steps of the method according to any of the above paragraphs.
  • a computer-readable storage medium having a computer program stored thereon, wherein the program is executable by a processor to achieve steps of the method according to any of the above paragraphs.
  • a method for determining the movement of a passenger relative to an elevator landing area comprises steps of:
  • an apparatus for determining the movement of a passenger relative to an elevator landing area wherein the apparatus determines, by using a personal mobile terminal carried by the passenger, a value of a signal strength of a first wireless signal received by the personal mobile terminal, the first wireless signal being broadcasted from an elevator car.
  • the apparatus comprises: a movement determination module, which is configured to determine information regarding the movement of the passenger relative to the elevator landing area based on the change in the signal strength of the first wireless signal.
  • Some of block diagrams shown in the figures are functional entities and do not necessarily have to correspond to physically or logically independent entities. These functional entities may be implemented in a software form, or implemented in one or more hardware modules or integrated circuits, or implemented in different processing apparatuses and/or microcontroller apparatuses.
  • an apparatus for determining the movement of a passenger relative to an elevator landing area is simply referred to as a “movement determination apparatus”
  • a method for determining the movement of a passenger relative to an elevator landing area is simply referred to as a “movement determination method”.
  • FIG. 1 shows a schematic diagram of an automatic elevator calling system according to one embodiment of the present invention
  • FIG. 2 shows a schematic diagram of an application scenario of a movement determination apparatus according to one embodiment of the present invention
  • FIG. 3 shows a schematic structural diagram of modules of a personal mobile terminal according to one embodiment of the present invention.
  • the movement determination apparatus, automatic elevator calling system, and elevator system of the embodiments of the present invention are exemplified below in conjunction with FIG. 1 and FIG. 3 ; moreover, a method for determining the movement of a passenger relative to an elevator landing area is exemplified.
  • a movement determination apparatus 10 of the embodiment of the present invention is implemented in an automatic elevator calling system of the embodiment shown in FIG. 1 , thereby forming an automatic elevator calling system according to one embodiment of the present invention.
  • the automatic elevator calling system is further applied to an elevator system 100 installed in a building.
  • the elevator system 100 comprises one or more elevator cars 110 travelling upward or downward in hoistways of the building.
  • FIG. 1 shows two of the elevator cars, 110-1 and 110-2, of the elevator system 100.
  • the traveling or stopping of each elevator car 110 in the hoistway, i.e., each elevator car 110 is controlled by an elevator controller 140 in the elevator system 100.
  • the specific control manner or control principle of the elevator controller 140 for the one or more elevator cars 110 is not restrictive, and the specific structure or arrangement manner of the elevator controller 140 is also not restrictive.
  • the automatic elevator calling system comprises a first wireless signal module 130 and/or a second wireless signal module 120.
  • the movement determination apparatus 10 comprises one or more first wireless signal modules 130.
  • Each first wireless signal module 130 is installed in each elevator car 110.
  • one first wireless signal module 130-1 is provided in the elevator car 110-1 and one first wireless signal module 130-2 is provided in the elevator car 110-2.
  • the first wireless signal module 130 is installed and integratedly provided on a destination floor registration control panel in the elevator car 110, and the specific manner of integratedly providing the first wireless signal module 130 with respect to the destination floor registration control panel is not restrictive.
  • the first wireless signal module 130 may specifically be a Bluetooth Low Energy (BLE) module.
  • the first wireless signal is a Bluetooth low energy signal.
  • the first wireless signal module 130 transmits or broadcasts the first wireless signal, for example, continuously (for example, at short time intervals) broadcasts the first wireless signal.
  • the signal strength of the broadcasted first wireless signal is attenuated with the broadcasting distance thereof, and the specific attenuation manner is not restrictive.
  • the first wireless signal broadcasted by the first wireless signal module 130 can substantially effectively cover the area in the elevator car 110 where it is installed.
  • the first wireless signal may correspondingly be, for example, a Bluetooth low energy signal, which may comprise a data signal of information of a first floor where the elevator car 110 is currently located.
  • the first wireless signal module 130 is coupled with the elevator controller 140. Therefore, during the running of each elevator car 110, the first wireless signal module 130 is able to obtain desired information (for example, current first floor information, traveling direction information, and the like of the elevator car 110) from the elevator controller 140 in real time, and package the first floor information and/or the traveling direction information (the traveling direction information comprises, for example, "travel upward", “travel downward", and “not traveled”) into wireless data signals to be broadcasted in the form of the first wireless signal.
  • desired information for example, current first floor information, traveling direction information, and the like of the elevator car 110
  • the traveling direction information comprises, for example, "travel upward", “travel downward", and “not traveled
  • the movement determination apparatus 10 may also be implemented at least partially by a personal mobile terminal 200 carried by a passenger 90.
  • Personal mobile terminals 200-1 and 200-2 respectively carried by two passengers each can implement at least part of functions of the movement determination apparatus 10.
  • Each personal mobile terminal 200 is configured to be capable of receiving the first wireless signal broadcasted by the first wireless signal module 130 when a distance condition is satisfied, as shown in FIG. 3 .
  • a wireless communication module 210 in the personal mobile terminal 200 is used for receiving the first wireless signal or other wireless signals.
  • the wireless communication module 210 may specifically be a Bluetooth low energy module.
  • the first wireless signal may comprise the data signal of the information of the first floor where the elevator car 110 is currently located and/or the current traveling direction information of the elevator car 110.
  • Each personal mobile terminal 200 can determine the signal strength of the first wireless signal it receives.
  • a signal strength determination module 230 in the personal mobile terminal 200 determines the signal strength of the received first wireless signal based on the first wireless signal.
  • the personal mobile terminal 200 is configured with a Received Signal Strength Indicator (RSSI) to determine the signal strength of the first wireless signal or any other wireless signal it receives, i.e., the signal strength determination module 230 is implemented through the RSSI.
  • RSSI Received Signal Strength Indicator
  • the signal strength of the first wireless signal received by the personal mobile terminal 200 is related to a preset effective broadcasting distance or broadcasting signal strength of the first wireless signal.
  • the effective broadcasting distance of the first wireless signal can be preset.
  • the signal strength of the first wireless signal received by the personal mobile terminal 200 will be greater than or equal to a first predetermined value under the circumstance that the personal mobile terminal 200 is at a distance of less than or equal to 0.7-1 meter from the first wireless signal module 130, then the RSSI may indicate that the signal strength of the first wireless signal is "strong", and 0.7-1 meter corresponds to the effective broadcasting distance.
  • the personal mobile terminal 200 carried by the passenger 90 in the elevator car 110 can receive the relatively "strong" first wireless signal, and can also simultaneously obtain the first floor information broadcasted in the first wireless signal.
  • the personal mobile terminal 200 of the passenger 90 can obtain the first floor information of the current elevator car in real time.
  • a movement determination module 250 of the personal mobile terminal 200 is used for determining the movement of the passenger 90 relative to the elevator landing area 410 based on the change in the signal strength of the first wireless signal.
  • the personal mobile terminal 200 carried by the passenger 90 is an intelligent terminal that realizes an automatic elevator calling operation and can automatically issue various types of elevator calling operation commands to enable the elevator controller to perform dispatch control over the elevator car.
  • the personal mobile terminal automatically issues an elevator calling command when the personal mobile terminal 200 is in or near the elevator landing area 410, and the elevator controller will control the running of the elevator car based on the elevator calling command; however, if the elevator car is parked at a certain elevator landing area, a personal mobile terminal 200 of a passenger coming out of the elevator car may also likely to automatically issue an elevator calling command, but in most cases, the passenger coming out of the elevator car generally does not need to take the elevator anymore in a short time, so the elevator calling command in this case cannot really reflect the passenger's elevator-taking demand. If the elevator calling command corresponding to the passenger 90 coming out of the elevator car is accepted by the elevator system, the elevator system might easily run ineffectively, which seriously affects the running efficiency of the elevator system.
  • the elevator car 110 travels upward or downward to and stops at a floor N is taken for example, wherein the floor N for example corresponds to the elevator landing area 410.
  • the passenger 90 carrying the personal mobile terminal 200 is taking the elevator car 110-1, the first wireless signal module 130-1 in the elevator car 110-1 continuously broadcasts the first wireless signal, and the personal mobile terminal 200 of one or more passengers 90 taking the elevator continuously receives the first wireless signal.
  • the elevator car 110-1 arrives at the floor N and a landing door is opened, the passenger 90 will walk out of the elevator car 110-1 and move toward the elevator landing area 410.
  • the passenger 90 will keep away from the first wireless signal module 130-1.
  • the signal strength of the first wireless signal (broadcasted by the first wireless signal module 130-1) received by the personal mobile terminal 200 will progressively become weaker, for example, change from greater than or equal to the relatively strong first predetermined value to zero or relatively weak.
  • the first predetermined value may indicate that the current distance from the passenger 90 to the first wireless signal module 130-1 is in the range of 0.7-1 meter. When the signal strength is greater than or equal to the first predetermined value, the passenger 90 may be probably located in the elevator car 110-1.
  • the first wireless signal module 130-1 continuously broadcasts the first floor information of the floor where the elevator car 110-1 is currently located through the first wireless signal. For example, in the process of the elevator car 110-1 traveling downward from a floor (N+x) to the floor N, the first wireless signal module 130-1 continuously broadcasts the first floor information of the floor (N+x) to the floor N until the elevator car 110-1 stops at the floor N, and the personal mobile terminal 200 will be able to receive the changing first floor information before the landing door is opened. After the landing door is opened, the personal mobile terminal 200 will also be able to receive the first floor information of the floor N while the personal mobile terminal 200 determines the signal strength of the received first wireless signal through the RSSI or the like.
  • the signal strength of the first wireless signal received by the personal mobile terminal 200 changes from greater than or equal to the relatively strong first predetermined value to zero or relatively weak and the first floor (for example, the floor N) information received by the personal mobile terminal 200 upon the change differs from the first floor (for example, the floor (N+1)) information received by the personal mobile terminal 200 prior to the change, the movement of the passenger from the elevator car 110-1 into the elevator landing area 410 after taking the elevator.
  • the passenger in combination with the change in the first floor information, not only can the passenger be determined to move from the elevator car 110-1 into the elevator landing area 410, but also the passenger can be determined to be taking the elevator before the movement, so as to distinguish from the situation where the passenger 90 first enters the elevator car 110-1 and then comes out of the elevator car 110-1 at the same floor.
  • the signal strength of the first wireless signal received by the personal mobile terminal 200 changes from greater than or equal to the relatively strong first predetermined value to zero or relatively weak and the first floor (for example, the floor N) information received by the personal mobile terminal 200 upon the change does not differ from the first floor (for example, the floor N) information received by the personal mobile terminal 200 prior to the change, it is determined that the passenger 90 moves from the elevator car 110-1 into the elevator landing area 410 which does not happen after the passenger takes the elevator.
  • the passenger 90 waiting for an elevator at the elevator landing area 410 first walks into the elevator car 110-1 and then finds that the elevator car 110-1 is not an assigned elevator car (for example, 110-2), the passenger 90 then returns from the elevator car 110-1 into the elevator landing area 410.
  • the personal mobile terminal 200 or the movement determination module 250 thereof is configured to determine that the passenger 90 moves from the elevator car 110-1 into the elevator landing area after taking the elevator when the signal strength of the first wireless signal received by the personal mobile terminal 200 or the movement determination module 250 thereof changes from greater than or equal to the relatively strong first predetermined value to zero or relatively weak and the first floor information received by the personal mobile terminal 200 or the movement determination module 250 thereof upon the change differs from the first floor information received by the personal mobile terminal 200 or the movement determination module 250 thereof prior to the change.
  • the personal mobile terminal 200 or the movement determination module 250 thereof is further configured to determine that the passenger 90 moves from the elevator car 110-1 into the elevator landing area and this does not happen after the passenger 90 takes the elevator when the signal strength of the first wireless signal received by the personal mobile terminal 200 or the movement determination module 250 thereof changes from greater than or equal to the relatively strong first predetermined value to zero or relatively weak and the first floor information received by the personal mobile terminal 200 or the movement determination module 250 thereof upon the change does not differ from the first floor information received by the personal mobile terminal 200 or the movement determination module 250 thereof prior to the change.
  • the movement determination process or the movement determination method it can be determined whether or not the passenger moves from the elevator car 110 toward the elevator landing area 410 through the change in the signal strength of the received first wireless signal; through comparing with the first floor information of the first wireless signal received previously, it can be determined whether or not the passenger travels together with the first elevator car 110 before leaving the elevator car, so that it can be determined whether or not the passenger 90 moves from the elevator car 110-1 into the elevator landing area 410 after taking the elevator.
  • the above first floor information of the first wireless signal received prior to the change is received when the RRSI indicates "strong", i.e., when the signal strength is kept greater than or equal to the first predetermined value. This further indicates that the passenger 90 receives the changing first floor information inside the elevator car 110.
  • the first wireless signal module 130 is coupled with the elevator controller 140. Moreover, during the running of each elevator car 110, the first wireless signal module 130 is able to obtain the traveling direction information of the elevator car 110 from the elevator controller 140 in real time. For example, when the elevator travels upward, the traveling direction information is "travel upward"; when the elevator travels downward, the traveling direction information is "travel downward; when the elevator is parked at a certain floor, the traveling direction information is "not traveled”; and the traveling direction information is packaged into a wireless data signal to be broadcasted in the form of the first wireless signal.
  • the first wireless signal module 130-1 continuously broadcasts the traveling direction information through the first wireless signal. For example, in the process of the elevator car 110-1 traveling downward from the floor (N+x) to the floor N, the first wireless signal module 130-1 continuously broadcasts the traveling direction information "travel downward" until the elevator car 110-1 is parked at the floor N, and the personal mobile terminal 200 will be able to continuously receive the traveling direction information before the landing door is opened.
  • the personal mobile terminal 200 or the movement determination module 250 thereof is configured to determine the movement of the passenger 90 relative to the elevator landing area 410 based on the change in the signal strength of the received first wireless signal, and also determine whether or not the movement of the passenger is performed after the passenger takes the elevator based on the change in the traveling direction information of the received first wireless signal.
  • the personal mobile terminal 100 or the movement determination module 250 thereof is further configured to determine that the passenger 90 moves from the elevator car 110 into the elevator landing area 410 after taking the elevator when the signal strength of the first wireless signal received by the personal mobile terminal 100 or the movement determination module 250 thereof changes from greater than or equal to the relatively strong first predetermined value to zero or relatively weak and the traveling direction information received prior to the change changes from "travel upward” or "travel downward” to "not traveled”.
  • the personal mobile terminal 100 or the movement determination module 250 thereof is further configured to determine that the passenger 90 moves from the elevator car 110 into the elevator landing area 410 and this does not happen after the passenger 90 takes the elevator when the signal strength of the first wireless signal received by the personal mobile terminal 100 or the movement determination module 250 thereof changes from greater than or equal to the relatively strong first predetermined value to zero or relatively weak and the traveling direction information received prior to the change is "not traveled”.
  • the movement determination process or the movement determination method it can be determined whether or not the passenger moves from the elevator car 110 toward the elevator landing area 410 through the change in the signal strength of the received first wireless signal; and then through comparing with the traveling direction information of the first wireless signal received prior to the movement, it can be determined whether or not the passenger 90 moves from the elevator car 110-1 into the elevator landing area 410 after taking the elevator.
  • the above first floor information of the first wireless signal received prior to the change is received when the RRSI indicates "strong", i.e., when the signal strength is kept greater than or equal to the first predetermined value. This further indicates that the passenger 90 receives the changing traveling direction information inside the elevator car 110.
  • the change may optionally be substantially progressive.
  • the signal strength is changed in a substantially linearly declining manner or changed in a progressive curve-declining manner. In this way, situations such as the signal strength changing "abruptly" which do not represent that the passenger 90 moves from the elevator car 110 toward the elevator landing area 410 can be ruled out, which is advantageous to increase the accuracy of the judgment.
  • the first predetermined value is selected as a value representative of the signal strength value of the first wireless signal received by the personal mobile terminal 200 when the passenger is or may be likely inside the elevator car, for example, a value of the signal strength of the first wireless signal received by the personal mobile terminal 200 when the distance from the passenger 90 to the first wireless signal module 130 is a certain value in the range of 0.7-1 meter, or a value of the signal strength of the first wireless signal received by the personal mobile terminal 200 when the corresponding passenger 90 is inside the elevator car 110.
  • the personal mobile terminal 200 outside the elevator car 110 would not be able to receive the corresponding first wireless signal or the received first wireless signal is relatively weak.
  • the signal strength of the first wireless signal being relatively weak means that the signal strength of the first wireless signal is at least smaller than the first predetermined value. In the case that the signal strength of the first wireless signal is smaller than the first predetermined value, it indicates that the passenger is not or may probably not be inside the elevator car 110 and is in the elevator landing area 410 outside the elevator car 110.
  • the movement determination apparatus 10 further comprises a second wireless signal module 120 installed in each elevator landing area 410.
  • the second wireless signal module 120 is used for broadcasting a second wireless signal, for example, continuously broadcasting a data signal of second floor information of the elevator landing area 410 where the second wireless signal module 120 is located, so that once entering the elevator landing area 410, the personal mobile terminal 200 can continuously receive the second floor information.
  • the personal mobile terminal 200 or the movement determination module 250 thereof may be configured to determine that the passenger 90 moves from the elevator car 110 into the elevator landing area 410 where the second wireless signal module 120 is installed when the signal strength of the first wireless signal received by the personal mobile terminal 200 or the movement determination module 250 thereof changes from greater than or equal to the relatively strong first predetermined value to zero or relatively weak, the second floor information of the second wireless signal is not received by the personal mobile terminal 200 or the movement determination module 250 thereof prior to the change, and the second floor information of the second wireless signal received after the change does not differ from the first floor information of the first wireless signal received by the personal mobile terminal 200 or the movement determination module 250 thereof previously.
  • the mobile terminal 200 is able to continuously receive the first floor information of the floor (for example, the floor N) where the elevator car 110-1 is currently located that is continuously broadcasted by the first wireless signal module 130-1 through the first wireless signal; after the landing door is opened, the signal strength of the first wireless signal received by the personal mobile terminal 200 changes from greater than or equal to the relatively strong first predetermined value to zero or relatively weak, and this change process indicates that the passenger 90 is in the process of moving from the elevator car 110 into the elevator landing area 410; after the change, the personal mobile terminal 200 will be able to receive the second floor information (for example, the floor N) broadcasted by the second wireless signal module 120; the second floor information is compared with the previously received first floor information, and
  • the movement determination apparatus 10 may also be used for determining whether or not the passenger moves out of the elevator landing area.
  • the personal mobile apparatus 200 while receiving the second wireless signal, the personal mobile apparatus 200 also determines the strength of the received second wireless signal through the signal strength determination module 230 (for example, the RSSI).
  • the personal mobile apparatus 200 or the movement determination module 250 thereof is also configured to determine that the passenger moves substantially out of the elevator landing area 410 when the signal strength of the second wireless signal received by the personal mobile apparatus 200 or the movement determination module 250 thereof changes from greater than or equal to a second predetermined value to zero or relatively weak.
  • the second predetermined value may correspond to the signal strength of the second wireless signal received by the personal mobile apparatus 200 at an exit location of the elevator landing area, or a signal strength threshold of a second wireless connection 320 for transmitting an elevator calling request command of the passenger 90 that is automatically established in the process of the personal mobile apparatus 200 approaching the elevator landing area 410 from outside the elevator landing area 410.
  • the passenger 90 after moving into the elevator landing area 410, the passenger 90 usually may probably leave the elevator landing area 410 or even leave the building. In the process of walking out of the elevator landing area 410, the passenger 90 continuously moves away from the second wireless signal module 120. Therefore, the signal strength of the second wireless signal received by the personal mobile terminal 200 will change from greater than or equal to the second predetermined value to zero or relatively weak. If this does occur, it can be determined that the passenger 90 moves substantially out of the elevator landing area 410.
  • the personal mobile terminal 200 is further configured to automatically enter a sleep mode when the movement of the passenger to the location that is substantially outside the elevator landing area is determined. In the sleep mode, the personal mobile terminal 200 does not automatically perform the functions of the embodiments of the present invention.
  • the personal mobile terminal 200 can be waken up from the sleep mode by the received second wireless signal, so as to automatically perform the functions of the embodiments of the present invention, for example, perform the automatic elevator calling operation again.
  • the movement determination apparatus 10 of the embodiment of the present invention can be applied to an elevator system 100 of the embodiment of the present invention described below, which can achieve an automatic elevator calling operation in a completely hand-free manner, and thus ineffective elevator calling operations can be effectively avoided.
  • a second wireless signal module 120 is provided in the elevator system 100.
  • the second wireless signal module 120 may be installed in each elevator landing area 410 of the elevator system 100 (as shown in FIG. 2 ). It should be understood that each elevator landing area 410 may have one or more second wireless signal modules 120 installed so that the second wireless signal transmitted by the second wireless signal module 120 may effectively substantially cover each elevator landing area 410.
  • the second wireless signal module 120 may be integrally provided in an elevator calling control panel of the elevator system 100, wherein the elevator calling control panel 12 is generally installed on both sides of the landing door of the elevator landing area 410, and the elevator calling control panel 12 may be provided with elevator calling buttons such as "up” or “down” so that the elevator calling request command can be manually inputted based on the elevator calling control panel 12.
  • the second wireless signal module 120 may specifically be a Bluetooth Low Energy (BLE) module.
  • the second wireless signal for example, may be a BLE signal correspondingly.
  • the second wireless signal may comprise a wake-up signal for waking up the personal mobile terminal 200 and may also comprise an identifier of the second wireless signal module 120 (for example, a Universal Unique Identifier (UUID)).
  • UUID Universal Unique Identifier
  • the specific signal form of the second wireless signal is not restrictive.
  • the signal strength of the second wireless signal is attenuated with the propagation distance thereof. Therefore, the personal mobile terminal 200 receiving the second wireless signal may substantially determine the distance from the personal mobile terminal 200 to the second wireless signal module 120 according to the signal strength of the second wireless signal. It will be understood that as the passenger walks in the elevator landing area 410, the distance dynamically changes.
  • the elevator system 100 further comprises a plurality of first wireless signal modules 130, each of which is installed in each elevator car 110.
  • first wireless signal module 130-1 is provided in the elevator car 110-1 and one first wireless signal module 130-2 is provided in the elevator car 110-2.
  • the first wireless signal module is installed and integrally provided on the destination floor registration control panel in the elevator car 110.
  • each of the second wireless signal modules 120 and the first wireless signal modules 130 in the movement determination apparatus 10 or the elevator system 100 is coupled with the elevator controller 140, for example, indirectly coupled (for example, connected via an RSL bus) to the elevator controller 140 through the elevator calling control panel and the destination floor registration control panel, respectively. Therefore, the elevator calling request command and the destination floor registration command respectively received by the second wireless signal module 120 and the first wireless signal module 130 may be transmitted to the elevator controller 140.
  • each personal mobile terminal 200 may establish a second wireless connection 320 with the second wireless signal module 120, and each personal mobile terminal 200 may establish a first wireless connection 330 with the first wireless signal module 130.
  • the personal mobile terminal 200 may be various types of intelligent terminals that have a wireless connection function and are convenient for a passenger to carry.
  • the personal mobile terminal 200 may be provided with a memory, a processor having a computing function, and the like.
  • the personal mobile terminal 200 may be a smart phone, a wearable smart device (for example, a smart bracelet, etc.), a Personal Digital Assistant (PAD), or the like, on which a corresponding application program (for example, an APP) may be installed to achieve functions thereof.
  • a corresponding application program for example, an APP
  • the personal mobile terminal 200 carried by the passenger approaching the second wireless signal module 120 will be able to automatically receive the second wireless signal and automatically establish the second wireless connection 320 with the corresponding second wireless signal module 120 based on the second wireless signal. Moreover, upon the establishment of the second wireless connection 320, the personal mobile terminal 200 transmits the elevator calling request command regarding the elevator calling direction (for example, an elevator calling request command "travel upward" or "travel downward").
  • the second wireless signal module 120 receives the elevator calling request command regarding the elevator calling direction transmitted from the person mobile terminal 200 and may further transmit the elevator calling request command to the elevator controller 140 so that the elevator controller 140 controls the running of one or more elevator cars 110 in the elevator system 100 based on the elevator calling request command.
  • the elevator calling request command automatically transmitted by the personal mobile terminal 200 can replace the elevator calling request command inputted by manually pressing the elevator calling button, and the above process can be automatically achieved without operating the personal mobile terminal 200 by the passenger.
  • each second wireless signal module 120 establishes the second wireless connection 320 with only one personal mobile terminal 200 at a certain time, and each second wireless signal module 120 may successively establish the second wireless connection 320 with the personal mobile terminals 200 carried by a plurality of passengers approaching the second wireless signal module 120 in a chronological order.
  • each personal mobile terminal 200 will actively disconnect from the second wireless connection 320 so that the second wireless signal module 120 can automatically establish the second wireless connection 320 with a personal mobile terminal 200 of the next passenger.
  • the second wireless signal module 120 is configured to return a second confirmation message to the corresponding personal mobile terminal 200 after receiving the elevator calling request command.
  • the second confirmation message indicates that the elevator calling request command is accepted by the elevator system 100 successfully.
  • the personal mobile terminal 200 is configured to actively disconnect from the second wireless connection 320 based on the received second confirmation message.
  • the elevator calling request command regarding the elevator calling direction in the present invention does not contain the destination floor information of the passenger, or even if the destination floor information is comprised therein, it is not recognized or used by the elevator controller 140. Therefore, in the embodiment of the present invention, the first wireless connection 330 with the personal mobile terminal 200 is established also depending on the first wireless signal module 130.
  • the personal mobile terminal 200 carried by the passenger 90 approaching the first wireless signal module 130 (for example, when the passenger 90 is moving toward the inside of the elevator car) will continue to be able to automatically receive the first wireless signal (at this time, the second wireless connection 320 previously established between the personal mobile terminal 200 and the second wireless signal module 120 has been already disconnected). Moreover, the personal mobile terminal 200 automatically establishes the first wireless connection 330 with the corresponding first wireless signal module 130 based on the first wireless signal.
  • the personal mobile terminal 200 Upon the establishment of the first wireless connection 330, the personal mobile terminal 200 transmits a destination floor registration command regarding the destination floor information, the first wireless signal module 130 receives the elevator calling request command regarding the elevator calling direction transmitted from the personal mobile terminal 200, and the first wireless signal module 130 may further transmit the destination floor registration command to the elevator controller 140 so that the elevator controller 140 controls the running of one or more elevator cars 110 in the elevator system 100 based on the destination floor registration command.
  • the destination floor registration command automatically transmitted by the personal mobile terminal 200 can replace the destination floor registration command inputted by manually pressing the floor button, and the above process can be automatically achieved without operating the personal mobile terminal 200 by the passenger.
  • this achieves the automatic input of a destination floor registration command to the elevator system 100 in a passenger hand-free manner, and the implementation process is also simple and convenient, which greatly improves the passenger's experience.
  • each first wireless signal module 130 establishes the first wireless connection 330 with only one personal mobile terminal 200 at a certain time, and each first wireless signal module 130 may successively establish the first wireless connection 330 with the personal mobile terminals 200 carried by a plurality of passengers 90 approaching the first wireless signal module 130 in a chronological order.
  • each personal mobile terminal 200 After establishing the first wireless connection 330 with the first wireless signal module 130 and transmitting the corresponding destination floor registration command, each personal mobile terminal 200 will actively disconnect from the first wireless connection 330 so that the first wireless signal module 130 can establish the first wireless connection 330 with a personal mobile terminal 200 of the next passenger 90.
  • the first wireless signal module 130 is configured to return a first confirmation message to the corresponding personal mobile terminal 200 after receiving the destination floor registration command.
  • the first confirmation message indicates that the destination floor registration command is accepted by the elevator system 100 successfully.
  • the personal mobile terminal 200 is configured to actively disconnect from the first wireless connection 330 based on the received first confirmation message.
  • the above process between the establishment of the second wireless connection 320 and the disconnection of the second wireless connection 320 can be completed in a short period of time.
  • the above process between the establishment of the first wireless connection 330 and the disconnection of the first wireless connection 330 can also be completed in a short period of time, for example, within a time range in an order of magnitudes of milliseconds, so that one second wireless signal module 120 or first wireless signal module 130 can complete the sequential second wireless connection 320 or first wireless connection 330 with multiple personal mobile terminals 200 in a short period of time.
  • the multiple personal mobile terminals 200 can substantially simultaneously complete the elevator calling operation within a short period of time.
  • the elevator system 100 or the movement determination apparatus 10 in the above embodiments can achieve an automatic elevator calling operation in a completely hand-free manner. For example, in the process of a certain passenger 90 entering the hall of the building and reaching the destination floor, as long as the passenger 90 carries the personal mobile terminal 200, the passenger 90 can take the elevator to the destination floor without any operation. As shown in FIG.
  • the second wireless connection 320 will be established at this point and the corresponding elevator calling request command is automatically transmitted.
  • the elevator controller 140 will control the traveling of the elevator car based on the elevator calling request command, for example, control the elevator car 110-1 to park at a floor or a landing station corresponding to the elevator landing area 410.
  • the personal mobile terminal 200 carried by the passenger 90 automatically establishes the second wireless connection 320 with the second wireless signal module 120 and transmits the elevator calling request command to the second wireless signal module 120.
  • the elevator calling request command might easily lead to ineffective running of the elevator, which affects the running efficiency of the elevator system 100.
  • a determination result regarding the movement of the passenger relative to the elevator landing area 410 may also be transmitted to the elevator system 100 at the same time.
  • the above determination result may be transmitted to the elevator controller 140 to, for example, determine that the personal mobile terminal 200 is located in the elevator landing area 410 when the passenger 90 moves from the elevator car 110 into the elevator landing area 410 after taking the elevator. Therefore, through the wireless communication module 210 of the personal mobile terminal 200, the personal mobile terminal 200 may actively establish the wireless connection with the second wireless signal module 120 and transmit the determination result to the elevator controller 140.
  • the elevator controller 140 is further configured to select the determination result regarding the movement of the passenger 90 relative to the elevator landing area 410 transmitted from the movement determination apparatus 10 as a judgment condition to judge whether or not to cancel the elevator calling request command from the personal mobile terminal 200 of the corresponding passenger 90.
  • the personal mobile terminal 200 automatically transmits an elevator calling request command with an upward elevator calling direction to the second wireless signal module 120 in the elevator landing area 410 and transmits the movement determination result simultaneously.
  • the elevator controller 140 may cancel or reject the elevator calling request command with the upward elevator calling direction corresponding to the passenger.
  • the elevator controller 140 receives especially the determination result that the passenger 90 moves from the elevator car 110 into the elevator landing area 410 but this does not happen after the passenger 90 takes the elevator, the elevator controller 140 will not cancel or reject the elevator calling request command with the upward elevator calling direction corresponding to the passenger.
  • condition for the elevator controller 140 to judge whether or not to cancel or reject the elevator calling request command corresponding to the passenger 90 is not limited to the condition of the determination result transmitted by the personal mobile terminal 200, and may also comprise many other conditions as judgment elements, for example, elevator calling request commands corresponding to other passengers, the current operating condition of the elevator car, and the like.
  • the above determination result may not be transmitted to the elevator controller 140.
  • the transmission of the elevator calling request command is suspended. In this way, even if the personal mobile terminal 200 of the passenger 90 coming out of the elevator car 110 has established the second wireless connection 320 with the second wireless signal module 120 in the elevator landing area 410 and transmits the elevator calling request command, the elevator system 100 also cannot receive the elevator calling request command.
  • the duration of the suspension can be configured according to specific circumstances, for example, configured according to a length of time from the point when a passenger normally starts to walk out of the elevator car 110 to the point when the passenger has completely walked out of the elevator landing area 410, for example, configured within a range of 15 seconds to 1 minute. It will be understood that the passenger 90 can continue to automatically transmit the elevator calling request command based on the personal mobile terminal 200 after the duration of the suspension.
  • the movement determination apparatus 10 and the movement determination method thereof of the embodiments of the present invention are not limited in the elevator system 100 that can achieve an elevator calling operation in a completely hand-free manner according to the above embodiments.
  • the movement determination apparatus 10 and the movement determination method thereof may also be applied in an elevator system based on another automatic elevator calling operation mode.
  • the personal mobile terminal may automatically transmit or automatically input an elevator calling request command regarding an elevator calling direction and destination floor information to the elevator system at one time, and the elevator system will assign a corresponding elevator car (a plurality of elevator cars simultaneously exist in the elevator system) for the passenger based on the command and automatically register the destination floor of the passenger in the elevator car.
  • the elevator controller 140 of such an elevator system may also be configured to select the determination result regarding the movement of the passenger 90 relative to the elevator landing area 410 transmitted from the movement determination apparatus 10 as a judgment condition to judge whether or not to cancel the elevator calling request command corresponding to the personal mobile terminal 200 of the passenger 90, or the personal mobile terminal 200 is configured to suspend the transmission of the elevator calling request command so as to avoid inefficient running of the assigned elevator car 110.
  • the first wireless signal module 130 in each elevator car 110 can continuously broadcast the first wireless signal.
  • the first wireless signal comprises one or more of the following: the first floor information, the traveling direction information, etc. It will be understood that the information changes in real time.
  • the second wireless signal module 120 in each elevator landing area 410 can continuously broadcast at least the second floor information.
  • the personal mobile terminal 200 or the movement determination module 250 thereof may comprehensively determine the movement of the passenger 90 relative to the elevator landing area 410 based on the changes in multiple ones of the first floor information, the second floor information, the traveling direction information, etc., such that the determination result regarding the movement may be more accurate.
  • wireless connection herein includes “wireless communication”, for example, Bluetooth communication based on a certain Bluetooth protocol.
  • each block of the block diagram in FIG. 3 or a combination of block diagrams may be achieved by computer program instructions, for example, by a dedicated APP.
  • These computer program instructions may be provided to a processor of a general-purpose computer, a special purpose computer, or other programmable data processing devices to form a machine so that these instructions are executed by the processor of the computer or other programmable data processing devices to create components for implementing functions/operations specified in the one or more block diagrams.
  • aspects of the present invention may be embodied as a system, a method, or a computer program product. Accordingly, the aspects of the present invention may employ the following forms: an all-hardware embodiment, an all-software embodiment (including firmware, resident software, microcode, etc.), or embodiments that generally may all be referred to herein as "a service,” “a circuit,” “a circuitry,” “a module” and/or "a processing system” and combine software and hardware aspects. Furthermore, the aspects of the present invention may employ the form of a computer program product embodied in one or more computer-readable media on which computer-readable program codes are implemented.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be but is not limited to, for example, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or apparatuses, or any suitable combination of the above.
  • the computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, a device, or an apparatus.
  • Program codes and/or executable instructions embodied on the computer-readable medium may be transmitted using any suitable medium, including but not limited to wireless transmission, wired transmission, fiber optic cable, RF, etc., or any suitable combination of the above.
  • Computer program codes for implementing the operations of the aspects of the present invention may be written using any combination of one or more programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, etc., as well as conventional programming languages such as the "C" programming language or similar programming languages.
  • the program codes may be executed entirely on the user's computer (apparatus), partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on a remote computer or a server.
  • the remote computer may be connected to the user's computer through any type of network including a Local Area Network (LAN) or a Wide Area Network (WAN), or may be connected to an external computer (e.g., connected using an Internet service provider via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • Computer program instructions may be provided to a processor of a general-purpose computer, a processor of a special purpose computer, such as an image processor or other programmable data processing devices to produce a machine such that the instructions executed via the processor of the computer or other programmable data processing devices create a manner to implement the functions/actions specified in one or more of the blocks of the flowcharts and/or block diagrams.
  • Computer program instructions may also be loaded onto a computer, other programmable data processing devices, or other apparatuses to cause a series of operational steps to be performed on the computer, other programmable devices, or other apparatuses to produce a computer-implemented process such that the instructions executed on the computer or other programmable devices provide procedures for implementing the functions and actions specified herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Elevator Control (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Claims (13)

  1. Système d'appel d'ascenseur automatique, comprenant :
    un premier module de signal sans fil (130-1, 130-2), de préférence un module Bluetooth basse énergie, installé dans une cabine d'ascenseur (110-1, 110-2), qui est conçu pour diffuser un premier signal sans fil ; et
    caractérisé en ce qu'il comprend un module de détermination de mouvement (250) d'un terminal mobile personnel (200-1, 200-2) porté par un passager (90), le module de détermination de mouvement (250) étant conçu pour déterminer des informations concernant le mouvement du passager (90) par rapport à la zone de palier d'ascenseur (410) sur la base d'un changement d'intensité de signal du premier signal sans fil reçu par le terminal mobile personnel (200-1, 200-2) lorsque l'intensité de signal du premier signal sans fil reçu par le terminal mobile personnel (200-1, 200-2) passe d'une valeur supérieure ou égale à une première valeur prédéterminée relativement élevée à une valeur nulle ou relativement faible ;
    dans lequel le premier module de signal sans fil (130-1, 130-2) est en outre conçu pour recevoir les informations concernant le mouvement d'un passager (90) par rapport à la zone de palier d'ascenseur (410), et les informations concernant le mouvement comprennent le mouvement du passager (90) à partir de la cabine d'ascenseur (110-1, 110-2) vers la zone de palier d'ascenseur (410).
  2. Système d'appel d'ascenseur automatique
    selon la revendication 1, dans lequel le premier signal sans fil comprend en outre un signal de données d'informations de direction de déplacement actuelles de la cabine d'ascenseur (110-1, 110-2), dans lequel les informations de direction de déplacement comprennent : « déplacement vers le haut », « déplacement vers le bas » et « aucun déplacement » ; et
    les informations concernant le mouvement comprennent le mouvement du passager (90), à partir de la cabine d'ascenseur (110-1, 110-2) vers la zone de palier d'ascenseur (410) après que le passager est monté dans l'ascenseur, qui est déterminé lorsque :
    l'intensité de signal du premier signal sans fil reçu passe d'une valeur supérieure ou égale à une première valeur prédéterminée relativement élevée à une valeur nulle ou relativement faible et les informations de direction de déplacement reçues avant le changement passent de « déplacement vers le haut » ou « déplacement vers le bas » à « aucun déplacement ».
  3. Système d'appel d'ascenseur automatique
    selon la revendication 1 ou 2, dans lequel le premier signal sans fil comprend un signal de données d'informations d'un premier étage où la cabine d'ascenseur (110-1, 110-2) est actuellement située ;
    dans lequel les informations concernant le mouvement comprennent le mouvement du passager (90), à partir de la cabine d'ascenseur (110-1, 110-2) vers la zone de palier d'ascenseur (410) après que le passager (90) est monté dans l'ascenseur, qui est déterminé lorsque :
    l'intensité de signal du premier signal sans fil reçu par le terminal mobile personnel (200-1, 200-2) passe d'une valeur supérieure ou égale à une première valeur prédéterminée relativement élevée à une valeur nulle ou relativement faible et les informations de premier étage reçues par le terminal mobile personnel (200-1, 200-2) lors du changement diffèrent des informations de premier étage reçues avant le changement.
  4. Système d'appel d'ascenseur automatique
    selon une quelconque revendication précédente, le système comprenant en outre :
    un second module de signal sans fil (120), de préférence un module Bluetooth basse énergie, installé dans la zone de palier d'ascenseur (410), qui est conçu pour diffuser un second signal sans fil, le second signal sans fil comprenant un signal de données d'informations d'un second étage où le second module de signal sans fil (120) est situé.
  5. Système d'appel d'ascenseur automatique
    selon une quelconque revendication précédente, le système comprenant en outre :
    un ou le second module de signal sans fil (120) installé dans la zone de palier d'ascenseur (410), qui est conçu pour diffuser un ou le second signal sans fil et établir automatiquement une deuxième connexion sans fil (320) avec le terminal mobile personnel (200-1, 200-2) sur la base du second signal sans fil, et recevoir, lors de l'établissement de la deuxième connexion sans fil (320), une commande de demande d'appel d'ascenseur concernant une direction d'appel d'ascenseur transmise à partir du terminal mobile personnel (200-1, 200-2).
  6. Système d'appel automatique
    selon la revendication 5, dans lequel le premier module de signal sans fil (130-1, 130-2) est en outre conçu pour établir automatiquement une première connexion sans fil (330) avec le terminal mobile personnel (200-1, 200-2) sur la base du premier signal sans fil, et recevoir, lors de l'établissement de la première connexion sans fil, une commande d'enregistrement d'étage de destination transmise à partir du terminal mobile personnel (200-1, 200-2).
  7. Système d'ascenseur, comprenant :
    le système d'appel d'ascenseur automatique selon l'une quelconque des revendications 1 à 6 ; et
    un dispositif de commande d'ascenseur (140), qui est conçu pour commander le fonctionnement d'une ou de plusieurs cabines d'ascenseur (110-1, 110-2) dans le système d'ascenseur.
  8. Procédé de détermination du mouvement d'un passager (90) par rapport à une zone de palier d'ascenseur (410), le procédé comprend les étapes de :
    réception d'un premier signal sans fil par un terminal mobile personnel (200-1, 200-2) porté par le passager (90), dans lequel le premier signal sans fil est diffusé à partir d'une cabine d'ascenseur (110-1, 110-2) ;
    détermination d'une intensité de signal du premier signal sans fil reçu ; et
    détermination du mouvement du passager (90) par rapport à la zone de palier d'ascenseur (410) sur la base du changement de l'intensité de signal du premier signal sans fil, dans lequel le mouvement du passager (90) à partir de la cabine d'ascenseur (110-1, 110-2) vers la zone de palier d'ascenseur est déterminé lorsque l'intensité de signal du premier signal sans fil reçu passe d'une valeur supérieure ou égale à une première valeur prédéterminée relativement élevée à une valeur nulle ou relativement faible.
  9. Procédé selon la revendication 8, dans lequel le premier signal sans fil comprend en outre un signal de données d'informations de direction de déplacement actuelles de la cabine d'ascenseur (110-1, 110-2), dans lequel les informations de direction de déplacement comprennent : « déplacement vers le haut », « déplacement vers le bas » et « aucun déplacement » ; et
    à l'étape de détermination du mouvement, le mouvement du passager, à partir de la cabine d'ascenseur (110-1, 110-2) vers la zone de palier d'ascenseur (410) après que le passager est monté dans l'ascenseur, est déterminé lorsque l'intensité de signal du premier signal sans fil reçu passe d'une valeur supérieure ou égale à une première valeur prédéterminée relativement élevée à une valeur nulle ou relativement faible et lorsque les informations de direction de déplacement reçues avant le changement passent de « déplacement vers le haut » ou « déplacement vers le bas » à « aucun déplacement ».
  10. Procédé selon la revendication 8 ou 9, le procédé comprenant en outre l'étape de
    réception d'un second signal sans fil, dans lequel le second signal sans fil est diffusé à partir d'un emplacement dans la zone de palier d'ascenseur (410) à l'extérieur de la cabine d'ascenseur (110-1, 110-2) et le second signal sans fil comprend un signal de données d'informations d'un second étage où un second module de signal sans fil (120) est situé.
  11. Procédé selon l'une quelconque des revendications 8 à 10, dans lequel le procédé comprend en outre la détermination d'une intensité de signal du second signal sans fil reçu.
  12. Procédé selon l'une quelconque des revendications 8 à 11, dans lequel la transmission d'une commande de demande d'appel d'ascenseur concernant une direction d'appel d'ascenseur est suspendue lorsque le mouvement du passager (90) à partir de la cabine d'ascenseur (110-1, 110-2) vers la zone de palier d'ascenseur (410) est déterminé.
  13. Procédé selon l'une quelconque des revendications 8 à 12, dans lequel une troisième connexion sans fil est établie activement avec un ou le second module de signal sans fil (120) correspondant installé dans la zone de palier d'ascenseur (410) lorsque le mouvement du passager (90) à partir de la cabine d'ascenseur (110-1, 110-2) vers la zone de palier d'ascenseur (410) est déterminé, de manière à transmettre un résultat de détermination selon lequel le passager (90) se déplace à partir de la cabine d'ascenseur (110-1, 110-2) vers la zone de palier d'ascenseur (410).
EP18178834.0A 2017-06-23 2018-06-20 Détermination d'un mouvement de passager au-dessus d'une zone d'atterrissage d'ascenseur Active EP3418235B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710484975 2017-06-23

Publications (2)

Publication Number Publication Date
EP3418235A1 EP3418235A1 (fr) 2018-12-26
EP3418235B1 true EP3418235B1 (fr) 2021-12-01

Family

ID=62715945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18178834.0A Active EP3418235B1 (fr) 2017-06-23 2018-06-20 Détermination d'un mouvement de passager au-dessus d'une zone d'atterrissage d'ascenseur

Country Status (3)

Country Link
EP (1) EP3418235B1 (fr)
CN (1) CN109110589B (fr)
ES (1) ES2899995T3 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110203781A (zh) 2018-02-28 2019-09-06 奥的斯电梯公司 自动呼梯系统和请求电梯服务的方法
EP3587322A1 (fr) * 2018-06-21 2020-01-01 Otis Elevator Company Répartition d'ascenseurs
US20200087105A1 (en) * 2018-09-14 2020-03-19 Otis Elevator Company System and method for effecting transportation by providing passenger handoff between a plurality of elevators
CN111071873A (zh) * 2018-10-22 2020-04-28 奥的斯电梯公司 基于与电梯大厅的接近度对远程电梯呼叫服务设定优先级的系统和方法
CN109678016B (zh) * 2018-12-29 2020-10-16 重庆大学 一种基于蓝牙通信的电梯控制方法
CN110104510B (zh) * 2019-05-22 2023-06-23 康力电梯股份有限公司 一种电梯用小区车辆自动预呼梯系统及方法
CN111479414B (zh) * 2020-04-23 2021-08-20 巨人通力电梯有限公司 一种基于pessral技术的电梯控制器封装方法
CN112499415A (zh) * 2020-12-18 2021-03-16 深圳优地科技有限公司 电梯控制方法、移动机器人、智能电梯及存储介质
CN113514819B (zh) * 2021-06-02 2024-04-09 深圳市普渡科技有限公司 梯控主控模块安装位置确定方法、系统、装置及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431429A1 (fr) * 2017-06-22 2019-01-23 Otis Elevator Company Système de communication et procédé pour système d'ascenseur

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226473A (ja) * 2002-02-01 2003-08-12 Mitsubishi Electric Corp エレベーター制御システム
JP5421648B2 (ja) * 2009-04-28 2014-02-19 株式会社日立製作所 エレベーター制御装置及びこのエレベーター制御装置を備えてなるエレベーター装置
JP5549499B2 (ja) * 2010-09-17 2014-07-16 富士通株式会社 乗降検出プログラム、乗降検出方法及び乗降検出システム
CN105073615B (zh) * 2013-03-05 2017-09-19 通力股份公司 电梯的门道
JP6181446B2 (ja) * 2013-07-08 2017-08-16 株式会社日立製作所 エレベータシステム
ES2551939B1 (es) * 2014-05-21 2016-08-31 Orona, S. Coop. Método y sistema de señalización de estado para un aparato elevador y aparato elevador que comprende dicho sistema
CN105635956B (zh) * 2014-11-04 2019-05-24 香港理工大学深圳研究院 一种基于室内虚拟地标的定位方法及装置
CN204980676U (zh) * 2015-06-12 2016-01-20 上海秉上智能科技有限公司 一种电梯乘客无线定位识别系统
US20170010099A1 (en) * 2015-07-10 2017-01-12 Otis Elevator Company Passenger conveyance way finding beacon system
JP6425630B2 (ja) * 2015-07-22 2018-11-21 株式会社日立ビルシステム 昇降機のかご呼びシステム及び携帯情報端末
JP2018521932A (ja) * 2015-08-06 2018-08-09 オーチス エレベータ カンパニーOtis Elevator Company エレベータシステムのホール及びかご呼びを開始するシステム及び方法
WO2017090187A1 (fr) * 2015-11-27 2017-06-01 三菱電機株式会社 Système d'ascenseur, terminal de communication et dispositif de commande

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431429A1 (fr) * 2017-06-22 2019-01-23 Otis Elevator Company Système de communication et procédé pour système d'ascenseur

Also Published As

Publication number Publication date
EP3418235A1 (fr) 2018-12-26
ES2899995T3 (es) 2022-03-15
CN109110589B (zh) 2022-11-22
CN109110589A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
EP3418235B1 (fr) Détermination d'un mouvement de passager au-dessus d'une zone d'atterrissage d'ascenseur
US11584613B2 (en) Determination for motion of passenger over elevator landing area
EP3533742B1 (fr) Terminal mobile personnel et procédé de demande de service d'ascenseur
CN109110593B (zh) 用于电梯系统的通信系统和通信方法
CN109110601B (zh) 乘客相对电梯轿厢的移动的确定
CN109928281B (zh) 乘客运输系统的维护
EP3566991B1 (fr) Demande de service d'ascenseur sur la base d'un module d'application de médias sociaux
CN109969877B (zh) 自动呼梯系统和自动呼梯控制方法
US11447366B2 (en) Determination for motion of passenger over elevator car
CN109279461B (zh) 电梯轿厢中的乘客人流的无缝跟踪
US20190193989A1 (en) Determination of non-normal elevator calling request in an automatic elevator calling request system
EP3331795B1 (fr) Système et procédé de déclenchement d'appels de cabine et de palier pour un système d'ascenseur
US11939186B2 (en) Wireless signal device, system and method for elevator service request
CN109279463B (zh) 控制乘客进入正确的电梯轿厢的智能指引
CN110407040B (zh) 用于电梯服务请求的无线信号装置、系统和方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190625

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200512

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210625

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1451591

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018027363

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2899995

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220315

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1451591

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220301

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220301

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018027363

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

26N No opposition filed

Effective date: 20220902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220620

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220620

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230524

Year of fee payment: 6

Ref country code: DE

Payment date: 20230523

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 6

Ref country code: ES

Payment date: 20230703

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201