EP3400435A1 - DISPOSITIF ET PROCÉDÉ DE CAPTURE ET ENREGISTREMENT DES PARTICULES FINES ET / OU DENSITÉ DES GAZ NOx DANS L'AIR - Google Patents

DISPOSITIF ET PROCÉDÉ DE CAPTURE ET ENREGISTREMENT DES PARTICULES FINES ET / OU DENSITÉ DES GAZ NOx DANS L'AIR

Info

Publication number
EP3400435A1
EP3400435A1 EP16791650.1A EP16791650A EP3400435A1 EP 3400435 A1 EP3400435 A1 EP 3400435A1 EP 16791650 A EP16791650 A EP 16791650A EP 3400435 A1 EP3400435 A1 EP 3400435A1
Authority
EP
European Patent Office
Prior art keywords
air
density
sensor
particles
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP16791650.1A
Other languages
German (de)
English (en)
French (fr)
Inventor
Eric Poincelet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Planetwatch24
Poincelet Philippe
Original Assignee
Planetwatch24
Poincelet Philippe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Planetwatch24, Poincelet Philippe filed Critical Planetwatch24
Publication of EP3400435A1 publication Critical patent/EP3400435A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • G01N33/0032General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array using two or more different physical functioning modes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0037NOx
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to a device and method for capturing and recording fine particles and / or the density of NOx gases in the air, in particular for the capture and recording of fine particles and / or the density of gases.
  • NOx in the air especially in a mobile way and in various parts of an urban city.
  • the invention aims to remedy all or part of the identification, traceability and ultimately the resolution of these ailments.
  • a device for capturing and recording fine particles and / or the density of NOx gas in the air characterized in that it comprises at least one particle sensor and / or the density of gases NOx in the air, capable of counting a number of particles or dust present in the air, of dimension comprised between determined values in a volume of air, and / or the density of the NOx gases and a means of display and and / or recording said number and / or density in correlation with a determined measuring point of the sensor, the device being configured to be embedded and operating on board a vehicle (including any mobile support) and in which said sensor can be initialized at certain points of the map, or even calibrated again, with reference to fixed standard sensors.
  • the device may also comprise, as mentioned above, a NOx gas sensor capable of measuring a density of NOx gas in the air and means for displaying and / or recording said density in correlation with a determined location of measurement of the sensor.
  • a NOx gas sensor capable of measuring a density of NOx gas in the air and means for displaying and / or recording said density in correlation with a determined location of measurement of the sensor.
  • Said numbers of particles and density can then, alone or together, be measured, displayed and recorded (on databases) in correlation with a determined location of measurement including a measuring circuit of the vehicle.
  • Said values are in particular less than 2.5 micrometers and correspond to the most deleterious particles for human health.
  • the volume of air considered is the cubic meter. A number of fine particles per cubic meter of air is thus counted.
  • Said display and / or recording means may comprise a simple screen for displaying said number and / or said density, or a device for capturing said number and / or said density, on a recording medium, such as than a printer on paper or a data file.
  • Said display or recording is advantageously carried out on a support corresponding to a geographical map of said determined location of measurement. It is thus possible to determine discontinuously or continuously during the rolling of the vehicle a high-definition mapping of the density of fine particles and / or said density of NOx gas in the air of said place.
  • This information can be transmitted in real time or deferred to at least one database that can be exploited through various applications, particularly relating to the management of the movements and activities of people in the area appreciated for the preservation of their health individually.
  • Said discontinuous manner of determining the capture of particles and / or said density of NOx gases can be established at particular points to be measured of said location, for example sensitive areas of a given geographical area of the place, each point being affected by a measurement of the number of particles and / or the density of the NOx gases, for example the number of fine particles per cubic meter.
  • the measurement can be carried out at a standstill or when the vehicle is rolling.
  • the stop can be delayed according to a determined period to allow the reset or even the recalibration of the sensor at each measuring point, for example by means of a fixed terminal of fine measurement in a stabilized environment, and thus to make reliable the measurement of each point without the sensor being influenced by the measurement air from the previous point.
  • Measuring the particles and / or the density of the NOx gases according to said period is performed on a measurement circuit, from the vehicle, in said location.
  • the bearing can also be operated at a moderate speed in the measuring circuit according to the sensor reset capability, for example less than 30 km / hour allowing the sensor to make a measurement on the fly (on the move) and with a margin acceptable error measuring the air surrounding the vehicle.
  • Resetting or recalibrating the sensor from fixed terminals makes it possible to ensure threshold values and thus to guarantee the values measured with an error margin of less than 0.2 or even up to 0.4 at the maximum.
  • the particle sensor is preferably an optical dust sensor, for example of the type "GP2Y1010AU0F Sharp" designed to detect particles in the air and thus estimate the air quality.
  • a sensor of the detector type of a quantity of light passing through a volume of air, makes it possible to display an instantaneous value of the particles in the said spectrum of determined values, in particular less than 2.5 micrometers.
  • the NOx gas sensor may be an optical sensor measuring a wavelength spectrum corresponding to the gases in the air.
  • Such a sensor can be supplied with energy by an electrical source of the vehicle, or even by a battery recharged from the vehicle.
  • Said sensor is advantageously mounted on the vehicle in a position conducive to the reception, preferably instantaneous, of the air to be measured for capturing the particles and / or said NOx gas density in the air of the point to be measured.
  • the sensor is also configured to minimize the impact of air movement, wind and / or vehicle speed.
  • the (random) movement of air on the sensor can be minimized by equipping it with a periphery protective skirt configured to let the rolling air, for example provided with a grid through which the air passes.
  • the residual air of a given measurement point of the sensor is advantageously evacuated by a device for evacuating the residual air in the sensor, for example a device for blowing neutral air into the sensor, prior to each new measure.
  • a device for evacuating the residual air is mounted on the sensor.
  • the cleaning of the sensor is advantageously carried out ultrasonically.
  • This integrated and regular cleaning of the sensor has made it possible to make accurate and reliable measurements in embedded and mobile mode, which the state of the art did not allow to date, limiting de facto pollution measurements at fixed stations, very insufficient to measure precisely the exposure of individuals, especially at the level of respiration.
  • the sensor may be mounted on a mat of the vehicle, or even a movable arm and telescopic, adjustable in orientation and / or height, in particular for a variable height measurement, for example along a vertical projection line of the measuring point, in order to complete on a moving vertical axis the main measurements made at the breathing level.
  • the measurement can thus be made at several heights for a given point; it can also be performed in an environment of the given point, at a distance close to the point or the vertical point, for example by orienting the mat and the sensor to a given measurement height.
  • non-emitting vehicle particles allows in particular not to influence the measurement unlike a vehicle with a combustion engine. In the latter case, it is to isolate the sensor from the smoke source of the engine, including away from the latter, considering the wind and the movement of the vehicle relative to wind etc.
  • the device is advantageously coupled to a device called GPS (Global Positioning System (GPS) in English) corresponding to a Global Positioning System or Geo-positioning Satellite.
  • GPS Global Positioning System
  • the device can be configured to associate with a GPS location map localized punctual display, including real-time and dynamic density of particles and / or gas at one or more measurement heights.
  • the map is then supplemented punctually with values of the said number of particles and / or the density of the NOx gases.
  • the recording of values can be sequenced at a determined time between two consecutive measurement points, in a given advance of the vehicle corresponding to a given distance traveled so as to obtain a regular punctual display of said particle values and / or the density of the particles. NOx gas on the vehicle circuit.
  • the sensor can also be initialized, or even calibrated again, at certain fixed points of the card, with reference to standardized sensors, for example point and static PM 2.5 particles sensors of certified environmental control organisms but also fixed proprietary sensors installed in addition to the mobile network.
  • the device may comprise a housing preferably mounted on the vehicle dashboard, connected to said GPS device and the sensor, said housing being configured to display and / or record the GPS device data and the sensor data at each measured point. Possibly other data concerning air quality, such as humidity, cloudiness, electromagnetic waves, noise level in decibels etc. can be displayed. and / or registered.
  • the data entry is stored in memory to be recorded subsequently and in particular constitute a dynamic database.
  • the housing may comprise a data display screen, in particular displaying a high-definition geographical map of the measurement location supplemented from said particle number values and / or the density of the NOx gases, which is convenient for monitoring the live image. evolution of measurement in space and time.
  • said device is permanently mounted on the vehicle, for example on the air supply block of the engine or the passenger compartment (secure and non-vandalizable mounting), but it can be quickly removable on the vehicle in a vehicle. compact shape (without mat or measuring arm).
  • Said sensor can be mounted on the windshield (in a discrete position), the roof or the hood of the vehicle, or any other bodywork or external element such as a mirror capable of receiving in good conditions of capture said sensor. .
  • the invention also relates to a method for measuring and displaying and / or recording the particles and / or the density of NOx gases in the air by means of at least one particle sensor and / or the density of the gases.
  • NOx in the air capable of counting a number of particles of size between determined values in a volume of air and / or the density of the NOx gases, and by means of a display device and / or recording said number and / or density in correlation at a given location, the assembly being further configured to be embedded and operate on board a vehicle (including any mobile support, or even a drone), the method comprising an input of said number and / or density at points of a measuring circuit on board said vehicle.
  • FIG. 1 is a schematic elevational view of a device for capturing and recording fine particles in the air, mounted on a vehicle automobile, seen from the passenger compartment of the latter, according to one embodiment of the invention
  • FIG. 2 is a diagrammatic elevational view of a particle sensor of this device.
  • FIG. 3 shows a device for recording the data of the device, arranged at a distance from the device and a printed geographical map of absolute or relative density of the fine particles in the air in a given geographical zone, obtained by the implementation implementation of the device.
  • FIG. 1 there is illustrated a device 1 for capturing and recording fine particles in the air according to one embodiment of the invention mounted on a vehicle 2.
  • This device here comprises at least one sensor 3 of particles in the air, capable of counting a number of particles or dust present in the air, preferably an optical sensor, for example of the "Sharp GP2Y1010AU0F" or other type, designed to detect the particles in a volume of air, usually a number of particles of a given dimension or less in a cubic meter of air.
  • an optical sensor for example of the "Sharp GP2Y1010AU0F” or other type, designed to detect the particles in a volume of air, usually a number of particles of a given dimension or less in a cubic meter of air.
  • it makes it possible to display an instantaneous value of the number of particles per cubic meter of air in a spectrum of determined dimension values fixed in the example at 2.5 micrometers and less (PM 2.5).
  • the sensor is here disposed on the windshield 5 of the vehicle, discretely in a corner thereof, being secured thereto by a suitable fastening means, preferably removable, for example by contact jamming.
  • the device may comprise several sensors of this type to provide more precise information on the quality of the air, for example two sensors each arranged at a corner of the windscreen, each operating a capture of particles of different dimensions, in particular 2.5 micrometers and less. and 10 microns and less per cubic meter of air.
  • the device may also comprise, for example in replacement of the aforementioned sensor 10 micrometers and less per cubic meter of air, a sensor as specified before the density of NOx gases in the air.
  • the device also comprises means for displaying and / or recording 7 said number of particles in correlation with a determined measuring point of the sensor, the device being further configured to be embedded and operate on board a vehicle, here a motor vehicle.
  • This means comprises in the example a housing 9 mounted on the dashboard 1 of the vehicle, connected to a device 13 "GPS" (Global Positioning System (GPS) in English) and the sensor 3.
  • GPS Global Positioning System
  • the housing is configured to display and / or record GPS device and sensor data at each measured point.
  • the data entry is stored in memory to be subsequently recorded or simultaneously by a transmission means, for example wireless 24, a mobile or integrated telephone support, etc., here by means of an information processing unit.
  • a transmission means for example wireless 24, a mobile or integrated telephone support, etc.
  • an information processing unit such as a laptop 15 shown in Figure 3 and a recording or printing unit, for example a printer 17 connected to the computer.
  • a map 18 of the GPS device data and that of the sensor at each measured point of the measurement circuit 20 is printed on paper.
  • the legends circled on this circuit represent the values of the number of fine particles per cubic meter of air at each measured point.
  • the information collected can also be recorded on a database 16 exploited elsewhere in the form of applications on mobile phone, tablet computer, computer, "GSM", “GPS” etc.
  • the housing 9 here comprises a screen 19 for displaying the data, in particular displaying a geographical map of the measurement location (GPS map) supplemented punctually with said particle number values entered by the sensor, which is convenient for following live the data. evolution of the measure.
  • GPS map geographical map of the measurement location
  • Said discontinuous way of determining the capture of the particles can be established at particular points to be measured of said location, for example sensitive locations of a given geographical area of the site, each point being assigned a measure of the number of particles, for example the number of fine particles per cubic meter.
  • the measurement can be carried out at a standstill or when the vehicle is rolling.
  • the stop can be delayed over a period of time to enable the reset or recalibration of the sensor at each measurement point on a measurement circuit, from the vehicle, in said location.
  • the bearing can also be operated at a moderate speed in the measuring circuit according to the sensor reset capability, for example less than 30 km / hour allowing the sensor to make a measurement on the fly (on the move) and with a margin acceptable error measuring the air surrounding the vehicle.
  • the reset of the sensor makes it possible to ensure the threshold values and thus to guarantee the measured values according to a margin of error lower than 0.20 or even up to 0.40 at the maximum.
  • Said sensor is advantageously mounted on the vehicle in a position conducive to good reception of the air to be measured for capturing the particles (and / or the density of the NOx gases) in the air of the point to be measured.
  • Said sensor is here mounted on the windshield but it can be mounted on an engine air intake block or cockpit, on the roof or the hood of the vehicle or a mat or other arms and accessories attached to the vehicle.
  • the sensor can thus be mounted on a mat of the vehicle, or even a mobile and telescopic arm, adjustable in orientation and / or height, in particular for a variable height measurement, for example according to a vertical projection line of the measuring point.
  • the measurement can thus be made at several heights for a given point; it can also be performed in an environment of the given point, at a distance close to the point or the vertical point, for example by orienting the mat and the sensor to a given measurement height. It is thus possible to determine the density of particles (and / or the density of NOx gas in the case of a gas sensor) at height of stroller, height of the passers-by on the sidewalk, ground floor or floor, or even inside an apartment building.
  • the sensor can also be configured to minimize the impact of the air movement, the wind and / or the speed of the vehicle, for example by equipping it with a periphery protective skirt configured to allow the rolling air to pass. , for example an external grid 21 traversed by the air as shown in FIG.
  • the senor may comprise a device for evacuating the residual air in the sensor, for example a device for blowing neutral air into the sensor (not shown), before each new measurement, which can accelerate the initialization of the sensor.
  • the sensor can be advantageously equipped with an ultrasonic cleaning system that makes its use reliable and durable, thus allowing a new use of the sensor, intensive and mobile base.
  • Said values can still be initialized at certain points of the card, with reference to those corresponding to standardized particle sensors (of precise measurement), for example fixed point sensors arranged on the circuit that complete and control the on-board mobile network.
  • the invention also relates to a method for measuring and displaying and / or recording the particles and / or the density of NOx gases in the air by means of at least one particle sensor 3 and / or the density of the particles.
  • NOx gas in the air capable of counting a number of particles of size between determined values in a volume of air and / or the density of the NOx gases, and by means of a device 7, 15, 17 of display and / or recording of said number and / or density in correlation at a given location, the assembly being further configured to be embedded and operate on board a vehicle 2, the method comprising an input of said number and / or density at points of a measuring circuit on board said vehicle.
  • the recording of values can be sequenced at a determined duration between two consecutive measurement points, in a given advance of the vehicle corresponding to a given distance traveled so as to obtain a regular point display of said particle values and / or NOx gas density. on the vehicle circuit.
  • Device 1 is activated from the vehicle control panel. he This is to maintain the operation on the preset measurement circuit by following the evolution of the measurement displayed to eventually complete the circuit according to the relevance of the values read.
  • a terminal registration is operated permanently by means of the home computer 15.
  • the invention thus provides a possibility of knowing in real time, or even of predicting over time (on an evolution curve), directly displaying and recording the densities of particles and / or NOx gases in the air of a zone.
  • geographic area including a sensitive polluted urban area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Instructional Devices (AREA)
EP16791650.1A 2015-10-16 2016-10-14 DISPOSITIF ET PROCÉDÉ DE CAPTURE ET ENREGISTREMENT DES PARTICULES FINES ET / OU DENSITÉ DES GAZ NOx DANS L'AIR Pending EP3400435A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1502183A FR3042597B1 (fr) 2015-10-16 2015-10-16 Dispositif et procede de capture et d'enregistrement des particules fines et/ou densite des gaz nox dans l'air
PCT/FR2016/000166 WO2017064376A1 (fr) 2015-10-16 2016-10-14 DISPOSITIF ET PROCÉDÉ DE CAPTURE ET ENREGISTREMENT DES PARTICULES FINES ET / OU DENSITÉ DES GAZ NOx DANS L'AIR

Publications (1)

Publication Number Publication Date
EP3400435A1 true EP3400435A1 (fr) 2018-11-14

Family

ID=56117752

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16791650.1A Pending EP3400435A1 (fr) 2015-10-16 2016-10-14 DISPOSITIF ET PROCÉDÉ DE CAPTURE ET ENREGISTREMENT DES PARTICULES FINES ET / OU DENSITÉ DES GAZ NOx DANS L'AIR

Country Status (7)

Country Link
US (1) US20180299418A1 (ja)
EP (1) EP3400435A1 (ja)
JP (1) JP7186616B2 (ja)
CN (1) CN108351335A (ja)
CA (1) CA3001984A1 (ja)
FR (1) FR3042597B1 (ja)
WO (1) WO2017064376A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10810869B2 (en) 2017-02-24 2020-10-20 Particles Plus, Inc. Crowdsourced air quality monitoring system
US11112395B2 (en) * 2017-02-24 2021-09-07 Particles Plus, Inc. Networked air quality monitoring system
DE102017109356A1 (de) * 2017-05-02 2018-11-08 Horiba Europe Gmbh Vorrichtung zum Erfassen und Messen von Bremsstaub
KR102392601B1 (ko) * 2017-12-22 2022-05-02 주식회사 히타치엘지 데이터 스토리지 코리아 먼지 센서
EP3814745A4 (en) 2018-05-04 2022-01-19 Bioscout Pty Ltd PARTICLE SAMPLING DEVICE AND ANALYSIS
KR102278406B1 (ko) * 2019-08-21 2021-07-19 삼육대학교산학협력단 화물차의 미세먼지 저감 시스템
CN111830210A (zh) * 2020-07-30 2020-10-27 广州交信投科技股份有限公司 空气质量监测方法、装置、系统和计算机设备

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2237880A (en) * 1989-10-24 1991-05-15 British Gas Plc Determining concentration of pollutant gas in an atmosphere
JP3471536B2 (ja) * 1996-08-30 2003-12-02 アマノ株式会社 浮遊粒子の超音波収集方法とその装置
JP2000146882A (ja) * 1998-11-13 2000-05-26 Shimadzu Corp ガス測定装置
US7300630B2 (en) * 2002-09-27 2007-11-27 E. I. Du Pont De Nemours And Company System and method for cleaning in-process sensors
US7603138B2 (en) * 2005-08-22 2009-10-13 Toshiba American Research, Inc. Environmental monitoring using mobile devices and network information server
JP2007205831A (ja) * 2006-02-01 2007-08-16 Omron Corp 微粒子検出装置および微粒子検出方法
CN101033989B (zh) * 2006-03-10 2010-11-10 罗瑞真 环境监测装置及方法
US7554440B2 (en) * 2006-07-25 2009-06-30 United Parcel Service Of America, Inc. Systems and methods for monitoring travel conditions
GB0813749D0 (en) * 2008-07-28 2008-09-03 Meso Ltd Device for measuring air quality
DE102008046121A1 (de) * 2008-09-05 2010-03-11 Deutz Ag Verfahren zum Kalibrieren eines NOx-/Lambda-Sensors
CN100594994C (zh) * 2008-10-09 2010-03-24 英保达资讯(天津)有限公司 干湿混合除尘处理系统及其除尘方法
JP2010112908A (ja) * 2008-11-10 2010-05-20 Sonac Kk ガスの測定方法および測定装置
EP2199790A1 (en) * 2008-12-19 2010-06-23 Duvas Technologies Limited System and apparatus for measurement and mapping of pollutants
KR101897618B1 (ko) * 2010-03-05 2018-09-12 엑스트랄리스 테크놀로지 리미티드 필터 바이패스
KR100996513B1 (ko) * 2010-03-30 2010-11-25 안정상 대기오염 및 기상 측정을 위한 차량용 통합마스트
US8509991B2 (en) * 2010-03-31 2013-08-13 Honda Motor Co., Ltd. Method of estimating an air quality condition by a motor vehicle
CN102298166A (zh) * 2011-05-20 2011-12-28 南京信息工程大学 一种手持式气象传感器现场校准器
US20130038895A1 (en) * 2011-08-08 2013-02-14 Alexander Govyadinov Mobile communication device and printer having a particulate sensor for air quality monitoring
KR101311426B1 (ko) * 2011-08-24 2013-09-25 한국과학기술연구원 다기능 이동형 대기오염 측정용 차량
DE102011084264A1 (de) * 2011-10-11 2013-04-11 Robert Bosch Gmbh Verfahren und Vorrichtung zum Kalibrieren eines Umfeldsensors
CN103105265B (zh) * 2011-11-11 2015-04-29 沈阳金凯瑞科技有限公司 一种负荷传感器在线检测仪
JP5698187B2 (ja) * 2012-05-28 2015-04-08 日本特殊陶業株式会社 ガスセンサ
CN104332038A (zh) * 2013-07-22 2015-02-04 张加成 多功能车载智能环境监测仪
US10161837B2 (en) * 2013-10-16 2018-12-25 Xtralis Technologies Ltd. Aspirated particle detection with various flow modifications
US20150212057A1 (en) * 2014-01-24 2015-07-30 Peter Darveau Wearable Air Quality Monitor
DE102014204625A1 (de) * 2014-03-13 2015-09-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln eines Kohlendioxidgehaltes einer Umgebungsluft
US9851299B2 (en) * 2014-10-25 2017-12-26 Isle Management Co. Method of analyzing air quality
US9719972B2 (en) * 2015-03-31 2017-08-01 International Business Machines Corporation System and method for air-pollutant source-localization using parked motor vehicles
US10006858B2 (en) * 2015-04-22 2018-06-26 TZOA/Clad Innovations Ltd. Portable device for monitoring environmental conditions

Also Published As

Publication number Publication date
FR3042597A1 (fr) 2017-04-21
US20180299418A1 (en) 2018-10-18
WO2017064376A1 (fr) 2017-04-20
FR3042597B1 (fr) 2021-03-19
JP7186616B2 (ja) 2022-12-09
CA3001984A1 (en) 2017-04-20
CN108351335A (zh) 2018-07-31
JP2018537691A (ja) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2017064376A1 (fr) DISPOSITIF ET PROCÉDÉ DE CAPTURE ET ENREGISTREMENT DES PARTICULES FINES ET / OU DENSITÉ DES GAZ NOx DANS L'AIR
US6093923A (en) Golf driving range distancing apparatus and methods
Zieger et al. Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw
US5798519A (en) Method of and apparatus for golf driving range distancing using focal plane array
EP3198311B1 (fr) Ensemble et procédé de détection pour l'identification et le suivi de nuage dans une zone du ciel observée
US20050012023A1 (en) Ball tracking in three-dimensions
CN110208155B (zh) 一种大气颗粒物无人机监测系统
EP2189353A2 (fr) Procédé et système de détection d'impacts sur des zones à surveiller d'un véhicule roulant, notamment de type ferroviaire
EP3281399A1 (fr) Systeme de declenchement du decollage d'un drone a la suite de la detection d'un evenement survenu a un endroit determine
Burkhart et al. Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland
Zhang et al. Comparison of PM2. 5 exposure in hazy and non-hazy days in Nanjing, China
Kaur et al. Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah
Park et al. The potential of commercial sensors for spatially dense short-term air quality monitoring based on multiple short-term evaluations of 30 sensor nodes in urban areas in Korea
Tesfaldet et al. The effects of meteorology and biomass burning on urban air quality: The case of Bangkok
CN111103219A (zh) 用于确定颗粒污染的系统和方法
Petäjä et al. Added value of vaisala AQT530 sensors as a part of a sensor network for comprehensive air quality monitoring
CN207730933U (zh) 一种移动式可定向激光雷达网络数据质控系统
CN214583223U (zh) 用于货运源头监测摄影测量的无人机航测设备
FR3059094B1 (fr) Procede et dispositifs de surveillance de grandeurs physiques d’une zone geographique
Olivares et al. Vertical distribution of PM2. 5 in Santiago de Chile studied with an unmanned aerial vehicle and dispersion modelling
WO2021117072A1 (en) Dynamic mapping and method of tracking atmoshperic pollutants
FR3104784A1 (fr) Consolidation d’une information de geolocalisation d’un vehicule
Cherian et al. LIDAR for atmospheric measurements and probing
EP0558405A1 (fr) Dispositif d'évaluation du balisage lumineux notamment sur les pistes et les voies d'accès des avions
LeBaron et al. Rotating shadowband photometer measurement of atmospheric turbidity: A tool for estimating visibility

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220729