EP3401936B1 - Electromagnetic adjustment device - Google Patents

Electromagnetic adjustment device Download PDF

Info

Publication number
EP3401936B1
EP3401936B1 EP18180013.7A EP18180013A EP3401936B1 EP 3401936 B1 EP3401936 B1 EP 3401936B1 EP 18180013 A EP18180013 A EP 18180013A EP 3401936 B1 EP3401936 B1 EP 3401936B1
Authority
EP
European Patent Office
Prior art keywords
unit
anchor
profile section
realized
anchor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18180013.7A
Other languages
German (de)
French (fr)
Other versions
EP3401936A1 (en
Inventor
Oliver Thode
Viktor Raff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETO Magnetic GmbH
Original Assignee
ETO Magnetic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45923067&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3401936(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ETO Magnetic GmbH filed Critical ETO Magnetic GmbH
Publication of EP3401936A1 publication Critical patent/EP3401936A1/en
Application granted granted Critical
Publication of EP3401936B1 publication Critical patent/EP3401936B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/13Electromagnets; Actuators including electromagnets with armatures characterised by pulling-force characteristics

Definitions

  • the present invention relates to an electromagnetic actuating device according to the preamble of the main claim.
  • Such a device is, for example, a solenoid valve device from the DE 198 48 919 A1 known.
  • a solenoid valve device from the DE 198 48 919 A1 known.
  • an armature unit guided radially symmetrically in the coil interior opens and closes or closes a valve seat for the fluid to be controlled.
  • the armature unit (which generally has a cylindrical armature body) moves along the axial direction relative to a stationary core unit, which is part of the magnetic circuit and, through its design, influences the movement behavior, in particular a magnetic armature force of the armature unit.
  • a stationary core unit which is part of the magnetic circuit and, through its design, influences the movement behavior, in particular a magnetic armature force of the armature unit.
  • the prior art device for influencing the movement behavior or force curve of the armature movement in the transition area between the (movable) armature unit and the (stationary) core unit shows a so-called control cone area (control area), which extends along the axial direction in an area of the Armature stroke (namely the area immediately after the armature unit is released from the core unit) influences the magnetic flux in the magnetic circuit between the armature unit, core unit and the other magnetic circuit elements involved.
  • control area control cone area
  • this control area control cone area
  • the movement behavior of the armature unit, in particular a course of the magnetic force along the movement stroke (movement stroke path) can be specifically influenced, for example, strengthening or weakening it comparatively or selectively.
  • the axial overlap of the armature unit and control unit in the control area which is assumed to be known, also has potential disadvantages, in particular with regard to the wear and life characteristics of electromagnetic actuating devices designed in this way.
  • This (in the case of radially symmetrical arrangements radial) magnetic force component causes disadvantageous magnetic transverse forces which have a disadvantageous effect in practice or in particular in connection with frequent movement cycles or long operating times.
  • Such an anchor unit in the manner of a diametrical two-point support at respective inner positions of the anchor guide), which is at an angle in the scope of the clearance fit, initially leads to the core unit and anchor unit (and therefore the profile sections forming the control area) no longer exactly aligned, thus resulting in radial air gaps of different sizes in the circumferential direction (more precisely: sections of a circumferential air gap).
  • the consequence is a premature failure, especially in systems with a control cone area that are optimized in terms of size and energy consumption, especially if the anchor unit is provided with sliding coatings made of PTFE or MoS 2 in an otherwise known manner and no (but again complex) slide film for guiding the anchor is used.
  • the object of the present invention is therefore to improve a generic electromagnetic actuating device with regard to its operating and wear behavior, in particular to reduce disadvantageous transverse or normal forces which promote tilting of the armature unit, and thus within the scope of the axially overlapping control area systems to combine favorable magnetic movement behavior and energy optimization with protection against unwanted wear due to disadvantageous friction.
  • control area control cone area
  • the control area between the armature unit and the core unit is configured by designing the (magnetically) flux-effective cross sections of the first or second profile section such that, in the usual operating current causing the armature unit to move, the Flow and force compensation in the manner of a regulatory effect is achieved.
  • the profile sections are designed in such a way that, in the event of tilting or deflection in a first region of the associated (radial) air gap, the increased transverse force (normal force) is compensated for by an associated magnetic flux (corresponding to the shortened air gap) Flooding) a magnetic resistance increases in this area.
  • the profile sections are designed with regard to their flow-effective material cross-section so that in a correspondingly tilted state of the armature unit in the (radial) narrow area of the air gap, the resulting increased flooding leads to saturation, thus resulting in a flux-effective magnetic resistance, which then occurs leads to the magnetic flow being displaced or shifted to other areas of the air gap (back).
  • This then has an effect which directly reduces the disadvantageous normal or transverse force, with the advantageous consequence of lower friction, correspondingly lower energy consumption and reduced wear.
  • the principle according to the invention leads to the fact that the usual, movement-typical operating currents for the coil unit there is an effective shift of the shear force-promoting magnetic flux from the area of the shortest air gap to other areas, since the magnetic saturation effect - correspondingly compensatory - offers a higher magnetic resistance.
  • the principle according to the invention can thus be realized by suitable configuration of the profile sections, which are then adapted to a flooding to be expected in typical operating conditions, in such a way that they specifically one with a radially opposite minimized air gap experienced magnetic flux resistance increase through magnetic saturation.
  • first or second profile section a tooth or cam shape in longitudinal section with suitably conical inclination angles which, in the case of the advantageous radially symmetrical design, accordingly form as an annular projection (or interact with an appropriately adapted annular groove).
  • a so-called inner cone is provided.
  • a narrow cone ring (as a second profile section) of the core unit which tends to become magnetically saturated due to its flow-effective cross-sectional design, dips into an internal ring shoulder (cone shoulder) at the front end of the anchor unit. Due to the narrow cone-shaped ring heel, the associated anchor section reacts sensitively to changes in the magnetic flux and generates compensating (uprighting) magnetic forces according to the above-described mechanism of action, which counteract the disadvantageous anchor inclination.
  • the present invention advantageously reduces disadvantageous friction between the armature unit and armature guide, so that energy and magnetic force are optimized, and wear is counteracted.
  • the present invention is thus advantageously suitable, for example, for realizing valve devices, more preferably pneumatic valve devices, but is not restricted to this field of application. Rather, the advantage of the present invention can be used favorably in all forms of realization of electromagnetic actuating devices, in which - due to the design or the play - a tilting or deflecting of the armature unit in an armature guide causes disadvantageous friction or wear and is used anyway to influence the magnetic force curve Profile elements in the control area (control cone area) can be dimensioned and used to implement the compensation behavior advantageous according to the invention.
  • Fig. 3 illustrates the application context of the present invention; shown is a structurally otherwise known 2/2-way valve which is used in the motor vehicle sector and is provided with a cone control in the interaction between the anchor unit and the cone unit.
  • FIG Fig. 3 which is to be considered as belonging to the present invention with its features in the application context outside the control range, a housing 10 which carries a stationary winding 14 held on a coil carrier 12.
  • an anchor unit 20 along a longitudinal axis 18 of movement guided, which has a cylindrical outer contour, is supported against the force of a compression spring 22 in the axial direction from a stationary core region 24 and, opposite the core region 24, has a valve rubber insert 26 which is used to close a valve seat 28 in response to an axial Movement of the armature unit 20 is formed.
  • the valve effect occurs between a supply connection 30 and a working connection 32.
  • the armature unit 20 is provided on the shell side in an otherwise known manner by means of a PTFE or MoS 2 sliding coating; there is no slide film for storing the anchor unit.
  • the armature unit 20 moves along the longitudinal movement axis 18 in the vertical direction (Z in Fig. 3 ).
  • the directions X, Y orthogonal to this axis are drawn accordingly.
  • a control area (control cone area) in the magnetic transition between the core unit 24 and the sectionally hollow cylindrical armature unit 20 is in the enlarged, half longitudinal sectional view of FIG Fig. 1 illustrates, whereby, in the direct comparison, the embodiment of Fig. 4 shows a control area which is not optimized and advantageous in the sense of the invention.
  • the core region has an annular projection 34, which extends from the engagement-side end face of the core unit 24, which is provided inwards relative to an inner ring shoulder 36 of the associated engagement-side end region of the anchor unit 20 in the direction of the axis 18.
  • This control area in the state of the armature unit tilted to the right (or clockwise), clarified in this regard, is both the outward flank of the annular projection 34 and the inward flank of the annular groove 36, relative to the longitudinal axis 18, by a cone angle of approximately 8 ° inclined ( Within the scope of the invention, angles between 3 ° and 40 °, preferably between 5 ° and 20 °, more preferably between 7 ° and 15 °, have proven to be favorable and preferred). In the context of the invention, these cone angles are also configured identically, so that when the anchor unit is in a central position (ie untilted, in contrast to the illustration of FIG Fig. 2 ) the flank angles match.
  • the one-piece, annular and conical projection 34 is now designed such that saturation then occurs in the event of a typical operating current through the coil unit 12, 14 (or a flooding thereby occurring in the transition region to the armature unit, in particular in the vertical air gap 40) occurs when this air gap (40 'in Fig. 2 ) becomes very narrow in the left-hand area, as a result of which the magnetic flux in this area and through the associated section of the projection 34 increases, which means that, due to the comparatively narrow ring diameter, the saturation takes place primarily here.
  • this then advantageously leads to the fact that, for example in the (radially) opposite, right-hand area, a magnetic flooding increases over the air gap area 40 ′′ there, due to the saturation in the left-hand area of the annular projection 34, magnetic flux is displaced or displaced outside of this area.
  • the ring projection 34 which is designed here specifically to bring about saturation, forms the basis for a regulating or compensating system with regard to that as a profile section of the core unit lateral forces to be overcome or mitigated according to the task.
  • the present invention is not limited to the specific embodiment shown, rather there are numerous ways and possibilities within the scope of the present invention of the control area by suitable profiling of the form cone-side and the anchor-side end section.
  • the contour of the Fig. 2 (The ring protrusion on the core side is located radially on the inside) can be reversed, just as there can be a profiling on the armature side (or on both sides) that is optimized for fast magnetic saturation.
  • an outer circumferential ring shoulder 50 on the outer jacket side has proven to be advantageous, since this additionally reduced disadvantageous friction on the surrounding anchor guide.

Description

Die vorliegende Erfindung betrifft eine elektromagnetische Stellvorrichtung nach dem Oberbegriff des Hauptanspruchs.The present invention relates to an electromagnetic actuating device according to the preamble of the main claim.

Eine derartige Vorrichtung ist beispielsweise als Elektromagnet-Ventilvorrichtung aus der DE 198 48 919 A1 bekannt. Als Reaktion auf das Bestromen einer (stationären) Spuleneinheit bewegt sich eine radialsymmetrisch im Spuleninneren geführte Ankereinheit und öffnet bzw. verschließt einen Ventilsitz für das zu steuernde Fluid.Such a device is, for example, a solenoid valve device from the DE 198 48 919 A1 known. In response to the energization of a (stationary) coil unit, an armature unit guided radially symmetrically in the coil interior opens and closes or closes a valve seat for the fluid to be controlled.

Entlang der axialen Richtung bewegt sich dabei die (i.w. einen zylindrischen Ankerkörper aufweisende) Ankereinheit relativ zu einer stationären Kerneinheit, welche Teil des magnetischen Kreises ist und durch seine Ausgestaltung das Bewegungsverhalten, insbesondere eine magnetische Ankerkraft der Ankereinheit, beeinflusst. Konkret zeigt die zum Stand der Technik genannte Vorrichtung zur Beeinflussung des Bewegungsverhaltens bzw. Kraftverlaufs der Ankerbewegung im Übergangsbereich zwischen der (bewegbaren) Ankereinheit und der (stationären) Kerneinheit einen sogenannten Steuerkonus-Bereich (Steuerbereich), welcher entlang der axialen Richtung in einem Bereich des Ankerhubes (nämlich dem Bereich unmittelbar nach dem Lösen der Ankereinheit von der Kerneinheit) den Magnetfluss im magnetischen Kreis zwischen Ankereinheit, Kerneinheit und den weiteren beteiligten magnetischen Kreiselementen beeinflusst.The armature unit (which generally has a cylindrical armature body) moves along the axial direction relative to a stationary core unit, which is part of the magnetic circuit and, through its design, influences the movement behavior, in particular a magnetic armature force of the armature unit. Specifically, the prior art device for influencing the movement behavior or force curve of the armature movement in the transition area between the (movable) armature unit and the (stationary) core unit shows a so-called control cone area (control area), which extends along the axial direction in an area of the Armature stroke (namely the area immediately after the armature unit is released from the core unit) influences the magnetic flux in the magnetic circuit between the armature unit, core unit and the other magnetic circuit elements involved.

Der aus der DE 198 48 919 A1 bekannte Steuerkonus, hier in Form eines endseitig an der Ankerstirnfläche umlaufenden, nach außen abgeflachten Ringabsatzes und einer entsprechenden (radial) inneren Einformung auf Seite der Kerneinheit, bewirkt hier etwa eine Anhebung der Magnetkraft des Ankers in dem beschriebenen Start-Hub-Bereich: Durch die gezeigte Überlappung zwischen Ankereinheit und Kernbereich reduziert sich die notwendige magnetische Durchflutung von Kern und Anker durch Bestromung der Wicklung, relativ zu einem sogenannten Flachkonus, nämlich einer Ausgestaltung des Übergangs zwischen Ankereinheit und Kerneinheit ohne axiale Überlappung bzw. Verkürzung des Arbeitsluftspalts. Entsprechend werden die magnetischen Feldlinien des Magnetflusses über die axiale Überlappung vorrangig geschlossen, mithin die Magnetkraft in diesem Ankerstart-Hubbereich gezielt erhöht.The one from the DE 198 48 919 A1 Known control cone, here in the form of a ring shoulder, which is circumferentially flattened on the end face of the armature end face and a corresponding (radial) internal indentation on the part of the core unit, brings about an increase in the magnetic force of the armature in the described start-stroke range: by the shown overlap between armature unit and core area reduces the necessary magnetic flow through the core and armature by energizing the Winding, relative to a so-called flat cone, namely an embodiment of the transition between anchor unit and core unit without axial overlap or shortening of the working air gap. Accordingly, the magnetic field lines of the magnetic flux are closed primarily via the axial overlap, and consequently the magnetic force in this armature start stroke range is increased in a targeted manner.

Durch geeignete Ausgestaltung dieses Steuerbereichs (Steuerkonus-Bereichs), etwa eine Vorgabe einer effektiven axialen Überlappung, lässt sich so das Bewegungsverhalten der Ankereinheit, insbesondere ein Verlauf der Magnetkraft entlang des Bewegungshubes (Bewegungshubwegs) gezielt beeinflussen, etwa vergleichsmäßigen oder punktuell verstärken oder abschwächen.By suitably designing this control area (control cone area), for example specifying an effective axial overlap, the movement behavior of the armature unit, in particular a course of the magnetic force along the movement stroke (movement stroke path), can be specifically influenced, for example, strengthening or weakening it comparatively or selectively.

Allerdings bringt die als bekannt vorauszusetzende axiale Überlappung von Ankereinheit und Steuereinheit im Steuerbereich auch potentielle Nachteile, insbesondere im Hinblick auf die Verschleiß- bzw. Lebensdauereigenschaften von derart ausgestalteten elektromagnetischen Stellvorrichtungen. So entsteht nämlich durch die axiale Überlappung der den Steuerbereich ausbildenden Profilabschnitte auf Anker- bzw. Kernseite, neben dem für die Ankerbewegung wichtigen axialen magnetischen Flussverlauf, auch eine Radialkomponente (bzw. Normalkomponente zur axialen Richtung) des magnetischen Flussverlaufs, durch den zwischen einander gegenüberstehenden Wänden der Profilabschnitte gebildeten Luftspalt. Dieser (bei radialsymmetrischen Anordnungen radiale) Magnetkraftanteil bewirkt nachteilige magnetische Querkräfte, welche sich in der Praxis bzw. insbesondere im Zusammenhang mit häufigen Bewegungszyklen bzw. langen Betriebszeiten nachteilig auswirken. So würde zwar, bei exakter fluchtender Ausrichtung von Anker und Kern zueinander, die jeweilige durch den radialen Magnetkraftanteil erzeugte Querkraft im Zentrum aufgehoben werden und so eine Kompensation bewirken. In der Fertigungs- und Betriebspraxis lässt sich dies jedoch nicht erreichen. Vielmehr ist der Effekt zu beobachten, dass die (notwendigerweise mit einem radialen Spiel gelagerte) Ankereinheit innerhalb einer umgebenden Führung (im Rahmen des vorhandenen Spiels) zum Verkippen neigt, wobei ein derartiger Effekt etwa zusätzlich verstärkt wird durch nicht ganz mittig an die Ankereinheit angreifende Druckfedern oder dergleichen Einflüsse, ferner spielen Fertigungstoleranzen und andere Effekte eine Rolle.However, the axial overlap of the armature unit and control unit in the control area, which is assumed to be known, also has potential disadvantages, in particular with regard to the wear and life characteristics of electromagnetic actuating devices designed in this way. This is because the axial overlap of the profile sections forming the control area on the armature or core side, in addition to the axial magnetic flux profile that is important for the armature movement, also creates a radial component (or normal component to the axial direction) of the magnetic flux profile, through the walls lying opposite one another of the profile sections formed air gap. This (in the case of radially symmetrical arrangements radial) magnetic force component causes disadvantageous magnetic transverse forces which have a disadvantageous effect in practice or in particular in connection with frequent movement cycles or long operating times. Thus, if the armature and core were exactly aligned with one another, the respective transverse force generated by the radial magnetic force component would be canceled in the center and thus cause compensation. However, this cannot be achieved in manufacturing and operating practice. Rather, the effect can be observed that the anchor unit (which is necessarily mounted with a radial clearance) within a surrounding guide (in the Frame of the existing game) tends to tilt, such an effect being additionally amplified by pressure springs or similar influences which do not quite affect the center of the anchor unit, furthermore manufacturing tolerances and other effects play a role.

Eine derartige, im Rahmen der Spielpassung schräg in der Ankerführung stehende Ankereinheit (in der Art einer diametralen Zwei-Punkt-Auflage an jeweiligen Innenpositionen der Ankerführung) führt dann zunächst dazu, dass Kerneinheit und Ankereinheit (und mithin die den Steuerbereich ausbildenden Profilabschnitte) nicht mehr exakt fluchten, sich damit in Umfangsrichtung verschieden große radiale Luftspalte (genauer: Abschnitte eines umlaufenden Luftspalts) einstellen.Such an anchor unit (in the manner of a diametrical two-point support at respective inner positions of the anchor guide), which is at an angle in the scope of the clearance fit, initially leads to the core unit and anchor unit (and therefore the profile sections forming the control area) no longer exactly aligned, thus resulting in radial air gaps of different sizes in the circumferential direction (more precisely: sections of a circumferential air gap).

Bei Bestromung der Spuleneinheit und dadurch bewirkter magnetischer Durchflutung im Steuerbereich entstehen in den verschieden breiten Luftspaltpositionen entsprechend ungleich hohe magnetische Querkräfte: Kleine radiale Luftspalte erzeugen relativ hohe magnetische Querkräfte, entsprechend große radiale Luftspaltabschnitte kleine magnetische Querkräfte. Diese kompensieren sich dann in radialer Richtung nicht mehr, so dass eine resultierende (radiale) Querkraft in Richtung des kleinsten Luftspalts entsteht.When the coil unit is energized and the resulting magnetic flooding in the control area results in unevenly high transverse magnetic forces in the air gap positions of different widths: Small radial air gaps generate relatively high magnetic transverse forces, and correspondingly large radial air gap sections produce small magnetic transverse forces. These then no longer compensate for each other in the radial direction, so that a resulting (radial) transverse force arises in the direction of the smallest air gap.

Dies wirkt auf die (mit Spiel gelagerte) Ankereinheit als Normalkraft und erzeugt entsprechend den Reibwerten des tribologischen Systems aus Ankereinheit (bzw. einer auf der Ankereinheit vorgesehenen Anker-Gleitbeschichtung) sowie der Ankerführung nachteilige Haft- und Gleitreibkräfte.This acts as a normal force on the armature unit (which is supported with play) and, in accordance with the friction values of the tribological system consisting of the armature unit (or an armature sliding coating provided on the armature unit) and the armature guide, generates disadvantageous adhesive and sliding frictional forces.

Diese wirken sich zunächst negativ auf die Kräftebilanz des Magneten aus und führen zu einem (unnötig) vergrößerten Magnetkraftbedarf, mithin größerem Magnetbauraum.These initially have a negative effect on the balance of forces of the magnet and lead to an (unnecessarily) increased magnetic force requirement, and consequently a larger magnet installation space.

Bei elektromagnetischen Schaltvorrichtungen mit hoher Lebensdaueranforderung (typischerweise mehr als 100 Millionen Schaltzyklen) erzeugen die beschriebenen hohen magnetischen Querkräfte (Normalkräfte) zusätzlich eine nachteilig hohe Flächenpressung auf die Reibpartner und beschleunigen dadurch deren tribologischen Verschleiß. Besonders gravierend ist dies etwa bei Pneumatik-Stellanwendungen (wie etwa einem Pneumatikventil), da hier keine Schmierung od. dgl. verschleißmindernd wirken kann.In the case of electromagnetic switching devices with a long service life requirement (typically more than 100 million switching cycles), the described high magnetic lateral forces (normal forces) additionally a disadvantageously high surface pressure on the friction partners and thereby accelerate their tribological wear. This is particularly serious in pneumatic control applications (such as a pneumatic valve), since no lubrication or the like can reduce wear.

Konsequenz ist gerade bei in der Baugröße sowie im Energieverbrauch optimierten Systemen mit Steuerkonus-Bereich ein vorzeitiges Ausfallen, insbesondere wenn die Ankereinheit in ansonsten bekannter Weise mit Gleitbeschichtungen aus PTFE oder MoS2 versehen ist und keine (selbst aber wiederum aufwändige) Gleitfolie zur Führung des Ankers verwendet wird.The consequence is a premature failure, especially in systems with a control cone area that are optimized in terms of size and energy consumption, especially if the anchor unit is provided with sliding coatings made of PTFE or MoS 2 in an otherwise known manner and no (but again complex) slide film for guiding the anchor is used.

Ferner ist aus dem Stand der Technik auch die US 2009/0051471 A1 bekannt, die eine elektromagnetische Stellvorrichtung offenbart, wobei eine in Reaktion auf die Bestromung von einer stationären Spuleneinheit bewegbare Ankereinheit einen innenliegenden Ringabsatz aufweist.Furthermore, from the prior art US 2009/0051471 A1 known, which discloses an electromagnetic actuating device, wherein an armature unit movable in response to the energization of a stationary coil unit has an inner ring shoulder.

Aufgabe der vorliegenden Erfindung ist es daher, eine gattungsgemäße elektromagnetische Stellvorrichtung im Hinblick auf ihr Betriebs- sowie Verschleißverhalten zu verbessern, insbesondere nachteilige Quer- bzw. Normalkräfte, die ein Verkippen der Ankereinheit befördern, zu vermindern, und so im Rahmen der einen axial überlappenden Steuerbereich aufweisenden Systeme günstiges magnetisches Bewegungsverhalten und Energieoptimierung mit Schutz gegen unerwünschten Verschleiß durch nachteilige Reibung zu kombinieren.The object of the present invention is therefore to improve a generic electromagnetic actuating device with regard to its operating and wear behavior, in particular to reduce disadvantageous transverse or normal forces which promote tilting of the armature unit, and thus within the scope of the axially overlapping control area systems to combine favorable magnetic movement behavior and energy optimization with protection against unwanted wear due to disadvantageous friction.

Die Aufgabe wird durch die elektromagnetische Stellvorrichtung mit den Merkmalen des Hauptanspruchs gelöst; unabhängiger Schutz im Rahmen der vorliegenden Erfindung wird durch die Verwendung nach dem Patentanspruch 8 sowie das Verfahren nach dem Anspruch 9 beansprucht. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.The object is achieved by the electromagnetic actuating device with the features of the main claim; Independent protection in the context of the present invention is claimed by the use according to claim 8 and the method according to claim 9. Advantageous developments of the invention are described in the subclaims.

In erfindungsgemäß vorteilhafter Weise ist der Steuerbereich (Steuerkonus-Bereich) zwischen der Ankereinheit und der Kerneinheit durch Ausgestaltung der (magnetisch) flusswirksamen Querschnitte des ersten bzw. zweiten Profilabschnitts so eingerichtet, dass bei dem üblichen, das Bewegen der Ankereinheit bewirkenden Betriebsstrom für die Spuleneinheit eine Fluss- und Kraftkompensation in der Art einer Regelungswirkung erreicht wird. Genauer gesagt sind erfindungsgemäß die Profilabschnitte so ausgestaltet, dass im Fall eines Verkippens bzw. einer Auslenkung in einem ersten Bereich des zugehörigen (radialen) Luftspalts die erhöhte Querkraft (Normalkraft) dadurch kompensiert wird, dass für einen zugehörigen, entsprechend dem verkürzten Luftspalt erhöhten magnetischen Fluss (Durchflutung) ein magnetischer Widerstand in diesem Bereich ansteigt. Typischerweise sind dabei die Profilabschnitte im Hinblick auf ihren flusswirksamen Materialquerschnitt so ausgestaltet, dass es in einem entsprechend verkippten Zustand der Ankereinheit im (radialen) Schmalbereich des Luftspalts durch die dort entstehende erhöhte Durchflutung zu einer Sättigung kommt, somit ein flusswirksamer magnetischer Widerstand entsteht, welcher dann dazu führt, dass die magnetische Durchflutung in andere Bereiche des Luftspalts (zurück) verdrängt bzw. verlagert wird. Dies hat dann einen unmittelbar die nachteilige Normal- bzw. Querkraft reduzierende Wirkung, mit der vorteilhaften Folge geringerer Reibung, entsprechend geringeren Energieverbrauchs und verminderten Verschleißes.In an advantageous manner according to the invention, the control area (control cone area) between the armature unit and the core unit is configured by designing the (magnetically) flux-effective cross sections of the first or second profile section such that, in the usual operating current causing the armature unit to move, the Flow and force compensation in the manner of a regulatory effect is achieved. More accurate According to the invention, the profile sections are designed in such a way that, in the event of tilting or deflection in a first region of the associated (radial) air gap, the increased transverse force (normal force) is compensated for by an associated magnetic flux (corresponding to the shortened air gap) Flooding) a magnetic resistance increases in this area. Typically, the profile sections are designed with regard to their flow-effective material cross-section so that in a correspondingly tilted state of the armature unit in the (radial) narrow area of the air gap, the resulting increased flooding leads to saturation, thus resulting in a flux-effective magnetic resistance, which then occurs leads to the magnetic flow being displaced or shifted to other areas of the air gap (back). This then has an effect which directly reduces the disadvantageous normal or transverse force, with the advantageous consequence of lower friction, correspondingly lower energy consumption and reduced wear.

Im Rahmen der bevorzugt einzusetzenden radialsymmetrischen Systeme (d.h. eine Ankereinheit ist innerhalb einer diese umgebenden Spuleneinheit geführt, wobei stirnseitig Ankereinheit sowie Kerneinheit die jeweiligen Profilabschnitte in Form von umlaufenden Erhöhungen bzw. Vertiefungen ausbilden) führt das erfindungsgemäße Prinzip dazu, dass bei den üblichen, bewegungstypischen Betriebsströmen für die Spuleneinheit eine wirksame Verlagerung des Querkraft-fördernden Magnetflusses aus dem Bereich des kürzesten Luftspalts in andere Bereiche erfolgt, da die magnetische Sättigungswirkung - entsprechend kompensatorisch - einen höheren magnetischen Widerstand anbietet.Within the framework of the radial-symmetrical systems to be used with preference (i.e. an armature unit is guided within a coil unit surrounding it, the armature unit and core unit forming the respective profile sections in the form of circumferential elevations or depressions on the front side), the principle according to the invention leads to the fact that the usual, movement-typical operating currents for the coil unit there is an effective shift of the shear force-promoting magnetic flux from the area of the shortest air gap to other areas, since the magnetic saturation effect - correspondingly compensatory - offers a higher magnetic resistance.

Damit lässt sich das erfindungsgemäße Prinzip durch geeignete Ausgestaltung der Profilabschnitte realisieren, welche dann, angepasst an eine in typischen Betriebszuständen zu erwartende Durchflutung, so ausgestaltet werden, dass diese bei radial gegenüberstehendem minimiertem Luftspalt gezielt eine magnetische Fluss-Widerstandserhöhung durch magnetische Sättigung erfahren.The principle according to the invention can thus be realized by suitable configuration of the profile sections, which are then adapted to a flooding to be expected in typical operating conditions, in such a way that they specifically one with a radially opposite minimized air gap experienced magnetic flux resistance increase through magnetic saturation.

Damit bietet es sich an, dem ersten bzw. zweiten Profilabschnitt längsschnittlich eine Zahn- bzw. Nockenform mit geeignet konischen Neigungswinkeln zu geben, welche bei der vorteilhaften radialsymmetrischen Ausbildung entsprechend als Ringvorsprung entstehen (bzw. mit einer entsprechend angepassten Ringnut zusammenwirken). Hier ist dann entsprechend einem jeweiligen Erfordernis zu optimieren, wobei etwa flache Konuswinkel den Vorteil inhärent niedrigerer Querkräfte besitzen, gleichzeitig jedoch damit auch ein wirksamer axialer Überdeckungsbereich kleiner wird.It is therefore advisable to give the first or second profile section a tooth or cam shape in longitudinal section with suitably conical inclination angles which, in the case of the advantageous radially symmetrical design, accordingly form as an annular projection (or interact with an appropriately adapted annular groove). Here, it is then necessary to optimize according to a particular requirement, with approximately flat cone angles having the advantage of inherently lower transverse forces, but at the same time, however, an effective axial overlap area also becomes smaller.

Generell ist es zudem vorteilhaft, jeweilige Konuswinkel von relativ zur Mittelachse geneigt vorgesehenen Wandabschnitten der Profilabschnitte so auszugestalten, dass diese (bezogen auf eine unverkippte bzw. nicht ausgelenkte Mittelstellung der Ankereinheit) zueinander parallel verlaufen, also denselben Winkel aufweisen (bzw., im Rahmen von Fertigungstoleranzen, einen Maximalwinkel von typischerweise 5° als Differenz nicht überschreiten).In general, it is also advantageous to design the respective cone angles of wall sections of the profile sections which are inclined relative to the central axis such that they run parallel to one another (based on an untilted or undeflected central position of the anchor unit), i.e. have the same angle (or, in the context of Manufacturing tolerances, a maximum angle of typically 5 ° as a difference).

Erfindungsgrmäß ist ein sogenannter Innenkonus vorgesehen. Ein schmaler Konusring (als zweiter Profilabschnitt) der Kerneinheit, welcher durch seine flusswirksame Querschnittsgestaltung tendenziell bei geringerer magnetischer Durchflutung in die magnetische Sättigung geht, taucht in einen innenliegenden Ringabsatz (Konusabsatz) am stirnseitigen Ende der Ankereinheit ein. Durch den schmalen konusförmigen Ringabsatz reagiert der zugehörige Ankerabschnitt sensibel auf Änderungen in der magnetischen Durchflutung und erzeugt gemäß dem vorbeschriebenen Wirkmechanismus kompensierende (aufrichtende) Magnetkräfte, welche der nachteiligen Ankerschrägstellung entgegenwirken.According to the invention, a so-called inner cone is provided. A narrow cone ring (as a second profile section) of the core unit, which tends to become magnetically saturated due to its flow-effective cross-sectional design, dips into an internal ring shoulder (cone shoulder) at the front end of the anchor unit. Due to the narrow cone-shaped ring heel, the associated anchor section reacts sensitively to changes in the magnetic flux and generates compensating (uprighting) magnetic forces according to the above-described mechanism of action, which counteract the disadvantageous anchor inclination.

Im Ergebnis wird durch die vorliegende Erfindung in vorteilhafter Weise nachteilige Reibung zwischen Ankereinheit und Ankerführung reduziert, damit Energie- und Magnetkraft optimiert, und Verschleiß entgegengewirkt.As a result, the present invention advantageously reduces disadvantageous friction between the armature unit and armature guide, so that energy and magnetic force are optimized, and wear is counteracted.

Insbesondere ist es für die praktische Realisierung vorteilhaft, mit (herkömmlichen) PTFE oder MoS2 - Gleitbeschichtungen hohe Lebensdaueranforderungen an elektromagnetische Stellvorrichtungen, etwa Ventilvorrichtungen, zu realisieren, welche den Bereich von 100 Millionen Schaltzyklen oder mehr erreichen, ohne dass es gesonderter, zusätzlich aufwändiger Maßnahmen bedarf. So ist es insbesondere im Rahmen der Erfindung vorteilhaft und weiterbildungsgemäß nützlich, dass die (zylindrische) Ankereinheit mantelseitig nicht in einer Gleitfolie zum Realisieren einer sogenannten Gleitfolien-Lagerung geführt werden muss. Nicht nur wird der zusätzliche bauteiletechnische und fertigungstechnische Aufwand vermindert (das Verwenden einer derartigen Gleitfolie erzeugt auch in der Montage zusätzlichen Aufwand), auch wird wirksam vermieden, dass durch eine Gleitfolie (bzw. die Dicke derselben) der parasitäre Luftspalt im Jochbereich der Magnetvorrichtung unnötig vergrößert wird, was wiederum den Nachteil eines schlechteren magnetischen Wirkungsgrades hätte.In particular, for practical implementation it is advantageous to implement (conventional) PTFE or MoS 2 sliding coatings to meet the long service life requirements of electromagnetic actuating devices, such as valve devices, which reach the range of 100 million switching cycles or more, without requiring additional, costly measures requirement. It is particularly advantageous in the context of the invention and useful according to the further development that the (cylindrical) anchor unit does not have to be guided in a sliding film on the casing side in order to implement a so-called sliding film storage. Not only is the additional component-related and production-related expenditure reduced (the use of such a slide film also creates additional effort in the assembly), it is also effectively avoided that the parasitic air gap in the yoke region of the magnet device is unnecessarily increased by a slide film (or the thickness thereof) which in turn would have the disadvantage of poorer magnetic efficiency.

Damit eignet sich die vorliegende Erfindung in günstiger Weise etwa zur Realisierung von Ventilvorrichtungen, weiter bevorzugt Pneumatik-Ventilvorrichtungen, ist jedoch nicht auf dieses Anwendungsgebiet beschränkt. Vielmehr lässt sich der Vorteil der vorliegenden Erfindung günstig bei sämtlichen Realisierungsformen von elektromagnetischen Stellvorrichtungen nutzen, bei welchen - konstruktions- bzw. spielbedingt - ein Verkippen bzw. Auslenken der Ankereinheit in einer Ankerführung nachteilige Reibung bzw. Verschleiß bewirkt und ohnehin zur Beeinflussung des magnetischen Kraftverlaufs verwendete Profilelemente im Steuerbereich (Steuerkonus-Bereich) zur Realisierung des erfindungsgemäß vorteilhaften Kompensationsverhaltens dimensioniert und eingesetzt werden können.The present invention is thus advantageously suitable, for example, for realizing valve devices, more preferably pneumatic valve devices, but is not restricted to this field of application. Rather, the advantage of the present invention can be used favorably in all forms of realization of electromagnetic actuating devices, in which - due to the design or the play - a tilting or deflecting of the armature unit in an armature guide causes disadvantageous friction or wear and is used anyway to influence the magnetic force curve Profile elements in the control area (control cone area) can be dimensioned and used to implement the compensation behavior advantageous according to the invention.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Figuren; diese zeigen in

Fig. 1:
einen schematischen hälftigen Längsschnitt durch die wesentlichen magnetischen Funktionskomponenten der elektromagnetischen Stellvorrichtung gemäß einer ersten Realisierungsform der Erfindung;
Fig. 2:
eine Detailansicht des Steuerbereichs mit den einander gegenüberstehenden Profilabschnitten der Ankereinheit bzw. der Kerneinheit sowie eingezeichneten Messpunkten für eine Simulation;
Fig. 3:
eine Längsschnittansicht durch ein 2/2-Wegeventil, realisiert durch eine elektromagnetische Stellvorrichtung zum Verdeutlichen des Einsatzkontexts der vorliegenden Erfindung;
Fig. 4:
eine hälftige Längsschnittansicht analog Fig. 1 zum Verdeutlichen einer gegenüber der Realisierung der Fig. 1 nachteiligen Ausgestaltung der Profilabschnitte des Steuerbereichs und
Fig. 5:
ein Vergleichsdiagramm in Form einer Kraft-Weg-Kennlinie des Ausführungsbeispiels der Fig. 1 relativ zum Vergleichsbeispiel der Fig. 4.
Further advantages, features and details of the invention result from the following description of preferred exemplary embodiments and from the figures; these show in
Fig. 1:
a schematic half longitudinal section through the essential magnetic functional components of the electromagnetic actuator according to a first embodiment of the invention;
Fig. 2:
a detailed view of the control area with the mutually opposing profile sections of the anchor unit or the core unit and drawn measurement points for a simulation;
Fig. 3:
a longitudinal sectional view through a 2/2-way valve, realized by an electromagnetic actuating device to clarify the context of use of the present invention;
Fig. 4:
a half longitudinal sectional view analog Fig. 1 to illustrate one compared to the realization of the Fig. 1 disadvantageous design of the profile sections of the control area and
Fig. 5:
a comparison diagram in the form of a force-displacement characteristic of the embodiment of the Fig. 1 relative to the comparative example of Fig. 4 ,

Die Fig. 3 verdeutlicht den Anwendungskontext der vorliegenden Erfindung; gezeigt ist ein strukturell ansonsten bekanntes 2/2-Wegeventil, welches Einsatz im Kraftfahrzeugbereich findet und im Zusammenwirken zwischen Ankereinheit und Konuseinheit mit einer Konussteuerung versehen ist.The Fig. 3 illustrates the application context of the present invention; shown is a structurally otherwise known 2/2-way valve which is used in the motor vehicle sector and is provided with a cone control in the interaction between the anchor unit and the cone unit.

Genauer gesagt zeigt das Ausführungsbeispiel der Fig. 3, welches mit seinen Merkmalen im Anwendungskontext außerhalb des Steuerbereichs als zur vorliegenden Erfindung gehörig offenbart gelten soll, ein Gehäuse 10, welches eine auf einem Spulenträger 12 gehaltene stationäre Wicklung 14 trägt. Innerhalb der hohlzylindrischen, ein Ankerführungsrohr 16 aufnehmenden Anordnung ist entlang einer Bewegungslängsachse 18 eine Ankereinheit 20 geführt, welche eine zylindrische Außenkontur aufweist, gegen die Kraft einer Druckfeder 22 sich von einem stationären Kernbereich 24 in axialer Richtung abstützt und, dem Kernbereich 24 entgegengesetzt, einen Ventil-Gummieinsatz 26 aufweist, welcher zum Verschließen eines Ventilsitzes 28, als Reaktion auf eine axiale Bewegung der Ankereinheit 20, ausgebildet ist. Die Ventilwirkung entsteht zwischen einem Versorgungsanschluss 30 und einem Arbeitsanschluss 32. Die Ankereinheit 20 ist in ansonsten bekannter Weise mantelseitig mittels einer PTFE oder MoS2 - Gleitbeschichtung versehen; eine Gleitfolie zur Lagerung der Ankereinheit existiert nicht.More specifically, the embodiment of FIG Fig. 3 , which is to be considered as belonging to the present invention with its features in the application context outside the control range, a housing 10 which carries a stationary winding 14 held on a coil carrier 12. Within the hollow cylindrical arrangement receiving an anchor guide tube 16 there is an anchor unit 20 along a longitudinal axis 18 of movement guided, which has a cylindrical outer contour, is supported against the force of a compression spring 22 in the axial direction from a stationary core region 24 and, opposite the core region 24, has a valve rubber insert 26 which is used to close a valve seat 28 in response to an axial Movement of the armature unit 20 is formed. The valve effect occurs between a supply connection 30 and a working connection 32. The armature unit 20 is provided on the shell side in an otherwise known manner by means of a PTFE or MoS 2 sliding coating; there is no slide film for storing the anchor unit.

Als Reaktion auf eine Bestromung der Wicklung 14 bewegt sich die Ankereinheit 20 entlang der Bewegungslängsachse 18 in vertikaler Richtung (Z in Fig. 3). Die zu dieser Achse orthogonalen Richtungen X, Y sind entsprechend eingezeichnet.In response to energization of the winding 14, the armature unit 20 moves along the longitudinal movement axis 18 in the vertical direction (Z in Fig. 3 ). The directions X, Y orthogonal to this axis are drawn accordingly.

Ein Steuerbereich (Steuerkonus-Bereich) im magnetischen Übergang zwischen der Kerneinheit 24 und der abschnittsweise hohlzylindrischen Ankereinheit 20 ist in der vergrößerten, hälftigen Längsschnittansicht der Fig. 1 verdeutlicht, wobei, in der unmittelbaren Gegenüberstellung, das Ausführungsbeispiel der Fig. 4 einen nicht im Sinne der Erfindung optimierten und vorteilhaften Steuerbereich zeigt.A control area (control cone area) in the magnetic transition between the core unit 24 and the sectionally hollow cylindrical armature unit 20 is in the enlarged, half longitudinal sectional view of FIG Fig. 1 illustrates, whereby, in the direct comparison, the embodiment of Fig. 4 shows a control area which is not optimized and advantageous in the sense of the invention.

Konkret weist in der erfindungsgemäßen Ausgestaltung der Fig. 1 der Kernbereich einen Ringvorsprung 34, sich von der eingriffsseitigen Stirnfläche der Kerneinheit 24 erstreckend, auf, welcher, relativ zu einem innenliegenden Ringabsatz 36 des zugehörigen eingriffsseitigen Endbereichs der Ankereinheit 20 in Richtung auf die Achse 18 einwärts vorgesehen ist.Specifically, in the embodiment of the invention Fig. 1 the core region has an annular projection 34, which extends from the engagement-side end face of the core unit 24, which is provided inwards relative to an inner ring shoulder 36 of the associated engagement-side end region of the anchor unit 20 in the direction of the axis 18.

Wie die Ausschnittsvergrößerung der Fig. 2 dieses Steuerbereichs, in nach rechts (bzw. im Uhrzeigersinn) verkipptem Zustand der Ankereinheit, diesbezüglich verdeutlicht, ist sowohl die auswärtige Flanke des Ringvorsprungs 34, als auch die inwärtige Flanke der Ringnut 36, relativ zur Längsachse 18, um einen Konuswinkel von ca. 8° geneigt (wobei sich im Rahmen der Erfindung Winkel zwischen 3° und 40°, bevorzugt zwischen 5° und 20°, weiter bevorzugt zwischen 7° und 15°, als günstig und bevorzugt erwiesen haben). Im Rahmen der Erfindung sind zudem diese Konuswinkel gleich ausgestaltet, so dass bei einer mittigen Position der Ankereinheit (d.h. unverkippt, im Gegensatz zur Darstellung der Fig. 2) die Flankenwinkel übereinstimmen.How the enlargement of the Fig. 2 This control area, in the state of the armature unit tilted to the right (or clockwise), clarified in this regard, is both the outward flank of the annular projection 34 and the inward flank of the annular groove 36, relative to the longitudinal axis 18, by a cone angle of approximately 8 ° inclined ( Within the scope of the invention, angles between 3 ° and 40 °, preferably between 5 ° and 20 °, more preferably between 7 ° and 15 °, have proven to be favorable and preferred). In the context of the invention, these cone angles are also configured identically, so that when the anchor unit is in a central position (ie untilted, in contrast to the illustration of FIG Fig. 2 ) the flank angles match.

Erfindungsgemäß vorteilhaft ist nunmehr der einstückig ansitzende, ring- und konusförmige Vorsprung 34 so ausgestaltet, dass bei einem typischen Betriebsstrom durch die Spuleneinheit 12, 14 (bzw. einer dadurch im Übergangsbereich zur Ankereinheit, insbesondere im vertikalen Luftspalt 40 auftretenden Durchflutung), eine Sättigung dann eintritt, wenn dieser Luftspalt (40' in Fig. 2) im linksseitigen Bereich sehr schmal wird, dadurch die magnetische Durchflutung in diesem Bereich und durch den zugehörigen Abschnitt des Vorsprungs 34 ansteigt, womit dann, aufgrund des vergleichsweise schmalen Ringdurchmessers, hier die Sättigung vorrangig erfolgt. Dies führt dann erfindungsgemäß vorteilhaft dazu, dass etwa im (radial) gegenüberliegenden, rechtsseitigen Bereich eine magnetische Durchflutung über den dortigen Luftspaltbereich 40" zunimmt, durch die Sättigung im linksseitigen Bereich des Ringsvorsprungs 34 magnetischer Fluss außerhalb dieses Bereichs verlagert bzw. verdrängt wird.Advantageously according to the invention, the one-piece, annular and conical projection 34 is now designed such that saturation then occurs in the event of a typical operating current through the coil unit 12, 14 (or a flooding thereby occurring in the transition region to the armature unit, in particular in the vertical air gap 40) occurs when this air gap (40 'in Fig. 2 ) becomes very narrow in the left-hand area, as a result of which the magnetic flux in this area and through the associated section of the projection 34 increases, which means that, due to the comparatively narrow ring diameter, the saturation takes place primarily here. According to the invention, this then advantageously leads to the fact that, for example in the (radially) opposite, right-hand area, a magnetic flooding increases over the air gap area 40 ″ there, due to the saturation in the left-hand area of the annular projection 34, magnetic flux is displaced or displaced outside of this area.

Das Ergebnis ist eine kompensierende Kraftwirkung entlang eines Pfeils 42 (Fig. 2), entsprechend eine ein Aufrichten bzw. das Verkippen zurückführende Kraftkomponente in Querrichtung (Normalrichtung) zur Längsachse 18. Insoweit bildet der hier speziell zum Herbeiführen der Sättigung ausgestaltete Ringvorsprung 34 als Profilabschnitt der Kerneinheit die Basis für ein regelndes bzw. kompensierendes System im Hinblick auf die aufgabengemäß zu überwindenden bzw. abzumildernden Querkräfte. Dagegen verdeutlicht das Vergleichsbeispiel der Fig. 4, mit einem kernseitigen Profilabschnitt 44 und einem zugehörigen ankerseitigen Ringabsatz 46, dass - bedingt durch einen größeren flusswirksamen Querschnitt des Abschnitts 44 - bei Betriebsbedingungen (typischer Betriebsstrom für die Spuleneinheit) keine Sättigung im Abschnitt 44 auftritt, mithin eine magnetische Flusskonzentration im Vertikal-Luftspalt zwischen den Abschnitten 44, 46 im kleinsten verkippten Abstand auftritt und auch in dieser Stellung stabil steht. Nachteilige starke Reibkräfte sind hier die Folge. Es verdeutlicht die nachfolgende Tabelle 1 Variante Luftspalt zwischen Anker und Kern [mm] Kraft X-Achse [N] Kraft Y-Achse [N] Kraft Z-Achse [N] Fig. 4 0,15 -1,18 0,00 50,27 Fig. 1 0,71 0,05 62,40 Fig. 4 0,8 -1,94 -0,05 36,80 Fig. 1 -0,63 -0,03 42,65 The result is a compensating force effect along an arrow 42 ( Fig. 2 ), corresponding to an upward or tilting force component returning in the transverse direction (normal direction) to the longitudinal axis 18. In this respect, the ring projection 34, which is designed here specifically to bring about saturation, forms the basis for a regulating or compensating system with regard to that as a profile section of the core unit lateral forces to be overcome or mitigated according to the task. In contrast, the comparative example of Fig. 4 , with a core-side profile section 44 and an associated armature-side ring shoulder 46 that - due to a larger flow-effective cross section of section 44 - none under operating conditions (typical operating current for the coil unit) Saturation occurs in section 44, hence a magnetic flux concentration in the vertical air gap between sections 44, 46 occurs at the smallest tilted distance and is also stable in this position. This results in disadvantageous strong frictional forces. It clarifies Table 1 below variant Air gap between anchor and core [mm] X-axis force [N] Y axis force [N] Z axis force [N] Fig. 4 0.15 -1.18 0.00 50.27 Fig. 1 0.71 0.05 62.40 Fig. 4 0.8 -1.94 -0.05 36,80 Fig. 1 -0.63 -0.03 42.65

Im Zusammenhang mit der Fig. 5 als Kraft-Weg-Kennlinie der Gegenüberstellung der Fig. 1, Fig. 4, wie sich wirksam die nachteilige Querkraft reduzieren lässt; die Messwerte der Tabelle 1 entstammen dabei einer dreidimensionalen Simulation mit Ankerschrägstellung anhand der Positionen A bis H in Fig. 2. Es zeigt sich, dass sich (bei Ankerschrägstellung in Richtung der X-Achse) eine Reduzierung der Ankerquerkraft von ca. 30% bzw. eine aufrichtende Magnetkraft (positives Vorzeichen) erreichen lässt, und zwar sowohl bei einem kurzen, als auch relativ langen Ankerhub (0,15 mm bzw. 0,8 mm), in unmittelbaren Vergleich der Konusausgestaltungen der Fig. 1 relativ zum Vergleichsbeispiel der Fig. 4.In connection with the Fig. 5 as a force-displacement characteristic of the comparison of the 1, 4 how to effectively reduce the adverse shear force; the measured values in Table 1 originate from a three-dimensional simulation with anchoring of the anchor using positions A to H in Fig. 2 , It can be seen that (when the armature is inclined in the direction of the X-axis) a reduction in the armature shear force of approx. 30% or an upright magnetic force (positive sign) can be achieved, both with a short and a relatively long armature stroke ( 0.15 mm or 0.8 mm), in direct comparison of the cone designs of the Fig. 1 relative to the comparative example of Fig. 4 ,

Die vorliegende Erfindung ist nicht auf die gezeigte konkrete Ausgestaltung beschränkt, vielmehr gibt es zahlreiche Wege und Möglichkeiten, im Rahmen der vorliegenden Erfindung den Steuerbereich durch geeignete Profilierung des konusseitigen sowie des ankerseitigen Endabschnitts auszubilden. Dabei kann etwa die Kontur der Fig. 2 (Ringvorsprung auf Kernseite liegt radial innen) umgekehrt werden, genauso wie eine entsprechend zur schnellen magnetischen Sättigung optimierte Profilierung auf Ankerseite (oder beidseits) vorhanden sein kann. Im vorliegenden Ausführungsbeispiel der Fig. 1, Fig. 2 hat sich zudem ein endseitig-mantelseitiger, außen umlaufender Ringabsatz 50 als vorteilhaft herausgestellt, da sich durch diesen zusätzlich eine nachteilige Reibung an der umgebenden Ankerführung reduzieren ließ.The present invention is not limited to the specific embodiment shown, rather there are numerous ways and possibilities within the scope of the present invention of the control area by suitable profiling of the form cone-side and the anchor-side end section. The contour of the Fig. 2 (The ring protrusion on the core side is located radially on the inside) can be reversed, just as there can be a profiling on the armature side (or on both sides) that is optimized for fast magnetic saturation. In the present embodiment of the 1, 2 In addition, an outer circumferential ring shoulder 50 on the outer jacket side has proven to be advantageous, since this additionally reduced disadvantageous friction on the surrounding anchor guide.

Claims (8)

  1. An electromagnetic positioning device having an anchor unit (20), which is moveable in an axial direction (18) around a movement stroke relative to a stationary core unit (24) and in reaction to a spool unit (14) being energized using an operating current and which, on one end, magnetically interacts with the core unit via a control area overlapping axially along the movement stroke at least in sections,
    said control area comprising a first profile section (34, 44) as a section of the anchor unit and, as a section of the core unit, a second profile section (36, 46) having an air gap (40) realized therebetween and realizing an expansion perpendicular to the axial direction,
    a cross section of the first and of the second profile section, which is flow-effective for a magnetic flow of the energization using the operating current flowing via the air gap, being realized such that in response to a reduction of the air-gap expansion caused by the anchor unit (20) being tilted and/or deflected from the axial direction, a magnetic flow resistance of the first and/or the second profile section increases in the area of the reduction via magnetic saturation and a force opposing the tilt or the deflection acts on the anchor unit (20),
    the anchor unit (20) comprising a conical inner annular ledge for realizing the first profile section,
    characterized in that
    the anchor unit (20) forms a further circumferential annular ledge towards the core unit on the exterior.
  2. The device according to claim 1,
    characterized in that
    the anchor unit and the core unit are realized radially symmetrical around a middle axis extending along the axial direction and in that the first and/or the second profile section preferably abut in one piece made of an anchor or core body and are realized so as to radially extend,
    by being tilted or inclined, the air gap radially extending between the first and the second profile section is reduced in a first air-gap area and is expanded in an air-gap area oppositely disposed with respect to the middle axis.
  3. The device according to claim 1 or 2,
    characterized in that
    the first and/or the second profile section comprise(s) a longitudinal tooth and/or cam shape, which are realized as an annular protrusion when the anchor and the core unit are realized radially symmetric.
  4. The device according to any one of the claims 1 to 3,
    characterized in that
    the first and the second profile section delimit the air gap via conical wall sections tilted towards the axial direction.
  5. The device according to claim 4,
    characterized in that
    a cone angle of the wall sections of the first and/or the second profile section are realized such that the wall sections extend parallel to each other when the middle position of the anchor unit is not tilted or deflected and/or that an angle realized between the wall sections is < 5°, preferably less than < 3°.
  6. The device according to any one of the claims 1 to 5,
    characterized in that
    the anchor unit comprises a conical inner annular ledge for realizing the first profile section and forms a further circumferential annular ledge towards the core unit on the exterior.
  7. A use of the electromagnetic positioning device according to any one of the claims 1 to 6 for realizing a valve device, in particular a pneumatic valve device, in which a fluid flow is controlled by the movement the anchor unit.
  8. A method for operating an electromagnetic positioning device according to any one of the claims 1 to 6,
    characterized by the following steps:
    • energizing the spool unit for causing a movement of the anchor unit in the axial direction,
    • causing a force, in particular a transverse force or a normal force, acting on the anchor unit against the tilting or the deflection from the axial direction upon an axial overlapping between the anchor unit and the core unit in the control area.
EP18180013.7A 2010-10-20 2011-10-20 Electromagnetic adjustment device Active EP3401936B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010048808A DE102010048808A1 (en) 2010-10-20 2010-10-20 Electromagnetic actuator
PCT/EP2011/068380 WO2012052528A2 (en) 2010-10-20 2011-10-20 Electromagnetic actuating apparatus
EP11833885.4A EP2630647B1 (en) 2010-10-20 2011-10-20 Electromagnetic actuating apparatus

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP11833885.4A Division-Into EP2630647B1 (en) 2010-10-20 2011-10-20 Electromagnetic actuating apparatus
EP11833885.4A Division EP2630647B1 (en) 2010-10-20 2011-10-20 Electromagnetic actuating apparatus

Publications (2)

Publication Number Publication Date
EP3401936A1 EP3401936A1 (en) 2018-11-14
EP3401936B1 true EP3401936B1 (en) 2019-12-25

Family

ID=45923067

Family Applications (3)

Application Number Title Priority Date Filing Date
EP11833885.4A Active EP2630647B1 (en) 2010-10-20 2011-10-20 Electromagnetic actuating apparatus
EP18180013.7A Active EP3401936B1 (en) 2010-10-20 2011-10-20 Electromagnetic adjustment device
EP18180022.8A Active EP3399529B1 (en) 2010-10-20 2011-10-20 Electromagnetic adjustment device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11833885.4A Active EP2630647B1 (en) 2010-10-20 2011-10-20 Electromagnetic actuating apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP18180022.8A Active EP3399529B1 (en) 2010-10-20 2011-10-20 Electromagnetic adjustment device

Country Status (5)

Country Link
US (1) US9236175B2 (en)
EP (3) EP2630647B1 (en)
CN (1) CN103282979B (en)
DE (1) DE102010048808A1 (en)
WO (1) WO2012052528A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014222504A1 (en) * 2014-11-04 2016-05-04 Robert Bosch Gmbh valve means
JP7023737B2 (en) * 2018-02-21 2022-02-22 株式会社鷺宮製作所 Solenoid valve and refrigeration cycle system
EP3758028B1 (en) * 2019-06-24 2023-02-15 Otis Elevator Company Actuator
JP7111443B2 (en) * 2019-08-28 2022-08-02 株式会社ハーモニック・ドライブ・システムズ push pull solenoid
DE102020132351A1 (en) 2020-12-04 2022-06-09 Eto Magnetic Gmbh Electromagnetic actuator device, solenoid valve and method for operating the electromagnetic actuator device

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2809975A1 (en) 1978-03-08 1979-09-20 Bosch Gmbh Robert MAGNETIC CONTROL UNIT FOR A CONTROL DEVICE
DE3829676A1 (en) 1988-09-01 1990-03-15 Olympia Aeg SUBMERSIBLE MAGNET, AND THE USE THEREOF AS A PRINTING HAMMER IN A PRINTING HAMMER DEVICE
DE3927150A1 (en) 1989-08-17 1991-02-21 Fichtel & Sachs Ag Magnetic valve with short stroke armature - pole cure and magnetic armature cooperating via protrusion and corresp. recess
US5261637A (en) 1992-07-07 1993-11-16 Lectron Products, Inc. Electrical variable orifice actuator
DE4244444A1 (en) 1992-12-23 1994-07-07 Mannesmann Ag Electromagnetic valve with electric current feed for electromagnetic coil
DE68915998T2 (en) 1988-08-08 1994-12-15 Mitsubishi Mining & Cement Co PISTON-LIKE ELECTROMAGNET.
DE4334031C2 (en) 1993-10-06 1998-02-12 Kuhnke Gmbh Kg H Method for operating a bistable solenoid and solenoid for performing the method
US5722367A (en) 1995-10-10 1998-03-03 Walbro Corporation Engine idle speed air control
US5779220A (en) 1994-09-09 1998-07-14 General Motors Corporation Linear solenoid actuator for an exhaust gas recirculation valve
DE29723517U1 (en) 1997-09-24 1998-09-24 Kuhnke Gmbh Kg H Device, in particular electromagnetic device
DE19860753A1 (en) 1998-04-08 1999-10-14 Bitron Ind Espana Sa Electromagnetic valve for proportional control of volumetric flow, e.g. gaseous media
DE19848919A1 (en) 1998-10-23 2000-04-27 Elektroteile Gmbh Magnetic valve e.g. 2/2-way valve or 3/2-way valve, has pressure sleeve enclosing armature for operation of valve plate combined with vent jet insert providing valve seat
US6076550A (en) 1995-09-08 2000-06-20 Toto Ltd. Solenoid and solenoid valve
DE102004028126A1 (en) 2003-06-09 2005-01-13 Borgwarner Inc., Auburn Hills Force-variable electromagnet
US20070290581A1 (en) 2006-06-16 2007-12-20 Siemens Canada Limited Active control mount magnetic optimization for an engine
US20090051471A1 (en) 2005-05-31 2009-02-26 Minebea Co., Ltd. Long-proportional-stroke force motor
DE202008017033U1 (en) 2008-12-30 2010-05-12 Eto Magnetic Gmbh Electromagnetic actuator
DE102004023905B4 (en) 2004-05-13 2013-09-19 Bürkert Werke GmbH Electromagnetic actuator
DE102004012526B4 (en) 2003-03-14 2018-01-25 Kelsey-Hayes Co. Control valve for controlling the flow of fluid in a hydraulic control unit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0134326Y2 (en) * 1981-04-22 1989-10-19
US4604600A (en) * 1983-12-23 1986-08-05 G. W. Lisk Company, Inc. Solenoid construction and method for making the same
US6392516B1 (en) * 1998-12-04 2002-05-21 Tlx Technologies Latching solenoid with improved pull force
JP4594468B2 (en) * 1999-11-08 2010-12-08 中日電機工業株式会社 electromagnet
US6759934B2 (en) * 2000-09-11 2004-07-06 Delphi Technologies, Inc. Proportionally-controllable solenoid actuator
DE10251851A1 (en) 2002-07-16 2004-02-12 Eto Magnetic Kg Electromagnetic actuator, e.g. for vehicle ABS, has end faces with number of inclined areas forming multiple conical and/or serrated crossing region with no non-magnetic distancing element in end face crossing region
US6615780B1 (en) * 2002-08-16 2003-09-09 Delphi Technologies, Inc. Method and apparatus for a solenoid assembly
DE102004002528A1 (en) * 2004-01-12 2005-08-04 Siemens Ag Electromagnetic linear drive
JP4285354B2 (en) * 2004-07-26 2009-06-24 株式会社デンソー Linear solenoid and solenoid valve
GB0603171D0 (en) * 2006-02-17 2006-03-29 Rolls Royce Plc An actuator
DE102008034609B4 (en) * 2008-07-25 2010-06-10 Thomas Magnete Gmbh electromagnet

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2809975A1 (en) 1978-03-08 1979-09-20 Bosch Gmbh Robert MAGNETIC CONTROL UNIT FOR A CONTROL DEVICE
DE68915998T2 (en) 1988-08-08 1994-12-15 Mitsubishi Mining & Cement Co PISTON-LIKE ELECTROMAGNET.
DE3829676A1 (en) 1988-09-01 1990-03-15 Olympia Aeg SUBMERSIBLE MAGNET, AND THE USE THEREOF AS A PRINTING HAMMER IN A PRINTING HAMMER DEVICE
DE3927150A1 (en) 1989-08-17 1991-02-21 Fichtel & Sachs Ag Magnetic valve with short stroke armature - pole cure and magnetic armature cooperating via protrusion and corresp. recess
US5261637A (en) 1992-07-07 1993-11-16 Lectron Products, Inc. Electrical variable orifice actuator
DE4244444A1 (en) 1992-12-23 1994-07-07 Mannesmann Ag Electromagnetic valve with electric current feed for electromagnetic coil
DE4334031C2 (en) 1993-10-06 1998-02-12 Kuhnke Gmbh Kg H Method for operating a bistable solenoid and solenoid for performing the method
US5779220A (en) 1994-09-09 1998-07-14 General Motors Corporation Linear solenoid actuator for an exhaust gas recirculation valve
US6076550A (en) 1995-09-08 2000-06-20 Toto Ltd. Solenoid and solenoid valve
US5722367A (en) 1995-10-10 1998-03-03 Walbro Corporation Engine idle speed air control
DE29723517U1 (en) 1997-09-24 1998-09-24 Kuhnke Gmbh Kg H Device, in particular electromagnetic device
DE19860753A1 (en) 1998-04-08 1999-10-14 Bitron Ind Espana Sa Electromagnetic valve for proportional control of volumetric flow, e.g. gaseous media
DE19848919A1 (en) 1998-10-23 2000-04-27 Elektroteile Gmbh Magnetic valve e.g. 2/2-way valve or 3/2-way valve, has pressure sleeve enclosing armature for operation of valve plate combined with vent jet insert providing valve seat
DE102004012526B4 (en) 2003-03-14 2018-01-25 Kelsey-Hayes Co. Control valve for controlling the flow of fluid in a hydraulic control unit
DE102004028126A1 (en) 2003-06-09 2005-01-13 Borgwarner Inc., Auburn Hills Force-variable electromagnet
DE102004023905B4 (en) 2004-05-13 2013-09-19 Bürkert Werke GmbH Electromagnetic actuator
US20090051471A1 (en) 2005-05-31 2009-02-26 Minebea Co., Ltd. Long-proportional-stroke force motor
US20070290581A1 (en) 2006-06-16 2007-12-20 Siemens Canada Limited Active control mount magnetic optimization for an engine
DE202008017033U1 (en) 2008-12-30 2010-05-12 Eto Magnetic Gmbh Electromagnetic actuator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EBERHARD KALLENBACH, RÜDIGER EICK , PEER QUENDT, TOM STRÖHLA , KARSTEN FEINDT, MATTHIAS KALLENBACH: "ELEKTROMAGNETE, GRUNDLAGEN, BERECHNUNG UND ANWENDUNGEN, 2. Auflage", December 2003, B. G.TEUBNER VERLAG / GWV FACHVERLAGE GMBH, Wiesbaden, article "3.5 Magnetkraftkennlinien", pages: 71 - 85, XP055737682
ERICH JASSE: "Grundlagen für die Berechnung des magnetischen Feldes und der darin wirksamen Kräfte , insbesondere an Eisenkörpern", 1930, VERLAG VON JULIUS SPRINGER, Berlin, pages: IV-VI, 1 - 198

Also Published As

Publication number Publication date
WO2012052528A2 (en) 2012-04-26
EP2630647B1 (en) 2018-12-12
EP3399529B1 (en) 2019-12-25
CN103282979A (en) 2013-09-04
WO2012052528A3 (en) 2012-11-22
CN103282979B (en) 2016-10-12
DE102010048808A1 (en) 2012-04-26
US20130265125A1 (en) 2013-10-10
EP3401936A1 (en) 2018-11-14
EP3399529A1 (en) 2018-11-07
US9236175B2 (en) 2016-01-12
EP2630647A2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
EP3401936B1 (en) Electromagnetic adjustment device
EP2176576B1 (en) Solenoid valve
EP0399326B1 (en) Shockabsorber
AT503480B1 (en) solenoid
DE102009049009B4 (en) Actuator for an internal combustion engine
EP2137442B1 (en) Electromagnet valve and method for producing an electromagnet valve
EP3409984B1 (en) Piston slide valve
DE202007008281U1 (en) solenoid
EP3158220B1 (en) Hydraulic bearing and motor vehicle comprising a hydraulic bearing of this type
DE102011051268B4 (en) Electromagnetic actuator and camshaft adjuster
DE102011003054B4 (en) Electromagnetically actuated actuator, in particular for an adjustable damping valve of a vibration damper
EP3364015B1 (en) Electromagnetic switching valve and high-pressure fuel pump
DE102015218293A1 (en) Solenoid valve with an armature with movable stage
DE102005051178A1 (en) Electromagnetic position control unit such as a pressure regulating valve with electromagnets with direct armature bearing
DE102017124485A1 (en) Electromagnetic actuator device and use of such
DE102016112371A1 (en) linear solenoid
DE112015005777T5 (en) Electromagnetic actuator
DE102010032688B4 (en) Electromagnet with permanent magnet
DE102018128577A1 (en) POLE TUBE FOR ELECTROMAGNETS, LIFTING MAGNETS AND SOLENOID VALVES AND METHOD FOR THE PRODUCTION THEREOF
EP2572362B1 (en) Electromagnet
DE102010064273A1 (en) Fuel injection valve for fuel injection systems of internal combustion engines, has restoring spring provided at outer circumference of valve needle, where valve needle is provided with movable armature for actuating valve closing body
DE102008047364B4 (en) Solenoid with bearing of Hubankerkolbens in the magnet housing
EP2185808B1 (en) Fuel injection valve for internal combustion engines
DE102015223396A1 (en) Switchable bearing
EP2527945A2 (en) Pressure regulating valve with aperture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2630647

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190320

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 7/08 20060101AFI20190618BHEP

Ipc: H01F 7/13 20060101ALI20190618BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190809

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2630647

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016351

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1218027

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200326

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200425

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502011016351

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: THOMAS MAGNETE GMBH

Effective date: 20200922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502011016351

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27C Opposition proceedings terminated

Effective date: 20210205

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201020

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201020

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1218027

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 13

Ref country code: FR

Payment date: 20231023

Year of fee payment: 13

Ref country code: DE

Payment date: 20231018

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011016351

Country of ref document: DE

Representative=s name: PATENT- UND RECHTSANWALTSKANZLEI DAUB, DE