EP3397786B1 - Device and method for carrying out controlled oxidation of metal strips in a continuous furnace - Google Patents
Device and method for carrying out controlled oxidation of metal strips in a continuous furnace Download PDFInfo
- Publication number
- EP3397786B1 EP3397786B1 EP16822660.3A EP16822660A EP3397786B1 EP 3397786 B1 EP3397786 B1 EP 3397786B1 EP 16822660 A EP16822660 A EP 16822660A EP 3397786 B1 EP3397786 B1 EP 3397786B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- oxidation
- strip
- oxidizing gas
- chamber
- controlled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007254 oxidation reaction Methods 0.000 title claims description 151
- 230000003647 oxidation Effects 0.000 title claims description 138
- 238000000034 method Methods 0.000 title claims description 9
- 229910052751 metal Inorganic materials 0.000 title claims description 8
- 239000002184 metal Substances 0.000 title claims description 8
- 239000007789 gas Substances 0.000 claims description 65
- 230000001590 oxidative effect Effects 0.000 claims description 62
- 238000007664 blowing Methods 0.000 claims description 43
- 238000002347 injection Methods 0.000 claims description 23
- 239000007924 injection Substances 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 11
- 238000000137 annealing Methods 0.000 claims description 7
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 5
- 239000003546 flue gas Substances 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 claims description 4
- 238000005246 galvanizing Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000010924 continuous production Methods 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000003517 fume Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000000779 smoke Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 241001080024 Telles Species 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000004320 controlled atmosphere Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000005269 aluminizing Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/561—Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining, or circulating atmospheres in heating chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D9/00—Cooling of furnaces or of charges therein
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/767—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
- F27D2019/0003—Monitoring the temperature or a characteristic of the charge and using it as a controlling value
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
- F27D2019/0028—Regulation
- F27D2019/0031—Regulation through control of the flow of the exhaust gases
Definitions
- the invention relates to a device and a method for producing a controlled oxidation of metal strips, in particular of steel, in continuous line annealing furnaces whose purpose is the production of hot-coated sheets, for example by galvanizing (coating of zinc, zinc and aluminum, zinc and magnesium, or any combination) or aluminizing. It is carried out in the context of a selective oxidation carried out in a controlled atmosphere annealing furnace, or of a total oxidation in an oxidizing annealing furnace, generally with a direct flame.
- the heterogeneity in the width and the strip length of the oxygen content of the oxidizing gas, its temperature and its flow rate at the surface of the strip creates a different oxidation on the tape. This is particularly the case in oxidation zones where the extraction of the oxidizing gas from the oxidation chamber is not controlled.
- the document EP2458022 describes the oxidation of strips by injection on the strip, through a nozzle system, a mixture of air and nitrogen, or a mixture of oxygen and nitrogen, in a radiant tube furnace or direct fire, the oven working in a substantially non-oxidizing manner.
- the nozzle system is designed to evenly distribute the oxidant gas across the bandwidth. It does not make it possible to vary the distribution of the oxidizing gas so as to correct an oxidation heterogeneity of the band present at the inlet of the system by performing a greater oxidation in the places where it is lower upstream of the system.
- the document JP 003342645 discloses a controlled oxidation chamber of bands for oxidation by means of an oxidizing gas, the chamber has blowing means and at least one suction port between which circulates the oxidizing gas in a controlled manner.
- FRA2920439 discloses a method of continuous galvanizing annealing of steel strips comprising a section equipped with modified radiant tubes; the oxidation is carried out by an oxidizing medium injected via said tubes, which comprises a step of measuring the dew point of the oxidizing medium in the sections of the furnace where the modified tubes are installed and a step of regulating the flow rate of oxidizing medium in closed loop with dew point measurement.
- the known oxidation chambers have an extraction of the oxidizing gas at each end. No means are placed inside the chambers so as to achieve local extraction of the oxidizing gas and thus limit interference between the injected gas and the gas having been in contact with the strip.
- the invention makes it possible to overcome these problems by making it possible to control the oxidation of the strip in the longitudinal and transverse directions of the strip. It can be implemented indifferently in direct oxidizing fire furnaces preferentially or preferably non-oxidizing or in controlled atmosphere furnaces.
- the invention consists in producing an injection of air or fumes, or an air / smoke mixture, on the strip in a so-called chamber.
- Controlled oxidation in which the strip is at a temperature adapted to undergo the desired oxidation.
- the controlled oxidation chamber has means for controlling the flow rate, the temperature, and the injection kinetics on the injected gas band according to the need and to ensure the evacuation of the chamber after its reaction with the band.
- This solution can be applied over the entire width of the strip or only on a transverse or longitudinal part of the strip requiring additional oxidation.
- the injection of air makes it possible to obtain a high oxygen content at a lower cost, compared to the solutions according to the state of the art. This makes it possible to minimize the dimensions of the injection circuits and to obtain a greater oxidation reactivity.
- the injection of fumes, or an air / fumes mixture makes it possible to obtain a controlled oxygen level, lower than 21%, which reduces the rate of oxidation compared to the injection of air but gives a greater adjustment fineness and thus greater oxidation accuracy than using pure air.
- the invention is implemented downstream of a first section in which a "coarse" oxidation is performed so as to obtain substantially the required thickness of oxides.
- coarse oxidation is meant oxidation without fine control thereof over the bandwidth.
- the second downstream section in which is implemented the invention allows to finely adjust the thickness of oxide on the bandwidth so that it is homogeneous.
- the first coarse oxidation section may be a selective oxidation section in a controlled atmosphere annealing furnace, for example in an RTF furnace (Radiant Tube Furnace).
- the controlled oxidation chamber according to the invention implanted downstream, is for example placed between a heating section and a section maintaining the temperature of the strip, or in a connecting tunnel between two sections of the continuous line, for example in the tunnel connecting the RTF furnace and the cooling section of the strip.
- the first coarse oxidation section may also be a direct flame heating section, for example a NOF (Non Oxidizing Furnace) or DFF (Direct Firing Furnace) section.
- the controlled oxidation chamber according to the invention is for example placed at the outlet of the NOF or DFF section, in the running direction of the strip, or in the connection tunnel between the NOF or DFF section and the radiant tube furnace. , in the radiant tube furnace or downstream thereof.
- the device according to the invention is composed of a multi-part transverse and longitudinal blowing system over the independently controlled width and strip length for controlling the desired oxide value over the bandwidth.
- a symmetrical suction suction system allows the return of the injected gas after its reaction with the surface of the strip by limiting the interference between the gas to be injected and the gas that has been in contact with the strip.
- the distance between the injection system and the strip is determined according to the geometry and the distribution of the blowing orifices and the kinematics of the jets so as to cover the surface of the strip with little overlap of the jets on it.
- the injection system and the suction system can be placed at the same distance from the band, or can be shifted, the suction being for example placed at a greater distance from the band.
- the suction and blowing parts of the zone in question are controlled simultaneously, which makes it possible for the injected gas flow to escape after a residence time equivalent to the defined distance and not to diffuse laterally towards other zones of the strip. and therefore cause unwanted oxidation on other areas of the band.
- the temperature level of the oxidizing gas at the outlet of the injection system is advantageously close to that of the band in order to limit thermal stresses in the band which could cause deformation of it.
- a hot gas also increases the reactivity of the oxidation compared to a cold gas.
- the transverse and longitudinal distribution of the oxidation of the strip upstream of the controlled oxidation chamber according to the invention is determined so as to identify the places where the controlled oxidation must be carried out and with what importance.
- This analysis of the surface of the strip upstream of the device according to the invention can be carried out by sensors measuring the thickness of the oxidation over the width of the strip or by an image analysis of the strip.
- the controlled oxidation chamber of metal strips in an annealing furnace of a continuous line of production of hot-coated strips, for example by galvanizing, the oxidation chamber for the oxidation of the metal strips by means of a gas oxidant injected on at least one of the faces of a strip is characterized in that it comprises oxidation portions extending over its width and / or length, each portion comprising at least one blowing orifice and at least one suction port between which an oxidizing gas circulates, each portion being separately controllable to adjust the oxidation induced on the strip over the width and length of the oxidation chamber.
- the oxidizing gas may be injected onto the strip in a direction substantially perpendicular to the strip by means of blowing orifices and in that the oxidizing gas then circulates in the chamber towards suction ports in a direction substantially parallel to the direction of travel of the strip or in a direction having a component perpendicular to the running direction of the strip.
- Suction orifices placed on the sides of a suction portion relative to the running direction of the strip complementary to one or more suction orifices placed at the end of the suction portion in the running direction of the strip leads to a flow of the oxidizing gas in the chamber in a direction having a component perpendicular to the running direction of the strip.
- the combination of these holes suction allows to precisely define the periphery of each oxidation portion.
- the controlled oxidation chamber may be placed downstream, in the running direction of the strip, of a section in which the strip undergoes a first oxidation.
- the oxidizing gas used may be air, smoke, or a mixture of air and smoke.
- the fumes advantageously come from at least one burner placed close to the controlled oxidation chamber, for example open flame burners of a NOF section or radiant tube burners of an RTF furnace.
- the fumes collected near the controlled oxidation chamber, for example in a flue gas plenum, are thus injected into the controlled oxidation chamber.
- the controlled oxidation chamber comprises at least one oxidation sensor located upstream and / or downstream of the oxidation portion, the information coming from the oxidation sensor being integrated into the calculation of the outgoing oxidizing gas flow. the blowing orifice of the oxidation portion.
- the invention also relates to a method of controlled oxidation of metal strips implemented in a controlled oxidation chamber mentioned above, by means of an oxidizing gas injected on at least one of the faces of the strip, said gas oxidant being air or combustion fumes, or a mixture of air and combustion fumes.
- the characteristics of the oxidizing gas and / or the kinetics of injection and suction of the oxidizing gas in the oxidation portions are advantageously controlled to adjust the oxidation induced on the strip over the width and the length of the oxidation chamber.
- an oxidation portion is controlled by the choice of the blowing orifices and the suction orifices in use in said portion.
- several series of blowholes and several series of suction ports are provided. We then perform a choice among these series of orifices depending on the desired distance between the blowing zone and the suction zone, that is to say according to the desired oxidation.
- the residence time of the oxidizing gas in the controlled oxidation chamber may be adjusted by the portion along the length of said portion in the running direction of the strip.
- FIGS. 1 to 4 show in schematic views examples of architecture of oxidation chambers according to the invention in which the band flows in the direction indicated by the arrow 16, in a zone of oxidizing or non-oxidizing furnace.
- FIGS. 1 to 4 show schematically in front view an example of a wall 2 of a controlled oxidation chamber 1 according to the invention, as seen by one side of the strip.
- the walls of the oxidation chamber here consist of elementary modules 3 juxtaposed of rectangular shape. It may for example be brick refractory material. However, this exemplary embodiment is only illustrative, other embodiments may be used.
- the walls of the oxidation chamber may be in one module. They can be lined with refractory fiber, and possibly covered with a stainless steel sheet.
- certain elementary modules 3 comprise circular or rectangular orifices 4, 5 through which the gas is injected onto the strip or discharged from the oxidation chamber.
- the number of injection orifices 4 per elementary module and the unit section of these orifices are chosen so as to cover the entire bandwidth with unit gas jets whose shape and kinematics allow to cover a unitary band surface with a speed adapted to ensure the oxidation of the band.
- suction orifices 5 are placed above blowing orifices 4, but this example is not restrictive, the suction orifices being able to be placed below the injection orifices.
- the band flows as shown from bottom to top, the flow of the injected gas is therefore in the direction of flow of the strip. If the band flows from top to bottom, the flow of the injected gas is therefore in the opposite direction of the flow of the band.
- these figures illustrate a vertical chamber. Obviously, it could also be a horizontal chamber, with a horizontal scroll of the strip, or an inclined chamber, for which the position of the orifices would then be defined more generally in the direction of travel of the strip.
- blowing holes 4 are located in two successive rows of unit modules 3.
- the blowing ports are thus aligned on two lines 6, 7 parallel to the bandwidth.
- the position of the orifices is shifted to the second row 7 relative to the first row 6, so as to obtain a greater overlap of the surface of the strip over its width.
- the suction orifices 5 have a similar distribution and are distributed in two rows 8 and 9.
- the distribution of the suction orifices 5 is symmetrical to that of the blowing orifices 4 along an axis of transverse symmetry passing halfway between the
- the distance between the blowing zone and the suction zone, in the running direction of the strip, is a function of the maximum speed of movement of the strip and the kinematics of the gas. oxidant blown on the tape. It corresponds here to three rows of unitary modules.
- blow holes 4 and suction ports 5 in operation and their location are adjusted according to the locations on the surface of the strip where it is necessary to perform additional oxidation of the strip.
- the suction ports 5 in operation are naturally in alignment with the blowing holes 4, in the running direction of the strip.
- the oxidizing gas flow rate can be adjusted by line 6, 7 of blowing ports, by set of blow holes, or individually by blowing orifice 4, so as to adjust for each orifice 4 or set of orifices kinematic jets of oxidizing gas and their effect on the band.
- the oxidizing gas is a mixture of air and smoke
- FIG 2 we can see represented diagrammatically an example of realization similar to that represented in Fig. 1 but with openings of blow and suction of rectangular section.
- a unit portion 17 defined by a blowing orifice and a suction orifice is shown in this figure.
- the figure 3 schematically represents by way of example the architecture of an oxidation chamber according to the invention having 8 lines 6 to 13 orifices per strip face.
- This oxidation chamber is longer than those of Figures 1 and 2 is particularly suitable for high speeds of tape travel.
- the longer length of the oxidation chamber makes it possible to perform the oxidation with a slower kinematics which may be advantageous for certain steel grades.
- this chamber can thus have two successive oxidation zones by blow / suction, the lines of orifices 6, 7, 10 and 11 ensuring the blowing and the lines 8, 9, 12 and 13 the suction. It is for example possible to dedicate each to a gas of different nature, or to blow the same gas with two different injection kinematics.
- This chamber can also be operated using only the lines of orifices 6 and 7 for blowing the oxidizing gas and lines 8 to 13 in suction.
- the suction ports used will be those of the lines 8 and 9, or those of the lines 10 and 11 or those of the lines 12 and 13, the lines 8 and 9 leading to the shortest exchange length and lines 12 and 13 to the longest exchange length.
- the figure 4 schematically represents by way of example the architecture of an oxidation chamber according to the invention in the same principle as that of the figure 3 but advantageously having transverse aspirations 14 arranged successively according to the width of the oven.
- the presence of these transverse aspirations 14 makes it possible to delimit precisely on the bandwidth, and the length of the oxidation chamber, zones in which the oxidation can be controlled separately.
- the device according to the invention can thus be composed of a longitudinal blowing system in several independently controlled parts and of a suction system alternately disposed at blowing and disposed at an advantageous distance allowing the control of the oxide value. desired on the tape.
- the suction and blowing parts of the zone in question are controlled simultaneously, which allows the flow of injected air to escape after a residence time equivalent to the defined distance and not to diffuse laterally to other zones of the strip. , and thus cause unwanted oxidation on other areas of the band
- the figure 5 schematically represents a sectional view of an oxidation chamber 1 at the level of blowing orifices 4, according to an exemplary embodiment of the invention.
- the blowing holes do not exceed unit modules 3 in the direction of the strip 15.
- the figure 6 schematically represents a sectional view of an oxidation chamber 1 at the level of blowing orifices 4, according to another embodiment of the invention in which the blowing orifices protrude from the unitary modules 3 in the direction of the strip 15 .
- the suction ports are not shown. They may not exceed unit modules 3 in the direction of the band 15 or exceed said modules.
- the blowing and suction orifices may not exceed unitary modules 3 in the direction of the strip 15, the blowing orifices may not exceed while the suction orifices exceed , and the blowing holes may protrude while the suction ports do not protrude.
- the distance between the strip and the end of the blowing and suction ports is particularly related to the flow rate and kinematics of the oxidizing gas jets.
- the minimum air injection flow rate in the oxidation zone is very low (for example 10 Nm 3 / h of air for a flow of the oxidizing gas over a length of one meter, measured between blowing and suction and / or length, in the longitudinal direction of travel of the strip, corresponding to the desired oxidation portion, said length giving an oxide thickness of 70 nm on a strip of 1500 mm wide scrolling at 100m / min at a temperature of 650 ° C.)
- the control of the oxidation can be advantageously done by the opening / closing of one or more oxidation zones (blowing / suction) and thus of varying the overall flow rate for vary the residence time under oxidizing gas of the strip and thus vary the oxide thickness.
- the control of the oxidation can be advantageously done by the opening / closing of one or more oxidation zones (blowing / suction) and thus of varying the overall flow rate for vary the residence time under oxidizing gas of the strip and thus vary the oxide thickness.
- it can
- This operation can be performed over the entire width of the strip or only a part, thus giving great flexibility in the management of the atmosphere in contact with the strip while keeping at least the critical injection speeds on the strip in the desired oxidation zone and isolating the other zones by injection of a neutral gas such as nitrogen for example .
- This operating mode makes it possible to dispense with the speed of travel of the strip in the control of the oxide thickness.
- the device according to the invention is placed downstream of an oxidation section without precise control of the oxidation over the bandwidth. This allows, for example, to achieve quickly, that is to say, over a limited furnace length, most of the oxide layer referred to.
- the device according to the invention then makes it possible locally to carry out additional oxidation, for example to obtain a homogeneous oxide thickness over the bandwidth or to reinforce it locally.
- the oxidation section without precise control of the oxidation over the bandwidth may also make it possible to produce a layer whose oxides will have a given morphology or composition, different from the surface layer which will then be produced by the device according to the invention. invention.
- the oxidation section 100 without precise control of the oxidation on the bandwidth is a portion of a preheating furnace 110 of the direct flame band.
- this oven comprises a zone 120 for preheating the strip by exhausting the flue gas followed by a heating zone 130 equipped with direct flame burners.
- the first 15 pairs of burners (over 13 m of oven length) operate in air defect so as to avoid oxidation of the band.
- the last 3 pairs of burners (over 4.2 m of oven length) delimit the section 100 in which the burners operate with a large excess of air to obtain a significant oxidation of the band.
- the device 1 according to the invention placed downstream of this oxidizing zone then makes it possible to finely adjust the oxidation on the bandwidth.
- the width of 1500 mm band is running at a nominal speed of 100 m / min.
- the chamber 1 has a length of 475 mm in the direction of travel of the strip.
- the blowing zone has 55 orifices arranged on two transverse lines 80 mm apart.
- the suction zone has 55 orifices arranged on two transverse lines 80 mm apart.
- the distance between the nearest blow and suction lines is 315 mm.
- the blow holes are located 100 mm from the strip every 58 mm depending on the bandwidth. Their injection diameter is 25 mm.
- the suction ports are located 100 mm from the belt every 58 mm depending on the bandwidth. Their suction diameter is 25 mm.
- the oxidizing gas is air. It is injected on the belt at a nominal speed of 3 m / s. The injection speed is modulated by injector, or injector assembly, between 0 and 5 m / s depending on the amount of oxidation sought on the surface of the band concerned.
- the band is at 650 ° C when it enters the oxidation chamber.
- the oxidizing gas is injected at a temperature of 650 ° C.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Coating With Molten Metal (AREA)
Description
L'invention concerne un dispositif et un procédé pour réaliser une oxydation contrôlée de bandes métalliques, notamment d'acier, dans les fours de recuit de lignes continues dont la destination est la production de tôles revêtues à chaud, par exemple par galvanisation (revêtement de zinc, de zinc et d'aluminium, de zinc et de magnésium, ou tout autre combinaison) ou aluminage. Elle est mise en oeuvre dans le cadre d'une oxydation sélective réalisée dans un four de recuit sous atmosphère contrôlée, ou d'une oxydation totale dans un four de recuit oxydant, généralement à flamme directe.The invention relates to a device and a method for producing a controlled oxidation of metal strips, in particular of steel, in continuous line annealing furnaces whose purpose is the production of hot-coated sheets, for example by galvanizing (coating of zinc, zinc and aluminum, zinc and magnesium, or any combination) or aluminizing. It is carried out in the context of a selective oxidation carried out in a controlled atmosphere annealing furnace, or of a total oxidation in an oxidizing annealing furnace, generally with a direct flame.
Dans une section d'oxydation sélective ou totale, l'hétérogénéité sur la largeur et la longueur de bande de la teneur en oxygène du gaz oxydant, de sa température et de sa vitesse d'écoulement à la surface de la bande crée une oxydation différente sur la bande. Cela est notamment le cas dans les zones d'oxydation où l'extraction du gaz oxydant de la chambre d'oxydation n'est pas contrôlée.In a selective or total oxidation section, the heterogeneity in the width and the strip length of the oxygen content of the oxidizing gas, its temperature and its flow rate at the surface of the strip creates a different oxidation on the tape. This is particularly the case in oxidation zones where the extraction of the oxidizing gas from the oxidation chamber is not controlled.
La production de certains types d'aciers pose un problème d'adhésion du revêtement pour des nuances contenant des teneurs élevées en éléments d'alliage tels que le manganèse, le silicium ou l'aluminium, par création d'oxydes en surface de la bande pénalisant la mouillabilité du substrat.The production of certain types of steels poses a coating adhesion problem for grades containing high levels of alloying elements such as manganese, silicon or aluminum, by creating oxides on the surface of the strip penalizing the wettability of the substrate.
Plusieurs procédés existent pour améliorer cette mouillabilité, notamment :
- Création d'un oxyde de fer en surface dite oxydation totale, dans un four oxydant à flamme directe formant une barrière à la remontée de ces éléments et à leur oxydation en surface, suivie d'une réduction de ces oxydes avant le revêtement de la bande.
- Oxydation en profondeur de ces éléments empêchant leur remontée en surface, dans un four à atmosphère contrôlée, par injection d'oxygène ou d'eau dite oxydation sélective, suivie d'une réduction des oxydes présents en surface avant le revêtement de la bande.
- Creation of an iron oxide on the surface called total oxidation, in a direct flame oxidizing furnace forming a barrier to the rise of these elements and their surface oxidation, followed by a reduction of these oxides before coating the strip.
- Deep oxidation of these elements preventing their rise to the surface, in a controlled atmosphere furnace, by injection of oxygen or water called selective oxidation, followed by a reduction of oxides present on the surface before coating the strip.
Le document
Le document
L'invention permet de pallier ces problèmes en permettant de maîtriser l'oxydation de la bande dans les sens longitudinal et transversal de la bande. Elle peut être mise en œuvre indifféremment dans des fours à feux direct oxydant préférentiellement ou préférentiellement non-oxydant ou dans des fours à atmosphère contrôlée.The invention makes it possible to overcome these problems by making it possible to control the oxidation of the strip in the longitudinal and transverse directions of the strip. It can be implemented indifferently in direct oxidizing fire furnaces preferentially or preferably non-oxidizing or in controlled atmosphere furnaces.
L'invention consiste à réaliser une injection d'air ou de fumées, ou d'un mélange air/fumées, sur la bande dans une chambre dite « d'oxydation contrôlée » dans laquelle la bande est à une température adaptée pour subir l'oxydation recherchée.La chambre d'oxydation contrôlée dispose de moyens permettant de contrôler le débit, la température, et la cinétique d'injection sur la bande du gaz injecté en fonction du besoin et d'en assurer l'évacuation de la chambre après sa réaction avec la bande.The invention consists in producing an injection of air or fumes, or an air / smoke mixture, on the strip in a so-called chamber. "Controlled oxidation" in which the strip is at a temperature adapted to undergo the desired oxidation.The controlled oxidation chamber has means for controlling the flow rate, the temperature, and the injection kinetics on the injected gas band according to the need and to ensure the evacuation of the chamber after its reaction with the band.
Cette solution peut être appliquée sur toute la largeur de la bande ou seulement sur une partie transversale ou longitudinale de la bande nécessitant une oxydation supplémentaire.This solution can be applied over the entire width of the strip or only on a transverse or longitudinal part of the strip requiring additional oxidation.
Du fait de sa teneur de 21 % en oxygène, l'injection d'air permet d'obtenir un taux d'oxygène élevé pour un coût moindre, comparé aux solutions selon l'état de la technique. Cela permet de minimiser les dimensions des circuits d'injection et d'obtenir une réactivité d'oxydation plus importante.Because of its 21% oxygen content, the injection of air makes it possible to obtain a high oxygen content at a lower cost, compared to the solutions according to the state of the art. This makes it possible to minimize the dimensions of the injection circuits and to obtain a greater oxidation reactivity.
L'injection de fumées, ou d'un mélange air/fumées, permet d'obtenir un taux d'oxygène contrôlé, inférieur à 21%, qui réduit la vitesse d'oxydation par rapport à l'injection d'air mais donne une finesse de réglage plus importante et donc une précision d'oxydation plus importante que par l'utilisation d'air pur.The injection of fumes, or an air / fumes mixture, makes it possible to obtain a controlled oxygen level, lower than 21%, which reduces the rate of oxidation compared to the injection of air but gives a greater adjustment fineness and thus greater oxidation accuracy than using pure air.
Le choix d'une solution ou l'autre peut être défini en fonction du besoin et représente de toute évidence une économie par rapport à l'utilisation d'un mélange d'oxygène ou d'azote pris séparément.The choice of one solution or the other can be defined according to need and obviously represents a saving in relation to the use of a mixture of oxygen or nitrogen taken separately.
L'injection du gaz oxydant à vitesse contrôlée permet d'améliorer le procédé car il est admis qu'une vitesse critique minimum du gaz oxydant à la surface de la tôle augmente fortement la vitesse d'oxydation.The injection of the oxidizing gas at a controlled speed makes it possible to improve the process since it is assumed that a minimum critical speed of the oxidizing gas at the surface of the sheet greatly increases the rate of oxidation.
Avantageusement, l'invention est mise en œuvre en aval d'une première section dans laquelle une oxydation « grossière » est réalisée de sorte d'obtenir sensiblement l'épaisseur d'oxydes requise. Par oxydation grossière, on entend une oxydation sans contrôle fin de celle-ci sur la largeur de bande. Ainsi, la seconde section placée en aval dans laquelle est mise en œuvre l'invention permet d'ajuster finement l'épaisseur d'oxyde sur la largeur de bande de sorte que celle-ci soit homogène. La première section d'oxydation grossière peut être une section d'oxydation sélective dans un four de recuit sous atmosphère contrôlée, par exemple dans un four RTF (four à tubes radiants ou Radiant Tube Furnace). La chambre d'oxydation contrôlée selon l'invention, implantée en aval, est par exemple placée entre une section de chauffage et une section de maintien à température de la bande, ou dans un tunnel de liaison entre deux sections de la ligne continue, par exemple dans le tunnel de liaison entre le four RTF et la section de refroidissement de la bande. La première section d'oxydation grossière peut également être une section de chauffage à flamme directe, par exemple une section NOF (Non Oxydazing Furnace) ou DFF (Direct Firing Furnace). La chambre d'oxydation contrôlée selon l'invention est par exemple placée en sortie de la section NOF ou DFF, dans le sens de défilement de la bande, ou dans le tunnel de liaison entre la section NOF ou DFF et le four à tube radiants, dans le four à tube radiants ou en aval de celui-ci.Advantageously, the invention is implemented downstream of a first section in which a "coarse" oxidation is performed so as to obtain substantially the required thickness of oxides. By coarse oxidation is meant oxidation without fine control thereof over the bandwidth. Thus, the second downstream section in which is implemented the invention allows to finely adjust the thickness of oxide on the bandwidth so that it is homogeneous. The first coarse oxidation section may be a selective oxidation section in a controlled atmosphere annealing furnace, for example in an RTF furnace (Radiant Tube Furnace). The controlled oxidation chamber according to the invention, implanted downstream, is for example placed between a heating section and a section maintaining the temperature of the strip, or in a connecting tunnel between two sections of the continuous line, for example in the tunnel connecting the RTF furnace and the cooling section of the strip. The first coarse oxidation section may also be a direct flame heating section, for example a NOF (Non Oxidizing Furnace) or DFF (Direct Firing Furnace) section. The controlled oxidation chamber according to the invention is for example placed at the outlet of the NOF or DFF section, in the running direction of the strip, or in the connection tunnel between the NOF or DFF section and the radiant tube furnace. , in the radiant tube furnace or downstream thereof.
Le dispositif selon l'invention est composé d'un système de soufflage transversal et longitudinal en plusieurs parties sur la largeur et la longueur de bande contrôlées indépendamment permettant le contrôle de la valeur d'oxyde souhaité sur la largeur de bande. Un système d'aspiration symétrique au soufflage permet la reprise du gaz injecté après sa réaction avec la surface de la bande en limitant les interférences entre le gaz injecter et le gaz ayant été en contact avec la bande.The device according to the invention is composed of a multi-part transverse and longitudinal blowing system over the independently controlled width and strip length for controlling the desired oxide value over the bandwidth. A symmetrical suction suction system allows the return of the injected gas after its reaction with the surface of the strip by limiting the interference between the gas to be injected and the gas that has been in contact with the strip.
La distance entre le système d'injection et la bande est déterminé selon la géométrie et la répartition des orifices de soufflage et la cinématique des jets de sorte de couvrir la surface de la bande avec peu de recouvrement des jets sur celle-ci. Le système d'injection et le système d'aspiration peuvent être placés à la même distance de la bande, ou peuvent être décalés, l'aspiration étant par exemple placée à une distance plus importante de la bande.The distance between the injection system and the strip is determined according to the geometry and the distribution of the blowing orifices and the kinematics of the jets so as to cover the surface of the strip with little overlap of the jets on it. The injection system and the suction system can be placed at the same distance from the band, or can be shifted, the suction being for example placed at a greater distance from the band.
Les parties aspiration et soufflage de la zone considérée sont commandées simultanément ce qui permet au débit de gaz injecté de s'évacuer après un temps de séjour équivalent à la distance définie et de ne pas se diffuser latéralement vers d'autres zones de la bande, et donc provoquer d'oxydation non désirée sur d'autres zones de la bande.The suction and blowing parts of the zone in question are controlled simultaneously, which makes it possible for the injected gas flow to escape after a residence time equivalent to the defined distance and not to diffuse laterally towards other zones of the strip. and therefore cause unwanted oxidation on other areas of the band.
Le niveau de température du gaz oxydant en sortie du système d'injection est avantageusement proche de celui de la bande afin de limiter les contraintes thermiques dans la bande qui pourraient provoquer une déformation de celle-ci. Un gaz chaud augmente également la réactivité de l'oxydation en comparaison à un gaz froid.The temperature level of the oxidizing gas at the outlet of the injection system is advantageously close to that of the band in order to limit thermal stresses in the band which could cause deformation of it. A hot gas also increases the reactivity of the oxidation compared to a cold gas.
Avantageusement, la répartition transversale et longitudinale de l'oxydation de la bande en amont de la chambre d'oxydation contrôlée selon l'invention est déterminée de sorte d'identifier les endroits où l'oxydation contrôlée doit être réalisée et avec quelle importance. Cette analyse de la surface de la bande en amont du dispositif selon l'invention peut être réalisée par des capteurs mesurant l'épaisseur de l'oxydation sur la largeur de la bande ou par une analyse d'images de la bande.Advantageously, the transverse and longitudinal distribution of the oxidation of the strip upstream of the controlled oxidation chamber according to the invention is determined so as to identify the places where the controlled oxidation must be carried out and with what importance. This analysis of the surface of the strip upstream of the device according to the invention can be carried out by sensors measuring the thickness of the oxidation over the width of the strip or by an image analysis of the strip.
La chambre d'oxydation contrôlée de bandes métalliques dans un four de recuit d'une ligne continue de production de bandes revêtues à chaud, par exemple par galvanisation, la chambre d'oxydation permettant l'oxydation des bandes métalliques au moyen d'un gaz oxydant injecté sur au moins l'une des faces d'une bande est caractérisée en ce qu'elle comprend des portions d'oxydation s'étendant sur sa largeur et/ou sa longueur, chaque portion comprenant au moins un orifice de soufflage et au moins un orifice d'aspiration entre lesquels circule un gaz oxydant, chaque portion pouvant être contrôlée de manière distincte pour ajuster l'oxydation induite sur la bande sur la largeur et la longueur de la chambre d'oxydation.The controlled oxidation chamber of metal strips in an annealing furnace of a continuous line of production of hot-coated strips, for example by galvanizing, the oxidation chamber for the oxidation of the metal strips by means of a gas oxidant injected on at least one of the faces of a strip is characterized in that it comprises oxidation portions extending over its width and / or length, each portion comprising at least one blowing orifice and at least one suction port between which an oxidizing gas circulates, each portion being separately controllable to adjust the oxidation induced on the strip over the width and length of the oxidation chamber.
Le gaz oxydant peut être injecté sur la bande selon une direction sensiblement perpendiculaire à la bande au moyen d'orifices de soufflage et en ce qu'ensuite le gaz oxydant circule dans la chambre vers des orifices d'aspiration selon une direction sensiblement parallèle à la direction de défilement de la bande ou selon une direction ayant une composante perpendiculaire à la direction de défilement de la bande. Des orifices d'aspiration placés sur les côtés d'une portion d'aspiration par rapport à la direction de défilement de la bande venant en complément d'un ou plusieurs orifices d'aspiration placés à l'extrémité de la portion d'aspiration dans la direction de défilement de la bande conduisent à un écoulement du gaz oxydant dans la chambre selon une direction ayant une composante perpendiculaire à la direction de défilement de la bande. La combinaison de ces orifices d'aspiration permet de définir précisément la périphérie de chaque portion d'oxydation.The oxidizing gas may be injected onto the strip in a direction substantially perpendicular to the strip by means of blowing orifices and in that the oxidizing gas then circulates in the chamber towards suction ports in a direction substantially parallel to the direction of travel of the strip or in a direction having a component perpendicular to the running direction of the strip. Suction orifices placed on the sides of a suction portion relative to the running direction of the strip complementary to one or more suction orifices placed at the end of the suction portion in the running direction of the strip leads to a flow of the oxidizing gas in the chamber in a direction having a component perpendicular to the running direction of the strip. The combination of these holes suction allows to precisely define the periphery of each oxidation portion.
La chambre d'oxydation contrôlée peut être placée en aval, dans le sens de défilement de la bande, d'une section dans laquelle la bande subit une première oxydation.The controlled oxidation chamber may be placed downstream, in the running direction of the strip, of a section in which the strip undergoes a first oxidation.
Le gaz oxydant utilisé peut être de l'air, des fumées, ou un mélange d'air et de fumées. Les fumées proviennent avantageusement d'au moins un brûleur placé à proximité de la chambre d'oxydation contrôlée, par exemple de brûleurs à flamme nue d'une section NOF ou de brûleurs à tube radiant d'un four RTF. Les fumées captées à proximité de la chambre d'oxydation contrôlée, par exemple dans une plénum d'évacuation des fumées, sont ainsi injectées dans la chambre d'oxydation contrôlée.The oxidizing gas used may be air, smoke, or a mixture of air and smoke. The fumes advantageously come from at least one burner placed close to the controlled oxidation chamber, for example open flame burners of a NOF section or radiant tube burners of an RTF furnace. The fumes collected near the controlled oxidation chamber, for example in a flue gas plenum, are thus injected into the controlled oxidation chamber.
Avantageusement la chambre d'oxydation contrôlée comprend au moins un capteur d'oxydation situé en amont et/ou en aval de la portion d'oxydation, l'information issue du capteur d'oxydation étant intégrée dans le calcul du débit de gaz oxydant sortant de l'orifice de soufflage de la portion d'oxydation.Advantageously, the controlled oxidation chamber comprises at least one oxidation sensor located upstream and / or downstream of the oxidation portion, the information coming from the oxidation sensor being integrated into the calculation of the outgoing oxidizing gas flow. the blowing orifice of the oxidation portion.
L'invention concerne également un procédé d'oxydation contrôlée de bandes métalliques mis en œuvre dans une chambre d'oxydation contrôlée évoquée plus haut, au moyen d'un gaz oxydant injecté sur au moins l'une des faces de la bande, ledit gaz oxydant étant de l'air ou des fumées de combustion, ou un mélange composé d'air et de fumées de combustion.The invention also relates to a method of controlled oxidation of metal strips implemented in a controlled oxidation chamber mentioned above, by means of an oxidizing gas injected on at least one of the faces of the strip, said gas oxidant being air or combustion fumes, or a mixture of air and combustion fumes.
Avantageusement, on contrôle de manière distincte les caractéristiques du gaz oxydant et/ou la cinétique d'injection et d'aspiration du gaz oxydant dans les portions d'oxydation pour ajuster l'oxydation induite sur la bande sur la largeur et la longueur de la chambre d'oxydation.Advantageously, the characteristics of the oxidizing gas and / or the kinetics of injection and suction of the oxidizing gas in the oxidation portions are advantageously controlled to adjust the oxidation induced on the strip over the width and the length of the oxidation chamber.
De manière plus avantageuse, on contrôle les dimensions d'une portion d'oxydation par le choix des orifices de soufflage et des orifices d'aspiration en services dans ladite portion. A cet effet plusieurs séries d'orifices de soufflage et plusieurs séries d'orifices d'aspiration sont prévues. On effectue alors un choix parmi ces séries d'orifices en fonction de la distance souhaitée entre la zone de soufflage et la zone d'aspiration, c'est-à-dire en fonction de l'oxydation souhaitée.More advantageously, the dimensions of an oxidation portion are controlled by the choice of the blowing orifices and the suction orifices in use in said portion. For this purpose several series of blowholes and several series of suction ports are provided. We then perform a choice among these series of orifices depending on the desired distance between the blowing zone and the suction zone, that is to say according to the desired oxidation.
Le temps de séjour du gaz oxydant dans la chambre d'oxydation contrôlée peut être ajusté par la portion selon la longueur de ladite portion dans la direction de défilement de la bande.The residence time of the oxidizing gas in the controlled oxidation chamber may be adjusted by the portion along the length of said portion in the running direction of the strip.
Dans ce qui suit, l'invention est expliquée de manière détaillée sur la base d'exemples de réalisation faisant référence aux
-
Figure 1 est une représentation schématique partielle d'une chambre d'oxydation selon un exemple de réalisation de l'invention, telle que vue par une face de la bande, comprenant des orifices de soufflage et d'aspiration de section circulaire, réparties sur une zone de soufflage et une zone d'aspiration, -
Figure 2 est une représentation schématique partielle d'une chambre d'oxydation selon un exemple de réalisation de l'invention similaire à celui de lafigure 1 , telle que vue par une face de la bande, les orifices de soufflage et d'aspiration étant de section rectangulaire, -
Figure 3 est une représentation schématique partielle d'une chambre d'oxydation selon un exemple de réalisation de l'invention similaire à celui de lafigure 2 , telle que vue par une face de la bande, la paroi de la chambre d'oxydation comprenant quatre séries d'orifices au lieu de deux, -
Figure 4 est une représentation schématique partielle d'une chambre d'oxydation selon un exemple de réalisation de l'invention similaire à celui de lafigure 3 , telle que vue par une face de la bande, la paroi de la chambre d'oxydation comprenant également des orifices d'aspiration placés transversalement, -
Figure 5 est une représentation schématique partielle d'une chambre d'oxydation en coupe transversale selon un exemple de réalisation de l'invention dans lequel les orifices de soufflage ne dépassent pas des parois internes de la chambre, -
Figure 6 est une représentation schématique partielle d'une chambre d'oxydation en coupe transversale selon un exemple de réalisation de l'invention dans lequel les orifices de soufflage dépassent des parois internes de la chambre, et -
Figure 7 est une représentation schématique partielle d'une ligne continue comprenant une chambre d'oxydation selon un exemple de réalisation de l'invention.
-
Figure 1 is a partial schematic representation of an oxidation chamber according to an exemplary embodiment of the invention, as seen from one side of the strip, comprising circular section blow and suction ports, distributed over a zone of blowing and a suction zone, -
Figure 2 is a partial schematic representation of an oxidation chamber according to an exemplary embodiment of the invention similar to that of thefigure 1 , as seen from one side of the strip, the blow and suction ports being of rectangular section, -
Figure 3 is a partial schematic representation of an oxidation chamber according to an exemplary embodiment of the invention similar to that of thefigure 2 , as seen from one side of the strip, the wall of the oxidation chamber comprising four series of orifices instead of two, -
Figure 4 is a partial schematic representation of an oxidation chamber according to an exemplary embodiment of the invention similar to that of thefigure 3 , as seen from one side of the strip, the wall of the oxidation chamber also comprising transverse suction ports, -
Figure 5 is a partial schematic representation of an oxidation chamber in cross-section according to an exemplary embodiment of the invention in which the blowing holes do not project beyond the internal walls of the chamber, -
Figure 6 is a partial schematic representation of an oxidation chamber in cross-section according to an exemplary embodiment of the invention in which the blowing orifices protrude from the internal walls of the chamber, and -
Figure 7 is a partial schematic representation of a continuous line comprising an oxidation chamber according to an exemplary embodiment of the invention.
Dans toute la description qui suit de différents modes de réalisation de l'invention, les termes relatifs tels que « avant », « arrière », « amont » et « aval » sont à interpréter au vu du sens de défilement de la bande de même que les termes tels que « au-dessus », « au-dessous » sont à interpréter au vu de la position des différents éléments sur les figures.Throughout the following description of various embodiments of the invention, the relative terms such as "before", "backward", "upstream" and "downstream" are to be interpreted in view of the direction of travel of the strip of the same that terms such as "above", "below" are to be interpreted in view of the position of the various elements in the figures.
Les
Comme on peut le voir sur ces figures, certains modules élémentaires 3 comprennent des orifices 4, 5 circulaires ou rectangulaires par lesquels est réalisée l'injection du gaz sur la bande ou son évacuation de la chambre d'oxydation. Le nombre d'orifices d'injection 4 par module élémentaire et la section unitaire de ces orifices sont choisis de sorte de couvrir toute la largeur de bande avec des jets de gaz unitaires dont la forme et la cinématique permettent de couvrir une surface unitaire de bande avec une vitesse adaptée pour assurer l'oxydation de la bande.As can be seen in these figures, certain
Dans ces exemples, des orifices d'aspiration 5 sont placés au-dessus d'orifices de soufflage 4 mais cet exemple n'est pas restrictif, les orifices d'aspiration pouvant être placés en dessous des orifices d'injection. Dans ces exemples, si la bande circule comme représenté de bas en haut, l'écoulement du gaz injecté se fait donc dans le sens d'écoulement de la bande. Si la bande circule de haut en bas, l'écoulement du gaz injecté se fait donc dans le sens inverse de l'écoulement de la bande. Concernant l'utilisation de ces références à des positions hautes et basses, nous avons considéré que ces figures illustrent une chambre verticale. Evidemment, il pourrait également s'agir d'une chambre horizontale, avec un défilement horizontal de la bande, ou une chambre inclinée, pour laquelle la position des orifices serait alors définie plus généralement selon le sens de défilement de la bande.In these examples,
En
Le nombre d'orifices de soufflage 4 et d'orifices d'aspiration 5 en opération et leur localisation sont ajustés selon les endroits sur la surface de la bande où il est nécessaire de réaliser une oxydation supplémentaire de la bande. Les orifices d'aspiration 5 en opération se situent naturellement dans l'alignement des orifices de soufflage 4, dans le sens de défilement de la bande.The number of
Le débit de gaz oxydant peut être ajusté par ligne 6, 7 d'orifices de soufflage, par ensemble d'orifices de soufflage, ou unitairement par orifice de soufflage 4, de sorte d'ajuster pour chaque orifice 4 ou ensemble d'orifices la cinématique des jets de gaz oxydant et leur effet sur la bande.The oxidizing gas flow rate can be adjusted by
De plus, lorsque le gaz oxydant est un mélange d'air et de fumées, il est également possible de faire varier la concentration en oxygène du gaz oxydant par orifice de soufflage, ou par ensemble d'orifices de soufflage, en ajustant les proportions d'air et de fumées, de sorte d'ajuster le pouvoir oxydant des jets de gaz.In addition, when the oxidizing gas is a mixture of air and smoke, it is also possible to vary the oxygen concentration of the oxidizing gas by blowing orifice, or by set of blowing ports, by adjusting the proportions of air and smoke, so adjust the oxidizing power of the gas jets.
Nous voyons que plusieurs moyens peuvent être utilisés indépendamment ou en combinaison pour ajuster très finement l'oxydation de la bande en chaque point de celle-ci.We see that several means can be used independently or in combination to very finely adjust the oxidation of the band at each point thereof.
En
La
Par exemple, cette chambre peut ainsi disposer de deux zones d'oxydation successives par soufflage/aspiration, les lignes d'orifices 6, 7, 10 et 11 assurant le soufflage et les lignes 8, 9, 12 et 13 l'aspiration. Il est par exemple possible de dédier chacune à un gaz de nature différente, ou de souffler un même gaz avec deux cinématiques d'injection différentes.For example, this chamber can thus have two successive oxidation zones by blow / suction, the lines of
Cette chambre peut également être exploitée en utilisant uniquement les lignes d'orifices 6 et 7 pour le soufflage du gaz oxydant et les lignes 8 à 13 en aspiration. Selon la longueur d'échange souhaitée entre le gaz oxydant et la bande, les orifices d'aspiration utilisés seront soit ceux des lignes 8 et 9, soit ceux des lignes 10 et 11 ou soit ceux des lignes 12 et 13, les lignes 8 et 9 conduisant à la longueur d'échange la plus courte et les lignes 12 et 13 à la longueur d'échange la plus longue.This chamber can also be operated using only the lines of
La
Le dispositif selon l'invention peut ainsi être composé d'un système de soufflage longitudinal en plusieurs parties contrôlées indépendamment et d'un système d'aspiration disposé en alternance au soufflage et disposé à une distance avantageuse permettant le contrôle de la valeur d'oxyde souhaité sur la bande. Les parties aspiration et soufflage de la zone considérée sont commandées simultanément ce qui permet au débit d'air injecté de s'évacuer après un temps de séjour équivalent à la distance définie et de ne pas se diffuser latéralement vers d'autres zones de la bande, et donc provoquer d'oxydation non désirée sur d'autres zones de la bandeThe device according to the invention can thus be composed of a longitudinal blowing system in several independently controlled parts and of a suction system alternately disposed at blowing and disposed at an advantageous distance allowing the control of the oxide value. desired on the tape. The suction and blowing parts of the zone in question are controlled simultaneously, which allows the flow of injected air to escape after a residence time equivalent to the defined distance and not to diffuse laterally to other zones of the strip. , and thus cause unwanted oxidation on other areas of the band
La
La
Dans les 2 exemples de réalisation des
La distance entre la bande et l'extrémité des orifices de soufflage et d'aspiration est notamment lié au débit et à la cinématique des jets de gaz oxydant.The distance between the strip and the end of the blowing and suction ports is particularly related to the flow rate and kinematics of the oxidizing gas jets.
L'inventeur précise que le débit minimum d'injection d'air dans la zone d'oxydation étant très faible (par exemple 10 Nm3/h d'air pour un écoulement du gaz oxydant sur une longueur d'un mètre, mesurée entre soufflage et aspiration et/ou longueur, dans le sens longitudinal de défilement de la bande, correspondant à la portion d'oxydation souhaitée, ladite longueur donnant une épaisseur d'oxyde de 70 nm sur une bande de 1500 mm de large défilant à 100m/mn à une température de 650°C), le contrôle de l'oxydation peut se faire avantageusement par l'ouverture / fermeture d'une ou plusieurs zones d'oxydation (soufflage / aspiration) et ainsi d'en faire varier le débit global pour varier le temps de séjour sous gaz oxydant de la bande et donc faire varier l'épaisseur d'oxyde. Dans le cas où une partie seulement des zones est utilisée en oxydation, et afin de ne pas diffuser le gaz oxydant dans d'autres zones, celui-ci peut être remplacé par un débit azote faisant écran avec la zone d'oxydation utilisée.The inventor states that the minimum air injection flow rate in the oxidation zone is very low (for example 10
Cette opération peut être réalisée sur toute la largeur de la bande ou bien sur une partie seulement, donnant ainsi une grande souplesse dans la gestion de l'atmosphère en contact avec la bande tout en conservant au minimum les vitesses critiques d'injection sur la bande dans la zone d'oxydation souhaitée et en isolant les autres zones par injection d'un gaz neutre comme l'azote par exemple. Ce mode de fonctionnement permet de s'affranchir de la vitesse de défilement de la bande dans le contrôle de l'épaisseur d'oxyde.This operation can be performed over the entire width of the strip or only a part, thus giving great flexibility in the management of the atmosphere in contact with the strip while keeping at least the critical injection speeds on the strip in the desired oxidation zone and isolating the other zones by injection of a neutral gas such as nitrogen for example . This operating mode makes it possible to dispense with the speed of travel of the strip in the control of the oxide thickness.
Selon un exemple avantageux d'implantation, le dispositif selon l'invention est placé en aval d'une section d'oxydation sans contrôle précis de l'oxydation sur la largeur de bande. Celle-ci permet, par exemple, de réaliser rapidement, c'est-à-dire sur une longueur de four limitée, l'essentiel de la couche d'oxydes visée. Le dispositif selon l'invention permet alors de réaliser localement un complément d'oxydation, par exemple pour obtenir une épaisseur d'oxydes homogène sur la largeur de bande ou pour renforcer celle-ci localement.According to an advantageous example of implantation, the device according to the invention is placed downstream of an oxidation section without precise control of the oxidation over the bandwidth. This allows, for example, to achieve quickly, that is to say, over a limited furnace length, most of the oxide layer referred to. The device according to the invention then makes it possible locally to carry out additional oxidation, for example to obtain a homogeneous oxide thickness over the bandwidth or to reinforce it locally.
La section d'oxydation sans contrôle précis de l'oxydation sur la largeur de bande peut également permettre de réaliser une couche dont les oxydes auront une morphologie ou une composition donnée, différente de la couche superficielle qui sera réalisée ensuite par le dispositif selon l'invention.The oxidation section without precise control of the oxidation over the bandwidth may also make it possible to produce a layer whose oxides will have a given morphology or composition, different from the surface layer which will then be produced by the device according to the invention. invention.
Selon un exemple de réalisation de l'invention, représenté en
La bande de largeur 1500 mm circule à une vitesse nominale de 100 m/min. La chambre 1 à une longueur de 475 mm dans le sens de défilement de la bande. La zone de soufflage comporte 55 orifices disposés sur deux lignes transversales distantes de 80 mm. La zone d'aspiration comporte 55 orifices disposés sur deux lignes transversales distantes de 80 mm. La distance entre les lignes de soufflage et d'aspiration les plus proches est de 315 mm. Les orifices de soufflage sont disposés à 100 mm de la bande tous les 58 mm selon la largeur de bande. Leur diamètre d'injection est de 25 mm. Les orifices d'aspiration sont disposés à 100 mm de la bande tous les 58 mm selon la largeur de bande. Leur diamètre d'aspiration est de 25 mm.The width of 1500 mm band is running at a nominal speed of 100 m / min. The
Le gaz oxydant est de l'air. Il est injecté sur la bande à une vitesse nominale de 3 m/s. La vitesse d'injection est modulée par injecteur, ou ensemble d'injecteur, entre 0 et 5 m/s selon l'importance de l'oxydation recherchée sur la surface de la bande concernée. La bande est à 650°C lors de son entrée dans la chambre d'oxydation. Le gaz oxydant est injecté à une température de 650°C.The oxidizing gas is air. It is injected on the belt at a nominal speed of 3 m / s. The injection speed is modulated by injector, or injector assembly, between 0 and 5 m / s depending on the amount of oxidation sought on the surface of the band concerned. The band is at 650 ° C when it enters the oxidation chamber. The oxidizing gas is injected at a temperature of 650 ° C.
Claims (10)
- Chamber (1) for the controlled oxidation of metal strips in an annealing furnace of a continuous production line for hot-coated strips, for example by galvanizing, the oxidation chamber for the oxidation of the metal strips by means of an oxidizing gas injected on at least one of the sides of a strip (15), characterized in that the oxidation chamber comprises oxidizing portions (17) extending over its width and/or length, each portion comprising at least one blowing port (4) and at least one suction port (5) between which an oxidizing gas circulates; each portion can be controlled separately to adjust the oxidation induced on the strip over the width and length of the oxidation chamber.
- Controlled oxidation chamber (1) according to Claim 1, characterized in that the oxidizing gas is injected onto the strip (15) in a direction substantially perpendicular to the strip by means of blowing ports (4) and in that then the oxidizing gas circulates in the chamber (1) to suction ports (5) in a direction substantially parallel to the moving direction of the strip.
- Controlled oxidation chamber (1) according to Claim 1, characterized in that it is placed downstream, in the moving direction of the strip (15), a section (100) in which the strip undergoes a first oxidation.
- Controlled oxidation chamber (1) according to any one of the preceding claims, characterized in that the oxidizing gas used is air.
- Controlled oxidation chamber (1)according to any one of the preceding claims, characterized in that the oxidizing gas used is a mixture of air and flue gas.
- Controlled oxidation chamber (1) according to any one of the preceding claims, characterized in that it comprises at least one oxidation sensor situated upstream and/or downstream of the oxidation portion (17), information from the oxidation sensor being integrated into the calculation of the oxidizing gas flow leaving the blowing port (4) of the oxidation portion (17).
- Process of controlled oxidation of metal strips implemented in a controlled oxidation chamber (1) according to the preceding claims, by means of an oxidizing gas injected on at least one of the sides of the strip (15), characterized in that the said oxidizing gas is air or combustion flue gas, or a mixture of air and combustion flue gas.
- Oxidation process according to claim 7 characterized in that the characteristics of the oxidizing gas and/or the kinetics of injection and suction of the oxidizing gas in the portions (17) are controlled separately to adjust the oxidation on the strip over the width and length of the oxidation chamber.
- Oxidation process according to Claim 7 or 8, characterized in that the dimensions of a portion (17) are controlled by the choice of the blowing ports (4) and the suction ports (5) operating in said portion.
- Oxidation process according to Claim 9, characterized by the fact that the residence time of the oxidizing gas in the controlled oxidation chamber (1) is adjusted by portion (17) according to the length of said portion (17) in the moving direction of the strip.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1563467A FR3046423B1 (en) | 2015-12-30 | 2015-12-30 | DEVICE AND METHOD FOR REALIZING CONTROLLED OXIDATION OF METAL BANDS IN A CONTINUOUS PROCESSING FURNACE |
PCT/EP2016/081730 WO2017114682A1 (en) | 2015-12-30 | 2016-12-19 | Device and method for carrying out controlled oxidation of metal strips in a continuous furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3397786A1 EP3397786A1 (en) | 2018-11-07 |
EP3397786B1 true EP3397786B1 (en) | 2019-11-13 |
Family
ID=55361861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16822660.3A Active EP3397786B1 (en) | 2015-12-30 | 2016-12-19 | Device and method for carrying out controlled oxidation of metal strips in a continuous furnace |
Country Status (6)
Country | Link |
---|---|
US (1) | US11131004B2 (en) |
EP (1) | EP3397786B1 (en) |
ES (1) | ES2770080T3 (en) |
FR (1) | FR3046423B1 (en) |
PT (1) | PT3397786T (en) |
WO (1) | WO2017114682A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116007390A (en) * | 2022-12-15 | 2023-04-25 | 湖南优热科技有限责任公司 | Graphitizing furnace with rapid active cooling system |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4980119A (en) * | 1972-12-06 | 1974-08-02 | ||
JPS63149323A (en) * | 1986-12-11 | 1988-06-22 | Mitsubishi Heavy Ind Ltd | Method and device for adjusting temperature of metal strip |
TW420718B (en) * | 1995-12-26 | 2001-02-01 | Nippon Steel Corp | Primary cooling method in continuously annealing steel strip |
US6241515B1 (en) * | 2000-05-30 | 2001-06-05 | Tat Technologies, Inc | Device and method for treating combustibles obtained from a thermal processing apparatus and apparatus employed thereby |
JP4168667B2 (en) * | 2002-05-30 | 2008-10-22 | Jfeスチール株式会社 | In-line annealing furnace for continuous hot dip galvanizing |
FR2852330B1 (en) * | 2003-03-12 | 2007-05-11 | Stein Heurtey | METHOD OF CONTROLLED OXIDATION OF STRIPS BEFORE CONTINUOUS GALVANIZATION AND LINE OF GALVANIZATION |
FR2920439B1 (en) * | 2007-09-03 | 2009-11-13 | Siemens Vai Metals Tech Sas | METHOD AND DEVICE FOR THE CONTROLLED OXIDATION / REDUCTION OF THE SURFACE OF A CONTINUOUSLY STRAY STEEL BAND IN A RADIANT TUBE OVEN FOR ITS GALVANIZATION |
ES2359594T3 (en) * | 2008-03-14 | 2011-05-25 | Arcelormittal France | GAS BLOWING PROCEDURE AND DEVICE ON A CIRCULATING BAND. |
EP2513582B1 (en) * | 2009-12-15 | 2018-05-02 | Primetals Technologies France SAS | Equipment for preheating a continuously moving steel strip |
DE102011050243A1 (en) * | 2011-05-10 | 2012-11-15 | Thyssenkrupp Steel Europe Ag | Apparatus and method for the continuous treatment of a flat steel product |
-
2015
- 2015-12-30 FR FR1563467A patent/FR3046423B1/en not_active Expired - Fee Related
-
2016
- 2016-12-19 EP EP16822660.3A patent/EP3397786B1/en active Active
- 2016-12-19 WO PCT/EP2016/081730 patent/WO2017114682A1/en active Application Filing
- 2016-12-19 PT PT168226603T patent/PT3397786T/en unknown
- 2016-12-19 ES ES16822660T patent/ES2770080T3/en active Active
- 2016-12-19 US US16/067,236 patent/US11131004B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
PT3397786T (en) | 2020-02-25 |
FR3046423B1 (en) | 2018-04-13 |
EP3397786A1 (en) | 2018-11-07 |
US20190010575A1 (en) | 2019-01-10 |
US11131004B2 (en) | 2021-09-28 |
FR3046423A1 (en) | 2017-07-07 |
WO2017114682A1 (en) | 2017-07-06 |
ES2770080T3 (en) | 2020-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2148935B1 (en) | Method and equipment for heating a metal strip, in particular for annealing | |
BE1008560A3 (en) | Device and method for forming a coating pyrolysis. | |
EP0499524B1 (en) | Asymmetrical gas feeding nozzle for coating a glass ribbon by pyrolysis of a gas mixture | |
CA2655924A1 (en) | Device for securing a furnace provided with a rapid cooling and heating system operating under controlled atmosphere | |
EP3397786B1 (en) | Device and method for carrying out controlled oxidation of metal strips in a continuous furnace | |
FR2713952A1 (en) | Device and method for injecting gas for the formation of a controlled atmosphere in a confined space | |
LU86665A1 (en) | METHOD AND DEVICE FOR FORMING A COATING ON GLASS BY PYROLYSIS | |
CA2297282C (en) | Device for producing hot water | |
EP0199649B1 (en) | Coating of float glass by pyrolysable powder compounds | |
EP3686534B1 (en) | Method and furnace for thermal treatment of a high-resistance steel strip including a temperature homogenisation chamber | |
FR2470165A1 (en) | METHOD AND DEVICE FOR COMPENSATING LOCAL TEMPERATURE DIFFERENCES IN A STEEL PRODUCT | |
EP0761829B1 (en) | Cooling device for rolled products | |
EP0206873B2 (en) | Method of heat treating, gas curtain device and its use in heat treating furnaces | |
FR2785668A1 (en) | METHOD FOR HEATING A CONTINUOUSLY LOADING OVEN IN PARTICULAR FOR STEEL PRODUCTS, AND CONTINUOUSLY LOADING HEATING OVEN | |
EP3596240A1 (en) | Continuous annealing or galvanising line comprising a tensioning block between two consecutive furnaces | |
EP3715717B9 (en) | Combustion method and burner for implementing the same | |
EP1687455A1 (en) | Cooling process and device for a steel sheet | |
EP4217516B1 (en) | Direct flame preheating section for a continuous metal strip processing line | |
WO2004097318A2 (en) | Method for improving performances of a heating furnace and furnace implementing said method | |
FR3114324A1 (en) | DIRECT FLAME PREHEATING SECTION FOR CONTINUOUS METAL STRIP TREATMENT LINE | |
FR3114375A1 (en) | BURNER, IN PARTICULAR FOR A DIRECT FLAME PREHEATING SECTION OF A CONTINUOUS LINE FOR THE TREATMENT OF A METALLIC STRIP | |
LU82176A1 (en) | INSTALLATION FOR PRODUCING HOT WIND AND METHOD OF IMPLEMENTING | |
FR3095452A1 (en) | Dual Purpose Metal Strip Continuous Processing Line | |
FR3037059A1 (en) | SONIC INJECTION OVEN | |
FR2857734A1 (en) | Drying procedure and apparatus for non-metallic coating, e.g. of paint, on steel strip includes injection of hot air between top and bottom of drying oven |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180622 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190805 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1201716 Country of ref document: AT Kind code of ref document: T Effective date: 20191115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016024447 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3397786 Country of ref document: PT Date of ref document: 20200225 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20200213 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200213 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200214 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200313 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2770080 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016024447 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20200814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20161219 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1201716 Country of ref document: AT Kind code of ref document: T Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20221122 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231121 Year of fee payment: 8 Ref country code: LU Payment date: 20231121 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231121 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231124 Year of fee payment: 8 Ref country code: PT Payment date: 20231122 Year of fee payment: 8 Ref country code: FR Payment date: 20231122 Year of fee payment: 8 Ref country code: DE Payment date: 20231121 Year of fee payment: 8 Ref country code: AT Payment date: 20231123 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231121 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240102 Year of fee payment: 8 |