EP3686534B1 - Method and furnace for thermal treatment of a high-resistance steel strip including a temperature homogenisation chamber - Google Patents

Method and furnace for thermal treatment of a high-resistance steel strip including a temperature homogenisation chamber Download PDF

Info

Publication number
EP3686534B1
EP3686534B1 EP19218200.4A EP19218200A EP3686534B1 EP 3686534 B1 EP3686534 B1 EP 3686534B1 EP 19218200 A EP19218200 A EP 19218200A EP 3686534 B1 EP3686534 B1 EP 3686534B1
Authority
EP
European Patent Office
Prior art keywords
strip
temperature
chamber
oxidation
radiant heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19218200.4A
Other languages
German (de)
French (fr)
Other versions
EP3686534A1 (en
Inventor
Jean-Pierre Crutzen
Lutz Kümmel
Frank Maschler
Michel Renard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Drever International SA
Original Assignee
Drever International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65324126&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3686534(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Drever International SA filed Critical Drever International SA
Priority to SI201930065T priority Critical patent/SI3686534T1/en
Publication of EP3686534A1 publication Critical patent/EP3686534A1/en
Application granted granted Critical
Publication of EP3686534B1 publication Critical patent/EP3686534B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/52Methods of heating with flames
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • C21D9/563Rolls; Drums; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work

Definitions

  • the invention relates to a process for the heat treatment of a high strength steel strip.
  • the invention relates to a furnace for the heat treatment of a high resistance steel strip.
  • High strength steels include alloying elements, for example manganese, silicon, chromium and / or aluminum.
  • alloying elements for example manganese, silicon, chromium and / or aluminum.
  • the alloying elements present in high strength steel can diffuse towards the surface of the steel and oxidize rapidly because of their high affinity for oxygen, even in areas with radiant tubes where the atmosphere is nevertheless reducing for iron oxides.
  • This selective oxidation creates surface defects which make it difficult to adhere the zinc coating (or other metal or alloy) applied when galvanizing the surface. This problem of wettability is a limiting aspect of galvanizing which cannot be carried out correctly.
  • a particularly studied method consists in subjecting, in the annealing furnace, the surface of the strips to temperature and atmospheric conditions suitable for rapidly and deeply oxidizing the alloying elements and thus preventing their surface migration. During this operation, an iron oxide layer is formed which will subsequently be removed in subsequent zones of the annealing furnace under a reducing atmosphere.
  • the documents US 2017/137906 A1 and KR 20160085830 A describe an oxidation of a metal strip as it passes through a direct flame heating section with an excess of oxygen in the combustion atmosphere.
  • the documents US 2010/173072 A1 and KR 20160085830 A describe the oxidation of a metal strip with injection of an oxidant during its passage through a radiant tube heating section.
  • a problem generally encountered during the heat treatment of metal products with oxidation and reduction of the surface is to obtain a non-homogeneous surface state before the galvanizing step.
  • one of the aims of the present invention is to provide a method of heat treatment of a high resistance steel strip making it possible to obtain on its surface an oxide formation with a more homogeneous and more controlled thickness. .
  • the method of the invention allows during the heat treatment, thanks to the temperature homogenization step, the oxidation of the strip presenting a more homogeneous surface in temperature. This allows growth of an oxide layer having a more homogeneous thickness over the entire strip surface. A more homogeneous oxide thickness at the surface of the strip makes it possible to have a subsequent reduction of said oxide layer better controlled. Indeed, variations in the thickness of the oxide layer formed during the oxidation step require an adaptation of the reduction time during the reduction step in order to reduce the oxide over the entire surface. strip surface. Such an adaptation of the reduction time is based on the greatest oxide thicknesses. The method of the invention allows better control of the time of the reduction step because it guarantees a more homogeneous oxide thickness on the strip surface.
  • the method of the invention is particularly advantageous because it makes it possible to compensate for the temperature inhomogeneity of the strip, in particular of the surface of the strip during step a) of heating the strip by direct flame.
  • a direct flame heating zone allows a rapid rise in temperature of the strip to the detriment of the temperature homogeneity of the metal product.
  • the oxidation chamber is positioned directly after the direct flame heating zone, so that the oxidation is carried out on a strip whose temperature homogeneity is not well controlled.
  • step a) An oxidation carried out during heating by direct flame (step a)) makes an adjustment of the thickness of the FeO layer formed very difficult to control. Indeed, in EP 2 010 690 A1 , it was found that for the same oxidizing conditions in the atmosphere during heating by direct flame, a high scroll speed shows a thinner FeO layer compared to lower scroll speeds, demonstrating the high sensitivity from the iron oxide formation process to the various parameters involved.
  • An advantage of the process of the invention over processes where the oxidation is carried out at the same time as the heating of the strip in a direct flame heating zone is that the process of the invention makes it possible to dissociate the heating of the strip. the strip, temperature homogenization and its oxidation with separate stages and furnace chambers. This allows better control of the iron oxide formation parameters at the surface of the strip while allowing strip heating by direct flame.
  • the invention makes it possible to overcome the drawbacks of heating by direct flame by introducing a temperature homogenization chamber. Thanks to the invention, it is therefore possible to have an oven exhibiting a very good quality of heat treatment, as well as a better surface condition of the strip before it is galvanized, and this for reasonable operating costs.
  • oxygen concentration (volume) should be understood to mean an O 2 (volume) concentration.
  • the steps of the process of the invention are to be carried out in the following order: step a), step b), step c), and step d).
  • the reduction zone has a reducing atmosphere having a hydrogen volume concentration greater than 3% and of preferably greater than 5%, and even more preferably greater than 8%.
  • An advantage associated with such volume hydrogen concentrations in the reduction zone for these preferred embodiments is to increase the assurance that reduction will take place.
  • the remainder of the composition of the atmosphere of the reduction zone comprises nitrogen.
  • the process of the invention is particularly effective for high strength steel strips, for example having a Cr composition by weight of less than 5%, preferably less than 3% and even more preferably less. at 1%.
  • high strength steel is understood to mean a steel comprising alloying elements such as manganese, silicon, chromium and / or aluminum.
  • the strip has a thickness between 0.3 mm and 3.2 mm.
  • the homogenization chamber comprising at least one radiant heating tube is intended to allow standardization / homogenization of the temperature of the strip when the latter is present in the homogenization chamber.
  • the temperature uniformization of the strip takes place gradually during its passage through the homogenization chamber in order to obtain a temperature that is as uniform as possible at the outlet of the homogenization chamber.
  • the homogenization chamber is not primarily intended to vary the average temperature of the strip but rather is intended to make the temperature of the strip uniform.
  • the homogenization chamber may be present radiant and / or heating elements which have a power that can be changed quickly, which makes it possible to adjust the temperature quickly so as to maintain an optimum temperature at the entrance to the chamber. oxidation and ensure regular oxidation of the surface of the steel strip.
  • the temperature homogenization chamber comprises two, three, or four radiant heating tubes.
  • the temperature of the strip is included in the present application as being a temperature measured at the surface of the strip and representing the temperature over the entire thickness of the strip.
  • a temperature of the strip at a point of the strip at its surface is representative of the temperature throughout the thickness of the strip. This is particularly true when the strip is in a chamber that is substantially homogeneous in temperature.
  • a homogeneity or an inhomogeneity of temperature can be characterized by measurements of the surface temperature of the strip at very distinct places.
  • a temperature inhomogeneity is observed on a strip section when there is a temperature difference greater than 5%, preferably greater than 2% and even more preferably greater than 1% between a point located at the center of the strip. and a point on the edge of the strip.
  • the strip temperature is for example an average strip temperature taken on a section of strip at several different points, for example the strip temperature is the average of the temperatures measured at the level of the two edges as well as at its center.
  • a target band temperature is reached when the average band temperature and the target band temperature are equal or in any case have a deviation of less than 2%, preferably less than 1%.
  • the strip temperature remains essentially the same but it is surface homogenized.
  • the oxidizing atmosphere in the oxidation chamber has a volume oxygen concentration of between 1.5% and 5% and even more preferably between 2% and 5%.
  • the oxidation chamber of the invention does not include a radiant heating tube inside thereof.
  • the oxidation chamber is confined, for example insulated within a radiant heating furnace section so that it is indirectly heated by the radiant heating tubes of the radiant heating furnace section.
  • Direct flame heating is used to clean high strength steel strip (eg degreasing).
  • the cleaning makes it possible in particular to remove organic residues present on the surface of the steel strip.
  • the oxidation step is carried out at a strip temperature of between 650 ° C and 750 ° C.
  • a strip temperature of between 650 ° C and 750 ° C allows good control of the oxidation kinetics of the strip surface during its passage in an oxidation chamber in which the volume oxygen concentration is greater than 1% .
  • the volume concentration of oxygen in the oxidation chamber is between 1.5% and 5% and even more preferably between 2% and 5%. Control of the homogeneity of the oxidation kinetics is ensured by passing the strip through the homogenization chamber.
  • volume oxygen concentration values in the oxidation chamber of between 1.5% and 5% and even more preferably between 2% and 5% allow an oxidation step which is not. or little influenced by any gas leaks, without generating an excessively thick layer of iron oxide.
  • the duration of exposure of said steel strip in the oxidation chamber is between 2 and 8 seconds, preferably ranging from 2 to 4 seconds.
  • the oxidation step is carried out in a confined or relatively confined manner in the oxidation chamber.
  • RTF Radiant Tubes Furnaces
  • the oxidation step is homogeneous in that it allows homogeneous oxidation at the surface of said steel strip.
  • the oxidation step is carried out by propelling an oxidizing gas by means of a carrier gas, preferably nitrogen.
  • a carrier gas preferably nitrogen.
  • the method according to the invention comprises the application of a pressure inside said oxidation chamber and in the rest of the furnace, said pressures being substantially equal.
  • the process according to the invention makes it possible to maintain an easily controllable oxidation which avoids the disturbances caused by the atmosphere which surrounds the oxidation chamber.
  • the heating step a), the temperature homogenization step b) as well as the reduction step d) are carried out with a reducing atmosphere having a volume concentration of hydrogen greater than 3%.
  • the reducing atmosphere in the reduction zone has an atmosphere having a hydrogen concentration of between 3% and 5%.
  • the reduction zone has a composition comprising a hydrogen concentration of between 3% and 5%, the remainder of the composition comprising nitrogen.
  • the temperature homogenization step is carried out at a strip temperature of between 650 ° C and 750 ° C.
  • such a temperature range allows good control of the kinetics of oxide formation in the oxidation chamber, that is to say in the presence of a volume concentration of oxygen generally between 1% and 5. %.
  • it is particularly advantageous to homogenize the strip temperature at a target temperature. Homogenization at a target temperature means that there is a supply of heat at the strip strictly equal to the heat lost by the strip.
  • the homogenization is carried out with an essentially zero heat input / loss balance so as to prevent the introduction of other temperature inhomogeneities to the strip.
  • step a) of heating is carried out so as to obtain a strip temperature of between 650 ° C and 750 ° C.
  • step a) is carried out under reducing condition in the presence of carbon monoxide and hydrogen.
  • Such conditions are generated by using a non-stoichiometric fuel / oxidizer mixture which is particularly poor in oxygen.
  • the temperature homogenization step is carried out with an atmosphere having an oxygen volume concentration of less than 0.01% by volume, preferably with an oxygen-free atmosphere.
  • the temperature homogenization step is carried out in a chamber adjacent to the oxidation chamber, the atmosphere in the homogenization chamber can be kept poor, or even very poor, in oxygen. This can be made possible according to a preferred embodiment, by the presence of confinement means positioned between the oxidation chamber and the homogenization chamber, for example by using an airlock.
  • Such containment means may be particularly desired because large or poorly controlled gas passages between the oxidation chamber and the reduction zone and / or the temperature homogenization chamber, can cause harmful gas exchanges between the different oven chambers.
  • oxygen escapes from the oxidation chamber to a chamber under a reducing atmosphere, the water vapor content increases in this zone. Then, the increase in the water vapor content influences the dew point and can give rise to unwanted oxidation phenomena, such as for example the oxidation of alloy compounds on the surface of the steel.
  • these alloying compounds have a high affinity for oxygen, and their selective oxidation has a deleterious influence on the adhesion of the coating obtained after galvanization.
  • the volume concentration of oxygen in the oxidation chamber can represent a volume concentration which is particularly sensitive to unwanted gas exchanges. with adjacent rooms.
  • Step a) of heating is carried out with an atmosphere having an oxygen volume concentration of less than 0.01% by volume, preferably with an oxygen-free atmosphere.
  • the temperature homogenization step is carried out by the movement of the strip near said at least one radiant heating tube.
  • the advantage of running the strip near a radiant heating tube is that it allows a well-controlled amount of heat to be supplied to the strip over the entire width of the strip.
  • the movement of the strip near the radiant heating tube allows heat exchange between the strip and the radiant heating tube.
  • This makes it possible to maintain the strip at a temperature, for example at the target temperature, while allowing homogenization of the temperature of the strip.
  • the invention thus makes it possible to benefit from the advantages of heating by direct flame while compensating for the drawbacks associated with heating by direct flame (inhomogeneity of strip temperature).
  • the strip runs at a distance from a radiant heating tube of between 0.1 m and 0.2 m.
  • said homogenization section comprises at least two radiant heating tubes.
  • the metal product passes between said two radiant heating tubes.
  • the movement of the steel strip in front of two radiant heating tubes allows an improvement in the temperature uniformity of the steel strip by allowing more time for the steel strip to equilibrate in temperature while receiving a amount of heat from the radiant heating tubes to maintain a target band temperature.
  • the target band temperature is generally between 650 ° C and 750 ° C and corresponds to a temperature at which the oxidation of the band in the oxidation chamber is well controlled. The same reasoning can be applied for three, four, six radiant heating tubes.
  • the heating of the strip in step a) is carried out until a target strip temperature of between 650 ° C and 750 ° C is reached, and the temperature homogenization of the strip in step b) is reached. is produced so as to homogenize the temperature of the strip according to said temperature target.
  • the homogenization step of step b) makes it possible to maintain the strip at the target temperature.
  • the heat communicated by the radiant heating tube (s) to the strip has the sole purpose of maintaining the temperature of the strip according to the target temperature as well as of homogenizing the temperature of the strip. this.
  • the radiant heating tubes during the temperature homogenization step radiate uniformly towards the strip, allowing good temperature homogenization of the strip, at the surface as well as according to the thickness of the strip.
  • the temperature homogenization chamber is positioned between the direct flame heating zone and the oxidation chamber.
  • a radiant heated furnace section is an RTF.
  • the homogenization chamber is located in the radiant heating furnace section, as is the oxidation chamber.
  • said homogenization chamber comprises at least two radiant heating tubes and even more preferably at least three radiant heating tubes.
  • the number of radiant heating tubes in the homogenization chamber makes it possible to define its length, along which the strip can equilibrate in temperature while remaining at the target strip temperature.
  • the number of radiant heating tubes and the length of the temperature homogenization chamber depend on the direct flame heating zone and the temperature inhomogeneity of the strip which emerges from it as well as the desired temperature homogeneity of the strip in the oxidation chamber.
  • the number of radiant tubes and the length of the homogenization chamber can also depend on the target temperature at the outlet of the homogenization chamber.
  • the metallic product is positioned scrolling between at least two radiant heating tubes.
  • Such an embodiment allows better homogenization of the temperature of the strip as described for the process according to the first aspect of the invention.
  • the furnace further comprises a first and a second rollers for guiding the moving web, the first roll being positioned downstream of the direct flame heating zone and the second roll being positioned downstream of the oxidation chamber.
  • the strip is preferably kept under tension in the homogenization chamber so that when moving, said strip describes an essentially rectilinear path as it passes through the homogenization chamber and into the reduction zone.
  • the first and second rollers are positioned so that said metal strip is stretched in a substantially vertical orientation between said rollers.
  • An essentially vertical strip orientation corresponds to a strip orientation with respect to a flat ground describing an angle with the normal to the flat ground between 0 ° and 15 °.
  • the strip is under tension in the oven so that it is stretched as it passes through the homogenization chamber and then into the oxidation chamber.
  • the furnace is configured such that the metal strip is stretched in a substantially horizontal orientation.
  • the oxidation chamber is further delimited by two locks which are each formed by at least two lock rollers.
  • two locks which are each formed by at least two lock rollers.
  • the oxidation chamber is confined from the homogenization chamber and from the reduction zone by two confinement means allowing the strip to travel through said oxidation chamber, for example the two confinement means are two locks.
  • the oxidation chamber is provided with vents in order to balance the incoming and outgoing volumes to balance the pressure inside the chamber and also to reduce the possible transfers of gas by leaks.
  • the figure 1 shows a schematic illustration of the oven 1 according to the second aspect of the invention making it possible to implement the method according to the first aspect of the invention.
  • the furnace 1 comprises in the direction of travel of the strip 5, a direct flame heating zone 10, a temperature homogenization chamber 20, an oxidation chamber 30 and a reduction zone 40 for the reduction of the temperature. oxide and heat treatment of the tape.
  • the furnace 1 comprises a direct heating furnace section 2 comprising the direct flame heating zone 10 and a radiant heating furnace section 3 comprising the temperature homogenization chamber 20, the oxidation chamber 30 and the heating zone. reduction 40.
  • the method according to the invention comprises the implementation of step a) of heating the strip 5 by direct flame in the direct flame heating zone 10.
  • the method then comprises the implementation of step b) , that is to say the movement of the strip 5 near at least one radiant heating tube 25 so, for example, to allow time for the strip 5 preheated to a target temperature, to homogenize in temperature while maintaining said target temperature.
  • the strip 5 can be heated in the homogenization chamber 20 so as to have an outlet (homogenized) temperature higher than the inlet temperature.
  • the method then comprises the implementation of the oxidation step c), that is to say the movement of the strip 5 in the oxidation chamber 30 comprising a volume concentration of oxygen greater than 1% and preferably between 1.5% and 5%.
  • step c) an oxide layer forms on the surface of the strip 5.
  • the oxide formed is essentially iron II, II-III or III oxide in general.
  • the method of heat treatment of a steel strip 5 comprises after step c), step d) during which, the steel strip 5 oxidized in step c) undergoes a heat treatment at a temperature of band up to 800 ° C and preferably up to 850 ° C.
  • the strip 5 is subjected to a reducing atmosphere preferably comprising a volume concentration of hydrogen greater than 3%, and more preferably between 3% and 5%.
  • the remaining volume fraction being nitrogen in general.
  • the temperature of the heat treatment in the reduction zone during step d) can be changed relatively easily without, however, steps a), b) and c) being changed significantly.
  • the figure 2 shows an overall view of a furnace 1 according to the second aspect of the invention, with a schematic representation of the path of the strip 5 through the direct flame heating zone 10, the homogenization chamber 20, the chamber of oxidation 30 and the reduction zone 40 included in the furnace 1.
  • the strip 5 describes a succession of vertical passes during which it passes through the direct heating furnace section 2 then the radiant heating furnace section 3 After having passed through the direct flame heating zone 10, the strip 5 enters the radiant heating furnace section 3 through the homogenization chamber 20.
  • the direct flame heating zone 10 comprises two pass lines. Then the strip 5 is directed towards the temperature homogenization chamber 20.
  • the pass line comprising the temperature homogenization chamber 20 and the oxidation chamber 30 is located in the RTF section (radiant heating furnace section) of furnace 1.
  • the oxidation chamber 30 is at a similar temperature. of the RTF section which surrounds it while being preferably isolated in terms of the oxygen and hydrogen content.
  • the reduction zone 40 comprises a series of vertical passes surrounded by radiant heating tubes 25 allowing adjustment of the temperature of the strip 5 in order to achieve the desired heat treatment of the high strength steel strip 5.
  • the figure 3 shows a schematic view of the feed of the strip 5 to the temperature homogenization chamber 20, then to the oxidation chamber 30 and the path of the strip 5 to the reduction zone 40.
  • the figure 3 shows a particular embodiment of the chamber temperature homogenization 20 which exemplarily illustrates three radiant heating tubes 25 arranged so that the strip 5 passes close by as it travels through the temperature homogenization chamber 20.
  • the temperature homogenization chamber 20 illustrated allows good homogenization of the temperature of the strip 5 at a target temperature, the target temperature being defined as a function of the composition of the steel. Thus a precisely defined and homogeneous oxide thickness over the entire surface of the strip 5 can be obtained.
  • a strip of steel is fed into a direct flame heating zone 10 and is heated under a reducing condition in the presence of carbon monoxide and hydrogen, preferably so as to reach a strip temperature. between 650 to 750 ° C.
  • the steel strip is then fed to the oxidation chamber 30 which is confined in the section of the radiant heating furnace (RTF), where the oxidation takes place with an oxygen content greater than 1%.
  • RTF radiant heating furnace
  • This oxidation step allows the formation at the surface of a layer of iron oxide, for example.
  • the oxide layer is removed during the heat treatment step in a reducing atmosphere in order to proceed with the galvanizing step according to a method well known to those skilled in the art.

Description

Domaine techniqueTechnical area

Selon un premier aspect, l'invention se rapporte à un procédé de traitement thermique d'une bande d'acier de haute résistance. Selon un deuxième aspect, l'invention se rapporte à un four pour le traitement thermique d'une bande d'acier de haute résistance.According to a first aspect, the invention relates to a process for the heat treatment of a high strength steel strip. According to a second aspect, the invention relates to a furnace for the heat treatment of a high resistance steel strip.

Etat de la techniqueState of the art

Des aciers de haute résistance couramment utilisés comprennent des éléments d'alliage, par exemple du manganèse, du silicium, du chrome et/ou de l'aluminium. Lors d'une étape de recuit, les éléments d'alliage présents dans l'acier de haute résistance peuvent diffuser vers la surface de l'acier et s'oxyder rapidement à cause de leur grande affinité pour l'oxygène et ce, même dans des zones à tubes radiants où l'atmosphère est pourtant réductrice pour les oxydes de fer. Cette oxydation sélective crée des défauts de surface qui rendent difficile l'adhérence du revêtement en zinc (ou d'autre métal ou alliage) appliqué lors de la galvanisation de la surface. Ce problème de mouillabilité est un aspect limitant de la galvanisation qui ne peut pas se réaliser correctement.Commonly used high strength steels include alloying elements, for example manganese, silicon, chromium and / or aluminum. During an annealing step, the alloying elements present in high strength steel can diffuse towards the surface of the steel and oxidize rapidly because of their high affinity for oxygen, even in areas with radiant tubes where the atmosphere is nevertheless reducing for iron oxides. This selective oxidation creates surface defects which make it difficult to adhere the zinc coating (or other metal or alloy) applied when galvanizing the surface. This problem of wettability is a limiting aspect of galvanizing which cannot be carried out correctly.

Des études ont été menées afin de comprendre la cinétique de ces phénomènes d'oxydation et d'apporter des solutions aux problèmes posés lors de la galvanisation. Une voie particulièrement étudiée consiste à soumettre, dans le four de recuit, la surface des bandes à des conditions de température et d'atmosphère propres à oxyder rapidement et en profondeur les éléments d'alliage et éviter ainsi leur migration en surface. Durant cette opération se forme une couche d'oxyde de fer qui sera ultérieurement éliminée dans des zones suivantes du four de recuit sous atmosphère réductrice.Studies have been carried out in order to understand the kinetics of these oxidation phenomena and to provide solutions to the problems posed during galvanization. A particularly studied method consists in subjecting, in the annealing furnace, the surface of the strips to temperature and atmospheric conditions suitable for rapidly and deeply oxidizing the alloying elements and thus preventing their surface migration. During this operation, an iron oxide layer is formed which will subsequently be removed in subsequent zones of the annealing furnace under a reducing atmosphere.

Il est connu des documents de l'état de la technique, et en particulier de EP 2 732 062 B1 , qu'une oxydation des produits métalliques peut être réalisée lors du chauffage par flamme directe. Selon ce document, le potentiel d'oxydation de l'atmosphère autour du produit métallique lors du chauffage par flamme directe peut être ajusté en modifiant l'excès en oxygène. US 9 279 175 B2 souligne l'importance de former une couche d'oxyde aussi homogène que possible afin de constituer une barrière de diffusion efficace. EP 2 732 062 B1 précise toutefois que l'ajustement spécifique d'une épaisseur d'oxyde, c'est-à-dire obtenir une distribution uniforme sur la surface de l'acier, ne peut seulement être contrôlé qu'avec grande difficulté. Ce que décrit également EP 2 010 690 B1 . Les documents US 2017/137906 A1 et KR 20160085830 A décrivent une oxydation d'une bande métallique lors de son passage dans une section de chauffage à flamme directe avec un excès d'oxygène dans l'atmosphère de combustion. Les documents US 2010/173072 A1 et KR 20160085830 A décrivent l'oxydation d'une bande métallique avec injection d'un oxydant lors de son passage dans une section de chauffage à tubes radiant.It is known from the documents of the state of the art, and in particular from EP 2 732 062 B1 , that oxidation of metal products can be achieved during direct flame heating. According to this document, the oxidation potential of the atmosphere around the metallic product during direct flame heating can be adjusted by modifying the excess oxygen. US 9,279,175 B2 emphasizes the importance of forming an oxide layer as well homogeneous as possible in order to constitute an effective diffusion barrier. EP 2 732 062 B1 clarifies, however, that the specific adjustment of an oxide thickness, i.e. obtaining a uniform distribution over the surface of the steel, can only be controlled with great difficulty. What also describes EP 2 010 690 B1 . The documents US 2017/137906 A1 and KR 20160085830 A describe an oxidation of a metal strip as it passes through a direct flame heating section with an excess of oxygen in the combustion atmosphere. The documents US 2010/173072 A1 and KR 20160085830 A describe the oxidation of a metal strip with injection of an oxidant during its passage through a radiant tube heating section.

Ainsi, un problème généralement rencontré lors du traitement thermique de produits métalliques avec oxydation et réduction de la surface est l'obtention d'un état de surface non-homogène avant l'étape de galvanisation.Thus, a problem generally encountered during the heat treatment of metal products with oxidation and reduction of the surface is to obtain a non-homogeneous surface state before the galvanizing step.

Résumé de l'inventionSummary of the invention

Selon un premier aspect, un des buts de la présente invention est de fournir un procédé de traitement thermique d'une bande d'acier de haute résistance permettant d'obtenir à sa surface une formation d'oxyde avec une épaisseur plus homogène et plus contrôlée.According to a first aspect, one of the aims of the present invention is to provide a method of heat treatment of a high resistance steel strip making it possible to obtain on its surface an oxide formation with a more homogeneous and more controlled thickness. .

A cet effet, les inventeurs proposent un procédé de traitement thermique d'une bande d'acier de haute résistance en défilement, ledit procédé comprenant les étapes suivantes :

  1. a) chauffage de la bande dans une zone de chauffage à flamme directe;
  2. b) homogénéisation en température de la bande dans une chambre d'homogénéisation comprenant au moins un tube de chauffage radiant, de sorte à homogénéiser une température de la bande après son passage dans la zone de chauffage à flamme directe de l'étape précédente;
  3. c) oxydation de la bande dans une chambre d'oxydation avec une atmosphère oxydante ayant une concentration volumique en oxygène supérieure 1 %;
  4. d) réduction de la bande dans une zone de réduction.
To this end, the inventors propose a process for the heat treatment of a steel strip of high running resistance, said process comprising the following steps:
  1. a) heating the strip in a direct flame heating zone;
  2. b) temperature homogenization of the strip in a homogenization chamber comprising at least one radiant heating tube, so as to homogenize a temperature of the strip after it has passed through the direct flame heating zone of the previous step;
  3. c) oxidation of the strip in an oxidation chamber with an oxidizing atmosphere having an oxygen concentration by volume greater than 1%;
  4. d) reduction of the band in a reduction zone.

Le procédé de l'invention permet lors du traitement thermique, grâce à l'étape d'homogénéisation en température, l'oxydation de la bande présentant une surface plus homogène en température. Cela permet une croissance d'une couche d'oxyde ayant une épaisseur plus homogène sur toute la surface de bande. Une épaisseur d'oxyde plus homogène à la surface de la bande permet d'avoir une réduction ultérieure de ladite couche d'oxyde mieux contrôlée. En effet, des variations de l'épaisseur de la couche d'oxyde formée lors de l'étape d'oxydation nécessitent une adaptation du temps de réduction lors de l'étape de réduction afin de réduire l'oxyde sur l'entièreté de la surface de la bande. Une telle adaptation du temps de réduction est basée sur les épaisseurs d'oxyde les plus importantes. Le procédé de l'invention permet un meilleur contrôle du temps de l'étape de réduction car il garantit une épaisseur d'oxyde plus homogène sur la surface de bande.The method of the invention allows during the heat treatment, thanks to the temperature homogenization step, the oxidation of the strip presenting a more homogeneous surface in temperature. This allows growth of an oxide layer having a more homogeneous thickness over the entire strip surface. A more homogeneous oxide thickness at the surface of the strip makes it possible to have a subsequent reduction of said oxide layer better controlled. Indeed, variations in the thickness of the oxide layer formed during the oxidation step require an adaptation of the reduction time during the reduction step in order to reduce the oxide over the entire surface. strip surface. Such an adaptation of the reduction time is based on the greatest oxide thicknesses. The method of the invention allows better control of the time of the reduction step because it guarantees a more homogeneous oxide thickness on the strip surface.

Le procédé de l'invention est particulièrement avantageux car il permet de compenser l'inhomogénéité de température de la bande, en particulier de la surface de la bande lors de l'étape a) de chauffage de la bande par flamme directe. En effet l'utilisation d'une zone de chauffage à flamme directe permet une montée en température rapide de la bande au détriment de l'homogénéité de température du produit métallique. Or dans un grand nombre de fours, la chambre d'oxydation est positionnée directement après la zone de chauffage à flamme directe, de sorte que l'oxydation est réalisée sur une bande dont l'homogénéité en température n'est pas bien contrôlée.The method of the invention is particularly advantageous because it makes it possible to compensate for the temperature inhomogeneity of the strip, in particular of the surface of the strip during step a) of heating the strip by direct flame. Indeed the use of a direct flame heating zone allows a rapid rise in temperature of the strip to the detriment of the temperature homogeneity of the metal product. However, in a large number of furnaces, the oxidation chamber is positioned directly after the direct flame heating zone, so that the oxidation is carried out on a strip whose temperature homogeneity is not well controlled.

Comme indiqué précédemment, un bon contrôle de la température de la bande lors de son oxydation dans la chambre d'oxydation permet d'obtenir une couche d'oxyde en surface ayant une épaisseur plus homogène sur toute la surface de la bande. Il apparaît que la cinétique de formation d'une couche d'oxyde à la surface d'une bande d'acier de haute résistance dépend principalement de la température de surface de la bande ainsi que de la composition de l'atmosphère oxydante dans la chambre d'oxydation. Des inhomogénéités en température à la surface de la bande peuvent donc provoquer de grandes variations de l'épaisseur de la couche d'oxyde à la surface de la bande.As indicated above, good control of the temperature of the strip during its oxidation in the oxidation chamber makes it possible to obtain a surface oxide layer having a more homogeneous thickness over the entire surface of the strip. It appears that the kinetics of formation of an oxide layer on the surface of a high strength steel strip depends mainly on the surface temperature of the strip as well as on the composition of the oxidizing atmosphere in the chamber. oxidation. Temperature inhomogeneities at the surface of the strip can therefore cause large variations in the thickness of the oxide layer at the surface of the strip.

Lors de la réduction de la couche d'oxyde dans la zone de réduction, il est nécessaire de réduire toute l'épaisseur d'oxyde formée en chambre d'oxydation. Or lorsqu'une couche d'oxyde présente une épaisseur variable, il est nécessaire d'assurer une réduction suffisante pour réduire la couche d'oxyde aux endroits où celle-ci est la plus épaisse. Cela peut résulter en un ralentissement de la vitesse de défilement dans la zone de réduction, ou en une atmosphère réductrice en zone de réduction, plus riche en hydrogène, ou encore en un allongement de la zone de réduction afin de conserver une cadence de production acceptable. Ainsi l'inhomogénéité de la température de surface d'une bande d'acier de haute résistance lors de l'oxydation de celle-ci en chambre d'oxydation peut avoir des conséquences sur le rendement du procédé de traitement thermique en terme de cadence de production et/ou de coûts.When reducing the oxide layer in the reduction zone, it is necessary to reduce the entire thickness of oxide formed in the oxidation chamber. Now, when an oxide layer has a variable thickness, it is necessary to ensure sufficient reduction to reduce the oxide layer at the places where it is thickest. This can result in a slowing down of the travel speed in the reduction zone, or in a reducing atmosphere in the reduction zone, which is richer in hydrogen, or even by lengthening the reduction zone in order to maintain an acceptable production rate. Thus the inhomogeneity of the surface temperature of a high resistance steel strip during the oxidation of the latter in an oxidation chamber can have consequences on the efficiency of the heat treatment process in terms of the rate of production and / or costs.

Une oxydation réalisée lors du chauffage par flamme directe (étape a)) rend un ajustement de l'épaisseur de la couche de FeO formée très difficile à contrôler. En effet, dans EP 2 010 690 A1 , il a été constaté que pour des mêmes conditions oxydantes au niveau de l'atmosphère lors du chauffage par flamme directe, une vitesse de défilement élevée montre une couche de FeO plus fine par rapport à des vitesses de défilement plus faibles, démontrant la grande sensibilité du procédé de formation d'oxyde de fer aux différents paramètres mis en jeu.An oxidation carried out during heating by direct flame (step a)) makes an adjustment of the thickness of the FeO layer formed very difficult to control. Indeed, in EP 2 010 690 A1 , it was found that for the same oxidizing conditions in the atmosphere during heating by direct flame, a high scroll speed shows a thinner FeO layer compared to lower scroll speeds, demonstrating the high sensitivity from the iron oxide formation process to the various parameters involved.

Un avantage du procédé de l'invention par rapport à des procédés où l'oxydation est réalisée en même temps que le chauffage de la bande dans une zone de chauffage à flamme directe est que le procédé de l'invention permet de dissocier le chauffage de la bande, l'homogénéisation en température et son oxydation avec des étapes et des chambres de four distinctes. Cela permet un meilleur contrôle des paramètres de formation de l'oxyde de fer en surface de la bande tout en autorisant un chauffage de bande par flamme directe. Ainsi l'invention permet de pallier les inconvénients du chauffage par flamme directe en introduisant une chambre d'homogénéisation en température. Grâce à l'invention, il est donc possible d'avoir un four présentant une très bonne qualité de traitement thermique, ainsi qu'un meilleur état de surface de la bande avant sa galvanisation et ce pour des coûts d'exploitation raisonnables.An advantage of the process of the invention over processes where the oxidation is carried out at the same time as the heating of the strip in a direct flame heating zone is that the process of the invention makes it possible to dissociate the heating of the strip. the strip, temperature homogenization and its oxidation with separate stages and furnace chambers. This allows better control of the iron oxide formation parameters at the surface of the strip while allowing strip heating by direct flame. Thus, the invention makes it possible to overcome the drawbacks of heating by direct flame by introducing a temperature homogenization chamber. Thanks to the invention, it is therefore possible to have an oven exhibiting a very good quality of heat treatment, as well as a better surface condition of the strip before it is galvanized, and this for reasonable operating costs.

Dans l'ensemble du document, il faut comprendre par concentration (volumique) en oxygène, une concentration (volumique) en O2. Les étapes du procédé de l'invention sont à réaliser selon l'ordre suivant : étape a), étape b), étape c), et étape d).Throughout the document, oxygen concentration (volume) should be understood to mean an O 2 (volume) concentration. The steps of the process of the invention are to be carried out in the following order: step a), step b), step c), and step d).

De préférence, la zone de réduction a une atmosphère réductrice ayant une concentration volumique en hydrogène supérieure à 3% et de manière préférée supérieure à 5 %, et de manière encore plus préférée supérieure à 8%. Un avantage associé à de telles concentrations volumiques en hydrogène dans la zone de réduction pour ces modes de réalisation préférés, est d'augmenter la garantie que la réduction aura bien lieu. De préférence, le reste de la composition de l'atmosphère de la zone de réduction comprend de l'azote.Preferably, the reduction zone has a reducing atmosphere having a hydrogen volume concentration greater than 3% and of preferably greater than 5%, and even more preferably greater than 8%. An advantage associated with such volume hydrogen concentrations in the reduction zone for these preferred embodiments is to increase the assurance that reduction will take place. Preferably, the remainder of the composition of the atmosphere of the reduction zone comprises nitrogen.

Dans l'ensemble du document, il faut comprendre par concentration (volumique) en hydrogène, une concentration (volumique) en H2.Throughout the document, it is necessary to understand by concentration (volume) of hydrogen, a concentration (volume) of H 2 .

Il a par ailleurs été constaté que le procédé de l'invention est particulièrement efficace pour des bandes d'acier de haute résistance par exemple ayant une composition en poids en Cr inférieure à 5 %, de préférence inférieure à 3 % et encore plus préférentiellement inférieure à 1 %. Au sens de la présente invention, il est entendu par les termes « acier de haute résistance », un acier comprenant des éléments d'alliages tels que du manganèse, du silicium, du chrome et/ou l'aluminium. De préférence, la bande a une épaisseur comprise entre 0,3 mm et 3,2 mm.It has also been found that the process of the invention is particularly effective for high strength steel strips, for example having a Cr composition by weight of less than 5%, preferably less than 3% and even more preferably less. at 1%. For the purposes of the present invention, the term “high strength steel” is understood to mean a steel comprising alloying elements such as manganese, silicon, chromium and / or aluminum. Preferably, the strip has a thickness between 0.3 mm and 3.2 mm.

La chambre d'homogénéisation comprenant au moins un tube de chauffage radiant est destinée à permettre une uniformisation / homogénéisation de la température de la bande lorsque cette dernière est présente dans la chambre d'homogénéisation. L'uniformisation en température de la bande se produit progressivement lors de son passage dans la chambre d'homogénéisation afin d'obtenir une température aussi uniforme que possible en sortie de chambre d'homogénéisation. La chambre d'homogénéisation n'est pas destinée principalement à faire varier la température moyenne de la bande mais est plutôt destinée à uniformiser la température de la bande.The homogenization chamber comprising at least one radiant heating tube is intended to allow standardization / homogenization of the temperature of the strip when the latter is present in the homogenization chamber. The temperature uniformization of the strip takes place gradually during its passage through the homogenization chamber in order to obtain a temperature that is as uniform as possible at the outlet of the homogenization chamber. The homogenization chamber is not primarily intended to vary the average temperature of the strip but rather is intended to make the temperature of the strip uniform.

Dans la chambre d'homogénéisation peuvent être présents des éléments radiants et/ou de chauffage qui disposent d'une puissance qui peut être modifiée rapidement, ce qui permet d'ajuster la température rapidement de manière à maintenir une température optimale en entrée de la chambre d'oxydation et à assurer une oxydation régulière de la surface de la bande d'acier.In the homogenization chamber may be present radiant and / or heating elements which have a power that can be changed quickly, which makes it possible to adjust the temperature quickly so as to maintain an optimum temperature at the entrance to the chamber. oxidation and ensure regular oxidation of the surface of the steel strip.

De préférence, la chambre d'homogénéisation en température comprend deux, trois, ou quatre tubes de chauffage radiant.Preferably, the temperature homogenization chamber comprises two, three, or four radiant heating tubes.

La température de la bande est comprise dans la présente demande comme étant une température mesurée en surface de la bande et représentant la température sur toute l'épaisseur de la bande. En effet pour des bandes ayant une épaisseur comprise entre 0,6 mm et 2,5 mm, la diffusion de la chaleur dans toute l'épaisseur est très rapide et il peut donc être estimé qu'une température de la bande en un point de la bande à sa surface est représentative de la température dans toute l'épaisseur de la bande. Cela est particulièrement vrai lorsque la bande est dans une chambre essentiellement homogène en température. Ainsi une homogénéité ou une inhomogénéité de température peut être caractérisée par des mesures de température de surface de la bande à des endroits bien distincts. Par exemple une inhomogénéité de température est constatée sur une section de bande lorsqu'il existe une différence de température supérieure à 5 %, de préférence supérieure à 2 % et de manière encore plus préférée supérieure à 1 % entre un point situé au centre la bande et un point situé sur le bord de la bande. La température de bande est par exemple une température de bande moyenne prise sur une section de bande en plusieurs points différents, par exemple la température de bande est la moyenne des températures mesurées au niveau des deux bords ainsi qu'en son centre. Une température de bande cible est atteinte lorsque la température de bande moyenne et la température de bande cible sont égales ou en tout cas présentent un écart inférieur à 2 %, de préférence inférieur à 1 %. Dans la chambre d'homogénéisation en température, la température de bande reste essentiellement la même mais elle est homogénéisée en surface.The temperature of the strip is included in the present application as being a temperature measured at the surface of the strip and representing the temperature over the entire thickness of the strip. In fact, for strips having a thickness between 0.6 mm and 2.5 mm, the diffusion of heat throughout the thickness is very rapid and it can therefore be estimated that a temperature of the strip at a point of the strip at its surface is representative of the temperature throughout the thickness of the strip. This is particularly true when the strip is in a chamber that is substantially homogeneous in temperature. Thus a homogeneity or an inhomogeneity of temperature can be characterized by measurements of the surface temperature of the strip at very distinct places. For example, a temperature inhomogeneity is observed on a strip section when there is a temperature difference greater than 5%, preferably greater than 2% and even more preferably greater than 1% between a point located at the center of the strip. and a point on the edge of the strip. The strip temperature is for example an average strip temperature taken on a section of strip at several different points, for example the strip temperature is the average of the temperatures measured at the level of the two edges as well as at its center. A target band temperature is reached when the average band temperature and the target band temperature are equal or in any case have a deviation of less than 2%, preferably less than 1%. In the temperature homogenization chamber, the strip temperature remains essentially the same but it is surface homogenized.

De préférence, l'atmosphère oxydante dans la chambre d'oxydation a une concentration volumique en oxygène comprise entre 1,5 % et 5 % et de manière encore plus préférée comprise entre 2 % et 5 %.Preferably, the oxidizing atmosphere in the oxidation chamber has a volume oxygen concentration of between 1.5% and 5% and even more preferably between 2% and 5%.

De préférence, la chambre d'oxydation de l'invention ne comprend pas de tube de chauffage radiant à l'intérieur de celle-ci. Par exemple, la chambre d'oxydation est confinée, par exemple isolée à l'intérieur d'une section de four à chauffage radiant de sorte qu'elle est chauffée indirectement par les tubes de chauffage radiant de la section de four à chauffage radiant.Preferably, the oxidation chamber of the invention does not include a radiant heating tube inside thereof. For example, the oxidation chamber is confined, for example insulated within a radiant heating furnace section so that it is indirectly heated by the radiant heating tubes of the radiant heating furnace section.

Avantageusement, le procédé suivant l'invention comprend en outre une étape d'homogénéisation du gaz oxydant de la chambre d'oxydation, comprenant :

  • une aspiration d'au moins une partie du gaz oxydant hors de la chambre d'oxydation,
  • un refroidissement de ladite au moins une partie du gaz oxydant,
  • un entraînement par un ventilateur de ladite au moins une partie dudit gaz oxydant,
  • un enrichissement en oxygène de ladite au moins une partie dudit gaz oxydant par injection d'air,
  • une réinjection de ladite au moins une partie dudit gaz oxydant dans la chambre d'oxydation.
Advantageously, the method according to the invention further comprises a step of homogenization of the oxidizing gas from the oxidation chamber, comprising:
  • suction of at least part of the oxidizing gas out of the oxidation chamber,
  • cooling said at least part of the oxidizing gas,
  • a drive by a fan of said at least part of said oxidizing gas,
  • an oxygen enrichment of said at least part of said oxidizing gas by injection of air,
  • reinjection of said at least part of said oxidizing gas into the oxidation chamber.

Il a été observé que l'homogénéisation du gaz oxydant permet d'améliorer le contrôle sur l'étape d'oxydation et d'obtenir la formation d'une couche d'oxyde à la surface de la bande d'acier dont l'épaisseur est plus homogène et/ou reproductible.It has been observed that the homogenization of the oxidizing gas makes it possible to improve the control over the oxidation step and to obtain the formation of an oxide layer on the surface of the steel strip, the thickness of which is more homogeneous and / or reproducible.

Le chauffage par flamme directe est utilisé pour nettoyer la bande d'acier de haute résistance (dégraissage par exemple). Le nettoyage permet en particulier de retirer des résidus organiques présents à la surface de la bande d'acier.Direct flame heating is used to clean high strength steel strip (eg degreasing). The cleaning makes it possible in particular to remove organic residues present on the surface of the steel strip.

De préférence, l'étape d'oxydation est réalisée à une température de bande comprise entre 650 °C et 750 °C.Preferably, the oxidation step is carried out at a strip temperature of between 650 ° C and 750 ° C.

Il a été observé que lorsque ladite étape d'oxydation est réalisée dans la gamme de température entre 650 °C et 750°C, cela procure un bon contrôle sur l'épaisseur de la couche d'oxyde de fer formée pendant l'étape d'oxydation et procure de la stabilité à l'ensemble du procédé de recuit.It has been observed that when said oxidation step is carried out in the temperature range between 650 ° C and 750 ° C, this provides good control over the thickness of the iron oxide layer formed during step d. oxidation and provides stability to the entire annealing process.

Une température de bande comprise entre 650 °C et 750 °C permet un bon contrôle de la cinétique d'oxydation de la surface de la bande lors de son passage en chambre d'oxydation dans laquelle la concentration volumique en oxygène est supérieure à 1 %. De préférence, la concentration volumique en oxygène dans la chambre d'oxydation est comprise entre 1,5 % et 5 % et de manière encore plus préférée entre 2 % et 5 %. Le contrôle de l'homogénéité de la cinétique d'oxydation est assuré grâce au passage de la bande dans la chambre d'homogénéisation.A strip temperature of between 650 ° C and 750 ° C allows good control of the oxidation kinetics of the strip surface during its passage in an oxidation chamber in which the volume oxygen concentration is greater than 1% . Preferably, the volume concentration of oxygen in the oxidation chamber is between 1.5% and 5% and even more preferably between 2% and 5%. Control of the homogeneity of the oxidation kinetics is ensured by passing the strip through the homogenization chamber.

Il a été observé qu'une teneur accrue en oxygène dans la chambre d'oxydation permet de réduire l'impact néfaste des fuites de gaz. Cependant, une teneur trop élevée en oxygène a pour conséquence d'oxyder la bande d'acier trop en profondeur, ce qui nécessite une étape ultérieure d'élimination de ladite couche d'oxyde de fer d'une durée plus longue, ce qui représente un désavantage en terme de temps et donc de coût. Les inventeurs ont déterminé que des valeurs de concentration volumique en oxygène dans la chambre d'oxydation comprises entre 1,5 % et 5 % et de manière encore plus préférée entre 2 % et 5 % permettent une étape d'oxydation qui n'est pas ou peu influencée par les éventuelles fuites de gaz, sans pour autant générer une couche d'oxyde de fer trop épaisse.It has been observed that an increased oxygen content in the oxidation chamber reduces the harmful impact of gas leaks. However, too high an oxygen content has the consequence of oxidizing the steel strip too deeply, which requires a subsequent step of removing said iron oxide layer of a longer duration, which represents a disadvantage in terms of time and therefore cost. The inventors have determined that volume oxygen concentration values in the oxidation chamber of between 1.5% and 5% and even more preferably between 2% and 5% allow an oxidation step which is not. or little influenced by any gas leaks, without generating an excessively thick layer of iron oxide.

Préférentiellement, la durée d'exposition de ladite bande d'acier dans la chambre d'oxydation est comprise entre 2 et 8 secondes, de préférence allant de 2 à 4 secondes.Preferably, the duration of exposure of said steel strip in the oxidation chamber is between 2 and 8 seconds, preferably ranging from 2 to 4 seconds.

Avantageusement, l'étape d'oxydation est opérée de manière confinée ou relativement confinée dans la chambre d'oxydation.Advantageously, the oxidation step is carried out in a confined or relatively confined manner in the oxidation chamber.

Au sens de l'invention, il est entendu par les termes « relativement isolé » ou « confiné » qu'une étanchéité relative est garantie dans l'élément considéré. Des moyens techniques appropriés peuvent être mis en œuvre pour contrôler cette étanchéité relative afin de réduire autant que possible les échanges de gaz entre l'atmosphère oxydante de ladite chambre d'oxydation et l'atmosphère régnant en dehors de ladite chambre d'oxydation, par exemple dans le reste du RTF. Un RTF est une section de four comprenant essentiellement des tubes de chauffage radiant et est un acronyme connu d'un homme du métier (RTF pour Radiant Tubes Furnaces).For the purposes of the invention, it is understood by the terms “relatively isolated” or “confined” that a relative seal is guaranteed in the element considered. Appropriate technical means can be implemented to control this relative tightness in order to reduce as much as possible the gas exchanges between the oxidizing atmosphere of said oxidation chamber and the atmosphere prevailing outside said oxidation chamber, by example in the rest of the RTF. An RTF is a section of a furnace essentially comprising radiant heating tubes and is an acronym known to a person skilled in the art (RTF for Radiant Tubes Furnaces).

Préférentiellement, l'étape d'oxydation est homogène en ce qu'elle permet l'oxydation homogène en surface de ladite bande d'acier.Preferably, the oxidation step is homogeneous in that it allows homogeneous oxidation at the surface of said steel strip.

De préférence, l'étape d'oxydation est réalisée par propulsion d'un gaz oxydant au moyen d'un gaz porteur, de préférence de l'azote.Preferably, the oxidation step is carried out by propelling an oxidizing gas by means of a carrier gas, preferably nitrogen.

Il a été observé que cette propulsion au moyen d'un gaz porteur permet d'amener le gaz oxydant à la surface de ladite bande d'acier et de traverser la couche limite entraînée par la bande d'acier. Il en résulte alors comme effet avantageux qu'au moins une des couches de fer située en dessous de ladite surface de ladite bande d'acier peut aussi être oxydée. Un meilleur contrôle et une meilleure reproductibilité et/ou homogénéité peuvent ainsi être garantis lors de la formation de la couche d'oxyde de fer formée pendant l'étape d'oxydation.It has been observed that this propulsion by means of a carrier gas makes it possible to bring the oxidizing gas to the surface of said steel strip and to cross the boundary layer entrained by the steel strip. As an advantageous effect, then, at least one of the iron layers located below said surface of said steel strip can also be oxidized. Better control and better reproducibility and / or homogeneity can thus be guaranteed during the formation of the iron oxide layer formed during the oxidation step.

Avantageusement, le procédé selon l'invention comprend l'application d'une pression à l'intérieur de ladite chambre d'oxydation et dans le reste du four, lesdites pressions étant sensiblement égales.Advantageously, the method according to the invention comprises the application of a pressure inside said oxidation chamber and in the rest of the furnace, said pressures being substantially equal.

Il a été observé que le risque de transferts gazeux entre la chambre d'oxydation et le reste du four utilisé dans le procédé selon l'invention sont fortement réduits lorsque la pression dans la chambre d'oxydation et dans le dispositif sont sensiblement égales.It has been observed that the risk of gas transfers between the oxidation chamber and the rest of the furnace used in the process according to the invention are greatly reduced when the pressure in the oxidation chamber and in the device are substantially equal.

De plus, le procédé selon l'invention permet de maintenir une oxydation facilement contrôlable qui évite les perturbations causées par l'atmosphère qui entoure la chambre d'oxydation.In addition, the process according to the invention makes it possible to maintain an easily controllable oxidation which avoids the disturbances caused by the atmosphere which surrounds the oxidation chamber.

De préférence, l'étape a) de chauffage, l'étape b) d'homogénéisation en température ainsi que l'étape d) de réduction sont réalisées avec une atmosphère réductrice ayant une concentration volumique en hydrogène supérieure à 3%.Preferably, the heating step a), the temperature homogenization step b) as well as the reduction step d) are carried out with a reducing atmosphere having a volume concentration of hydrogen greater than 3%.

De préférence, l'atmosphère réductrice dans la zone de réduction a une atmosphère ayant une concentration en hydrogène comprise entre 3 % et 5 %. De préférence, la zone de réduction a une composition comprenant une concentration en hydrogène comprise entre 3 % et 5 %, le reste de la composition comprenant de l'azote.Preferably, the reducing atmosphere in the reduction zone has an atmosphere having a hydrogen concentration of between 3% and 5%. Preferably, the reduction zone has a composition comprising a hydrogen concentration of between 3% and 5%, the remainder of the composition comprising nitrogen.

De préférence, l'étape d'homogénéisation en température est réalisée à une température de bande comprise entre 650 °C et 750 °C.Preferably, the temperature homogenization step is carried out at a strip temperature of between 650 ° C and 750 ° C.

Comme évoqué précédemment une telle plage de température permet un bon contrôle de la cinétique de formation d'oxyde en chambre d'oxydation, c'est-à-dire en présence d'une concentration volumique en oxygène comprise en général entre 1 % et 5 %. De plus il est particulièrement avantageux d'homogénéiser la température de bande à une température cible. Une homogénéisation à une température cible signifie qu'il existe un apport de chaleur à la bande strictement égal à la chaleur perdue par la bande. Ainsi, l'homogénéisation est réalisée avec un bilan apport/perte de chaleur essentiellement nul de sorte à prévenir l'introduction d'autres inhomogénéités de température à la bande.As mentioned above, such a temperature range allows good control of the kinetics of oxide formation in the oxidation chamber, that is to say in the presence of a volume concentration of oxygen generally between 1% and 5. %. In addition, it is particularly advantageous to homogenize the strip temperature at a target temperature. Homogenization at a target temperature means that there is a supply of heat at the strip strictly equal to the heat lost by the strip. Thus, the homogenization is carried out with an essentially zero heat input / loss balance so as to prevent the introduction of other temperature inhomogeneities to the strip.

De préférence, l'étape a) de chauffage est réalisée de sorte à obtenir une température de bande comprise entre 650 °C et 750 °C.Preferably, step a) of heating is carried out so as to obtain a strip temperature of between 650 ° C and 750 ° C.

Une telle plage de température de bande est facilement atteignable par chauffage par flamme directe, ce qui rend l'étape a) relativement aisée à mettre en œuvre. De préférence, l'étape a) est réalisée en condition réductrice en présence de monoxyde de carbone et d'hydrogène. De telles conditions sont générées en utilisant un mélange carburant/comburant non-stœchiométrique et particulièrement pauvre en oxygène.Such a strip temperature range is easily attainable by direct flame heating, which makes step a) relatively easy to implement. Preferably, step a) is carried out under reducing condition in the presence of carbon monoxide and hydrogen. Such conditions are generated by using a non-stoichiometric fuel / oxidizer mixture which is particularly poor in oxygen.

L'étape d'homogénéisation en température est réalisée avec une atmosphère ayant une concentration volumique en oxygène inférieure à 0,01% en volume, de préférence avec une atmosphère sans oxygène.The temperature homogenization step is carried out with an atmosphere having an oxygen volume concentration of less than 0.01% by volume, preferably with an oxygen-free atmosphere.

Bien que l'étape d'homogénéisation en température est réalisée dans une chambre adjacente à la chambre d'oxydation, l'atmosphère dans la chambre d'homogénéisation peut être maintenue pauvre, voire très pauvre en oxygène. Cela peut être rendu possible selon un mode de réalisation préféré, par la présence de moyens de confinement positionnés entre la chambre d'oxydation et la chambre d'homogénéisation, par exemple en utilisant un sas.Although the temperature homogenization step is carried out in a chamber adjacent to the oxidation chamber, the atmosphere in the homogenization chamber can be kept poor, or even very poor, in oxygen. This can be made possible according to a preferred embodiment, by the presence of confinement means positioned between the oxidation chamber and the homogenization chamber, for example by using an airlock.

De tels moyens de confinement peuvent être particulièrement désirés car des passages de gaz importants ou mal contrôlés entre la chambre d'oxydation et la zone de réduction et/ou la chambre d'homogénéisation en température, peuvent provoquer des échanges de gaz néfastes entre les différentes chambres du four. Lorsque de l'oxygène s'échappe à partir de la chambre d'oxydation vers une chambre sous atmosphère réductrice, la teneur en vapeur d'eau augmente dans cette zone. Ensuite, l'augmentation de la teneur en vapeur d'eau influence le point de rosée et peut donner lieu à des phénomènes d'oxydation non désirés, comme par exemple l'oxydation de composés d'alliage en surface de l'acier. Comme déjà expliqué, ces composés d'alliage ont une grande affinité pour l'oxygène, et leur oxydation sélective a une influence délétère sur l'adhérence du revêtement obtenu après galvanisation.Such containment means may be particularly desired because large or poorly controlled gas passages between the oxidation chamber and the reduction zone and / or the temperature homogenization chamber, can cause harmful gas exchanges between the different oven chambers. When oxygen escapes from the oxidation chamber to a chamber under a reducing atmosphere, the water vapor content increases in this zone. Then, the increase in the water vapor content influences the dew point and can give rise to unwanted oxidation phenomena, such as for example the oxidation of alloy compounds on the surface of the steel. As already explained, these alloying compounds have a high affinity for oxygen, and their selective oxidation has a deleterious influence on the adhesion of the coating obtained after galvanization.

Par ailleurs, la concentration volumique en oxygène dans la chambre d'oxydation (supérieure à 1%, voir comprise entre 1.5% et 5% selon un mode de réalisation préféré), peut représenter une concentration volumique particulièrement sensible à des échanges de gaz non souhaités avec les chambres adjacentes. Des moyens de confinement positionnés entre la chambre d'oxydation et la chambre d'homogénéisation, par exemple un sas, permettent de contrôler davantage la concentration en oxygène dans la chambre d'oxydation. Cela est important car lorsque de l'hydrogène s'échappe à partir d'une chambre sous atmosphère réductrice vers l'intérieur de la chambre d'oxydation, l'oxydation n'est plus aussi efficace car une partie de l'oxygène est consommé par réaction avec l'hydrogène. Ces phénomènes influencent négativement les propriétés de la couche d'oxyde de fer formée lors de l'étape d'oxydation. Ce problème est amplifié lorsque la teneur en oxygène est relativement faible dans la chambre d'oxydation, car l'oxygène sera alors consommé encore plus rapidement par réaction avec l'hydrogène.Furthermore, the volume concentration of oxygen in the oxidation chamber (greater than 1%, or even between 1.5% and 5% according to a preferred embodiment), can represent a volume concentration which is particularly sensitive to unwanted gas exchanges. with adjacent rooms. Containment means positioned between the oxidation chamber and the homogenization chamber, for example an airlock, make it possible to further control the oxygen concentration in the oxidation chamber. This is important because when hydrogen escapes from a chamber under a reducing atmosphere to the interior of the oxidation chamber, the oxidation is no longer as efficient as part of the oxygen is consumed. by reaction with hydrogen. These phenomena negatively influence the properties of the iron oxide layer formed during the oxidation step. This problem is amplified when the oxygen content is relatively low in the oxidation chamber, since the oxygen will then be consumed even more quickly by reaction with the hydrogen.

De manière générale, ces fuites réduisent donc fortement le contrôle des conditions du procédé de recuit, ce qui, en conséquent, provoque un manque de contrôle sur la qualité d'un acier haute résistance galvanisé obtenu après galvanisation de la bande traitée selon le premier aspect de l'invention, notamment en terme d'adhérence de la couche de revêtement en surface de la bande d'acier.Generally speaking, these leaks therefore greatly reduce the control of the conditions of the annealing process, which consequently causes a lack of control over the quality of a galvanized high strength steel obtained after galvanizing the strip treated according to the first aspect. of the invention, in particular in terms of adhesion of the coating layer to the surface of the steel strip.

L'étape a) de chauffage est réalisée avec une atmosphère ayant une concentration volumique en oxygène inférieure à 0,01% en volume, de préférence avec une atmosphère sans oxygène.Step a) of heating is carried out with an atmosphere having an oxygen volume concentration of less than 0.01% by volume, preferably with an oxygen-free atmosphere.

Il est particulièrement important de préchauffer la bande d'acier avec une atmosphère pauvre en oxygène et de préférence sans oxygène de sorte à ce que la bande d'acier ne commence pas à s'oxyder en surface avant qu'elle ne pénètre dans la chambre d'oxydation. Ainsi, il en résulte un meilleur contrôle de l'épaisseur d'oxydation lorsque celle-ci est uniquement réalisée dans la chambre d'oxydation. De plus, la température de la bande n'étant pas homogène lors de l'étape a) de chauffage, il est important qu'aucune oxydation ne soit faite dans de telles conditions d'inhomogénéité de température de bande.It is particularly important to preheat the steel strip with an oxygen-poor and preferably oxygen-free atmosphere so that the steel strip does not start to oxidize on the surface before it enters the chamber. oxidation. Thus, this results in better control of the oxidation thickness when the latter is carried out only in the oxidation chamber. In addition, since the temperature of the strip is not homogeneous during heating step a), it is important that no oxidation is made under such conditions of strip temperature inhomogeneity.

De préférence, l'étape d'homogénéisation en température est réalisée par le défilement de la bande à proximité dudit au moins un tube de chauffage radiant.Preferably, the temperature homogenization step is carried out by the movement of the strip near said at least one radiant heating tube.

L'avantage d'un défilement de la bande à proximité d'un tube de chauffage radiant est de permettre de fournir une quantité de chaleur à la bande bien contrôlée sur toute la largeur de la bande. Ainsi le défilement de la bande à proximité du tube de chauffage radiant permet un échange de chaleur entre la bande et le tube de chauffage radiant. Cela permet de maintenir la bande en température, par exemple à la température cible, tout en permettant une homogénéisation de la température de la bande. Ainsi l'invention permet de bénéficier des avantages d'un chauffage par flamme directe tout en compensant les inconvénients liés au chauffage par flamme directe (inhomogénéité de température de bande). Par exemple la bande défile à une distance d'un tube de chauffage radiant comprise entre 0,1 m et 0,2 m.The advantage of running the strip near a radiant heating tube is that it allows a well-controlled amount of heat to be supplied to the strip over the entire width of the strip. Thus, the movement of the strip near the radiant heating tube allows heat exchange between the strip and the radiant heating tube. This makes it possible to maintain the strip at a temperature, for example at the target temperature, while allowing homogenization of the temperature of the strip. The invention thus makes it possible to benefit from the advantages of heating by direct flame while compensating for the drawbacks associated with heating by direct flame (inhomogeneity of strip temperature). For example, the strip runs at a distance from a radiant heating tube of between 0.1 m and 0.2 m.

De préférence, ladite section d'homogénéisation comprend au moins deux tubes de chauffage radiant. De préférence, le produit métallique défile entre lesdits deux tubes de chauffage radiant.Preferably, said homogenization section comprises at least two radiant heating tubes. Preferably, the metal product passes between said two radiant heating tubes.

Le défilement de la bande d'acier devant deux tubes de chauffage radiant permet une amélioration de l'homogénéité de température de la bande d'acier en laissant plus de temps à la bande d'acier de s'équilibrer en température tout en recevant une quantité de chaleur des tubes de chauffage radiant permettant de conserver une température de bande cible. La température de bande cible est en général comprise entre 650 °C et 750 °C et correspond à une température à laquelle l'oxydation de la bande en chambre d'oxydation est bien contrôlée. Un même raisonnement peut être appliqué pour trois, quatre, six tubes de chauffage radiant.The movement of the steel strip in front of two radiant heating tubes allows an improvement in the temperature uniformity of the steel strip by allowing more time for the steel strip to equilibrate in temperature while receiving a amount of heat from the radiant heating tubes to maintain a target band temperature. The target band temperature is generally between 650 ° C and 750 ° C and corresponds to a temperature at which the oxidation of the band in the oxidation chamber is well controlled. The same reasoning can be applied for three, four, six radiant heating tubes.

De préférence, le chauffage de la bande à l'étape a) est réalisé jusqu'à atteindre une température de bande cible comprise entre 650 °C et 750 °C, et l'homogénéisation en température de la bande à l'étape b) est réalisée de sorte à homogénéiser la température de la bande selon ladite température cible. Préférentiellement, l'étape d'homogénéisation de l'étape b) permet de maintenir la bande à la température cible.Preferably, the heating of the strip in step a) is carried out until a target strip temperature of between 650 ° C and 750 ° C is reached, and the temperature homogenization of the strip in step b) is reached. is produced so as to homogenize the temperature of the strip according to said temperature target. Preferably, the homogenization step of step b) makes it possible to maintain the strip at the target temperature.

Lors de l'étape d'homogénéisation en température, la chaleur communiquée par le/les tube de chauffage radiant à la bande a pour unique but de maintenir la température de la bande selon la température cible ainsi que d'homogénéiser la température de celle-ci. De préférence, les tubes de chauffage radiant lors de l'étape d'homogénéisation en température rayonnent vers la bande de manière uniforme, permettant une bonne homogénéisation de la température de la bande, en surface ainsi que selon l'épaisseur de la bande.During the temperature homogenization step, the heat communicated by the radiant heating tube (s) to the strip has the sole purpose of maintaining the temperature of the strip according to the target temperature as well as of homogenizing the temperature of the strip. this. Preferably, the radiant heating tubes during the temperature homogenization step radiate uniformly towards the strip, allowing good temperature homogenization of the strip, at the surface as well as according to the thickness of the strip.

Selon un deuxième aspect, un des buts de la présente invention est de fournir un four pour le traitement thermique d'une bande d'acier de haute résistance par défilement permettant une formation d'oxyde à la surface de la bande avec une épaisseur plus homogène et plus contrôlée. À cet effet, les inventeurs proposent un four pour le traitement thermique d'une bande métallique de haute résistance par défilement comprenant :

  • une section de four à chauffage direct comprenant :
    • une zone de chauffage à flamme directe;
  • une section de four à chauffage radiant comprenant :
    • une chambre d'oxydation ;
    • une zone de réduction ;
    • une chambre d'homogénéisation en température positionnée après la zone de chauffage à flamme directe et avant la chambre d'oxydation, la chambre d'homogénéisation comprenant au moins un tube de chauffage radiant.
According to a second aspect, one of the aims of the present invention is to provide a furnace for the heat treatment of a high resistance steel strip by scrolling allowing oxide formation on the surface of the strip with a more homogeneous thickness. and more controlled. To this end, the inventors propose a furnace for the heat treatment of a high resistance metal strip by scrolling comprising:
  • a direct heating furnace section comprising:
    • a direct flame heating zone;
  • a radiant heating furnace section comprising:
    • an oxidation chamber;
    • a reduction zone;
    • a temperature homogenization chamber positioned after the direct flame heating zone and before the oxidation chamber, the homogenization chamber comprising at least one radiant heating tube.

Ainsi, la chambre d'homogénéisation en température est positionnée entre la zone de chauffage à flamme directe et la chambre d'oxydation. Une section de four à chauffage radiant est un RTF. La chambre d'homogénéisation est située dans la section de four à chauffage radiant, de même que la chambre d'oxydation.Thus, the temperature homogenization chamber is positioned between the direct flame heating zone and the oxidation chamber. A radiant heated furnace section is an RTF. The homogenization chamber is located in the radiant heating furnace section, as is the oxidation chamber.

De préférence, ladite chambre d'homogénéisation comprend au moins deux tubes de chauffage radiant et de manière encore plus préférée au moins trois tubes de chauffage radiant.Preferably, said homogenization chamber comprises at least two radiant heating tubes and even more preferably at least three radiant heating tubes.

Le nombre de tubes de chauffage radiant dans la chambre d'homogénéisation permet de définir sa longueur, le long de laquelle la bande peut s'équilibrer en température tout en restant à la température de bande cible. Le nombre de tubes de chauffage radiant et la longueur de la chambre d'homogénéisation en température dépendent de la zone de chauffage par flamme directe et de l'inhomogénéité en température de la bande qui en ressort ainsi que de l'homogénéité en température souhaitée de la bande dans la chambre d'oxydation. Le nombre de tubes radiants et la longueur de la chambre d'homogénéisation peuvent également dépendre de la température cible en sortie de la chambre d'homogénéisation.The number of radiant heating tubes in the homogenization chamber makes it possible to define its length, along which the strip can equilibrate in temperature while remaining at the target strip temperature. The number of radiant heating tubes and the length of the temperature homogenization chamber depend on the direct flame heating zone and the temperature inhomogeneity of the strip which emerges from it as well as the desired temperature homogeneity of the strip in the oxidation chamber. The number of radiant tubes and the length of the homogenization chamber can also depend on the target temperature at the outlet of the homogenization chamber.

De préférence, dans la chambre d'homogénéisation en température, le produit métallique est positionné en défilement entre au moins deux tubes de chauffage radiant. Un tel mode de réalisation permet une meilleure homogénéisation de la température de la bande comme cela est décrit pour le procédé selon le premier aspect de l'invention.Preferably, in the temperature homogenization chamber, the metallic product is positioned scrolling between at least two radiant heating tubes. Such an embodiment allows better homogenization of the temperature of the strip as described for the process according to the first aspect of the invention.

Par exemple, le four comprend en outre un premier et un deuxième rouleaux pour guider la bande en défilement, le premier rouleau étant positionné en aval de la zone de chauffage à flamme directe et le deuxième rouleau étant positionné en aval de la chambre d'oxydation. La bande est de préférence maintenue sous traction dans la chambre d'homogénéisation de sorte qu'en défilement, ladite bande décrit une trajectoire essentiellement rectiligne lors de son passage dans la chambre d'homogénéisation et dans la zone de réduction.For example, the furnace further comprises a first and a second rollers for guiding the moving web, the first roll being positioned downstream of the direct flame heating zone and the second roll being positioned downstream of the oxidation chamber. . The strip is preferably kept under tension in the homogenization chamber so that when moving, said strip describes an essentially rectilinear path as it passes through the homogenization chamber and into the reduction zone.

Par exemple, les premier et deuxième rouleaux sont positionnés de sorte que ladite bande métallique est tendue selon une orientation essentiellement verticale entre lesdits rouleaux. Une orientation de bande essentiellement verticale correspond à une orientation de bande par rapport à un sol plat décrivant un angle avec la normale au sol plat compris entre 0° et 15°. La bande est sous traction dans le four afin qu'elle soit tendue lors de son passage dans la chambre d'homogénéisation puis dans la chambre d'oxydation.For example, the first and second rollers are positioned so that said metal strip is stretched in a substantially vertical orientation between said rollers. An essentially vertical strip orientation corresponds to a strip orientation with respect to a flat ground describing an angle with the normal to the flat ground between 0 ° and 15 °. The strip is under tension in the oven so that it is stretched as it passes through the homogenization chamber and then into the oxidation chamber.

Dans un autre mode de réalisation possible, le four est configuré de sorte que la bande métallique est tendue selon une orientation essentiellement horizontale.In another possible embodiment, the furnace is configured such that the metal strip is stretched in a substantially horizontal orientation.

Dans un mode de réalisation préféré, la chambre d'oxydation est par ailleurs délimitée par deux sas qui sont chacun constitués par au moins deux rouleaux de sas. Dans un tel cas, bien qu'il n'y ait pas de contact permanent entre la bande et de tels rouleaux de sas, il est possible que la bande entre en contact avec eux, par exemple suite à un mouvement de la bande.In a preferred embodiment, the oxidation chamber is further delimited by two locks which are each formed by at least two lock rollers. In such a case, although there is no permanent contact between the strip and such airlock rollers, it is possible for the strip to come into contact with them, for example as a result of movement of the strip.

La chambre d'oxydation est confinée de la chambre d'homogénéisation et de la zone de réduction par deux moyens de confinement permettant le défilement de la bande au travers de ladite chambre d'oxydation, par exemple les deux moyens de confinement sont deux sas. Les avantages associés décrits pour le procédé de l'invention s'appliquent au four, mutatis mutandis.The oxidation chamber is confined from the homogenization chamber and from the reduction zone by two confinement means allowing the strip to travel through said oxidation chamber, for example the two confinement means are two locks. The associated advantages described for the process of the invention apply to the oven, mutatis mutandis.

De préférence, la chambre d'oxydation est munie d'évents afin d'équilibrer les volumes entrants et sortants pour équilibrer la pression à l'intérieur de la chambre et aussi pour réduire les transferts éventuels de gaz par des fuites.Preferably, the oxidation chamber is provided with vents in order to balance the incoming and outgoing volumes to balance the pressure inside the chamber and also to reduce the possible transfers of gas by leaks.

Brève description des figuresBrief description of the figures

Ces aspects de l'invention ainsi que d'autres seront clarifiés dans la description détaillée de modes de réalisation particuliers de l'invention, référence étant faite aux dessins des figures, dans lesquelles:

  • la Fig.1 montre un mode de réalisation selon l'invention;
  • la Fig.2 montre un mode de réalisation selon l'invention;
  • la Fig.3 montre une vue schématique de l'amenée d'une bande vers une chambre d'homogénéisation en température, puis vers une chambre d'oxydation et le cheminement de la bande vers une zone de réduction.
Les dessins des figures ne sont pas à l'échelle et ne sont pas limitatifs. Généralement, des éléments semblables sont dénotés par des références semblables dans les figures. La présence de numéros de référence aux dessins ne peut être considérée comme limitative, y compris lorsque ces numéros sont indiqués dans les revendications.These and other aspects of the invention will be clarified in the detailed description of particular embodiments of the invention, with reference being made to the drawings of the figures, in which:
  • the Fig. 1 shows an embodiment according to the invention;
  • the Fig. 2 shows an embodiment according to the invention;
  • the Fig. 3 shows a schematic view of the supply of a strip to a temperature homogenization chamber, then to an oxidation chamber and the path of the strip to a reduction zone.
The drawings of the figures are not to scale and are not limiting. Generally, like elements are denoted by like references in the figures. The presence of reference numbers in the drawings can not be considered as limiting, including when these numbers are indicated in the claims.

Description détaillée de certains modes de réalisation de l'inventionDetailed description of certain embodiments of the invention

La figure 1 montre une illustration schématique du four 1 selon le deuxième aspect de l'invention permettant de mettre en œuvre le procédé selon le premier aspect de l'invention. Le four 1 comprend dans le sens de défilement de la bande 5, une zone de chauffage à flamme directe 10, une chambre d'homogénéisation en température 20, une chambre d'oxydation 30 et une zone de réduction 40 pour la réduction de l'oxyde et le traitement thermique de la bande. Le four 1 comprend une section de four à chauffage direct 2 comprenant la zone de chauffage à flamme directe 10 et une section de four à chauffage radiant 3 comprenant la chambre d'homogénéisation en température 20, la chambre d'oxydation 30 et la zone de réduction 40.The figure 1 shows a schematic illustration of the oven 1 according to the second aspect of the invention making it possible to implement the method according to the first aspect of the invention. The furnace 1 comprises in the direction of travel of the strip 5, a direct flame heating zone 10, a temperature homogenization chamber 20, an oxidation chamber 30 and a reduction zone 40 for the reduction of the temperature. oxide and heat treatment of the tape. The furnace 1 comprises a direct heating furnace section 2 comprising the direct flame heating zone 10 and a radiant heating furnace section 3 comprising the temperature homogenization chamber 20, the oxidation chamber 30 and the heating zone. reduction 40.

Le procédé selon l'invention comprend la mise en œuvre de l'étape a) de chauffage de la bande 5 par flamme directe dans la zone de chauffage à flamme directe 10. Le procédé comprend ensuite la mise en œuvre de l'étape b), c'est-à-dire le défilement de la bande 5 à proximité d'au moins un tube de chauffage radiant 25 de sorte, par exemple, à laisser du temps à la bande 5 préchauffée à une température cible, de s'homogénéiser en température tout en conservant ladite température cible. Selon un autre cas de figure possible, la bande 5 peut être chauffée dans la chambre d'homogénéisation 20 de manière à avoir une température (homogénéisée) de sortie plus élevée que la température d'entrée. Le procédé comprend ensuite la mise en œuvre de l'étape d'oxydation c), c'est-à-dire le défilement de la bande 5 dans la chambre d'oxydation 30 comprenant une concentration volumique en oxygène supérieure à 1% et de préférence comprise entre 1,5 % et 5 %. Lors de l'étape c), une couche d'oxyde se forme en surface de la bande 5. L'oxyde formé est essentiellement de l'oxyde de fer II, II-III, ou III en général. Le procédé de traitement thermique d'une bande 5 d'acier comprend après l'étape c), l'étape d) pendant laquelle, la bande d'acier 5 oxydée à l'étape c) subit un traitement thermique à une température de bande jusqu'à 800 °C et de préférence jusqu'à 850 °C. Lors de cette étape d), la bande 5 est soumise à une atmosphère réductrice comprenant de préférence une concentration volumique en hydrogène supérieure à 3%, et de manière encore préférée comprise entre 3% et 5 %. La fraction volumique restante étant de l'azote en général. La température du traitement thermique en zone de réduction lors de l'étape d) peut être modifiée relativement facilement sans pour autant que les étapes a), b) et c) ne soient modifiées fortement.The method according to the invention comprises the implementation of step a) of heating the strip 5 by direct flame in the direct flame heating zone 10. The method then comprises the implementation of step b) , that is to say the movement of the strip 5 near at least one radiant heating tube 25 so, for example, to allow time for the strip 5 preheated to a target temperature, to homogenize in temperature while maintaining said target temperature. According to another possible scenario, the strip 5 can be heated in the homogenization chamber 20 so as to have an outlet (homogenized) temperature higher than the inlet temperature. The method then comprises the implementation of the oxidation step c), that is to say the movement of the strip 5 in the oxidation chamber 30 comprising a volume concentration of oxygen greater than 1% and preferably between 1.5% and 5%. During step c), an oxide layer forms on the surface of the strip 5. The oxide formed is essentially iron II, II-III or III oxide in general. The method of heat treatment of a steel strip 5 comprises after step c), step d) during which, the steel strip 5 oxidized in step c) undergoes a heat treatment at a temperature of band up to 800 ° C and preferably up to 850 ° C. During this step d), the strip 5 is subjected to a reducing atmosphere preferably comprising a volume concentration of hydrogen greater than 3%, and more preferably between 3% and 5%. The remaining volume fraction being nitrogen in general. The temperature of the heat treatment in the reduction zone during step d) can be changed relatively easily without, however, steps a), b) and c) being changed significantly.

La figure 2 montre une vue d'ensemble d'un four 1 selon le deuxième aspect de l'invention, avec une représentation schématique du cheminement de la bande 5 à travers la zone de chauffage à flamme directe 10, la chambre d'homogénéisation 20, la chambre d'oxydation 30 et la zone de réduction 40 comprises dans le four 1. La bande 5 décrit une succession de passes verticales pendant lesquelles elle défile au travers de la section de four à chauffage direct 2 puis de la section de four à chauffage radiant 3. Après avoir défilé au travers de la zone de chauffage à flamme directe 10, la bande 5 entre dans la section de four à chauffage radiant 3 par la chambre d'homogénéisation 20. Dans l'exemple non limitatif montré à la figure 2, la zone de chauffage à flamme directe 10 comprend deux lignes de passe. Ensuite la bande 5 est dirigée vers la chambre d'homogénéisation en température 20.The figure 2 shows an overall view of a furnace 1 according to the second aspect of the invention, with a schematic representation of the path of the strip 5 through the direct flame heating zone 10, the homogenization chamber 20, the chamber of oxidation 30 and the reduction zone 40 included in the furnace 1. The strip 5 describes a succession of vertical passes during which it passes through the direct heating furnace section 2 then the radiant heating furnace section 3 After having passed through the direct flame heating zone 10, the strip 5 enters the radiant heating furnace section 3 through the homogenization chamber 20. In the non-limiting example shown in FIG. figure 2 , the direct flame heating zone 10 comprises two pass lines. Then the strip 5 is directed towards the temperature homogenization chamber 20.

La ligne de passe comprenant la chambre d'homogénéisation en température 20 et la chambre d'oxydation 30 est située dans la section RTF (section de four à chauffage radiant) du four 1. Ainsi la chambre d'oxydation 30 est à une température similaire de la section RTF qui l'entoure tout en étant de préférence isolée au niveau de la teneur en oxygène et en hydrogène.The pass line comprising the temperature homogenization chamber 20 and the oxidation chamber 30 is located in the RTF section (radiant heating furnace section) of furnace 1. Thus, the oxidation chamber 30 is at a similar temperature. of the RTF section which surrounds it while being preferably isolated in terms of the oxygen and hydrogen content.

Après avoir quitté la chambre d'oxydation 30, la bande 5 entre en zone de réduction 40 pour son traitement thermique. La zone de réduction 40 comprend une série de passes verticales entourées de tubes de chauffage radiant 25 permettant un ajustement de la température de la bande 5 afin de réaliser le traitement thermique désiré de la bande d'acier 5 de haute résistance.After leaving the oxidation chamber 30, the strip 5 enters the reduction zone 40 for its heat treatment. The reduction zone 40 comprises a series of vertical passes surrounded by radiant heating tubes 25 allowing adjustment of the temperature of the strip 5 in order to achieve the desired heat treatment of the high strength steel strip 5.

La figure 3 montre une vue schématique de l'amenée de la bande 5 vers la chambre d'homogénéisation en température 20, puis vers la chambre d'oxydation 30 et le cheminement de la bande 5 vers la zone de réduction 40. La figure 3 montre un mode de réalisation particulier de la chambre d'homogénéisation en température 20 qui illustre de façon exemplative trois tubes de chauffage radiant 25 disposés de sorte que la bande 5 passe à proximité lors de son défilement dans la chambre d'homogénéisation en température 20. La chambre d'homogénéisation en température 20 illustrée permet une bonne homogénéisation de la température de la bande 5 à une température cible, la température cible étant définie en fonction de la composition de l'acier. Ainsi une épaisseur d'oxyde précisément définie et homogène sur toute la surface de la bande 5 peut être obtenue.The figure 3 shows a schematic view of the feed of the strip 5 to the temperature homogenization chamber 20, then to the oxidation chamber 30 and the path of the strip 5 to the reduction zone 40. The figure 3 shows a particular embodiment of the chamber temperature homogenization 20 which exemplarily illustrates three radiant heating tubes 25 arranged so that the strip 5 passes close by as it travels through the temperature homogenization chamber 20. The temperature homogenization chamber 20 illustrated allows good homogenization of the temperature of the strip 5 at a target temperature, the target temperature being defined as a function of the composition of the steel. Thus a precisely defined and homogeneous oxide thickness over the entire surface of the strip 5 can be obtained.

Par exemple, en fonctionnement, une bande 5 d'acier est alimentée dans une zone de chauffage à flamme directe 10 et est chauffée en condition réductrice en présence de monoxyde de carbone et d'hydrogène, de préférence de sorte à atteindre une température de bande comprise entre 650 à 750 °C. La bande d'acier est ensuite amenée vers la chambre d'oxydation 30 qui est confinée dans la section du four à chauffage radiant (RTF), où a lieu l'oxydation avec une teneur en oxygène supérieure à 1%. Cette étape d'oxydation permet la formation en surface d'une couche d'oxyde de fer par exemple . Ensuite, la couche d'oxyde est éliminée au cours de l'étape de traitement thermique en atmosphère réductrice afin de procéder à l'étape de galvanisation selon une méthode bien connue de l'homme du métier.For example, in operation, a strip of steel is fed into a direct flame heating zone 10 and is heated under a reducing condition in the presence of carbon monoxide and hydrogen, preferably so as to reach a strip temperature. between 650 to 750 ° C. The steel strip is then fed to the oxidation chamber 30 which is confined in the section of the radiant heating furnace (RTF), where the oxidation takes place with an oxygen content greater than 1%. This oxidation step allows the formation at the surface of a layer of iron oxide, for example. Then, the oxide layer is removed during the heat treatment step in a reducing atmosphere in order to proceed with the galvanizing step according to a method well known to those skilled in the art.

La présente invention a été décrite en relation avec des modes de réalisations spécifiques, qui ont une valeur purement illustrative et ne doivent pas être considérés comme limitatifs. D'une manière générale, la présente invention n'est pas limitée aux exemples illustrés et/ou décrits ci-dessus. L'usage des verbes « comprendre », « inclure », « comporter », ou toute autre variante, ainsi que leurs conjugaisons, ne peut en aucune façon exclure la présence d'éléments autres que ceux mentionnés. L'usage de l'article indéfini « un », « une », ou de l'article défini « le », « la » ou « l' », pour introduire un élément n'exclut pas la présence d'une pluralité de ces éléments. Les numéros de référence dans les revendications ne limitent pas leur portée.The present invention has been described in relation to specific embodiments, which have a purely illustrative value and should not be considered as limiting. In general, the present invention is not limited to the examples illustrated and / or described above. The use of the verbs "to understand", "to include", "to include", or any other variant, as well as their conjugations, can in no way exclude the presence of elements other than those mentioned. The use of the indefinite article "a", "a", or of the definite article "the", "the" or "the", to introduce an element does not exclude the presence of a plurality of these elements. Reference numbers in the claims do not limit their scope.

Claims (12)

  1. Method of heat treatment of a scrolling high-strength steel strip (5), said method comprising the following steps:
    a) heating the strip (5) in a direct flame heating zone (10), the heating step being performed with an atmosphere having an oxygen volume concentration of less than 0.01% by volume, preferably with an oxygen-free atmosphere,
    b) temperature homogenisation of the strip (5) in a homogenisation chamber (20) comprising at least one radiant heating tube (25), so as to homogenise the strip (5) in temperature after its passage in the direct flame heating zone (10) in the previous step, the temperature homogenisation step being performed with an atmosphere having an oxygen volume concentration of less than 0.01% by volume, preferably with an oxygen-free atmosphere,
    c) oxidation of the strip (5) in an oxidation chamber (30) with an oxidising atmosphere having an oxygen volume concentration of greater than 1%,
    d) reduction of the strip (5) in a reduction zone (40).
  2. Method according to the preceding claim characterised in that the reduction zone (40) has a reducing atmosphere having a volume concentration of hydrogen greater than 3%.
  3. Method according to any one of the preceding claims characterised in that the oxidation step is performed at a strip (5) temperature comprised between 650 °C and 750 °C.
  4. Method according to any one of the preceding claims characterised in that said oxygen volume concentration is comprised between 1.5% and 5%, preferably comprised between 2% and 5%.
  5. Method according to any one of the preceding claims characterised in that the temperature homogenisation step is performed at a strip (5) temperature comprised between 650 °C and 750 °C.
  6. Method according to any one of the preceding claims characterised in that the heating step a) is performed so as to obtain a strip (5) temperature comprised between 650 °C and 750 °C.
  7. Method according to any one of the preceding claims characterised in that the temperature homogenisation step is performed by scrolling the strip (5) close to said at least one radiant heating tube (25).
  8. Method according to the preceding claim, characterised in that said homogenisation section comprises two radiant heating tubes (25) and in that the strip (5) scrolls between said two radiant heating tubes (25).
  9. Furnace (1) for heat treatment of a high-strength steel strip (5) by scrolling comprising:
    - a direct heating furnace section (2) comprising:
    • a direct flame heating zone (10),
    - a radiant heating furnace section (3) comprising:
    • an oxidation chamber (30),
    • a reduction zone (40),
    characterised in that the radiant heating furnace section (3) further comprises a temperature homogenisation chamber (20) positioned between said direct flame heating zone (10) and said oxidation chamber (30), said homogenisation chamber (20) comprising at least one radiant heating tube (25),
    and in that the oxidation chamber (30) is isolated from the homogenisation chamber (20) and from the reduction zone (40) by two means of containment (35) allowing the scrolling of the strip (5) through said oxidation chamber (30).
  10. Furnace (1) according to the preceding claim characterised in that said homogenisation chamber (20) comprises at least two radiant heating tubes (25) and more preferably at least three radiant heating tubes (25).
  11. Furnace (1) according to the preceding claim characterised in that it is configured so that in the homogenisation chamber (20), the high-strength steel strip (5) is able to be positioned in scrolling between at least two radiant heating tubes (25).
  12. Furnace (1) according to claim 9 characterised in that the two means of containment (35) are two airlocks.
EP19218200.4A 2019-01-23 2019-12-19 Method and furnace for thermal treatment of a high-resistance steel strip including a temperature homogenisation chamber Active EP3686534B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201930065T SI3686534T1 (en) 2019-01-23 2019-12-19 Method and furnace for thermal treatment of a high-resistance steel strip including a temperature homogenisation chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE20195038A BE1026986B1 (en) 2019-01-23 2019-01-23 Method and furnace for the heat treatment of a strip of high strength steel comprising a temperature homogenization chamber

Publications (2)

Publication Number Publication Date
EP3686534A1 EP3686534A1 (en) 2020-07-29
EP3686534B1 true EP3686534B1 (en) 2021-03-10

Family

ID=65324126

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19218200.4A Active EP3686534B1 (en) 2019-01-23 2019-12-19 Method and furnace for thermal treatment of a high-resistance steel strip including a temperature homogenisation chamber

Country Status (10)

Country Link
US (2) US20200232063A1 (en)
EP (1) EP3686534B1 (en)
KR (1) KR20200092253A (en)
CN (1) CN111471847B (en)
BE (1) BE1026986B1 (en)
BR (1) BR102020001356A2 (en)
ES (1) ES2874752T3 (en)
MX (1) MX2019015493A (en)
RU (1) RU2766264C2 (en)
SI (1) SI3686534T1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4303516A1 (en) 2022-07-05 2024-01-10 John Cockerill S.A. Device for improving preoxidation in an annealing furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2555104B (en) * 2016-10-14 2022-06-01 Liberty Performance Steels Ltd Manufacture of a stress relieved length of steel having an oxidised surface layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090199931A1 (en) 2006-04-26 2009-08-13 Ronny Leuschner Method for Melt Immersion Coating of a Flat Steel Product Made of High Strength Steel
US20100173072A1 (en) 2007-09-03 2010-07-08 Siemens Vai Metals Technologies Sas Method and device for controlling oxidizing-reducing of the surface of a steel strip running continuously through a radiant tubes furnace for its galvanizing
EP2458022A1 (en) 2010-11-30 2012-05-30 Tata Steel UK Limited Method of galvanising a steel strip in a continuous hot dip galvanising line
KR20160085830A (en) 2013-12-10 2016-07-18 아르셀러미탈 A method of annealing steel sheets
WO2016169918A1 (en) 2015-04-22 2016-10-27 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
US20170137906A1 (en) 2014-06-06 2017-05-18 Arcelormittal High Strength Multiphase Steel, Production Method and Use

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2668701A (en) * 1951-02-03 1954-02-09 Selas Corp Of America Heating control system
SU377349A1 (en) * 1969-08-04 1973-04-17 VSNSO ^ READ
JPS586939A (en) * 1981-07-06 1983-01-14 Nippon Kokan Kk <Nkk> Heating method for steel strip in continuous heat treatment furnace
CN1011982B (en) * 1985-07-10 1991-03-13 日本钢管株式会社 Steel strip continuous treatment production line with open fire furnace
JP3143937B2 (en) * 1991-03-11 2001-03-07 日本鋼管株式会社 Continuous annealing furnace
JP4427527B2 (en) * 2006-07-20 2010-03-10 三菱日立製鉄機械株式会社 Surface-treated steel sheet manufacturing equipment
JP4772927B2 (en) * 2009-05-27 2011-09-14 新日本製鐵株式会社 High-strength steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet having excellent fatigue characteristics and elongation and impact characteristics, and methods for producing them
DE102010037254B4 (en) 2010-08-31 2012-05-24 Thyssenkrupp Steel Europe Ag Process for hot dip coating a flat steel product
DE102011051731B4 (en) 2011-07-11 2013-01-24 Thyssenkrupp Steel Europe Ag Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer
CN103649347B (en) * 2011-07-15 2016-05-25 塔塔钢铁艾默伊登有限责任公司 Produce the equipment of annealed steel and the technique of producing described annealed steel
JP5505461B2 (en) * 2012-05-24 2014-05-28 Jfeスチール株式会社 Continuous annealing furnace for steel strip, continuous annealing method for steel strip, continuous hot dip galvanizing equipment and method for manufacturing hot dip galvanized steel strip
EP2862947B1 (en) * 2012-06-13 2018-08-08 JFE Steel Corporation Method of continuous annealing of steel strip, and method of manufacturing hot-dip galvanized steel strip
JP6139943B2 (en) * 2013-03-29 2017-05-31 株式会社神戸製鋼所 Steel material for soft magnetic parts with excellent pickling properties, soft magnetic parts with excellent corrosion resistance and magnetic properties, and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090199931A1 (en) 2006-04-26 2009-08-13 Ronny Leuschner Method for Melt Immersion Coating of a Flat Steel Product Made of High Strength Steel
US20100173072A1 (en) 2007-09-03 2010-07-08 Siemens Vai Metals Technologies Sas Method and device for controlling oxidizing-reducing of the surface of a steel strip running continuously through a radiant tubes furnace for its galvanizing
EP2458022A1 (en) 2010-11-30 2012-05-30 Tata Steel UK Limited Method of galvanising a steel strip in a continuous hot dip galvanising line
KR20160085830A (en) 2013-12-10 2016-07-18 아르셀러미탈 A method of annealing steel sheets
US20170137906A1 (en) 2014-06-06 2017-05-18 Arcelormittal High Strength Multiphase Steel, Production Method and Use
WO2016169918A1 (en) 2015-04-22 2016-10-27 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"INDUSTRIAL COMBUSTION TESTING", article MICHAEL FLAMME: "24 Radiant 2011 Tube Burners", pages: 487 - 504, XP055893689

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4303516A1 (en) 2022-07-05 2024-01-10 John Cockerill S.A. Device for improving preoxidation in an annealing furnace
WO2024008480A1 (en) 2022-07-05 2024-01-11 John Cockerill Sa Device for improving preoxidation in an annealing furnace

Also Published As

Publication number Publication date
US20240102124A1 (en) 2024-03-28
RU2766264C2 (en) 2022-02-10
ES2874752T3 (en) 2021-11-05
CN111471847B (en) 2023-10-31
US20200232063A1 (en) 2020-07-23
RU2019142708A (en) 2021-06-21
BE1026986A1 (en) 2020-08-17
KR20200092253A (en) 2020-08-03
EP3686534A1 (en) 2020-07-29
CN111471847A (en) 2020-07-31
SI3686534T1 (en) 2021-07-30
RU2019142708A3 (en) 2021-12-09
BR102020001356A2 (en) 2020-08-04
MX2019015493A (en) 2020-07-28
BE1026986B1 (en) 2020-08-25

Similar Documents

Publication Publication Date Title
EP3686534B1 (en) Method and furnace for thermal treatment of a high-resistance steel strip including a temperature homogenisation chamber
EP1999287B1 (en) Method for continuously annealing and preparing strip of high-strength steel for the purpose of hot-dip galvanizing it
EP2129810B1 (en) Method for coating a substrate and metal alloy vacuum deposition facility
EP0511044B1 (en) Deposition of pyrolyzed layers with improved performance and a glass pane coated with such a layer
EP2321232A2 (en) Unit and process for treating the surface of flat glass with thermal conditioning of the glass
FR2501724A1 (en) METHOD AND APPARATUS FOR CONTINUOUS COATING OF A FERROUS METAL STRIP
EP0979879B1 (en) Method for the galvanization of metallic strip
CH670819A5 (en)
EP1285972A1 (en) Process for hot-dip galvanising of high-strength steel strips
BE1014997A3 (en) Continuous annealing of steel strip prior to galvanising using direct flame preheating to form an oxide film followed by full annealing and reduction stages to mature this oxide film
EP0879897B2 (en) Process for continuous annealing of metal substrates
FR2738577A1 (en) COOLING DEVICE FOR A LAMINATED PRODUCT
EP3596240A1 (en) Continuous annealing or galvanising line comprising a tensioning block between two consecutive furnaces
EP3397786B1 (en) Device and method for carrying out controlled oxidation of metal strips in a continuous furnace
EP0707661B1 (en) Method of low pressure nitriding a metal workpiece and oven for carrying out said method
FR2722212A1 (en) Carburisation or carbonitriding with min. carbon di:oxide and no cyanide emissions
FR2544342A1 (en) INSTALLATION FOR COATING THE CHOICE ON ONE OR TWO FACES OF A BAND IN CIRCULATION WITHOUT END, IN PARTICULAR FOR THE GALVANIZATION OF STEEL BAND
EP1386012A1 (en) Method for enhancing the metallurgical quality of products treated in a furnace
WO1996035822A1 (en) Device and plant for coating a steel band
FR3114375A1 (en) BURNER, IN PARTICULAR FOR A DIRECT FLAME PREHEATING SECTION OF A CONTINUOUS LINE FOR THE TREATMENT OF A METALLIC STRIP
WO2023285747A1 (en) Liquid cooling of a strip running in a continuous line
WO2022064149A1 (en) Direct flame preheating section for a continuous metal strip processing line
FR3114324A1 (en) DIRECT FLAME PREHEATING SECTION FOR CONTINUOUS METAL STRIP TREATMENT LINE
WO2021116582A1 (en) Device and method for heat treatment of steels, including a wet cooling
LU88730A1 (en) Method for coating a steel substrate with a layer of alloyed zinc

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20200716

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602019003120

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F27B0009280000

Ipc: C21D0001340000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 9/46 20060101ALI20200930BHEP

Ipc: C23C 8/10 20060101ALI20200930BHEP

Ipc: C21D 1/52 20060101ALI20200930BHEP

Ipc: F27B 9/28 20060101ALI20200930BHEP

Ipc: C23C 8/18 20060101ALI20200930BHEP

Ipc: C21D 1/34 20060101AFI20200930BHEP

Ipc: C21D 9/56 20060101ALI20200930BHEP

Ipc: C23C 8/80 20060101ALI20200930BHEP

INTG Intention to grant announced

Effective date: 20201020

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1369867

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019003120

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210611

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210610

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210610

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 37467

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2874752

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210710

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210712

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602019003120

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: FI

Ref legal event code: MDE

Opponent name: JOHN COCKERILL SA

26 Opposition filed

Opponent name: JOHN COCKERILL SA

Effective date: 20211209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602019003120

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211219

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1369867

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210310

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019003120

Country of ref document: DE

Owner name: JOHN COCKERILL S.A., BE

Free format text: FORMER OWNER: DREVER INTERNATIONAL S.A., LIEGE, BE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019003120

Country of ref document: DE

Owner name: DREVER INTERNATIONAL S.A., BE

Free format text: FORMER OWNER: DREVER INTERNATIONAL S.A., LIEGE, BE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221123

Year of fee payment: 4

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: JOHN COCKERILL SA; BE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT

Effective date: 20221214

27C Opposition proceedings terminated

Effective date: 20221028

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1369867

Country of ref document: AT

Kind code of ref document: T

Owner name: JOHN COCKERILL SA, BE

Effective date: 20230228

Ref country code: AT

Ref legal event code: PC

Ref document number: 1369867

Country of ref document: AT

Kind code of ref document: T

Owner name: DREVER INTERNATIONAL, BE

Effective date: 20230228

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: JOHN COCKERILL SA

Effective date: 20230420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230118

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221227

Year of fee payment: 4

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

P02 Opt-out of the competence of the unified patent court (upc) changed

Effective date: 20230605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231120

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231204

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231129

Year of fee payment: 5

Ref country code: SI

Payment date: 20231128

Year of fee payment: 5

Ref country code: SE

Payment date: 20231222

Year of fee payment: 5

Ref country code: RO

Payment date: 20231128

Year of fee payment: 5

Ref country code: LU

Payment date: 20231226

Year of fee payment: 5

Ref country code: IT

Payment date: 20231221

Year of fee payment: 5

Ref country code: FR

Payment date: 20231120

Year of fee payment: 5

Ref country code: FI

Payment date: 20231228

Year of fee payment: 5

Ref country code: CZ

Payment date: 20231129

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231120

Year of fee payment: 5