EP3400475A1 - Afficheur tête-haute - Google Patents

Afficheur tête-haute

Info

Publication number
EP3400475A1
EP3400475A1 EP17700070.0A EP17700070A EP3400475A1 EP 3400475 A1 EP3400475 A1 EP 3400475A1 EP 17700070 A EP17700070 A EP 17700070A EP 3400475 A1 EP3400475 A1 EP 3400475A1
Authority
EP
European Patent Office
Prior art keywords
driver
display
image generation
head
generation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17700070.0A
Other languages
German (de)
English (en)
Inventor
Bruno ALBESA
Michael Irzyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Comfort and Driving Assistance SAS
Original Assignee
Valeo Comfort and Driving Assistance SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Comfort and Driving Assistance SAS filed Critical Valeo Comfort and Driving Assistance SAS
Publication of EP3400475A1 publication Critical patent/EP3400475A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/0161Head-up displays characterised by mechanical features characterised by the relative positioning of the constitutive elements
    • G02B2027/0163Electric or electronic control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0183Adaptation to parameters characterising the motion of the vehicle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers

Definitions

  • the present invention relates generally to devices for assisting the driving of motor vehicles.
  • a head-up display for a motor vehicle comprising:
  • an image generation unit controlled by the computer for generating images
  • an optical assembly for projecting virtual images, adapted to project each image generated by said image generation unit into the field of vision of the driver of the motor vehicle.
  • a head-up display adapted to project basic information (speed of the vehicle, direction to follow, ...) and safety information (engine malfunction, presence of obstacles,. ..) at the driver's eye level.
  • the displays of the first type use an image forming device comprising a diffuser and a scanning unit designed to generate a light beam scanning an entrance face of the diffuser.
  • the light beam at the output of the diffuser thus forms an image, which can then be projected into the field of vision of the driver of the vehicle by means of a combiner.
  • the displays of the second type use a screen that generates an image, which is then projected into the field of view of the driver, here also by means of a combiner.
  • the combiner makes it possible for the driver to perceive the elementary and safety information in superposition of the view he has of the road. The driver then perceives this information as if it were displayed in a plan located at a distance from the driver that is greater than that separating the driver from the windshield.
  • the invention proposes a head-up display for a motor vehicle, comprising:
  • an image generation unit controlled by the computer for generating images
  • an optical assembly for projecting virtual images adapted to project each image generated by said image generation unit into the field of vision of the driver of the motor vehicle and in which the image generation unit comprises a self-filtering filter; stereoscopic, the image generation unit providing at least two distinct points of view;
  • the filter will make it possible to generate images that will be perceived by the driver as being three-dimensional. It will be from then on possible to display information in an infinite number of shots more or less distant from the driver.
  • the auto-stereoscopic filter comprises a network of microlenses
  • said image generation unit offers eight distinct points of view
  • the auto-stereoscopic filter comprises a parallax barrier
  • the computer is adapted to control the image generation unit in such a way that the virtual images projected by the optical assembly are perceived by the driver as being formed of layers (Img1, Img2, Img3), each layer (Img1 , Img2, Img3) being located in a separate plane and including information visible to the driver;
  • the computer is adapted to control the image generation unit such that the virtual images projected by the optical assembly are perceived by the driver as representing a three-dimensional shape;
  • a data acquisition device available to the driver, which is connected to the computer and allows the driver to switch the computer between two calculation modes, including an active mode in which the computer controls the generating unit in such a way that the virtual images projected by the optical assembly are perceived by the driver as three-dimensional, and a passive mode in which the computer controls the image generation unit such that each projected virtual image by the optical assembly is seen by the driver as being two-dimensional;
  • a system for detecting the position of each of the eyes of the driver is provided, and the computer is adapted to control the image generation unit as a function of the detected position of said eyes;
  • said image generation unit comprises a display screen
  • said projection optical assembly comprises at least one optical magnification component
  • said projection optical assembly comprises a combiner in the form of a transparent and semicircular curved optical pane; reflective performing a magnifying function.
  • FIG. 1 is a schematic view of a head-up display according to the invention.
  • FIG. 2 is a schematic view of a portion of a screen and of an auto-stereoscopic filter of the head-up display of FIG. 1;
  • FIG. 1 there is shown a head-up display 10 for equipping a vehicle, for example a motor vehicle.
  • This head-up display 10 comprises an image generation unit
  • the image generation unit 11 comprises a display screen 15, here a liquid crystal display (or
  • LCD for "Liquid Crystal Dispiaf" with thin-film transistors (or TFT for
  • Thin-FHm Transistor It also includes a backlight device located at the back of the display screen 15.
  • This image generation unit 1 1 makes it possible, under the control of the computer 20, to generate an image that the projection optical assembly 12 will be able to project into the driver's field of vision when the driver's gaze is turned towards the driver. road.
  • the optical projection assembly 12 is more specifically designed to project a virtual image Img in the field of vision of the driver of the vehicle.
  • a return optical system 13 and a combiner 14 placed in the field of view of the driver of the vehicle. It could possibly also include a magnification lens (not shown).
  • the optical return system 13 which here comprises only a folding mirror, makes it possible to send the image generated by the image generation unit 1 1 to the combiner 14.
  • the combiner 14 makes it possible to reflect this image in such a way that it appears to the driver.
  • this combiner 14 is preferably arranged in the passenger compartment of the motor vehicle, between the windshield 1 of the vehicle and the eyes of the driver.
  • the combiner could be formed by the windshield itself.
  • This combiner 14 comprises a transparent curved optical glass and semi-reflective performing a function of magnification.
  • it is an injected piece of polycarbonate, which is curved so as to enlarge the size of the virtual image Img seen by the driver.
  • the computer 20 comprises a processor and a storage unit, for example a rewritable non-volatile memory or a hard disk.
  • the storage unit notably stores a computer application, consisting of computer programs comprising instructions whose execution by the processor allows the implementation by the computer 20 of the method described below.
  • the computer 20 is particularly adapted to control the display screen 15 so that the latter displays images.
  • This computer 20 is preferably connected to a detection system 17 of the position of each of the eyes of the driver and to a data input member 18 available to the driver.
  • the detection system 17 may be formed by a camera acquiring images of the driver's face. Then, the computer 20 will be provided to determine the instantaneous position of each of the eyes of the driver, given the images acquired.
  • the input member 18 may itself be formed by a bistable button actuable by the driver. Here, it will rather be considered that this input member will be formed by a touch screen placed in the central console of the motor vehicle.
  • the head-up display 10 is designed in such a way that the virtual images Img projected in the field of view of the driver are three-dimensional images. These images are more specifically intended to be viewed in three dimensions by the driver, without requiring the wearing of stereoscopic glasses (better known as "3D glasses").
  • the image generation unit 11 comprises an automatic filter stereoscopic 1 6.
  • the computer 20 is then provided to control the display of images by the display screen 15 taking into account the characteristics of this auto-stereoscopic filter 1 6, so that the virtual images Img are perceived by the driver as being three-dimensional .
  • the auto-stereoscopic filter could be in the form of a parallax barrier.
  • the auto-stereoscopic filter is rather in the form of a network of convergent microlenses offering at least two distinct points of view.
  • the image generation unit 11 is adapted to simultaneously display in an entangled manner, at least two different two-dimensional images, each of which can be individually observed from a different angle of view. angle under which we can observe the other image.
  • the driver can simultaneously observe two two-dimensional images with both eyes, so that his brain can reconstruct a three-dimensional image.
  • it will offer more than two points of view, namely here eight points of view.
  • the driver will be able to observe two two-dimensional images with his two eyes, among the eight available, not only when his head is exactly positioned in the axis of the combiner 14, but also when it is offset relative to this axis.
  • FIG. 2 to explain briefly the operation of this auto-stereoscopic display system, a portion of the display screen 15 and the auto-stereoscopic filter 1 6 are very schematically represented in section.
  • the display screen 15 comprises a periodic succession of sub-pixels of different colors: Red (R), Green (V) and Blue (B). Each subpixel triplet forms a pixel P1, P2, P3, P4.
  • Each sub-pixel has, from the front, a rectangular shape or, as will be described hereinafter, a form of parallelogram.
  • Each sub-pixel is controlled to emit on the front face of the light with a determined light intensity, the resulting color sensation then the mixture of the three elementary colors in the driver's eye.
  • the microlens array is composed of microlenses L1, L2, L3 here cylindrical. This is in practice lenses profiled along a vertical axis, convex cross sections. In the example illustrated in the figures, these lenses here have a flat rear face (facing the display screen 15) and a convex front face. Alternatively, it could be otherwise.
  • the microlens array is placed in front of the display screen 15, parallel to that at a distance equal to the focal length of the microlenses. In this way, the microlenses L1, L2, L3 of the network magnify the points horizontally and they return to infinity the visual information present on the screen.
  • an image generation unit 1 1 which offers a number of viewpoints TR1, TR2, TR3, TR4 equal to 4.
  • This figure shows four pixels P1, P2, P3, P4 juxtaposed horizontally.
  • microlenses L1, L2, L3 have also been represented.
  • the pitch of these microlenses L1, L2, L3 is here chosen equal to the width (taken horizontally) of four sub-pixels.
  • TR1, TR2, TR3, TR4 are also shown below which it is possible to observe the image generation unit 1 1.
  • these four views are shown on the side of the display screen 15 while in practice, this screen will be seen from the opposite side through the projection assembly 12.
  • a (single) eye that observes the display screen 15 through the microlens array 1 6 will then see, according to its position:
  • each eye of the driver is likely to visually mix the red, green and blue components of different pixels of the image.
  • the computer can display images which, by that they will not be seen under the same angle (that is to say with the same point of view) by the two eyes of the driver, can be interpreted by the brain as three-dimensional images.
  • the image generation unit 1 1 will preferably be designed to offer not four, but eight different points of view. For this, we will use microlenses that will each cover not four, but eight sub-pixels.
  • the sub-pixels are elongated along a vertical axis, but the microlenses are elongated along an axis inclined at an angle ⁇ with respect to the vertical axis so as to produce assemblies of eight sub-pixels. .
  • frontal planes plans that extend substantially orthogonal to the direction of the driver's gaze.
  • Each frontal plane will then be defined by a “depth”, that is to say by a distance separating it from the eyes of the driver.
  • the computer 20 will control the image generation unit 1 1 such that each virtual image Img projected by the optical assembly 12 is seen by the driver as consisting of points in a number finished of distinct front planes, this number being for example less than or equal to five.
  • the Img3 layer closest to the driver will be seen as being at a distance from the driver that is greater than the distance separating the driver from the windshield 1, so that the eyes of the driver will not have to perform work. accommodation to collect the projected information.
  • Each layer can be used to display separate information.
  • a virtual image Img projected by the optical assembly 12
  • a three-dimensional shape could be a sphere, a motor vehicle, a continuous white line or the symbolism of a street scene.
  • the depth of the three-dimensional shape of the virtual image Img will be calculated so that the successive points of the three-dimensional shape appear continuously.
  • a three-dimensional shape represents an object having at least one surface that extends continuously in a depth, while the above-mentioned layers form a three-dimensional image from their dispositions in planes orthogonal to the direction of gaze and located at different depths.
  • a virtual image can thus represent at least one form three-dimensional and / or an image formed of one or more layers at different depths.
  • the driver may in this case use the touch screen 18 of the central console of the vehicle, so as to switch the computer 20 from a normal operating mode (called active mode), such as the one above, to a degraded mode (called passive mode).
  • active mode a normal operating mode
  • passive mode a degraded mode
  • the computer 20 will then be designed to control the image generation unit 1 1 so that each virtual image Img projected by the optical assembly 12 is formed of a single layer.
  • the computer will control the illumination of the sub-pixels of the display screen 15 so that the color mixture R, V, B seen through each microlens triplet L1, L2, L3 is the same, regardless of the point of view under which the display screen 15 will be observed.
  • the two eyes of the driver can observe the same image, which will be interpreted by the driver's brain as a two-dimensional image.
  • the computer 20 can control the image generation unit 1 1 according to the detected position of the eyes of the driver.
  • the computer may, given the position of each of the two eyes of the driver (detected by the detection system 17), shift laterally at least one of the images seen by one of the eyes of the driver. that the virtual image observed by the driver is clear.
  • it will be possible to display information at a distance from the driver which will be variable and which will be chosen according to the type of information to be displayed or depending on the conditions encountered. For example, it will be possible to display the speed of the vehicle in a frontal plane that will move more or less away from the driver, depending on the speed of movement of the vehicle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Instrument Panels (AREA)

Abstract

L'invention concerne un afficheur tête-haute (10) pour véhicule automobile, comprenant : - un calculateur (20), - une unité de génération d'images (11) commandée par le calculateur pour générer des images, et - un ensemble optique (12) de projection d'images virtuelles (Img), adapté à projeter chaque image générée par ladite unité de génération d'images dans le champ de vision du conducteur du véhicule automobile. Selon l'invention, l'unité de génération d'images comporte un filtre auto-stéréoscopique (16).

Description

AFFICHEUR TÊTE-HAUTE
DOMAIN E TECHNIQU E AUQU EL SE RAPPORTE L'I NVENTION La présente invention concerne de manière générale les dispositifs d'aide à la conduite de véhicules automobiles.
Elle concerne plus particulièrement un afficheur tête-haute pour véhicule automobile, comprenant :
- un calculateur,
- une unité de génération d'images commandée par le calculateur pour générer des images, et
- un ensemble optique de projection d'images virtuelles, adapté à projeter chaque image générée par ladite unité de génération d'images dans le champ de vision du conducteur du véhicule automobile.
ARRI ÈRE-PLAN TECHNOLOGIQU E
Pour faciliter et rendre plus sûre la conduite d'un véhicule automobile, on souhaite éviter que le conducteur ne soit forcé de détourner son regard de la route qu'il emprunte.
Pour cela, il est connu d'utiliser un afficheur tête-haute, adapté à projeter des informations élémentaires (vitesse du véhicule, direction à suivre, ...) et des informations de sécurité (dysfonctionnement du moteur, présence d'obstacle, ...) à la hauteur du regard du conducteur.
On connaît notamment deux types d'afficheurs tête-haute.
Les afficheurs du premier type utilisent un dispositif de formation d'image comprenant un diffuseur et une unité de balayage conçue pour générer un faisceau lumineux balayant une face d'entrée du diffuseur. Le faisceau lumineux en sortie du diffuseur forme ainsi une image, qui peut alors être projetée dans le champ de vision du conducteur du véhicule au moyen d'un combineur.
Les afficheurs du second type utilisent un écran qui permet de générer une image, laquelle est alors projetée dans le champ de vision du conducteur, ici aussi au moyen d'un combineur.
Dans les deux cas, le combineur permet de faire en sorte que le conducteur puisse percevoir les informations élémentaires et de sécurité en superposition de la vue qu'il a de la route. Le conducteur perçoit alors ces informations comme si elles se trouvaient affichées dans un plan situé à une distance du conducteur qui est supérieure à celle séparant le conducteur du pare- brise.
Il a par ailleurs été développé un système permettant d'afficher deux images dans deux plans différents, afin que le conducteur puisse percevoir les informations comme si elles se trouvaient affichées dans deux plans plus ou moins éloignés de lui. Ce type de système, utilisant deux optiques de projection, ne permet pas de réaliser une image tridimensionnelle mais seulement d'afficher des informations bidimensionnelles sur des plans différents. Un autre système utilise notamment deux écrans associés à deux prismes qui permettent d'obtenir deux images distinctes à une même distance du conducteur, dont l'une est visible par l'œil droit du conducteur et dont l'autre est visible par l'œil gauche du conducteur conduisant ainsi à la perception tridimensionnelle du contenu projeté.
Ce système présente deux inconvénients majeurs. Il présente tout d'abord un coût élevé. Il limite par ailleurs à deux le nombre de plans dans lesquels il est possible de projeter des informations. OBJET DE L'INVENTION
Afin de remédier aux inconvénients précités de l'état de la technique, on propose selon l'invention un afficheur tête-haute pour véhicule automobile, comprenant :
- un calculateur,
- une unité de génération d'images commandée par le calculateur pour générer des images,
- un ensemble optique de projection d'images virtuelles adapté à projeter chaque image générée par ladite unité de génération d'images dans le champ de vision du conducteur du véhicule automobile et dans lequel l'unité de génération d'images comporte un filtre auto-stéréoscopique, l'unité de génération d'images offrant au moins deux points de vue distincts ;
Ainsi, grâce à l'invention, le filtre va permettre de générer des images qui seront perçues par le conducteur comme étant tridimensionnelles. Il sera dès lors possible d'afficher des informations dans un nombre infini de plans plus ou moins éloignés du conducteur.
D'autres caractéristiques avantageuses et non limitatives de l'afficheur tête-haute conforme à l'invention sont les suivantes :
- le filtre auto-stéréoscopique comporte un réseau de microlentilles
- ladite unité de génération d'images offre huit points de vue distincts ;
- en variante, le filtre auto-stéréoscopique comporte une barrière de parallaxe ;
- le calculateur est adapté à commander l'unité de génération d'images de telle manière que les images virtuelles projetées par l'ensemble optique sont perçues par le conducteur comme étant formées de calques (Img1 , Img2, Img3), chaque calque (Img1 , Img2, Img3) étant situé dans un plan distinct et comprenant des informations visibles par le conducteur ;
- le calculateur est adapté à commander l'unité de génération d'images de telle manière que les images virtuelles projetées par l'ensemble optique sont perçues par le conducteur comme représentant une forme tridimensionnelle ;
- il est prévu un organe de saisie de données à disposition du conducteur, qui est connecté au calculateur et qui permet au conducteur de faire basculer le calculateur entre deux modes de calcul, dont un mode actif dans lequel le calculateur commande l'unité de génération d'images de telle manière que les images virtuelles projetées par l'ensemble optique sont perçues par le conducteur comme étant tridimensionnelle, et un mode passif dans lequel le calculateur commande l'unité de génération d'images de telle manière que chaque image virtuelle projetée par l'ensemble optique est vue par le conducteur comme étant bidimensionnelle ;
- il est prévu un système de détection de la position de chacun des yeux du conducteur, et le calculateur est adapté à commander l'unité de génération d'images en fonction de la position détectée desdits yeux ;
- ladite unité de génération d'images comprend un écran d'affichage ;
- ledit ensemble optique de projection comporte au moins un composant optique de grandissement ; et
- ledit ensemble optique de projection comporte un combineur se présentant sous la forme d'une vitre optique courbe transparente et semi- réfléchissante réalisant une fonction de grandissement.
DESCRIPTION DÉTAILLÉE D'UN EXEMPLE DE RÉALISATION La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
Sur les dessins annexés :
- la figure 1 est une vue schématique d'un afficheur tête-haute conforme à l'invention ;
- la figure 2 est une vue schématique d'une partie d'un écran et d'un filtre auto-stéréoscopique de l'afficheur tête-haute de la figure 1 ; et
Sur la figure 1 , on a représenté un afficheur tête-haute 10 destiné à équiper un véhicule, par exemple un véhicule automobile.
Cet afficheur tête-haute 10 comprend une unité de génération d'images
1 1 pilotée par un calculateur 20, et un ensemble optique de projection 12.
Dans le mode de réalisation illustré sur la figure 1 , l'unité de génération d'images 1 1 comprend un écran d'affichage 15, ici un écran à cristaux liquides (ou
LCD pour "Liquid Crystal Dispiaf) à transistors en couche mince (ou TFT pour
"Thin-FHm Transistor). Elle comprend également un dispositif de rétroéclairage situé à l'arrière de l'écran d'affichage 15.
Cette unité de génération d'images 1 1 permet, sous le contrôle du calculateur 20, de générer une image que l'ensemble optique de projection 12 va pouvoir projeter dans le champ de vision du conducteur lorsque le regard de ce dernier sera tourné vers la route.
Ainsi, l'ensemble optique de projection 12 est plus précisément conçu pour projeter une image virtuelle Img dans le champ de vision du conducteur du véhicule.
Il comporte à cet effet un système optique de renvoi 13 et un combineur 14 placé dans le champ de vision du conducteur du véhicule. Il pourrait éventuellement aussi comporter une lentille de grossissement (non représentée).
Le système optique de renvoi 13, qui comporte ici uniquement un miroir de repliement, permet de renvoyer l'image générée par l'unité de génération d'images 1 1 vers le combineur 14.
Le combineur 14 permet de réfléchir cette image de telle manière qu'elle apparaisse au conducteur. Ici, ce combineur 14 est de préférence disposé dans l'habitacle du véhicule automobile, entre le pare-brise 1 du véhicule et les yeux du conducteur. En variante, le combineur pourrait être formé par le pare-brise lui-même.
Ce combineur 14 comporte une vitre optique courbe transparente et semi-réfléchissante réalisant une fonction de grandissement. Ici, il s'agit d'une pièce injectée en polycarbonate, qui est incurvée de manière à agrandir la taille de l'image virtuelle Img vue par le conducteur.
Le calculateur 20 comprend quant à lui un processeur et une unité de mémorisation, par exemple une mémoire non-volatile réinscriptible ou un disque dur.
L'unité de mémorisation mémorise notamment une application informatique, constituée de programmes d'ordinateur comprenant des instructions dont l'exécution par le processeur permet la mise en œuvre par le calculateur 20 du procédé décrit ci-après.
Le calculateur 20 est notamment adapté à commander l'écran d'affichage 15 de manière que ce dernier affiche des images.
Ce calculateur 20 est préférentiellement connecté à un système de détection 17 de la position de chacun des yeux du conducteur et à un organe de saisie 18 de données à disposition du conducteur.
Typiquement, le système de détection 17 peut être formé par une caméra acquérant des images du visage du conducteur. Alors, le calculateur 20 sera prévu pour déterminer la position instantanée de chacun des yeux du conducteur, compte tenu des images acquises.
L'organe de saisie 18 peut quant à lui être formé par un bouton bistable actionnable par le conducteur. Ici, on considérera plutôt que cet organe de saisie sera formé par un écran tactile placé dans la console centrale du véhicule automobile.
Ici, et c'est plus précisément l'objet de la présente invention, l'afficheur tête-haute 10 est conçu de telle manière que les images virtuelles Img projetées dans le champ de vision du conducteur soient des images tridimensionnelles. Ces images sont plus précisément prévues pour être vues en trois dimensions par le conducteur, sans nécessiter le port de lunettes stéréoscopiques (plus connues sous le nom de « lunettes 3D »).
Pour cela, l'unité de génération d'images 1 1 comporte un filtre auto- stéréoscopique 1 6.
Le calculateur 20 est alors prévu pour commander l'affichage d'images par l'écran d'affichage 15 compte tenu des caractéristiques de ce filtre auto- stéréoscopique 1 6, de manière que les images virtuelles Img soient perçues par le conducteur comme étant tridimensionnelles.
Le filtre auto-stéréoscopique pourrait se présenter sous la forme d'une barrière de parallaxe.
Ici, de manière préférentielle, le filtre auto-stéréoscopique se présente plutôt sous la forme d'un réseau de microlentilles convergentes offrant au moins deux points de vue distincts.
Par « points de vue distincts », on entend que l'unité de génération d'images 1 1 est adapté à simultanément afficher de façon enchevêtrée, au moins deux images bidimensionnelles différentes, pouvant chacune être observée de manière individuelle sous un angle différent de l'angle sous lequel on pourra observer l'autre image.
De cette manière, le conducteur pourra observer simultanément deux images bidimensionnelles avec ses deux yeux, de manière que son cerveau puisse reconstruire une image tridimensionnelle.
Dans un mode de réalisation préférentiel, il offrira plus de deux points de vue, à savoir ici huit points de vue. De cette manière, le conducteur pourra observer deux images bidimensionnelles avec ses deux yeux, parmi les huit disponibles, non seulement lorsque sa tête est exactement positionnée dans l'axe du combineur 14, mais également lorsqu'elle est décalé par rapport à cet axe.
Sur la figure 2, pour expliquer brièvement le fonctionnement de ce système d'affichage auto-stéréoscopique, on a représenté de manière très schématique, en coupe, une partie de l'écran d'affichage 15 et du filtre auto- stéréoscopique 1 6.
On y observe que l'écran d'affichage 15 comporte une succession périodique de sous-pixels de couleurs différentes : Rouges (R), Verts (V) et Bleus (B). Chaque triplet de sous-pixels forme un pixel P1 , P2, P3, P4.
Chaque sous-pixel présente, de face, une forme rectangulaire ou, comme cela sera décrit ci-après, une forme de parallélogramme.
Chaque sous-pixel est commandé pour émettre en face avant de la lumière avec une intensité lumineuse déterminée, la sensation colorée résultant alors du mélange des trois couleurs élémentaires dans l'œil du conducteur.
Le réseau de microlentilles est quant à lui composé de microlentilles L1 , L2, L3 ici cylindriques. Il s'agit en pratique de lentilles profilées selon un axe vertical, de sections transversales convexes. Dans l'exemple illustré sur les figures, ces lentilles présentent ici une face arrière (orientée vers l'écran d'affichage 15) plane et une face avant convexe. En variante, il pourrait en être autrement.
Le réseau de microlentilles est placé devant l'écran d'affichage 15, parallèlement à celui, à une distance égale à la longueur focale des microlentilles. De la sorte, les microlentilles L1 , L2, L3 du réseau grossissent les points horizontalement et elles renvoient à l'infini les informations visuelles présentes sur l'écran.
Dans l'exemple de réalisation de la figure 2, pour des raisons de clarté, on a représenté une unité de génération d'images 1 1 qui offre un nombre de points de vue TR1 , TR2, TR3, TR4 égal à 4.
On a représenté sur cette figure quatre pixels P1 , P2, P3, P4 juxtaposés horizontalement.
On a également représenté trois microlentilles L1 , L2, L3. Le pas de ces microlentilles L1 , L2, L3 est ici choisi égal à la largeur (prise horizontalement) de quatre sous-pixels.
On a également représenté les quatre points de vue TR1 , TR2, TR3, TR4 sous lesquels il est possible d'observer l'unité de génération d'images 1 1 . Pour la clarté de la figure 2, ces quatre points de vue sont représentés du côté de l'écran d'affichage 15 alors qu'en pratique, cet écran sera vu depuis le côté opposé à travers l'ensemble de projection 12.
Un œil (unique) qui observe l'écran d'affichage 15 à travers le réseau de microlentilles 1 6 verra alors, suivant sa position :
- soit la juxtaposition de la composante rouge R du pixel P1 , de la composante verte V du pixel P2 et la composante bleue B du pixel P3 (point de vue TRI ),
- soit la juxtaposition de la composante verte V du pixel P1 , de la composante bleue B du pixel P2 et de la composante rouge R du pixel P4 (point de vue TR2),
- soit la juxtaposition de la composante bleue B du pixel P1 , de la composante rouge R du pixel P3, et de la composante verte V du pixel P4 (point de vue TR3),
- soit enfin la juxtaposition de la composante rouge R du pixel P2, de la composante verte V du pixel P3 et de la composante bleue B du pixel P4 (point de vue TR4).
En d'autres termes, chaque œil du conducteur est susceptible de mélanger visuellement les composantes rouge, verte et bleue de différents pixels de l'image.
De cette façon, en commandant habilement l'intensité lumineuse émise par chaque sous-pixel, le calculateur peut afficher des images qui, par ce qu'elles ne seront pas vues sous le même angle (c'est-à-dire avec le même point de vue) par les deux yeux du conducteur, pourront être interprétées par le cerveau comme des images tridimensionnelles.
Comme cela a été exposé supra, l'unité de génération d'images 1 1 sera préférentiellement conçue pour offrir non pas quatre, mais huit points de vue différents. Pour cela, on utilisera des microlentilles qui couvriront chacune, non pas quatre, mais huit sous-pixels.
De manière non limitative, les sous-pixels sont allongés selon un axe vertical mais, les micro-lentilles sont allongées selon un axe incliné d'un angle a par rapport à l'axe vertical de façon à réaliser des assemblages de huit sous-pixel.
On peut maintenant décrire en détail la manière selon laquelle le calculateur 20 commande l'unité de génération d'images 1 1 .
Pour cela, on définira tout d'abord les « plans frontaux » comme les plans qui s'étendent sensiblement orthogonalement à la direction du regard du conducteur. Chaque plan frontal sera alors défini par une « profondeur », c'est-à- dire par une distance le séparant des yeux du conducteur.
Dans le mode de réalisation illustré, le calculateur 20 commandera l'unité de génération d'images 1 1 de telle manière que chaque image virtuelle Img projetée par l'ensemble optique 12 soit vue par le conducteur comme étant constituée de points situés dans un nombre fini de plans frontaux distincts, ce nombre étant par exemple inférieur ou égal à cinq.
On pourra ici envisager le cas où le nombre de plans frontaux sera égal à trois. Chaque image Img sera alors élaborée de telle manière qu'elle comporte trois parties (appelées « calque Img1 , Img2, Img3 ») qui seront interprétées par le cerveau du conducteur comme se trouvant chacune comprise dans un plan frontal différent.
Préférentiellement, le calque Img3 le plus proche du conducteur sera vu comme se trouvant à une distance du conducteur qui est supérieure à la distance séparant le conducteur du pare-brise 1 , si bien que les yeux du conducteur n'auront pas à effectuer de travail d'accommodation pour percevoir les informations projetées.
On peut alors prévoir que l'un des calques Img3 soit vu par le conducteur comme se trouvant à 4 mètres de lui, qu'un second des calques soit vu comme se trouvant à 5 mètres de lui et que le troisième des calques soit vu comme se trouvant à 6 mètres de lui.
Chaque calque pourra être utilisé pour afficher des informations distinctes.
Ainsi, on pourra par exemple prévoir d'afficher la vitesse du véhicule sur le calque Img3 le plus proche, des informations de géolocalisation sur le second calque Img2 et des informations de détection d'obstacles sur le calque Img1 le plus éloigné.
On pourrait aussi prévoir que le calculateur 20 commande l'unité de génération d'images 1 1 de telle manière qu'une image virtuelle Img, projetée par l'ensemble optique 12, représente une forme tridimensionnelle perçue comme telle par le conducteur. A titre d'exemple non limitatif une telle forme tridimensionnelle pourrait être une sphère, un véhicule automobile, une ligne blanche continue ou encore, la symbolique d'une scène de rue. Dans ce cas, la profondeur de la forme tridimensionnelle de l'image virtuelle Img sera calculée de sorte que les points successifs de la forme tridimensionnelle apparaissent de manière continue.
Une forme tridimensionnelle représente un objet comportant au moins une surface qui s'étend continûment selon une profondeur, alors que les calques précédemment cités forment une image tridimensionnelle de part leurs dispositions selon des plans orthogonaux à la direction du regard et situés à différentes profondeurs.
Une image virtuelle pourra ainsi représenter une au moins une forme tridimensionnelle et/ou une image formée d'un ou plusieurs calques situés à des profondeurs différentes.
Il peut arriver qu'un conducteur préfère que l'image qu'il perçoit soit non pas tridimensionnelle, mais plutôt bidimensionnelle.
Le conducteur pourra dans ce cas utiliser l'écran tactile 18 de la console centrale du véhicule, de manière à faire basculer le calculateur 20 d'un mode de fonctionnement normal (appelé mode actif), tel que celui précité, vers un mode dégradé (appelé mode passif). Dans ce mode dégradé, le calculateur 20 sera alors conçu pour commander l'unité de génération d'images 1 1 de telle manière que chaque image virtuelle Img projetée par l'ensemble optique 12 soit formée d'un calque unique.
Dans ce cas, si l'on se réfère à la figure 2, le calculateur commandera l'illumination des sous-pixels de l'écran d'affichage 15 de telle manière que le mélange de couleurs R, V, B vu au travers de chaque triplet de microlentilles L1 , L2, L3 soit le même, quel que soit le point de vue sous lequel l'écran d'affichage 15 sera observé.
De cette manière, les deux yeux du conducteur pourront observer une même image, qui sera interprétée par le cerveau du conducteur comme étant une image bidimensionnelle.
La présente invention n'est nullement limitée au mode de réalisation décrit et représenté, mais l'homme du métier saura y apporter toute variante conforme à l'invention.
Ainsi, le calculateur 20 pourra commander l'unité de génération d'images 1 1 en fonction de la position détectée des yeux du conducteur.
En effet, si on se réfère à la figure 2, il est nécessaire, pour que le conducteur voit l'image virtuelle de manière nette, que chacun de ses deux yeux se trouve situé au niveau de l'un des points de vue TR1 , TR2, TR3, TR4.
Il peut arriver que l'un au moins des yeux du conducteur soit légèrement décalé latéralement par rapport à ces points de vue.
Dans ce cas, le calculateur pourra, compte tenu de la position de chacun des deux yeux du conducteur (détectée grâce au système de détection 17), décaler latéralement l'une au moins des images vue par l'un des yeux du conducteur de manière que l'image virtuelle observée par le conducteur soit nette. Dans une autre variante de l'invention, il sera possible d'afficher des informations à une distance du conducteur qui sera variable et qui sera choisie en fonction du type d'information à afficher ou en fonction des conditions rencontrées. A titre d'exemple, il sera possible d'afficher la vitesse du véhicule dans un plan frontal qui s'éloignera plus ou moins du conducteur, selon la vitesse de déplacement du véhicule.

Claims

REVENDICATIONS
1 . Afficheur tête-haute (10) pour véhicule automobile, comprenant :
- un calculateur (20),
- une unité de génération d'images (1 1 ) commandée par le calculateur (20) pour générer des images, et
- un ensemble optique (12) de projection d'images virtuelles (Img), adapté à projeter chaque image générée par ladite unité de génération d'images (1 1 ) dans le champ de vision du conducteur du véhicule automobile,
caractérisé en ce que l'unité de génération d'images (1 1 ) comporte un filtre auto-stéréoscopique (1 6) et ladite unité de génération d'images (1 1 ) offre au moins deux points de vue distincts.
2. Afficheur tête-haute (10) selon la revendication 1 , dans lequel le filtre auto-stéréoscopique (1 6) comporte un réseau de microlentilles.
3. Afficheur tête-haute (10) selon la revendication précédente, dans lequel ladite unité de génération d'images (1 1 ) offre huit points de vue distincts.
4. Afficheur tête-haute selon la revendication 1 , dans lequel le filtre auto- stéréoscopique comporte une barrière de parallaxe.
5. Afficheur tête-haute (10) selon l'une des revendications précédentes, dans lequel le calculateur (20) est adapté à commander l'unité de génération d'images (1 1 ) de telle manière que les images virtuelles (Img) projetées par l'ensemble optique (12) sont perçues par le conducteur comme étant formées de calques (Imgl , Img2, Img3), chaque calque (Imgl , Img2, Img3) étant situé dans un plan distinct et comprenant des informations visibles par le conducteur.
6. Afficheur tête-haute (10) selon l'une des revendications 1 à 4, dans lequel le calculateur (20) est adapté à commander l'unité de génération d'images (1 1 ) de telle manière que les images virtuelles (Img) projetées par l'ensemble optique (12) sont perçues par le conducteur comme représentant une forme tridimensionnelle.
7. Afficheur tête-haute (10) selon l'une des revendications précédentes, dans lequel il est prévu un organe de saisie (18) de données à disposition du conducteur, qui est connecté au calculateur (20) et qui permet au conducteur de faire basculer le calculateur (20) entre deux modes de calcul, dont - un mode actif dans lequel le calculateur (20) commande l'unité de génération d'images (1 1 ) de telle manière que les images virtuelles (Img) projetées par l'ensemble optique (12) sont perçues par le conducteur comme étant tridimensionnelles, et
- un mode passif dans lequel le calculateur commande l'unité de génération d'images (1 1 ) de telle manière que les images virtuelles projetées par l'ensemble optique (12) sont vues par le conducteur comme étant bidimensionnelle.
8. Afficheur tête-haute (10) selon l'une des revendications précédentes, comportant un système de détection (17) de la position de chacun des yeux du conducteur, et dans lequel le calculateur (20) est adapté à commander l'unité de génération d'images (1 1 ) en fonction de la position détectée desdits yeux.
9. Afficheur tête-haute (10) selon l'une des revendications précédentes, dans lequel ladite unité de génération d'images (1 1 ) comprend un écran d'affichage (15).
10. Afficheur tête-haute (10) selon l'une des revendications précédentes, dans lequel ledit ensemble optique de projection (12) comporte au moins un composant optique de grandissement.
1 1 . Afficheur tête-haute (10) selon l'une des revendications précédentes, dans lequel ledit ensemble optique de projection (12) comporte un combineur (14) se présentant sous la forme d'une vitre optique courbe transparente et semi- réfléchissante réalisant une fonction de grandissement.
EP17700070.0A 2016-01-04 2017-01-04 Afficheur tête-haute Withdrawn EP3400475A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1650017A FR3046468B1 (fr) 2016-01-04 2016-01-04 Afficheur tete-haute
PCT/EP2017/050165 WO2017118672A1 (fr) 2016-01-04 2017-01-04 Afficheur tête-haute

Publications (1)

Publication Number Publication Date
EP3400475A1 true EP3400475A1 (fr) 2018-11-14

Family

ID=55542920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17700070.0A Withdrawn EP3400475A1 (fr) 2016-01-04 2017-01-04 Afficheur tête-haute

Country Status (4)

Country Link
US (1) US20200355914A1 (fr)
EP (1) EP3400475A1 (fr)
FR (1) FR3046468B1 (fr)
WO (1) WO2017118672A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017064797A1 (fr) * 2015-10-15 2017-04-20 日立マクセル株式会社 Dispositif d'affichage d'informations
KR20210006894A (ko) * 2018-05-04 2021-01-19 하만인터내셔날인더스트리스인코포레이티드 미러 없는 헤드업 디스플레이
JP7188981B2 (ja) * 2018-11-05 2022-12-13 京セラ株式会社 3次元表示装置、3次元表示システム、ヘッドアップディスプレイ、及び移動体
JPWO2020235376A1 (fr) * 2019-05-20 2020-11-26
JP7416061B2 (ja) * 2019-05-20 2024-01-17 日本精機株式会社 表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2705008B1 (fr) * 1993-05-05 1995-07-21 Le Particulier Editions Sa Dispositif et systeme video autostereoscopique
US5883739A (en) * 1993-10-04 1999-03-16 Honda Giken Kogyo Kabushiki Kaisha Information display device for vehicle
DE102009054232A1 (de) * 2009-11-21 2011-05-26 Bayerische Motoren Werke Aktiengesellschaft Head-up-Display
KR20120088100A (ko) * 2011-01-31 2012-08-08 삼성전자주식회사 디스플레이 컨트롤러 및 디스플레이 시스템
JP6056171B2 (ja) * 2012-03-29 2017-01-11 富士通株式会社 立体画像表示装置及び方法
FR2997515A1 (fr) * 2012-10-31 2014-05-02 Renault Sa Systeme optique d'affichage d'une image en trois dimensions
DE102014205519A1 (de) * 2014-03-25 2015-10-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Anpassen einer Anzeige eines autostereoskopischen Displays für ein Fahrzeug

Also Published As

Publication number Publication date
US20200355914A1 (en) 2020-11-12
FR3046468A1 (fr) 2017-07-07
WO2017118672A1 (fr) 2017-07-13
FR3046468B1 (fr) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2017118672A1 (fr) Afficheur tête-haute
FR3007923B1 (fr) Procede dispositif pour representer une image tridimensionnelle avec un generateur d'images d'une installation d'affichage de champ de vision pour un vehicule
JPWO2018142610A1 (ja) 立体表示装置およびヘッドアップディスプレイ
FR3019318A1 (fr) Procede et dispositif d'adaptation de la presentation d'un affichage auto-stereoscopique de vehicule
JP6755809B2 (ja) 表示装置
FR3034531A1 (fr) Affichage tete haute auto-stereoscopie du vehicule et procede pour generer une telle image
FR3046681A1 (fr) Procede et dispositif de gestion d'un appareil d'affichage de champ de vision
FR3071625B1 (fr) Systeme et procede d'affichage d'une image autostereoscopique a 2 points de vue sur un ecran d'affichage autostereoscopique a n points de vue et procede de controle d'affichage sur un tel ecran d'affichage
EP3482254B1 (fr) Dispositif de génération d'images pour afficheur tête-haute et procédé de pilotage d'un tel dispositif
EP2094531A2 (fr) Dispositif retroviseur electronique
WO2018024864A1 (fr) Dispositif de génération d'images pour écran et afficheur tête haute
FR2997515A1 (fr) Systeme optique d'affichage d'une image en trois dimensions
EP3494412B1 (fr) Système d'aide visuelle à la conduite
JP2020095271A (ja) 3次元映像を表示する装置及び方法
CN115524862A (zh) 裸眼3d显示装置、车辆
FR3096790A1 (fr) Dispositif d’affichage pour un appareil d’affichage de champ de vision de véhicule
EP3343531A1 (fr) Système de communication d'informations a un usager à proximité d'un véhicule automobile
FR3054898B1 (fr) Dispositif de generation d'images tridimentionnelles et afficheur tete-haute associe
FR3073052B1 (fr) Dispositif d’affichage tete-haute pour vehicule
EP3342640A1 (fr) Système d avertissement lumineux pour véhicule automobile et procédé d avertissement lumineux
WO2020234713A1 (fr) Ecran unique d'aide a la conduite d'un vehicule automobile en trafic fluide et dense et en marche arriere
CA2871474A1 (fr) Viseur tete haute compact a faible consommation d'energie
FR3091931A1 (fr) Dispositif d’affichage pour véhicule automobile
FR3060140B1 (fr) Afficheur tete haute
FR3087986A1 (fr) Dispositif d’affichage avec superposition d’image autostereoscopique sur une image reelle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180810

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: G02B 27/22 20180101AFI20170804BHEP

Ipc: H04N 13/04 20060101ALI20170804BHEP

Ipc: G02B 27/01 20060101ALI20170804BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190305