EP2630647B1 - Electromagnetic actuating apparatus - Google Patents

Electromagnetic actuating apparatus Download PDF

Info

Publication number
EP2630647B1
EP2630647B1 EP11833885.4A EP11833885A EP2630647B1 EP 2630647 B1 EP2630647 B1 EP 2630647B1 EP 11833885 A EP11833885 A EP 11833885A EP 2630647 B1 EP2630647 B1 EP 2630647B1
Authority
EP
European Patent Office
Prior art keywords
unit
anchor
realized
profile section
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11833885.4A
Other languages
German (de)
French (fr)
Other versions
EP2630647A2 (en
Inventor
Oliver Thode
Viktor Raff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETO Magnetic GmbH
Original Assignee
ETO Magnetic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45923067&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2630647(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ETO Magnetic GmbH filed Critical ETO Magnetic GmbH
Priority to EP18180013.7A priority Critical patent/EP3401936B1/en
Priority to EP18180022.8A priority patent/EP3399529B1/en
Publication of EP2630647A2 publication Critical patent/EP2630647A2/en
Application granted granted Critical
Publication of EP2630647B1 publication Critical patent/EP2630647B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/13Electromagnets; Actuators including electromagnets with armatures characterised by pulling-force characteristics

Definitions

  • the present invention relates to an electromagnetic actuator according to the preamble of the main claim, as shown in the US 2009/051471 A1 is known.
  • An electromagnetic valve device is out of the DE 198 48 919 A1 known.
  • a (stationary) coil unit moves a radially symmetrically guided inside the coil armature unit and opens or closes a valve seat for the fluid to be controlled.
  • the armature unit (having a cylindrical armature body) moves relative to a stationary core unit, which is part of the magnetic circuit and influences the movement behavior, in particular a magnetic armature force of the armature unit, by its design.
  • the device for influencing the movement behavior or force curve of the armature movement referred to in the prior art in the transition region between the (movable) armature unit and the (stationary) core unit has a so-called control cone area (control area) which extends along the axial direction in a region of the armature Ankerhubes (namely the area immediately after the release of the armature unit of the core unit) affects the magnetic flux in the magnetic circuit between the armature unit, core unit and the other magnetic circuit elements involved.
  • control area control cone area
  • control cone area By suitable design of this control area (control cone area), such as a specification of an effective axial overlap, so can the movement behavior of the armature unit, in particular a course of the magnetic force along the movement stroke (Bewegungshubwegs) specifically influence, strengthen or weaken comparatively or pointwise.
  • Object of the present invention is therefore to improve a generic electromagnetic actuator with respect to their operating and wear behavior, in particular to reduce adverse transverse or normal forces that promote tilting of the armature unit, and so in the context of an axially overlapping control area systems to combine favorable magnetic movement behavior and energy optimization with protection against undesired wear due to adverse friction.
  • control area (control cone area) between the armature unit and the core unit is set up by configuring the (magnetic) flow-effective cross sections of the first or second profile section such that in the usual operating current for the coil unit causing the armature unit to move Flow and force compensation in the nature of a regulatory effect is achieved.
  • the profile sections are configured such that in the case of a tilting or a deflection in a first region of the associated (radial) air gap, the increased transverse force (normal force) is compensated for by the fact that, for an associated magnetic flux (corresponding to the shortened air gap). Flooding) a magnetic resistance in this area increases.
  • the profile sections are designed with respect to their flow-effective material cross-section so that it comes in a corresponding tilted state of the armature unit in the (radial) narrow region of the air gap through the resulting increased saturation saturation, thus creating a flux-effective magnetic resistance, which then This leads to the fact that the magnetic flux is displaced or displaced into other areas of the air gap (back). This then has a directly the adverse normal or lateral force reducing effect, with the advantageous result of lower friction, correspondingly lower energy consumption and reduced wear.
  • the principle according to the invention results in the usual, movement-typical operating currents for the coil unit, an effective displacement of the lateral force-promoting magnetic flux from the region of the shortest air gap is carried out in other areas, since the magnetic saturation effect - corresponding compensatory - offers a higher magnetic resistance.
  • the inventive principle can be realized by suitable design of the profile sections, which then, adapted to be expected in typical operating conditions flooding, designed so that they learn at radially minimized minimized air gap targeted magnetic flux resistance increase by magnetic saturation.
  • first and second profile section a tooth or cam shape with suitably conical angles of inclination, which in the case of the advantageous radially symmetrical design arise correspondingly as an annular projection (or interact with a correspondingly adapted annular groove).
  • first and second profile section a tooth or cam shape with suitably conical angles of inclination, which in the case of the advantageous radially symmetrical design arise correspondingly as an annular projection (or interact with a correspondingly adapted annular groove).
  • about flat cone angle inherently have the advantage of lower lateral forces, but at the same time so that an effective axial coverage area is smaller.
  • the (cylindrical) armature unit does not have to be guided on the shell side in a sliding foil for realizing a so-called sliding foil bearing.
  • the additional component engineering and manufacturing expense reduced the use of such a sliding produces additional effort during assembly
  • the present invention is suitable in a favorable manner as for the realization of valve devices, more preferably pneumatic valve devices, but is not limited to this field of application. Rather, the advantage of the present invention can be used favorably in all forms of implementation of electromagnetic actuators, in which - caused by design or play - tilting or deflecting the armature unit in an armature guide causes adverse friction or wear and used anyway to influence the magnetic force curve Profile elements in the control area (control cone area) can be dimensioned and used for realizing the invention advantageous compensation behavior.
  • Fig. 3 illustrates the application context of the present invention; shown is a structurally otherwise known 2/2-way valve, which finds use in the automotive sector and is provided in cooperation between the anchor unit and cone unit with a cone control.
  • a housing 10 which carries a held on a bobbin 12 stationary winding 14.
  • an armature guide tube 16 receiving arrangement along an axis of movement 18 an armature unit 20 is guided, which has a cylindrical outer contour, against the force of a compression spring 22 from a stationary core portion 24 in the axial direction supported and, opposite to the core portion 24, a valve rubber insert 26 which is for closing a valve seat 28, in response to an axial movement of the armature unit 20 is formed.
  • the valve effect arises between a supply connection 30 and a working connection 32.
  • the anchor unit 20 is provided on the shell side in an otherwise known manner by means of a PTFE or MoS 2 sliding coating; a sliding foil for the storage of the anchor unit does not exist.
  • the armature unit 20 moves along the longitudinal axis of movement 18 in the vertical direction (Z in Fig. 3 ).
  • the orthogonal to this axis directions X, Y are drawn accordingly.
  • a control range (control cone area) in the magnetic transition between the core unit 24 and the partially hollow cylindrical armature unit 20 is in the enlarged, half-longitudinal view of the Fig. 1 illustrates, wherein, in the immediate comparison, the embodiment of Fig. 4 shows a not optimized in the context of the invention and advantageous control range.
  • the core portion has an annular protrusion 34 extending from the engagement-side end surface of the core unit 24, which is provided inwardly toward the axis 18 relative to an inner annular shoulder 36 of the associated engagement-side end portion of the armature unit 20.
  • both the outward flank of the annular projection 34 and the inward flank of the annular groove 36, relative to the longitudinal axis 18, are a cone angle of approximately eight ° inclined (being within the scope of the invention, angle between 3 ° and 40 °, preferably between 5 ° and 20 °, more preferably between 7 ° and 15 °, as favorable and preferred to have).
  • these cone angles are configured identically, so that in the case of a central position of the armature unit (ie untilted, in contrast to the illustration of FIG Fig. 2 ) the flank angles match.
  • the integrally abutting, ring-shaped and conical projection 34 is now configured such that at a typical operating current through the coil unit 12, 14 (or a flux occurring in the transition region to the armature unit, in particular in the vertical air gap 40), then saturation occurs when this air gap (40 'in Fig. 2 ) in the left-hand area becomes very narrow, thereby increasing the magnetic flux in this area and the associated portion of the projection 34, which then, due to the comparatively narrow ring diameter, here the saturation takes priority.
  • this advantageously leads to a magnetic flux being increased over the local air gap area 40 "in the (radially) opposite, right-hand region, due to which saturation in the left-hand region of the annular projection 34 displaces or displaces magnetic flux outside this region.
  • the annular projection 34 which is designed here in particular to bring about saturation, as the profile section of the core unit forms the basis for a regulating or compensating system with respect to FIG According to the task to be overcome or mitigated transverse forces.
  • the comparative example illustrates the Fig. 4 , with a core-side profile section 44 and an associated armature-side annular shoulder 46 that - due to a larger flow-effective cross-section of the section 44 - under operating conditions (typical operating current for the coil unit) no saturation occurs in the section 44, thus a magnetic flux concentration in the vertical air gap between sections 44, 46 in the smallest tilted Distance occurs and is stable even in this position.
  • Fig. 4 how effectively the adverse lateral force can be reduced;
  • Table 1 are derived from a three-dimensional simulation with anchor slanting using the positions A to H in Fig. 2 , It can be seen that a reduction of the armature transverse force of approx. 30% or an upright magnetic force (positive sign) can be achieved (with armature inclination in the direction of the X axis), both with a short and relatively long armature stroke (FIG. 0.15 mm or 0.8 mm), in direct comparison of the cone designs of Fig. 1 relative to the comparative example of Fig. 4 ,
  • the present invention is not limited to the specific embodiment shown, but there are numerous ways and possibilities, in the context of the present invention, the control area by appropriate profiling of the cone-side and the armature-side end portion form. It can be about the contour of the Fig. 2 (Ring projection on the core side is radially inward) be reversed, just as an optimized for fast magnetic saturation profiling on anchor side (or both sides) may be present. In the present embodiment of Fig. 1, Fig. 2 In addition, an end-coat side, outer circumferential annular shoulder 50 has been found to be advantageous, as this could additionally reduce adverse friction on the surrounding anchor guide.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Description

Die vorliegende Erfindung betrifft eine elektromagnetische Stellvorrichtung nach dem Oberbegriff des Hauptanspruchs, wie sie aus der US 2009/051471 A1 bekannt ist.The present invention relates to an electromagnetic actuator according to the preamble of the main claim, as shown in the US 2009/051471 A1 is known.

Eine Elektromagnet-Ventilvorrichtung ist aus der DE 198 48 919 A1 bekannt. Als Reaktion auf das Bestromen einer (stationären) Spuleneinheit bewegt sich eine radialsymmetrisch im Spuleninneren geführte Ankereinheit und öffnet bzw. verschließt einen Ventilsitz für das zu steuernde Fluid.An electromagnetic valve device is out of the DE 198 48 919 A1 known. In response to the energization of a (stationary) coil unit moves a radially symmetrically guided inside the coil armature unit and opens or closes a valve seat for the fluid to be controlled.

Entlang der axialen Richtung bewegt sich dabei die (i.w. einen zylindrischen Ankerkörper aufweisende) Ankereinheit relativ zu einer stationären Kerneinheit, welche Teil des magnetischen Kreises ist und durch seine Ausgestaltung das Bewegungsverhalten, insbesondere eine magnetische Ankerkraft der Ankereinheit, beeinflusst. Konkret zeigt die zum Stand der Technik genannte Vorrichtung zur Beeinflussung des Bewegungsverhaltens bzw. Kraftverlaufs der Ankerbewegung im Übergangsbereich zwischen der (bewegbaren) Ankereinheit und der (stationären) Kerneinheit einen sogenannten Steuerkonus-Bereich (Steuerbereich), welcher entlang der axialen Richtung in einem Bereich des Ankerhubes (nämlich dem Bereich unmittelbar nach dem Lösen der Ankereinheit von der Kerneinheit) den Magnetfluss im magnetischen Kreis zwischen Ankereinheit, Kerneinheit und den weiteren beteiligten magnetischen Kreiselementen beeinflusst.Along the axial direction, the armature unit (having a cylindrical armature body) moves relative to a stationary core unit, which is part of the magnetic circuit and influences the movement behavior, in particular a magnetic armature force of the armature unit, by its design. Specifically, the device for influencing the movement behavior or force curve of the armature movement referred to in the prior art in the transition region between the (movable) armature unit and the (stationary) core unit has a so-called control cone area (control area) which extends along the axial direction in a region of the armature Ankerhubes (namely the area immediately after the release of the armature unit of the core unit) affects the magnetic flux in the magnetic circuit between the armature unit, core unit and the other magnetic circuit elements involved.

Der aus der DE 198 48 919 A1 bekannte Steuerkonus, hier in Form eines endseitig an der Ankerstirnfläche umlaufenden, nach außen abgeflachten Ringabsatzes und einer entsprechenden (radial) inneren Einformung auf Seite der Kerneinheit, bewirkt hier etwa eine Anhebung der Magnetkraft des Ankers in dem beschriebenen Start-Hub-Bereich: Durch die gezeigte Überlappung zwischen Ankereinheit und Kernbereich reduziert sich die notwendige magnetische Durchflutung von Kern und Anker durch Bestromung der Wicklung, relativ zu einem sogenannten Flachkonus, nämlich einer Ausgestaltung des Übergangs zwischen Ankereinheit und Kerneinheit ohne axiale Überlappung bzw. Verkürzung des Arbeitsluftspalts. Entsprechend werden die magnetischen Feldlinien des Magnetflusses über die axiale Überlappung vorrangig geschlossen, mithin die Magnetkraft in diesem Ankerstart-Hubbereich gezielt erhöht.The from the DE 198 48 919 A1 Known control cone, here in the form of an end of the anchor end face rotating, outwardly flattened annular shoulder and a corresponding (radially) inner indentation on the side of the core unit, causes here about an increase in the magnetic force of the armature in the described start-stroke range: By the shown overlap between anchor unit and core area reduces the necessary magnetic flux of core and armature by energizing the Winding, relative to a so-called flat cone, namely an embodiment of the transition between the anchor unit and core unit without axial overlap or shortening of the working air gap. Accordingly, the magnetic flux lines of the magnetic flux are primarily closed via the axial overlap, thus selectively increasing the magnetic force in this armature start stroke range.

Durch geeignete Ausgestaltung dieses Steuerbereichs (Steuerkonus-Bereichs), etwa eine Vorgabe einer effektiven axialen Überlappung, lässt sich so das Bewegungsverhalten der Ankereinheit, insbesondere ein Verlauf der Magnetkraft entlang des Bewegungshubes (Bewegungshubwegs) gezielt beeinflussen, etwa vergleichsmäßigen oder punktuell verstärken oder abschwächen.By suitable design of this control area (control cone area), such as a specification of an effective axial overlap, so can the movement behavior of the armature unit, in particular a course of the magnetic force along the movement stroke (Bewegungshubwegs) specifically influence, strengthen or weaken comparatively or pointwise.

Allerdings bringt die als bekannt vorauszusetzende axiale Überlappung von Ankereinheit und Steuereinheit im Steuerbereich auch potentielle Nachteile, insbesondere im Hinblick auf die Verschleiß- bzw. Lebensdauereigenschaften von derart ausgestalteten elektromagnetischen Stellvorrichtungen. So entsteht nämlich durch die axiale Überlappung der den Steuerbereich ausbildenden Profilabschnitte auf Anker- bzw. Kernseite, neben dem für die Ankerbewegung wichtigen axialen magnetischen Flussverlauf, auch eine Radialkomponente (bzw. Normalkomponente zur axialen Richtung) des magnetischen Flussverlaufs, durch den zwischen einander gegenüberstehenden Wänden der Profilabschnitte gebildeten Luftspalt. Dieser (bei radialsymmetrischen Anordnungen radiale) Magnetkraftanteil bewirkt nachteilige magnetische Querkräfte, welche sich in der Praxis bzw. insbesondere im Zusammenhang mit häufigen Bewegungszyklen bzw. langen Betriebszeiten nachteilig auswirken. So würde zwar, bei exakter fluchtender Ausrichtung von Anker und Kern zueinander, die jeweilige durch den radialen Magnetkraftanteil erzeugte Querkraft im Zentrum aufgehoben werden und so eine Kompensation bewirken. In der Fertigungs- und Betriebspraxis lässt sich dies jedoch nicht erreichen. Vielmehr ist der Effekt zu beobachten, dass die (notwendigerweise mit einem radialen Spiel gelagerte) Ankereinheit innerhalb einer umgebenden Führung (im Rahmen des vorhandenen Spiels) zum Verkippen neigt, wobei ein derartiger Effekt etwa zusätzlich verstärkt wird durch nicht ganz mittig an die Ankereinheit angreifende Druckfedern oder dergleichen Einflüsse, ferner spielen Fertigungstoleranzen und andere Effekte eine Rolle.However, the axial overlap of armature unit and control unit in the control area, which is to be presupposed as known, also brings potential disadvantages, in particular with regard to the wear or service life characteristics of electromagnetic actuators designed in this way. Thus, by the axial overlapping of the control region forming profile sections on anchor or core side, in addition to the important for the armature movement axial magnetic flux, also a radial component (or normal component to the axial direction) of the magnetic flux profile, by the wall between facing each other the profile sections formed air gap. This magnetic force component (which is radial in the case of radially symmetrical arrangements) causes disadvantageous magnetic transverse forces, which have a disadvantageous effect in practice or in particular in connection with frequent movement cycles or long operating times. Thus, with exact alignment of armature and core to each other, the respective lateral force generated by the radial magnetic force component would be canceled in the center and thus cause a compensation. However, this can not be achieved in manufacturing and operating practice. Rather, the effect is observed that the (necessarily mounted with a radial clearance) anchor unit within a surrounding guide (im Frame of the existing game) tends to tilt, with such an effect is further enhanced by not quite the center of the anchor unit acting compression springs or the like influences, also play manufacturing tolerances and other effects a role.

Eine derartige, im Rahmen der Spielpassung schräg in der Ankerführung stehende Ankereinheit (in der Art einer diametralen Zwei-Punkt-Auflage an jeweiligen Innenpositionen der Ankerführung) führt dann zunächst dazu, dass Kerneinheit und Ankereinheit (und mithin die den Steuerbereich ausbildenden Profilabschnitte) nicht mehr exakt fluchten, sich damit in Umfangsrichtung verschieden große radiale Luftspalte (genauer: Abschnitte eines umlaufenden Luftspalts) einstellen.Such, in the context of the clearance fit obliquely in the anchor guide anchor unit (in the manner of a diametrical two-point support at respective inner positions of the armature guide) then leads first to the core unit and armature unit (and thus the control area forming profile sections) no longer exactly aligned, thus set in the circumferential direction different sized radial air gaps (more precisely: sections of a circumferential air gap).

Bei Bestromung der Spuleneinheit und dadurch bewirkter magnetischer Durchflutung im Steuerbereich entstehen in den verschieden breiten Luftspaltpositionen entsprechend ungleich hohe magnetische Querkräfte: Kleine radiale Luftspalte erzeugen relativ hohe magnetische Querkräfte, entsprechend große radiale Luftspaltabschnitte kleine magnetische Querkräfte. Diese kompensieren sich dann in radialer Richtung nicht mehr, so dass eine resultierende (radiale) Querkraft in Richtung des kleinsten Luftspalts entsteht.Upon energization of the coil unit and thereby effected magnetic flux in the control area correspondingly unequal high magnetic transverse forces arise in the different width air gap positions: Small radial air gaps generate relatively high magnetic transverse forces, correspondingly large radial air gap sections small magnetic transverse forces. These then no longer compensate each other in the radial direction, so that a resulting (radial) transverse force arises in the direction of the smallest air gap.

Dies wirkt auf die (mit Spiel gelagerte) Ankereinheit als Normalkraft und erzeugt entsprechend den Reibwerten des tribologischen Systems aus Ankereinheit (bzw. einer auf der Ankereinheit vorgesehenen Anker-Gleitbeschichtung) sowie der Ankerführung nachteilige Haft- und Gleitreibkräfte.This acts on the (with game stored) armature unit as a normal force and generated according to the friction coefficients of the tribological system of anchor unit (or provided on the anchor unit anchor sliding coating) and the anchor guide disadvantageous adhesive and Gleitreibkräfte.

Diese wirken sich zunächst negativ auf die Kräftebilanz des Magneten aus und führen zu einem (unnötig) vergrößerten Magnetkraftbedarf, mithin größerem Magnetbauraum.These initially have a negative effect on the balance of forces of the magnet and lead to an (unnecessarily) increased magnetic force requirement, and thus a larger magnetic space.

Bei elektromagnetischen Schaltvorrichtungen mit hoher Lebensdaueranforderung (typischerweise mehr als 100 Millionen Schaltzyklen) erzeugen die beschriebenen hohen magnetischen Querkräfte (Normalkräfte) zusätzlich eine nachteilig hohe Flächenpressung auf die Reibpartner und beschleunigen dadurch deren tribologischen Verschleiß. Besonders gravierend ist dies etwa bei Pneumatik-Stellanwendungen (wie etwa einem Pneumatikventil), da hier keine Schmierung od. dgl. verschleißmindernd wirken kann.In electromagnetic switching devices with a high lifetime requirement (typically more than 100 million switching cycles), the described high magnetic transverse forces (normal forces) generate In addition, a disadvantageous high surface pressure on the friction partners and thereby accelerate their tribological wear. This is particularly serious, for example, in pneumatic actuating applications (such as a pneumatic valve), since no lubrication or the like can have a wear-reducing effect.

Konsequenz ist gerade bei in der Baugröße sowie im Energieverbrauch optimierten Systemen mit Steuerkonus-Bereich ein vorzeitiges Ausfallen, insbesondere wenn die Ankereinheit in ansonsten bekannter Weise mit Gleitbeschichtungen aus PTFE oder MoS2 versehen ist und keine (selbst aber wiederum aufwändige) Gleitfolie zur Führung des Ankers verwendet wird.The consequence is a premature failure, especially in systems with control cone area optimized in size and in energy consumption, especially if the armature unit is provided with sliding coatings of PTFE or MoS 2 in an otherwise known manner and no (itself expensive) sliding foil for guiding the armature is used.

Aufgabe der vorliegenden Erfindung ist es daher, eine gattungsgemäße elektromagnetische Stellvorrichtung im Hinblick auf ihr Betriebs- sowie Verschleißverhalten zu verbessern, insbesondere nachteilige Quer- bzw. Normalkräfte, die ein Verkippen der Ankereinheit befördern, zu vermindern, und so im Rahmen der einen axial überlappenden Steuerbereich aufweisenden Systeme günstiges magnetisches Bewegungsverhalten und Energieoptimierung mit Schutz gegen unerwünschten Verschleiß durch nachteilige Reibung zu kombinieren.Object of the present invention is therefore to improve a generic electromagnetic actuator with respect to their operating and wear behavior, in particular to reduce adverse transverse or normal forces that promote tilting of the armature unit, and so in the context of an axially overlapping control area systems to combine favorable magnetic movement behavior and energy optimization with protection against undesired wear due to adverse friction.

Die Aufgabe wird durch die elektromagnetische Stellvorrichtung mit den Merkmalen des Hauptanspruchs gelöst; unabhängiger Schutz im Rahmen der vorliegenden Erfindung wird durch die Verwendung nach dem Patentanspruch 9 sowie das Verfahren nach dem Anspruch 10 beansprucht. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.The object is achieved by the electromagnetic actuator with the features of the main claim; independent protection in the context of the present invention is claimed by the use according to claim 9 and the method according to claim 10. Advantageous developments of the invention are described in the subclaims.

In erfindungsgemäß vorteilhafter Weise ist der Steuerbereich (Steuerkonus-Bereich) zwischen der Ankereinheit und der Kerneinheit durch Ausgestaltung der (magnetisch) flusswirksamen Querschnitte des ersten bzw. zweiten Profilabschnitts so eingerichtet, dass bei dem üblichen, das Bewegen der Ankereinheit bewirkenden Betriebsstrom für die Spuleneinheit eine Fluss- und Kraftkompensation in der Art einer Regelungswirkung erreicht wird. Genauer gesagt sind erfindungsgemäß die Profilabschnitte so ausgestaltet, dass im Fall eines Verkippens bzw. einer Auslenkung in einem ersten Bereich des zugehörigen (radialen) Luftspalts die erhöhte Querkraft (Normalkraft) dadurch kompensiert wird, dass für einen zugehörigen, entsprechend dem verkürzten Luftspalt erhöhten magnetischen Fluss (Durchflutung) ein magnetischer Widerstand in diesem Bereich ansteigt. Typischerweise sind dabei die Profilabschnitte im Hinblick auf ihren flusswirksamen Materialquerschnitt so ausgestaltet, dass es in einem entsprechend verkippten Zustand der Ankereinheit im (radialen) Schmalbereich des Luftspalts durch die dort entstehende erhöhte Durchflutung zu einer Sättigung kommt, somit ein flusswirksamer magnetischer Widerstand entsteht, welcher dann dazu führt, dass die magnetische Durchflutung in andere Bereiche des Luftspalts (zurück) verdrängt bzw. verlagert wird. Dies hat dann einen unmittelbar die nachteilige Normal- bzw. Querkraft reduzierende Wirkung, mit der vorteilhaften Folge geringerer Reibung, entsprechend geringeren Energieverbrauchs und verminderten Verschleißes.
Im Rahmen der bevorzugt einzusetzenden radialsymmetrischen Systeme (d.h. eine Ankereinheit ist innerhalb einer diese umgebenden Spuleneinheit geführt, wobei stirnseitig Ankereinheit sowie Kerneinheit die jeweiligen Profilabschnitte in Form von umlaufenden Erhöhungen bzw. Vertiefungen ausbilden) führt das erfindungsgemäße Prinzip dazu, dass bei den üblichen, bewegungstypischen Betriebsströmen für die Spuleneinheit eine wirksame Verlagerung des Querkraft-fördernden Magnetflusses aus dem Bereich des kürzesten Luftspalts in andere Bereiche erfolgt, da die magnetische Sättigungswirkung - entsprechend kompensatorisch - einen höheren magnetischen Widerstand anbietet.
Damit lässt sich das erfindungsgemäße Prinzip durch geeignete Ausgestaltung der Profilabschnitte realisieren, welche dann, angepasst an eine in typischen Betriebszuständen zu erwartende Durchflutung, so ausgestaltet werden, dass diese bei radial gegenüberstehendem minimiertem Luftspalt gezielt eine magnetische Fluss-Widerstandserhöhung durch magnetische Sättigung erfahren. Damit bietet es sich an, dem ersten bzw. zweiten Profilabschnitt längsschnittlich eine Zahn- bzw. Nockenform mit geeignet konischen Neigungswinkeln zu geben, welche bei der vorteilhaften radialsymmetrischen Ausbildung entsprechend als Ringvorsprung entstehen (bzw. mit einer entsprechend angepassten Ringnut zusammenwirken). Hier ist dann entsprechend einem jeweiligen Erfordernis zu optimieren, wobei etwa flache Konuswinkel den Vorteil inhärent niedrigerer Querkräfte besitzen, gleichzeitig jedoch damit auch ein wirksamer axialer Überdeckungsbereich kleiner wird.
Generell ist es zudem vorteilhaft, jeweilige Konuswinkel von relativ zur Mittelachse geneigt vorgesehenen Wandabschnitten der Profilabschnitte so auszugestalten, dass diese (bezogen auf eine unverkippte bzw. nicht ausgelenkte Mittelstellung der Ankereinheit) zueinander parallel verlaufen, also denselben Winkel aufweisen (bzw., im Rahmen von Fertigungstoleranzen, einen Maximalwinkel von typischerweise 5°als Differenz nicht überschreiten).
Besonders vorteilhaft hat sich eine Ausführung als sogenannter Innenkonus herausgestellt. Ein schmaler Konusring (als zweiter Profilabschnitt) der Kerneinheit, welcher durch seine flusswirksame Querschnittsgestaltung tendenziell bei geringerer magnetischer Durchflutung in die magnetische Sättigung geht, taucht in einen innenliegenden Ringabsatz (Konusabsatz) am stirnseitigen Ende der Ankereinheit ein. Durch den schmalen konusförmigen Ringabsatz reagiert der zugehörige Ankerabschnitt sensibel auf Änderungen in der magnetischen Durchflutung und erzeugt gemäß dem vorbeschriebenen Wirkmechanismus kompensierende (aufrichtende) Magnetkräfte, welche der nachteiligen Ankerschrägstellung entgegenwirken.
Im Ergebnis wird durch die vorliegende Erfindung in vorteilhafter Weise nachteilige Reibung zwischen Ankereinheit und Ankerführung reduziert, damit Energie- und Magnetkraft optimiert, und Verschleiß entgegengewirkt. Insbesondere ist es für die praktische Realisierung vorteilhaft, mit (herkömmlichen) PTFE oder MoS2 - Gleitbeschichtungen hohe Lebensdaueranforderungen an elektromagnetische Stellvorrichtungen, etwa Ventilvorrichtungen, zu realisieren, welche den Bereich von 100 Millionen Schaltzyklen oder mehr erreichen, ohne dass es gesonderter, zusätzlich aufwändiger Maßnahmen bedarf. So ist es insbesondere im Rahmen der Erfindung vorteilhaft und weiterbildungsgemäß nützlich, dass die (zylindrische) Ankereinheit mantelseitig nicht in einer Gleitfolie zum Realisieren einer sogenannten Gleitfolien-Lagerung geführt werden muss. Nicht nur wird der zusätzliche bauteiletechnische und fertigungstechnische Aufwand vermindert (das Verwenden einer derartigen Gleitfolie erzeugt auch in der Montage zusätzlichen Aufwand), auch wird wirksam vermieden, dass durch eine Gleitfolie (bzw. die Dicke derselben) der parasitäre Luftspalt im Jochbereich der Magnetvorrichtung unnötig vergrößert wird, was wiederum den Nachteil eines schlechteren magnetischen Wirkungsgrades hätte.
In an advantageous manner according to the invention, the control area (control cone area) between the armature unit and the core unit is set up by configuring the (magnetic) flow-effective cross sections of the first or second profile section such that in the usual operating current for the coil unit causing the armature unit to move Flow and force compensation in the nature of a regulatory effect is achieved. More accurate According to the invention, the profile sections are configured such that in the case of a tilting or a deflection in a first region of the associated (radial) air gap, the increased transverse force (normal force) is compensated for by the fact that, for an associated magnetic flux (corresponding to the shortened air gap). Flooding) a magnetic resistance in this area increases. Typically, the profile sections are designed with respect to their flow-effective material cross-section so that it comes in a corresponding tilted state of the armature unit in the (radial) narrow region of the air gap through the resulting increased saturation saturation, thus creating a flux-effective magnetic resistance, which then This leads to the fact that the magnetic flux is displaced or displaced into other areas of the air gap (back). This then has a directly the adverse normal or lateral force reducing effect, with the advantageous result of lower friction, correspondingly lower energy consumption and reduced wear.
In the context of the preferably radially symmetrical systems to be used (ie, an armature unit is guided within a surrounding coil unit, the armature unit and the core unit forming the respective profile sections in the form of circumferential elevations or depressions), the principle according to the invention results in the usual, movement-typical operating currents for the coil unit, an effective displacement of the lateral force-promoting magnetic flux from the region of the shortest air gap is carried out in other areas, since the magnetic saturation effect - corresponding compensatory - offers a higher magnetic resistance.
Thus, the inventive principle can be realized by suitable design of the profile sections, which then, adapted to be expected in typical operating conditions flooding, designed so that they learn at radially minimized minimized air gap targeted magnetic flux resistance increase by magnetic saturation. This makes it advisable to give the first and second profile section a tooth or cam shape with suitably conical angles of inclination, which in the case of the advantageous radially symmetrical design arise correspondingly as an annular projection (or interact with a correspondingly adapted annular groove). Here is then to optimize according to a respective requirement, with about flat cone angle inherently have the advantage of lower lateral forces, but at the same time so that an effective axial coverage area is smaller.
In general, it is also advantageous to configure respective cone angles of wall sections of the profile sections which are inclined relative to the central axis so that they (in relation to an undeflected or undeflected middle position of the anchor unit) run parallel to one another, ie have the same angle (or, in the context of FIG Manufacturing tolerances, do not exceed a maximum angle of typically 5 ° as the difference).
Particularly advantageous, an embodiment has been found to be a so-called inner cone. A narrow conical ring (as a second profile section) of the core unit, which tends to saturate magnetically due to its flux-effective cross-sectional configuration, enters an inner annular shoulder (cone shoulder) at the front end of the armature unit. Due to the narrow cone-shaped annular shoulder, the associated armature section reacts sensitively to changes in the magnetic flux and, in accordance with the above-described mechanism of action, generates compensating (righting up) magnetic forces which counteract the disadvantageous armature skew.
As a result, disadvantageous friction between the armature unit and the armature guide is advantageously reduced by the present invention, thus optimizing energy and magnetic force, and counteracting wear. In particular, it is advantageous for the practical implementation, with (conventional) PTFE or MoS 2 - sliding coatings high To meet lifetime requirements for electromagnetic actuators, such as valve devices, which reach the range of 100 million cycles or more, without the need for separate, additional costly measures. Thus, it is particularly advantageous in the context of the invention and further useful according to the development that the (cylindrical) armature unit does not have to be guided on the shell side in a sliding foil for realizing a so-called sliding foil bearing. Not only is the additional component engineering and manufacturing expense reduced (the use of such a sliding produces additional effort during assembly), is also effectively avoided that unnecessarily increased by a sliding film (or the thickness thereof) of the parasitic air gap in the yoke region of the magnetic device which in turn would have the disadvantage of a poorer magnetic efficiency.

Damit eignet sich die vorliegende Erfindung in günstiger Weise etwa zur Realisierung von Ventilvorrichtungen, weiter bevorzugt Pneumatik-Ventilvorrichtungen, ist jedoch nicht auf dieses Anwendungsgebiet beschränkt. Vielmehr lässt sich der Vorteil der vorliegenden Erfindung günstig bei sämtlichen Realisierungsformen von elektromagnetischen Stellvorrichtungen nutzen, bei welchen - konstruktions- bzw. spielbedingt - ein Verkippen bzw. Auslenken der Ankereinheit in einer Ankerführung nachteilige Reibung bzw. Verschleiß bewirkt und ohnehin zur Beeinflussung des magnetischen Kraftverlaufs verwendete Profilelemente im Steuerbereich (Steuerkonus-Bereich) zur Realisierung des erfindungsgemäß vorteilhaften Kompensationsverhaltens dimensioniert und eingesetzt werden können.Thus, the present invention is suitable in a favorable manner as for the realization of valve devices, more preferably pneumatic valve devices, but is not limited to this field of application. Rather, the advantage of the present invention can be used favorably in all forms of implementation of electromagnetic actuators, in which - caused by design or play - tilting or deflecting the armature unit in an armature guide causes adverse friction or wear and used anyway to influence the magnetic force curve Profile elements in the control area (control cone area) can be dimensioned and used for realizing the invention advantageous compensation behavior.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Figuren; diese zeigen in

Fig. 1:
einen schematischen hälftigen Längsschnitt durch die wesentlichen magnetischen Funktionskomponenten der elektromagnetischen Stellvorrichtung gemäß einer ersten Realisierungsform der Erfindung;
Fig. 2:
eine Detailansicht des Steuerbereichs mit den einander gegenüberstehenden Profilabschnitten der Ankereinheit bzw. der Kerneinheit sowie eingezeichneten Messpunkten für eine Simulation;
Fig. 3:
eine Längsschnittansicht durch ein 2/2-Wegeventil, realisiert durch eine elektromagnetische Stellvorrichtung zum Verdeutlichen des Einsatzkontexts der vorliegenden Erfindung;
Fig. 4:
eine hälftige Längsschnittansicht analog Fig. 1 zum Verdeutlichen einer gegenüber der Realisierung der Fig. 1 nachteiligen Ausgestaltung der Profilabschnitte des Steuerbereichs und
Fig. 5:
ein Vergleichsdiagramm in Form einer Kraft-Weg-Kennlinie des Ausführungsbeispiels der Fig. 1 relativ zum Vergleichsbeispiel der Fig. 4.
Further advantages, features and details of the invention will become apparent from the following description of preferred embodiments and with reference to the figures; these show in
Fig. 1:
a schematic half-longitudinal section through the essential magnetic functional components of electromagnetic actuator according to a first embodiment of the invention;
Fig. 2:
a detailed view of the control area with the opposing profile sections of the anchor unit or the core unit and marked measuring points for a simulation;
3:
a longitudinal sectional view through a 2/2-way valve, realized by an electromagnetic actuator for illustrating the operational context of the present invention;
4:
a half-longitudinal view analog Fig. 1 to clarify a relation to the realization of the Fig. 1 disadvantageous embodiment of the profile sections of the control area and
Fig. 5:
a comparison diagram in the form of a force-displacement characteristic of the embodiment of the Fig. 1 relative to the comparative example of Fig. 4 ,

Die Fig. 3 verdeutlicht den Anwendungskontext der vorliegenden Erfindung; gezeigt ist ein strukturell ansonsten bekanntes 2/2-Wegeventil, welches Einsatz im Kraftfahrzeugbereich findet und im Zusammenwirken zwischen Ankereinheit und Konuseinheit mit einer Konussteuerung versehen ist.The Fig. 3 illustrates the application context of the present invention; shown is a structurally otherwise known 2/2-way valve, which finds use in the automotive sector and is provided in cooperation between the anchor unit and cone unit with a cone control.

Genauer gesagt zeigt das Ausführungsbeispiel der Fig. 3, welches mit seinen Merkmalen im Anwendungskontext außerhalb des Steuerbereichs als zur vorliegenden Erfindung gehörig offenbart gelten soll, ein Gehäuse 10, welches eine auf einem Spulenträger 12 gehaltene stationäre Wicklung 14 trägt. Innerhalb der hohlzylindrischen, ein Ankerführungsrohr 16 aufnehmenden Anordnung ist entlang einer Bewegungslängsachse 18 eine Ankereinheit 20 geführt, welche eine zylindrische Außenkontur aufweist, gegen die Kraft einer Druckfeder 22 sich von einem stationären Kernbereich 24 in axialer Richtung abstützt und, dem Kernbereich 24 entgegengesetzt, einen Ventil-Gummieinsatz 26 aufweist, welcher zum Verschließen eines Ventilsitzes 28, als Reaktion auf eine axiale Bewegung der Ankereinheit 20, ausgebildet ist. Die Ventilwirkung entsteht zwischen einem Versorgungsanschluss 30 und einem Arbeitsanschluss 32. Die Ankereinheit 20 ist in ansonsten bekannter Weise mantelseitig mittels einer PTFE oder MoS2 - Gleitbeschichtung versehen; eine Gleitfolie zur Lagerung der Ankereinheit existiert nicht.More specifically, the embodiment of the Fig. 3 which is to be deemed to be associated with its features in the context of use outside the control area as belonging to the present invention, a housing 10 which carries a held on a bobbin 12 stationary winding 14. Within the hollow cylindrical, an armature guide tube 16 receiving arrangement along an axis of movement 18, an armature unit 20 is guided, which has a cylindrical outer contour, against the force of a compression spring 22 from a stationary core portion 24 in the axial direction supported and, opposite to the core portion 24, a valve rubber insert 26 which is for closing a valve seat 28, in response to an axial movement of the armature unit 20 is formed. The valve effect arises between a supply connection 30 and a working connection 32. The anchor unit 20 is provided on the shell side in an otherwise known manner by means of a PTFE or MoS 2 sliding coating; a sliding foil for the storage of the anchor unit does not exist.

Als Reaktion auf eine Bestromung der Wicklung 14 bewegt sich die Ankereinheit 20 entlang der Bewegungslängsachse 18 in vertikaler Richtung (Z in Fig. 3). Die zu dieser Achse orthogonalen Richtungen X, Y sind entsprechend eingezeichnet.In response to an energization of the winding 14, the armature unit 20 moves along the longitudinal axis of movement 18 in the vertical direction (Z in Fig. 3 ). The orthogonal to this axis directions X, Y are drawn accordingly.

Ein Steuerbereich (Steuerkonus-Bereich) im magnetischen Übergang zwischen der Kerneinheit 24 und der abschnittsweise hohlzylindrischen Ankereinheit 20 ist in der vergrößerten, hälftigen Längsschnittansicht der Fig. 1 verdeutlicht, wobei, in der unmittelbaren Gegenüberstellung, das Ausführungsbeispiel der Fig. 4 einen nicht im Sinne der Erfindung optimierten und vorteilhaften Steuerbereich zeigt.A control range (control cone area) in the magnetic transition between the core unit 24 and the partially hollow cylindrical armature unit 20 is in the enlarged, half-longitudinal view of the Fig. 1 illustrates, wherein, in the immediate comparison, the embodiment of Fig. 4 shows a not optimized in the context of the invention and advantageous control range.

Konkret weist in der bevorzugten Ausgestaltung der Fig. 1 der Kernbereich einen Ringvorsprung 34, sich von der eingriffsseitigen Stirnfläche der Kerneinheit 24 erstreckend, auf, welcher, relativ zu einem innenliegenden Ringabsatz 36 des zugehörigen eingriffsseitigen Endbereichs der Ankereinheit 20 in Richtung auf die Achse 18 einwärts vorgesehen ist.Specifically, in the preferred embodiment of the Fig. 1 the core portion has an annular protrusion 34 extending from the engagement-side end surface of the core unit 24, which is provided inwardly toward the axis 18 relative to an inner annular shoulder 36 of the associated engagement-side end portion of the armature unit 20.

Wie die Ausschnittsvergrößerung der Fig. 2 dieses Steuerbereichs, in nach rechts (bzw. im Uhrzeigersinn) verkipptem Zustand der Ankereinheit, diesbezüglich verdeutlicht, ist sowohl die auswärtige Flanke des Ringvorsprungs 34, als auch die inwärtige Flanke der Ringnut 36, relativ zur Längsachse 18, um einen Konuswinkel von ca. 8° geneigt (wobei sich im Rahmen der Erfindung Winkel zwischen 3° und 40°, bevorzugt zwischen 5° und 20°, weiter bevorzugt zwischen 7° und 15°, als günstig und bevorzugt erwiesen haben). Im Rahmen der Erfindung sind zudem diese Konuswinkel gleich ausgestaltet, so dass bei einer mittigen Position der Ankereinheit (d.h. unverkippt, im Gegensatz zur Darstellung der Fig. 2) die Flankenwinkel übereinstimmen.Like the cropping of the Fig. 2 In this regard, in this regard, both the outward flank of the annular projection 34 and the inward flank of the annular groove 36, relative to the longitudinal axis 18, are a cone angle of approximately eight ° inclined (being within the scope of the invention, angle between 3 ° and 40 °, preferably between 5 ° and 20 °, more preferably between 7 ° and 15 °, as favorable and preferred to have). In the context of the invention, moreover, these cone angles are configured identically, so that in the case of a central position of the armature unit (ie untilted, in contrast to the illustration of FIG Fig. 2 ) the flank angles match.

Erfindungsgemäß vorteilhaft ist nunmehr der einstückig ansitzende, ring- und konusförmige Vorsprung 34 so ausgestaltet, dass bei einem typischen Betriebsstrom durch die Spuleneinheit 12, 14 (bzw. einer dadurch im Übergangsbereich zur Ankereinheit, insbesondere im vertikalen Luftspalt 40 auftretenden Durchflutung), eine Sättigung dann eintritt, wenn dieser Luftspalt (40' in Fig. 2) im linksseitigen Bereich sehr schmal wird, dadurch die magnetische Durchflutung in diesem Bereich und durch den zugehörigen Abschnitt des Vorsprungs 34 ansteigt, womit dann, aufgrund des vergleichsweise schmalen Ringdurchmessers, hier die Sättigung vorrangig erfolgt. Dies führt dann erfindungsgemäß vorteilhaft dazu, dass etwa im (radial) gegenüberliegenden, rechtsseitigen Bereich eine magnetische Durchflutung über den dortigen Luftspaltbereich 40" zunimmt, durch die Sättigung im linksseitigen Bereich des Ringsvorsprungs 34 magnetischer Fluss außerhalb dieses Bereichs verlagert bzw. verdrängt wird.Advantageously in accordance with the invention, the integrally abutting, ring-shaped and conical projection 34 is now configured such that at a typical operating current through the coil unit 12, 14 (or a flux occurring in the transition region to the armature unit, in particular in the vertical air gap 40), then saturation occurs when this air gap (40 'in Fig. 2 ) in the left-hand area becomes very narrow, thereby increasing the magnetic flux in this area and the associated portion of the projection 34, which then, due to the comparatively narrow ring diameter, here the saturation takes priority. In accordance with the invention, this advantageously leads to a magnetic flux being increased over the local air gap area 40 "in the (radially) opposite, right-hand region, due to which saturation in the left-hand region of the annular projection 34 displaces or displaces magnetic flux outside this region.

Das Ergebnis ist eine kompensierende Kraftwirkung entlang eines Pfeils 42 (Fig. 2), entsprechend eine ein Aufrichten bzw. das Verkippen zurückführende Kraftkomponente in Querrichtung (Normalrichtung) zur Längsachse 18. Insoweit bildet der hier speziell zum Herbeiführen der Sättigung ausgestaltete Ringvorsprung 34 als Profilabschnitt der Kerneinheit die Basis für ein regelndes bzw. kompensierendes System im Hinblick auf die aufgabengemäß zu überwindenden bzw. abzumildernden Querkräfte. Dagegen verdeutlicht das Vergleichsbeispiel der Fig. 4, mit einem kernseitigen Profilabschnitt 44 und einem zugehörigen ankerseitigen Ringabsatz 46, dass - bedingt durch einen größeren flusswirksamen Querschnitt des Abschnitts 44 - bei Betriebsbedingungen (typischer Betriebsstrom für die Spuleneinheit) keine Sättigung im Abschnitt 44 auftritt, mithin eine magnetische Flusskonzentration im Vertikal-Luftspalt zwischen den Abschnitten 44, 46 im kleinsten verkippten Abstand auftritt und auch in dieser Stellung stabil steht. Nachteilige starke Reibkräfte sind hier die Folge. Es verdeutlicht die nachfolgende Tabelle 1 Variante Luftspalt zwischen Anker und Kern [mm] Kraft X-Achse [N] Kraft Y-Achse [N] Kraft Z-Achse [N] Fig. 4 -1,18 0,00 50,27 Fig. 1 0,15 0,71 0,05 62,40 Fig. 4 -1,94 -0,05 36,80 Fig. 1 0,8 -0,63 -0,03 42,65 The result is a compensating force action along an arrow 42 (FIG. Fig. 2 In this respect, the annular projection 34, which is designed here in particular to bring about saturation, as the profile section of the core unit forms the basis for a regulating or compensating system with respect to FIG According to the task to be overcome or mitigated transverse forces. In contrast, the comparative example illustrates the Fig. 4 , with a core-side profile section 44 and an associated armature-side annular shoulder 46 that - due to a larger flow-effective cross-section of the section 44 - under operating conditions (typical operating current for the coil unit) no saturation occurs in the section 44, thus a magnetic flux concentration in the vertical air gap between sections 44, 46 in the smallest tilted Distance occurs and is stable even in this position. Disadvantageous strong frictional forces are the result here. It clarifies the following Table 1 variant Air gap between anchor and core [mm] Force X-axis [N] Force Y-axis [N] Force Z-axis [N] Fig. 4 -1.18 0.00 50.27 Fig. 1 0.15 0.71 0.05 62.40 Fig. 4 -1.94 -0.05 36,80 Fig. 1 0.8 -0.63 -0.03 42.65

Im Zusammenhang mit der Fig. 5 als Kraft-Weg-Kennlinie der Gegenüberstellung der Fig. 1, Fig. 4, wie sich wirksam die nachteilige Querkraft reduzieren lässt; die Messwerte der Tabelle 1 entstammen dabei einer dreidimensionalen Simulation mit Ankerschrägstellung anhand der Positionen A bis H in Fig. 2. Es zeigt sich, dass sich (bei Ankerschrägstellung in Richtung der X-Achse) eine Reduzierung der Ankerquerkraft von ca. 30% bzw. eine aufrichtende Magnetkraft (positives Vorzeichen) erreichen lässt, und zwar sowohl bei einem kurzen, als auch relativ langen Ankerhub (0,15 mm bzw. 0,8 mm), in unmittelbaren Vergleich der Konusausgestaltungen der Fig. 1 relativ zum Vergleichsbeispiel der Fig. 4.In connection with the Fig. 5 as a force-displacement characteristic of the juxtaposition of Fig. 1, Fig. 4 how effectively the adverse lateral force can be reduced; The measured values in Table 1 are derived from a three-dimensional simulation with anchor slanting using the positions A to H in Fig. 2 , It can be seen that a reduction of the armature transverse force of approx. 30% or an upright magnetic force (positive sign) can be achieved (with armature inclination in the direction of the X axis), both with a short and relatively long armature stroke (FIG. 0.15 mm or 0.8 mm), in direct comparison of the cone designs of Fig. 1 relative to the comparative example of Fig. 4 ,

Die vorliegende Erfindung ist nicht auf die gezeigte konkrete Ausgestaltung beschränkt, vielmehr gibt es zahlreiche Wege und Möglichkeiten, im Rahmen der vorliegenden Erfindung den Steuerbereich durch geeignete Profilierung des konusseitigen sowie des ankerseitigen Endabschnitts auszubilden. Dabei kann etwa die Kontur der Fig. 2 (Ringvorsprung auf Kernseite liegt radial innen) umgekehrt werden, genauso wie eine entsprechend zur schnellen magnetischen Sättigung optimierte Profilierung auf Ankerseite (oder beidseits) vorhanden sein kann. Im vorliegenden Ausführungsbeispiel der Fig. 1, Fig. 2 hat sich zudem ein endseitig-mantelseitiger, außen umlaufender Ringabsatz 50 als vorteilhaft herausgestellt, da sich durch diesen zusätzlich eine nachteilige Reibung an der umgebenden Ankerführung reduzieren ließ.The present invention is not limited to the specific embodiment shown, but there are numerous ways and possibilities, in the context of the present invention, the control area by appropriate profiling of the cone-side and the armature-side end portion form. It can be about the contour of the Fig. 2 (Ring projection on the core side is radially inward) be reversed, just as an optimized for fast magnetic saturation profiling on anchor side (or both sides) may be present. In the present embodiment of Fig. 1, Fig. 2 In addition, an end-coat side, outer circumferential annular shoulder 50 has been found to be advantageous, as this could additionally reduce adverse friction on the surrounding anchor guide.

Claims (9)

  1. An electromagnetic positioning device having an anchor unit (20), which is moveable in an axial direction (18) around a movement stroke relative to a stationary core unit (24) and in reaction to a spool unit (14) being energized using an operating current and which, on one end, magnetically interacts with the core unit via a control area overlapping axially along the movement stroke at least in sections, said control area comprising a first profile section (34, 44) as a section of the anchor unit and, as a section of the core unit, a second profile section (36, 46) having an air gap (40) realized therebetween and realizing an expansion perpendicular to the axial direction,
    a cross section of the first and of the second profile section, which is flow-effective for a magnetic flow of the energization using the operating current flowing via the air gap, being realized such that in response to a reduction of the air-gap expansion caused by the anchor unit being tilted and/or deflected from the axial direction, a magnetic flow resistance of the first and/or the second profile section increases in the area of the reduction via magnetic saturation and a force opposing the tilt and/or the deflection acts on the anchor unit,
    characterized in that
    the first and the second profile section delimit the air gap via conical wall sections tilted towards the axial direction.
  2. The device according to claim 1,
    characterized in that
    the anchor unit and the core unit are realized radially symmetrical around a middle axis extending along the axial direction and in that the first and/or the second profile section preferably abut in one piece made of an anchor or core body and are realized so as to radially extend,
    by being tilted or inclined, the air gap radially extending between the first and the second profile section is reduced in a first air-gap area and is expanded in an air-gap area oppositely disposed with respect to the middle axis.
  3. The device according to claim 1 or 2,
    characterized in that
    the first and/or the second profile section comprise(s) a longitudinal tooth and/or cam shape, which are realized as an annular protrusion when the anchor and the core unit are realized radially symmetric.
  4. The device according to any one of the claims 1 to 3,
    characterized in that
    a cone angle of the wall sections of the first and/or the second profile section are realized such that the wall sections extend parallel to each other when the middle position of the anchor unit is not tilted or deflected and/or that an angle realized between the wall sections is < 5°, preferably less than < 3°.
  5. The device according to any one of the claims 1 to 4,
    characterized in that
    one of the profile sections is realized as a radially extending, longitudinal and conical annular protrusion, which interacts with the other profile section realized as a radially extending, conical annular groove and/or annular ledge.
  6. The device according to any one of the claims 1 to 5,
    characterized in that
    the anchor unit comprises a conical inner annular ledge for realizing the first profile section and forms a further circumferential annular ledge towards the core unit on the exterior.
  7. The device according to any one of the claims 1 to 6,
    characterized in that
    the anchor unit comprising a cylindrical anchor body does not comprise a pestle guide or a pestle mount and/or is mounted without film means, in particular without a sliding film, on the exterior.
  8. A use of the electromagnetic positioning device according to any one of the claims 1 to 7 for realizing a valve device, in particular a pneumatic valve device, in which a fluid flow is controlled by the movement the anchor unit.
  9. A method for operating an electromagnetic positioning device according to any one of the claims 1 to 7,
    characterized by the following steps:
    • energizing the spool unit for causing a movement of the anchor unit in the axial direction,
    • causing a force, in particular a transverse force or a normal force, acting on the anchor unit against the tilting or the deflection from the axial direction upon an axial overlapping between the anchor unit and the core unit in the control area.
EP11833885.4A 2010-10-20 2011-10-20 Electromagnetic actuating apparatus Active EP2630647B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18180013.7A EP3401936B1 (en) 2010-10-20 2011-10-20 Electromagnetic adjustment device
EP18180022.8A EP3399529B1 (en) 2010-10-20 2011-10-20 Electromagnetic adjustment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010048808A DE102010048808A1 (en) 2010-10-20 2010-10-20 Electromagnetic actuator
PCT/EP2011/068380 WO2012052528A2 (en) 2010-10-20 2011-10-20 Electromagnetic actuating apparatus

Related Child Applications (4)

Application Number Title Priority Date Filing Date
EP18180013.7A Division EP3401936B1 (en) 2010-10-20 2011-10-20 Electromagnetic adjustment device
EP18180013.7A Division-Into EP3401936B1 (en) 2010-10-20 2011-10-20 Electromagnetic adjustment device
EP18180022.8A Division EP3399529B1 (en) 2010-10-20 2011-10-20 Electromagnetic adjustment device
EP18180022.8A Division-Into EP3399529B1 (en) 2010-10-20 2011-10-20 Electromagnetic adjustment device

Publications (2)

Publication Number Publication Date
EP2630647A2 EP2630647A2 (en) 2013-08-28
EP2630647B1 true EP2630647B1 (en) 2018-12-12

Family

ID=45923067

Family Applications (3)

Application Number Title Priority Date Filing Date
EP11833885.4A Active EP2630647B1 (en) 2010-10-20 2011-10-20 Electromagnetic actuating apparatus
EP18180022.8A Active EP3399529B1 (en) 2010-10-20 2011-10-20 Electromagnetic adjustment device
EP18180013.7A Active EP3401936B1 (en) 2010-10-20 2011-10-20 Electromagnetic adjustment device

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP18180022.8A Active EP3399529B1 (en) 2010-10-20 2011-10-20 Electromagnetic adjustment device
EP18180013.7A Active EP3401936B1 (en) 2010-10-20 2011-10-20 Electromagnetic adjustment device

Country Status (5)

Country Link
US (1) US9236175B2 (en)
EP (3) EP2630647B1 (en)
CN (1) CN103282979B (en)
DE (1) DE102010048808A1 (en)
WO (1) WO2012052528A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014222504A1 (en) * 2014-11-04 2016-05-04 Robert Bosch Gmbh valve means
JP7023737B2 (en) * 2018-02-21 2022-02-22 株式会社鷺宮製作所 Solenoid valve and refrigeration cycle system
EP3758028B1 (en) * 2019-06-24 2023-02-15 Otis Elevator Company Actuator
EP4024417A4 (en) * 2019-08-28 2023-05-10 Harmonic Drive Systems Inc. Push-pull solenoid
DE102020132351A1 (en) 2020-12-04 2022-06-09 Eto Magnetic Gmbh Electromagnetic actuator device, solenoid valve and method for operating the electromagnetic actuator device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2809975A1 (en) 1978-03-08 1979-09-20 Bosch Gmbh Robert MAGNETIC CONTROL UNIT FOR A CONTROL DEVICE
DE3829676A1 (en) 1988-09-01 1990-03-15 Olympia Aeg SUBMERSIBLE MAGNET, AND THE USE THEREOF AS A PRINTING HAMMER IN A PRINTING HAMMER DEVICE
US5261637A (en) 1992-07-07 1993-11-16 Lectron Products, Inc. Electrical variable orifice actuator
US5722367A (en) 1995-10-10 1998-03-03 Walbro Corporation Engine idle speed air control
US5779220A (en) 1994-09-09 1998-07-14 General Motors Corporation Linear solenoid actuator for an exhaust gas recirculation valve
DE19860753A1 (en) 1998-04-08 1999-10-14 Bitron Ind Espana Sa Electromagnetic valve for proportional control of volumetric flow, e.g. gaseous media
DE19848919A1 (en) 1998-10-23 2000-04-27 Elektroteile Gmbh Magnetic valve e.g. 2/2-way valve or 3/2-way valve, has pressure sleeve enclosing armature for operation of valve plate combined with vent jet insert providing valve seat
US6076550A (en) 1995-09-08 2000-06-20 Toto Ltd. Solenoid and solenoid valve
DE102004028126A1 (en) 2003-06-09 2005-01-13 Borgwarner Inc., Auburn Hills Force-variable electromagnet
US20070290581A1 (en) 2006-06-16 2007-12-20 Siemens Canada Limited Active control mount magnetic optimization for an engine
US20090051471A1 (en) 2005-05-31 2009-02-26 Minebea Co., Ltd. Long-proportional-stroke force motor

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0134326Y2 (en) * 1981-04-22 1989-10-19
US4604600A (en) * 1983-12-23 1986-08-05 G. W. Lisk Company, Inc. Solenoid construction and method for making the same
WO1990001780A1 (en) 1988-08-08 1990-02-22 Mitsubishi Mining & Cement Co., Ltd. Plunger type electromagnet
DE3927150A1 (en) 1989-08-17 1991-02-21 Fichtel & Sachs Ag Magnetic valve with short stroke armature - pole cure and magnetic armature cooperating via protrusion and corresp. recess
DE4244444A1 (en) 1992-12-23 1994-07-07 Mannesmann Ag Electromagnetic valve with electric current feed for electromagnetic coil
DE4334031C2 (en) 1993-10-06 1998-02-12 Kuhnke Gmbh Kg H Method for operating a bistable solenoid and solenoid for performing the method
DE29723517U1 (en) 1997-09-24 1998-09-24 Kuhnke GmbH, 23714 Malente Device, in particular electromagnetic device
US6392516B1 (en) * 1998-12-04 2002-05-21 Tlx Technologies Latching solenoid with improved pull force
JP4594468B2 (en) * 1999-11-08 2010-12-08 中日電機工業株式会社 electromagnet
US6759934B2 (en) * 2000-09-11 2004-07-06 Delphi Technologies, Inc. Proportionally-controllable solenoid actuator
DE10251851A1 (en) * 2002-07-16 2004-02-12 Eto Magnetic Kg Electromagnetic actuator, e.g. for vehicle ABS, has end faces with number of inclined areas forming multiple conical and/or serrated crossing region with no non-magnetic distancing element in end face crossing region
US6615780B1 (en) * 2002-08-16 2003-09-09 Delphi Technologies, Inc. Method and apparatus for a solenoid assembly
US6877717B2 (en) 2003-03-14 2005-04-12 Kelsey-Hayes Company Control valve for a vehicular brake system
DE102004002528A1 (en) * 2004-01-12 2005-08-04 Siemens Ag Electromagnetic linear drive
DE102004023905B4 (en) 2004-05-13 2013-09-19 Bürkert Werke GmbH Electromagnetic actuator
JP4285354B2 (en) * 2004-07-26 2009-06-24 株式会社デンソー Linear solenoid and solenoid valve
GB0603171D0 (en) * 2006-02-17 2006-03-29 Rolls Royce Plc An actuator
DE102008034609B4 (en) * 2008-07-25 2010-06-10 Thomas Magnete Gmbh electromagnet
DE202008017033U1 (en) 2008-12-30 2010-05-12 Eto Magnetic Gmbh Electromagnetic actuator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2809975A1 (en) 1978-03-08 1979-09-20 Bosch Gmbh Robert MAGNETIC CONTROL UNIT FOR A CONTROL DEVICE
DE3829676A1 (en) 1988-09-01 1990-03-15 Olympia Aeg SUBMERSIBLE MAGNET, AND THE USE THEREOF AS A PRINTING HAMMER IN A PRINTING HAMMER DEVICE
US5261637A (en) 1992-07-07 1993-11-16 Lectron Products, Inc. Electrical variable orifice actuator
US5779220A (en) 1994-09-09 1998-07-14 General Motors Corporation Linear solenoid actuator for an exhaust gas recirculation valve
US6076550A (en) 1995-09-08 2000-06-20 Toto Ltd. Solenoid and solenoid valve
US5722367A (en) 1995-10-10 1998-03-03 Walbro Corporation Engine idle speed air control
DE19860753A1 (en) 1998-04-08 1999-10-14 Bitron Ind Espana Sa Electromagnetic valve for proportional control of volumetric flow, e.g. gaseous media
DE19848919A1 (en) 1998-10-23 2000-04-27 Elektroteile Gmbh Magnetic valve e.g. 2/2-way valve or 3/2-way valve, has pressure sleeve enclosing armature for operation of valve plate combined with vent jet insert providing valve seat
DE102004028126A1 (en) 2003-06-09 2005-01-13 Borgwarner Inc., Auburn Hills Force-variable electromagnet
US20090051471A1 (en) 2005-05-31 2009-02-26 Minebea Co., Ltd. Long-proportional-stroke force motor
US20070290581A1 (en) 2006-06-16 2007-12-20 Siemens Canada Limited Active control mount magnetic optimization for an engine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Die Elektromagnete", DIE ELEKTROMAGNETE, 1930, Wiesbaden, pages 1 - 208
"DIE ELEKTROMAGNETE, GRUNDLAGEN,BERECHNUNG,", 1930, Berlin, article JASSE: "Vorwort zur 2. erweiterten auflage", pages: 71 - 85, XP055640869

Also Published As

Publication number Publication date
EP3401936A1 (en) 2018-11-14
EP3399529A1 (en) 2018-11-07
EP3399529B1 (en) 2019-12-25
US9236175B2 (en) 2016-01-12
US20130265125A1 (en) 2013-10-10
CN103282979A (en) 2013-09-04
CN103282979B (en) 2016-10-12
EP2630647A2 (en) 2013-08-28
WO2012052528A3 (en) 2012-11-22
WO2012052528A2 (en) 2012-04-26
EP3401936B1 (en) 2019-12-25
DE102010048808A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
EP2630647B1 (en) Electromagnetic actuating apparatus
EP2176576B1 (en) Solenoid valve
EP0399326B1 (en) Shockabsorber
EP2137442B1 (en) Electromagnet valve and method for producing an electromagnet valve
DE102009049009B4 (en) Actuator for an internal combustion engine
AT503480B1 (en) solenoid
EP3409984B1 (en) Piston slide valve
EP2775485B1 (en) Electromagnetic actuating device, in particular for adjusting the camshaft of an internal combustion engine
DE202007008281U1 (en) solenoid
EP3158220B1 (en) Hydraulic bearing and motor vehicle comprising a hydraulic bearing of this type
EP2751460A1 (en) Seal, and control device having said seal
DE102011051268A1 (en) Electromagnetic actuator and camshaft adjuster
DE102018128577A1 (en) POLE TUBE FOR ELECTROMAGNETS, LIFTING MAGNETS AND SOLENOID VALVES AND METHOD FOR THE PRODUCTION THEREOF
EP3454349B1 (en) Method for producing a magnetic anchor tappet bond and magnetic anchor tappet bond for a linear actuator,
EP3698383B1 (en) Electromagnetic actuator device and use of such a device
DE102015218293A1 (en) Solenoid valve with an armature with movable stage
DE112015005777T5 (en) Electromagnetic actuator
DE102010032688B4 (en) Electromagnet with permanent magnet
DE102016205674A1 (en) Bistable electromagnetic drive and method for producing and operating the same
DE102015223396A1 (en) Switchable bearing
WO2016142105A1 (en) Electromagnetic switching device and method for operating the electromagnetic switching device
DE102015222893A1 (en) Electromagnetic actuator with anti-rotation lock
DE102015217968A1 (en) Electromagnetically operated suction valve for a high-pressure pump and method for producing an electromagnetically actuated suction valve
WO2015028279A1 (en) Electromagnetic actuator with improved controllability

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130517

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RAFF, VIKTOR

Inventor name: THODE, OLIVER

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180607

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20180921

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1077069

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015164

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502011015164

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: THOMAS MAGNETE GMBH

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191020

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191020

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191020

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1077069

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191020

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502011015164

Country of ref document: DE

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

27C Opposition proceedings terminated

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 13

Ref country code: FR

Payment date: 20231023

Year of fee payment: 13

Ref country code: DE

Payment date: 20231018

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011015164

Country of ref document: DE

Representative=s name: PATENT- UND RECHTSANWALTSKANZLEI DAUB, DE