EP1999287B1 - Method for continuously annealing and preparing strip of high-strength steel for the purpose of hot-dip galvanizing it - Google Patents
Method for continuously annealing and preparing strip of high-strength steel for the purpose of hot-dip galvanizing it Download PDFInfo
- Publication number
- EP1999287B1 EP1999287B1 EP07719191A EP07719191A EP1999287B1 EP 1999287 B1 EP1999287 B1 EP 1999287B1 EP 07719191 A EP07719191 A EP 07719191A EP 07719191 A EP07719191 A EP 07719191A EP 1999287 B1 EP1999287 B1 EP 1999287B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strip
- heating
- section
- temperature
- atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 34
- 239000010959 steel Substances 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000000137 annealing Methods 0.000 title claims abstract description 21
- 238000005246 galvanizing Methods 0.000 title description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 43
- 239000012298 atmosphere Substances 0.000 claims abstract description 39
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000001301 oxygen Substances 0.000 claims abstract description 28
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000001816 cooling Methods 0.000 claims abstract description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 22
- 239000001257 hydrogen Substances 0.000 claims abstract description 21
- 230000009467 reduction Effects 0.000 claims abstract description 13
- 238000003618 dip coating Methods 0.000 claims abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 20
- 238000012423 maintenance Methods 0.000 claims description 17
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 16
- 239000011701 zinc Substances 0.000 claims description 16
- 229910052725 zinc Inorganic materials 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 239000011261 inert gas Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 238000005244 galvannealing Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 238000002485 combustion reaction Methods 0.000 claims description 2
- 239000008246 gaseous mixture Substances 0.000 claims description 2
- 230000006698 induction Effects 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 241000237519 Bivalvia Species 0.000 claims 1
- 235000020639 clam Nutrition 0.000 claims 1
- 238000007598 dipping method Methods 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 abstract description 12
- 229910001338 liquidmetal Inorganic materials 0.000 abstract description 6
- 238000007254 oxidation reaction Methods 0.000 description 11
- 238000005275 alloying Methods 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000007654 immersion Methods 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 241001344923 Aulorhynchidae Species 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 description 1
- 208000036119 Frailty Diseases 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 206010003549 asthenia Diseases 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000021183 entrée Nutrition 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000010731 rolling oil Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0222—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Definitions
- the present invention relates to a novel process for the continuous annealing and preparation of a high strength steel strip for hot dip coating in a bath of liquid metal, preferably a galvanization or a so-called galvannealing ".
- the technical field considered here is that of galvanization by continuous scrolling, in a coating bath composed of zinc or zinc alloy, of steel strips heavily loaded with alloying elements, more particularly HSS steels ( high strength steels ).
- alloying elements more particularly HSS steels ( high strength steels ).
- These special steels which are known to be difficult to galvanize, are, for example, steels which may contain contents of alloying elements (aluminum, manganese, silicon, chromium, etc.) up to 2% or more, stainless steels, "dual phase ", TRIP, TWIP (up to 25% Mn and 3% Al), etc.
- These steel strips are generally intended for cutting and subsequent shaping by stamping, folding, etc., for applications for example in the automotive or construction sector.
- the present invention aims to provide a solution that makes it possible to overcome the disadvantages of the state of the art.
- the invention aims to provide a method of annealing and preparation for galvanizing high strength steels that is more economical, the latter being carried out with or without accompanying heat treatment galvannealing type.
- the invention also aims to allow a preparation of high strength steels for galvanizing, which are free of brittleness defects.
- the invention aims to provide a confined atmosphere annealing process free of added hydrogen.
- An additional object of the invention is to prevent the selective oxidation of alloying elements in the outermost layer of the surface of the strip during the total oxidation step during continuous annealing prior to cooling. and immersion in the zinc bath.
- the controlled oxygen content is maintained in the heating and holding section between 50 and 400 ppm.
- the separation of the oxidizing atmosphere from the reducing atmosphere is carried out by an overpressure of the oxidizing atmosphere, so that the oxygen entrained by the strip in the cooling zone and transfer through the airlock, following this overpressure, react completely with the hydrogen contained in the cooling atmosphere by forming water vapor.
- the hydrogen is allowed to react, present in the cooling and transfer section, entrained in the hot gas stream directed upstream, with oxygen from the heating and holding section to form water vapor.
- the cooling and transfer section is maintained in overpressure with respect to the heating and holding section. As the gas under pressure can not escape to the bath of liquid metal, it goes back to the heating and maintenance zone.
- the control of the oxygen content of the oxide layer formed in the heating and holding section is obtained either by modifying the gaseous mixture containing combustion air supplying direct flame heating means, or by controlled injection of the air (or oxygen) / inert gas mixture in the case of radiation or induction heating.
- the non-oxidizing or inert gas is nitrogen or argon.
- the liquid metal is zinc or one of its alloys.
- the heating and maintenance zone is devoid of a reducing atmosphere.
- the hot dip coating process is a galvanization or a galvannealing treatment.
- the atmosphere both in the heating and holding section and in the cooling and transfer section has a dew point less than or equal to -10 ° C, preferably -20 ° C.
- the strip is heated to a temperature of between 650 ° C. and 1200 ° C., including the holding temperature.
- the band is then cooled down to a temperature above 450 ° C, with a cooling rate between 10 and 100 ° C / s.
- An economical method, proposed according to the invention aims to perform the annealing step preparatory to galvanization, without the addition of hydrogen gas which is ten times more expensive than a more common gas such as nitrogen and which is In addition, it causes serious fragility defects in resistance steels.
- the aim of the invention is to obtain perfect galvanization for all grades of resistance steel. To avoid oxidation of the alloy elements at the extreme surface, it is proposed to inject an air / nitrogen mixture into the oven during the entire cycle of (pre-) heating and holding the sheet at high temperature.
- This method therefore does not require any atmospheric separation throughout the heating / holding part as is the case in other processes (for example JP-A-2003/342645 where negative reactive zones are included at this part of the furnace.
- the alloying elements also contribute to the reduction of iron oxide when migrating at the steel / iron oxide interface.
- the air / nitrogen atmosphere of the heating / holding portion will, however, have to be separated and partially isolated from the non-oxidizing atmosphere of the cooling and transfer stages of the strip into the zinc bath.
- the oxidizing atmosphere will preferably be maintained at an excess pressure relative to the non-oxidizing atmosphere such that the oxygen entrained by the sheet reacts completely with the hydrogen contained in the atmosphere of the cooling.
- a steel containing, for example, 1.2% of aluminum will for example be heated and annealed to a temperature of 800 ° C. in an atmosphere containing 100 ppm of oxygen in nitrogen.
- the sheet is cooled to 500 ° C. at a rate of 50 ° C./s in an atmosphere containing 4% hydrogen and 0.1% water vapor. which corresponds to a dew point of -20 ° C.
- This sheet is then introduced at the temperature of 470 ° C. in a zinc bath, containing 0.2% of aluminum, which is maintained at 460 ° C. After immersion for 3 seconds, the coating is wrung out so as to keep an 8 ⁇ m zinc layer.
- Such a zinc deposit is then perfectly wetting and has adhesion qualities comparable to that obtained for ordinary low-carbon steel.
- the same process can be applied to a steel containing, for example, 1.5% silicon.
- This increase in oxygen content is necessary because silicon slows the diffusion of iron by providing a silicon oxide barrier at the steel / iron oxide interface.
- Another way of proceeding is to let the usual flux settle from the zinc bath to the heating section and to leave the very low hydrogen content ( ⁇ 0.5%), contained in the transfer / cooling section, react with the oxygen of the heating / holding part to form water vapor.
- An additional supply of oxygen, at the outlet of the holding section, may be made to neutralize the hydrogen inlet, the contents used being always located very far from the dangerous, that is to say, explosive ( 4% H 2 in air).
- a high hydrogen content is indeed not necessary in the cooling section because the carbon of the steel will be sufficient to reduce the thin layer of iron oxide created in the heating / holding part and the metal iron thus prepared will ensure a good wettability by the zinc during the immersion of the sheet in the bath.
- this method will have to provide for controlling the oxygen content in the furnace within the range of 50 to 1000 ppm.
- a content that is too low will not make it possible to produce a layer of iron oxide sufficiently impervious to the diffusion of the alloying elements towards the extreme surface, and a content that is too high in oxygen will produce a layer of iron oxide that is too thick. , which can not be reduced during the cooling and transfer steps to the zinc bath.
- This oxygen content will preferably be in the range of 50 to 400 ppm.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
La présente invention se rapporte à un nouveau procédé de recuit et préparation en continu d'une bande en acier à haute résistance en vue de son revêtement au trempé à chaud dans un bain de métal liquide, de préférence une galvanisation ou un traitement dit de « galvannealing ».The present invention relates to a novel process for the continuous annealing and preparation of a high strength steel strip for hot dip coating in a bath of liquid metal, preferably a galvanization or a so-called galvannealing ".
Le domaine technique considéré ici est celui de la galvanisation par défilement continu, dans un bain de revêtement composé de zinc ou d'alliage de zinc, de bandes d'aciers fortement chargés en éléments d'alliage, plus particulièrement d'aciers HSS (high strength steels). Ces aciers spéciaux réputés difficiles à galvaniser sont par exemple des aciers pouvant contenir des teneurs en éléments d'alliage (aluminium, manganèse, silicium, chrome, etc.) allant jusqu'à 2 % ou au-delà, des aciers inoxydables, « dual phase », TRIP, TWIP (jusqu' à 25 % Mn et 3 % Al), etc. Ces bandes d'acier sont en général destinées à une découpe et mise en forme ultérieure par emboutissage, pliage, etc., en vue d'applications par exemple dans le secteur de l'automobile ou de la construction.The technical field considered here is that of galvanization by continuous scrolling, in a coating bath composed of zinc or zinc alloy, of steel strips heavily loaded with alloying elements, more particularly HSS steels ( high strength steels ). These special steels, which are known to be difficult to galvanize, are, for example, steels which may contain contents of alloying elements (aluminum, manganese, silicon, chromium, etc.) up to 2% or more, stainless steels, "dual phase ", TRIP, TWIP (up to 25% Mn and 3% Al), etc. These steel strips are generally intended for cutting and subsequent shaping by stamping, folding, etc., for applications for example in the automotive or construction sector.
Il est bien connu que certains aciers ne répondent pas bien à la galvanisation ou au traitement de galvannealing, compte tenu de leur réactivité superficielle spécifique. Le pouvoir de galvanisation dépend essentiellement de la bonne élimination des résidus d'huile de laminage et de la prévention d'une oxydation superficielle excessive avant immersion dans le bain de métal liquide. Ainsi, un manque de mouillabilité du zinc liquide sur des nuances d'aciers fortement chargées en éléments d'alliage peut être rencontré au cours du procédé de galvanisation en continu. Cette diminution de mouillage du zinc s'explique par la présence d'une couche d'oxydes sélectifs dans la couche externe de la surface de la bande (« extrême surface »). Ces oxydes sélectifs sont créés par la ségrégation des éléments d'alliage et leur oxydation par la vapeur d'eau, au cours du recuit continu précédent l'immersion dans le bain de zinc. La vapeur d'eau est générée à cet endroit par la réduction de l'oxyde de fer, toujours présent sur la tôle laminée à froid, par l'hydrogène contenu dans l'atmosphère des fours de recuit.It is well known that some steels do not respond well to galvanizing or galvannealing treatment, given their specific surface reactivity. The galvanizing power essentially depends on the proper removal of the rolling oil residues and the prevention of excessive surface oxidation prior to immersion in the liquid metal bath. Thus, a lack of wettability of liquid zinc on steel grades heavily loaded with alloying elements can be encountered during the continuous galvanizing process. This decrease in zinc wetting is explained by the presence of a layer of selective oxides in the outer layer of the surface of the strip ("extreme surface"). These selective oxides are created by the segregation of the alloying elements and their oxidation by water vapor, during the continuous annealing prior to immersion in the zinc bath. The water vapor is generated here by the reduction of the iron oxide, always present on the cold-rolled sheet, by the hydrogen contained in the atmosphere of the annealing furnaces.
Dès lors, on a cherché à supprimer l'oxydation sélective en mode externe ou à la faire migrer à l'intérieur de l'acier, à 1 ou 2 µm sous la couche externe de la surface, pour permettre de présenter au zinc liquide une couche de fer métallique pratiquement pur, indépendamment de la composition d'alliage et favorisant l'accrochage du revêtement de zinc ou d'alliage de zinc. Ce résultat peut être obtenu par différents procédés :
- augmentation du point de rosée pendant le maintien à haute température (par exemple
JP-A-2005/068493 - oxydation totale du fer pendant l'étape de chauffe, en augmentant par exemple le rapport air/gaz combustible dans les brûleurs du four à flammes directes, puis réduction en fer métallique pendant le maintien à haute température par l'hydrogène (par exemple
JP-A-2005/023348 JP-A-07 034210 BE-A-1 014 997 - pré-dépôt de fer ou de nickel (par exemple
JP-A-04 280925 JP-A-2005/105399
- increased dew point during high temperature maintenance (eg
JP-A-2005/068 493 - total oxidation of the iron during the heating step, for example by increasing the air / fuel gas ratio in the burners of the direct flame furnace, then reduction in metallic iron during the maintenance at high temperature by hydrogen (for example
JP-A-2005/023348 JP-A-07 034210 BE-A-1,014,997 - pre-deposition of iron or nickel (for example
JP-A-04 280925 JP-A-2005/105399
Ces procédés imposent généralement de travailler en atmosphère réductrice pour l'acier pendant la phase de maintien à haute température, nécessitant un bas point de rosée et une teneur élevée en hydrogène (jusqu'à 75 % du gaz d'atmosphère) qui est un gaz coûteux. Ils permettent tous d'améliorer la « galvanisabilité » des aciers de haute résistance avec une efficacité significative mais cependant insuffisante, surtout dans le cas de certains aciers contenant par exemple des teneurs importantes en silicium (environ 1,5 % en poids). Par ailleurs, les procédés nécessitant un pré-dépôt présentent des coûts très élevés.These processes generally require working in a reducing atmosphere for the steel during the high temperature holding phase, requiring a low dew point and a high hydrogen content (up to 75% of the atmospheric gas) which is a gas. expensive. They all make it possible to improve the "galvanizability" of high strength steels with a significant but insufficient efficiency, especially in the case of certain steels containing, for example, significant silicon contents (approximately 1.5% by weight). Moreover, the processes requiring a pre-deposit have very high costs.
Selon un exemple de procédé déjà connu dans l'état de l'art, une installation de recuit et préparation d'une bande d'acier pour la galvanisation comprend typiquement, dans le sens de progression de la bande :
- une première section de (pré)chauffage assurant le chauffage de la bande jusqu'à une température permettant la formation d'un film d'oxyde d'épaisseur adéquate (environ 50 nanomètres) pour sa réduction ultérieure ; cette section se trouve sous une atmosphère rendue oxydante par adjonction d'air ou d'oxygène, par exemple sous la forme d'un mélange air/gaz combustible dans le cas d'un four à flamme directe ou d'air seul dans le cas d'un four radiant ;
- une deuxième section de recuit, séparée de la section de chauffage par un sas conventionnel, où la bande est maintenue à la haute température de recuit et qui se trouve sous une atmosphère inerte en surpression, pour y empêcher l'entrée des gaz de la section de chauffe ;
- une troisième section de réduction, également séparée de la deuxième section par un sas conventionnel, sous une atmosphère en légère dépression par rapport à celle-ci mais en légère surpression par rapport à l'ambiante ; cette section est destinée à terminer le cycle de recuit (fin de la période de maintien), à refroidir la bande et éventuellement à effectuer un survieillissement avant de la transférer dans le bain de métal liquide via une trompe d'immersion ; dans cette zone, la couche d'oxyde créée dans la première section est idéalement réduite complètement par une atmosphère hydrogène/gaz inerte à très bas point de rosée.
- a first (pre) heating section heating the strip to a temperature enabling the formation of an oxide film of adequate thickness (about 50 nanometers) for its subsequent reduction; this section is under an oxidizing atmosphere by adding air or oxygen, for example in the form of an air / fuel gas mixture in the case of a direct flame furnace or of air alone in the case of a radiant furnace;
- a second annealing section, separated from the heating section by a conventional airlock, where the strip is held at the high annealing temperature and which is under an inert overpressure atmosphere, to prevent entry of gases from the section heating;
- a third reduction section, also separated from the second section by a conventional airlock, in an atmosphere slightly depressed relative thereto but slightly overpressure relative to the ambient; this section is intended to complete the annealing cycle (end of the holding period), to cool the band and possibly to perform a survival before transferring it into the bath of liquid metal via an immersion tube; in this zone, the oxide layer created in the first section is ideally reduced completely by a hydrogen / inert gas atmosphere with a very low dew point.
Bien entendu, on connaît aussi des fours de recuit plus simples ou plus complexes, comprenant typiquement entre une et quatre sections distinctes, pour réaliser les fonctions respectives de (pré-)chauffe, maintien, refroidissement, survieillissement, etc.Of course, there are also known simpler or more complex annealing furnaces, typically comprising between one and four distinct sections, to perform the respective functions of (pre-) heating, maintenance, cooling, over-aging, etc.
La présente invention vise à fournir une solution qui permette de s'affranchir des inconvénients de l'état de la technique.The present invention aims to provide a solution that makes it possible to overcome the disadvantages of the state of the art.
En particulier, l'invention vise à fournir un procédé de recuit et préparation en vue d'une galvanisation d'aciers de haute résistance qui soit plus économique, cette dernière étant effectuée avec ou sans traitement thermique d'accompagnement de type galvannealing.In particular, the invention aims to provide a method of annealing and preparation for galvanizing high strength steels that is more economical, the latter being carried out with or without accompanying heat treatment galvannealing type.
L'invention a encore pour but de permettre une préparation d'aciers de haute résistance pour la galvanisation, qui soient exempts de défauts de fragilité.The invention also aims to allow a preparation of high strength steels for galvanizing, which are free of brittleness defects.
En particulier, l'invention a pour but de fournir un procédé de recuit sous atmosphère confinée exempte d'hydrogène ajouté.In particular, the invention aims to provide a confined atmosphere annealing process free of added hydrogen.
Un but complémentaire de l'invention est d'empêcher l'oxydation sélective d'éléments d'alliage dans la couche la plus externe de la surface de la bande au cours de l'étape d'oxydation totale lors du recuit continu précédent le refroidissement et l'immersion dans le bain de zinc.An additional object of the invention is to prevent the selective oxidation of alloying elements in the outermost layer of the surface of the strip during the total oxidation step during continuous annealing prior to cooling. and immersion in the zinc bath.
La présente invention se rapporte à un procédé de recuit et de préparation en continu d'une bande en acier de haute résistance, en vue de son revêtement au trempé à chaud dans un bain de métal liquide, selon lequel on traite ladite bande d'acier dans au moins deux sections, comprenant successivement, si l'on considère le sens de progression de la bande :
- une section dite de chauffe et de maintien, dans laquelle est réalisé un chauffage de la bande suivi d'un maintien à une température donnée de recuit sous une atmosphère oxydante comprenant un mélange air (ou oxygène)/gaz non oxydant ou inerte, en vue de former sur la surface de la bande un fin film d'oxyde dont l'épaisseur, comprise de préférence entre 0,02 et 0,2 µm, est contrôlée, ledit chauffage de la bande étant effectué soit par flamme directe, soit par rayonnement ;
- une section dite de refroidissement et de transfert, dans laquelle, avant son transfert au bain de revêtement, la bande recuite au moins est refroidie et subit une réduction complète en fer métallique de l'oxyde de fer présent dans la couche d'oxyde formée dans la section de chauffe et de maintien, sous une atmosphère réductrice comprenant un mélange à basse teneur en hydrogène et gaz inerte, les deux dites sections étant séparées l'une de l'autre par un sas conventionnel ;
- a so-called heating and holding section, in which a heating of the strip is carried out followed by a maintenance at a given annealing temperature under an oxidizing atmosphere comprising an air (or oxygen) / non-oxidizing or inert gas mixture, with a view to forming on the surface of the strip a thin oxide film whose thickness, preferably between 0.02 and 0.2 μm, is controlled, said heating of the strip being carried out either by direct flame or by radiation ;
- a so-called cooling and transfer section, in which, before it is transferred to the coating bath, the at least one annealed strip is cooled and undergoes a complete reduction in metallic iron of the iron oxide present in the oxide layer formed in the heating and holding section, under a reducing atmosphere comprising a mixture of low hydrogen content and inert gas, the said two sections being separated from each other by a conventional airlock;
Il faut entendre par réduction complète de l'oxyde de fer, une réduction de celui-ci à au moins 98 %.It is meant by complete reduction of iron oxide, a reduction of it to at least 98%.
Avantageusement, on maintient la teneur en oxygène contrôlée dans la section de chauffe et de maintien entre 50 et 400 ppm.Advantageously, the controlled oxygen content is maintained in the heating and holding section between 50 and 400 ppm.
Selon une première modalité préférée de réalisation de l'invention, la séparation de l'atmosphère oxydante de l'atmosphère réductrice est réalisée par une surpression de l'atmosphère oxydante, pour que l'oxygène entraîné par la bande dans la zone de refroidissement et transfert à travers le sas, suite à cette surpression, réagisse complètement avec l'hydrogène contenu dans l'atmosphère de refroidissement en formant de la vapeur d'eau.According to a first preferred embodiment of the invention, the separation of the oxidizing atmosphere from the reducing atmosphere is carried out by an overpressure of the oxidizing atmosphere, so that the oxygen entrained by the strip in the cooling zone and transfer through the airlock, following this overpressure, react completely with the hydrogen contained in the cooling atmosphere by forming water vapor.
Selon une deuxième modalité préférée de réalisation de l'invention, on laisse réagir l'hydrogène, présent dans la section de refroidissement et transfert, entraîné dans le flux gazeux chaud dirigé vers l'amont, avec l'oxygène provenant de la section de chauffe et de maintien pour former de la vapeur d'eau. Dans ce cas, la section de refroidissement et transfert est maintenue en surpression par rapport à la section de chauffe et maintien. Comme le gaz en surpression ne peut s'échapper vers le bain de métal liquide, il remonte en effet vers la zone de chauffe et maintien.According to a second preferred embodiment of the invention, the hydrogen is allowed to react, present in the cooling and transfer section, entrained in the hot gas stream directed upstream, with oxygen from the heating and holding section to form water vapor. In this case, the cooling and transfer section is maintained in overpressure with respect to the heating and holding section. As the gas under pressure can not escape to the bath of liquid metal, it goes back to the heating and maintenance zone.
Selon l'invention, le contrôle du contenu en oxygène de la couche d'oxyde formée dans.la section de chauffe et de maintien est obtenu soit par modification du mélange gazeux contenant de l'air comburant alimentant des moyens de chauffage par flamme directe, soit par injection contrôlée du mélange air (ou oxygène)/gaz inerte dans le cas d'un chauffage par rayonnement ou induction.According to the invention, the control of the oxygen content of the oxide layer formed in the heating and holding section is obtained either by modifying the gaseous mixture containing combustion air supplying direct flame heating means, or by controlled injection of the air (or oxygen) / inert gas mixture in the case of radiation or induction heating.
De préférence, le gaz non oxydant ou inerte est l'azote ou l'argon.Preferably, the non-oxidizing or inert gas is nitrogen or argon.
Avantageusement, le métal liquide est le zinc ou un de ses alliages.Advantageously, the liquid metal is zinc or one of its alloys.
Toujours avantageusement, la zone de chauffe et maintien est dépourvue d'atmosphère réductrice.Still advantageously, the heating and maintenance zone is devoid of a reducing atmosphere.
De préférence, le procédé de revêtement au trempé à chaud est une galvanisation ou un traitement de galvannealing.Preferably, the hot dip coating process is a galvanization or a galvannealing treatment.
Toujours selon l'invention, l'atmosphère tant dans la section de chauffe et de maintien que dans la section de refroidissement et de transfert a un point de rosée inférieur ou égal à -10°C, de préférence à -20°C.Still according to the invention, the atmosphere both in the heating and holding section and in the cooling and transfer section has a dew point less than or equal to -10 ° C, preferably -20 ° C.
Selon une modalité opérationnelle préférée, l'on chauffe la bande à une température comprise entre 650°C et 1200°C, en ce compris la température de maintien.According to a preferred operational mode, the strip is heated to a temperature of between 650 ° C. and 1200 ° C., including the holding temperature.
Selon une autre modalité opérationnelle préférée, l'on refroidit ensuite la bande jusqu'à une température supérieure à 450°C, avec une vitesse de refroidissement comprise entre 10 et 100°C/s.According to another preferred operational mode, the band is then cooled down to a temperature above 450 ° C, with a cooling rate between 10 and 100 ° C / s.
Un procédé économique, proposé selon l'invention, vise à réaliser l'étape de recuit préparatoire à la galvanisation, sans ajout d'hydrogène, gaz qui est dix fois plus cher qu'un gaz plus commun tel que l'azote et qui est cause en outre de graves défauts de fragilité des aciers de résistance.An economical method, proposed according to the invention, aims to perform the annealing step preparatory to galvanization, without the addition of hydrogen gas which is ten times more expensive than a more common gas such as nitrogen and which is In addition, it causes serious fragility defects in resistance steels.
L'invention vise à obtenir une galvanisation parfaite pour toutes les nuances d'acier de résistance. Pour éviter l'oxydation des éléments d'alliage en extrême surface, il est proposé d'injecter un mélange air/azote dans le four pendant tout le cycle de (pré-) chauffage et de maintien de la tôle à haute température.The aim of the invention is to obtain perfect galvanization for all grades of resistance steel. To avoid oxidation of the alloy elements at the extreme surface, it is proposed to inject an air / nitrogen mixture into the oven during the entire cycle of (pre-) heating and holding the sheet at high temperature.
Ce procédé ne nécessite donc pas de séparation d'atmosphère dans toute la partie chauffe/maintien comme cela est le cas dans d'autres procédés (par exemple
L'oxygène contenu dans le mélange air/azote aura pour effet de créer dans la section de recuit deux réactions simultanées et compétitives :
- l'oxydation du fer par l'oxygène en extrême surface avec croissance de l'oxyde de fer par diffusion de fer en surface. Ainsi, tant qu'une fine couche d'oxyde de fer subsiste en surface de la tôle, les éléments d'alliage, à l'exception du manganèse, sont bloqués à l'interface acier/oxyde de fer ;
- la réduction subséquente de l'oxyde de fer par diffusion du carbone libre vers l'interface acier/oxyde de fer.
- the oxidation of iron by oxygen at the extreme surface with growth of iron oxide by diffusion of iron at the surface. Thus, as long as a thin layer of iron oxide remains on the surface of the sheet, the alloying elements, with the exception of manganese, are blocked at the steel / iron oxide interface;
- the subsequent reduction of iron oxide by diffusion of free carbon towards the steel / iron oxide interface.
Les éléments d'alliage participent également à la réduction de l'oxyde de fer lorsqu'ils migrent à l'interface acier/oxyde de fer.The alloying elements also contribute to the reduction of iron oxide when migrating at the steel / iron oxide interface.
L'atmosphère air/azote de la partie chauffe/maintien devra toutefois être séparée et partiellement isolée de l'atmosphère non oxydante des étapes de refroidissement et de transfert de la bande jusque dans le bain de zinc. Pour ce faire, l'atmosphère oxydante sera, de préférence, maintenue en surpression par rapport à l'atmosphère non oxydante de telle manière que l'oxygène entraîné par la tôle réagisse complètement avec l'hydrogène contenu dans l'atmosphère de la section de refroidissement.The air / nitrogen atmosphere of the heating / holding portion will, however, have to be separated and partially isolated from the non-oxidizing atmosphere of the cooling and transfer stages of the strip into the zinc bath. For this purpose, the oxidizing atmosphere will preferably be maintained at an excess pressure relative to the non-oxidizing atmosphere such that the oxygen entrained by the sheet reacts completely with the hydrogen contained in the atmosphere of the cooling.
Dans une telle configuration, un acier contenant entre autres 1,2 % d'aluminium sera par exemple chauffé et recuit jusqu'à une température de 800°C dans une atmosphère contenant 100 ppm d'oxygène dans de l'azote. A la fin du maintien qui dure une minute, la tôle est refroidie jusqu'à 500°C à une vitesse de 50°C/s dans une atmosphère contenant 4 % d'hydrogène et 0,1 % de vapeur d'eau, ce qui correspond à un point de rosée de -20°C. Cette tôle est ensuite introduite à la température de 470°C dans un bain de zinc, contenant 0, 2 % d'aluminium, qui est maintenu à 460°C. Après une immersion de 3 secondes, le revêtement est essoré de manière à garder une couche de zinc de 8 µm. Un tel dépôt de zinc est alors parfaitement mouillant et présente des qualités d'adhérence comparables à celle obtenue pour un acier à bas carbone ordinaire.In such a configuration, a steel containing, for example, 1.2% of aluminum will for example be heated and annealed to a temperature of 800 ° C. in an atmosphere containing 100 ppm of oxygen in nitrogen. At the end of the hold, which lasts one minute, the sheet is cooled to 500 ° C. at a rate of 50 ° C./s in an atmosphere containing 4% hydrogen and 0.1% water vapor. which corresponds to a dew point of -20 ° C. This sheet is then introduced at the temperature of 470 ° C. in a zinc bath, containing 0.2% of aluminum, which is maintained at 460 ° C. After immersion for 3 seconds, the coating is wrung out so as to keep an 8 μm zinc layer. Such a zinc deposit is then perfectly wetting and has adhesion qualities comparable to that obtained for ordinary low-carbon steel.
Pour citer un autre exemple, le même procédé pourra être appliqué sur un acier contenant entre autres 1,5 % de silicium. Dans ce cas toutefois, il faudra augmenter la teneur en oxygène pendant d'étape de chauffe /maintien à 300 ppm pour obtenir un résultat comparable. Cette augmentation de la teneur en oxygène est nécessaire car le silicium freine la diffusion du fer en assurant une barrière d'oxyde de silicium à l'interface acier / oxyde de fer.To give another example, the same process can be applied to a steel containing, for example, 1.5% silicon. In this case, however, it will be necessary to increase the oxygen content during the heating / holding step to 300 ppm to obtain a comparable result. This increase in oxygen content is necessary because silicon slows the diffusion of iron by providing a silicon oxide barrier at the steel / iron oxide interface.
Une autre manière de procéder est de laisser le flux habituel s'établir depuis le bain de zinc vers la section de chauffe et de laisser la très faible teneur en hydrogène (<0,5 %), contenue dans la section de transfert/refroidissement, réagir avec l'oxygène de la partie chauffe/maintien pour former de la vapeur d'eau. Un apport supplémentaire en oxygène, à la sortie de la section de maintien, pourra être fait pour neutraliser l'entrée d'hydrogène, les teneurs mises en oeuvre étant toujours situées très loin du domaine dangereux, c'est-à-dire explosif (4 % H2 dans l'air).Another way of proceeding is to let the usual flux settle from the zinc bath to the heating section and to leave the very low hydrogen content (<0.5%), contained in the transfer / cooling section, react with the oxygen of the heating / holding part to form water vapor. An additional supply of oxygen, at the outlet of the holding section, may be made to neutralize the hydrogen inlet, the contents used being always located very far from the dangerous, that is to say, explosive ( 4% H 2 in air).
Une teneur élevée en hydrogène n'est en effet pas nécessaire dans la section de refroidissement car le carbone de l'acier sera suffisant pour réduire la fine couche d'oxyde de fer créée dans la partie chauffe/maintien et le fer métallique ainsi préparé assurera une bonne mouillabilité par le zinc lors de l'immersion de la tôle dans le bain.A high hydrogen content is indeed not necessary in the cooling section because the carbon of the steel will be sufficient to reduce the thin layer of iron oxide created in the heating / holding part and the metal iron thus prepared will ensure a good wettability by the zinc during the immersion of the sheet in the bath.
Pour être efficace, ce procédé devra prévoir de contrôler la teneur en oxygène dans le four à l'intérieur de l'intervalle compris entre 50 et 1000 ppm. En effet une teneur trop faible ne permettra pas de réaliser une couche d'oxyde de fer suffisamment étanche à la diffusion des éléments d'alliage vers l'extrême surface et une teneur trop élevée en oxygène produira une couche d'oxyde de fer trop épaisse, qui ne pourra pas être réduite au cours des étapes de refroidissement et de transfert vers le bain de zinc. Cette teneur en oxygène sera de préférence située dans une fourchette de 50 à 400 ppm.To be effective, this method will have to provide for controlling the oxygen content in the furnace within the range of 50 to 1000 ppm. In fact, a content that is too low will not make it possible to produce a layer of iron oxide sufficiently impervious to the diffusion of the alloying elements towards the extreme surface, and a content that is too high in oxygen will produce a layer of iron oxide that is too thick. , which can not be reduced during the cooling and transfer steps to the zinc bath. This oxygen content will preferably be in the range of 50 to 400 ppm.
L'invention présente un certain nombre d'avantages, dont notamment le fait :
- qu'on procède à un ajout d'hydrogène beaucoup plus faible que dans l'état de la technique, voire nul, dans la zone de chauffe-maintien, ce qui constitue une importante économie d'exploitation et garantit l'obtention d'acier de haute résistance présentant moins de défauts de fragilité ;
- qu'on ne sépare plus la section de chauffe de la section de maintien à la température de recuit, ce qui permet d'économiser un sas ainsi que d'éviter éventuellement un dédoublement des équipements de contrôle de l'atmosphère gazeuse ;
- que ce procédé est beaucoup plus efficace que les procédés connus dans l'état dé la technique, du point de vue de l'adhérence du revêtement ou de la mouillabilité de la bande ;
- que l'atmosphère gazeuse utilisée est moins fragilisante pour l'équipement (par exemple les tubes radiants), notamment suite à la réduction de la teneur de celle-ci en hydrogène.
- Hydrogen addition is much lower than in the state of the art, or even zero, in the maintenance zone, which represents a significant operating saving and guarantees the obtaining of steel. high strength with fewer frailty defects;
- that the heating section of the holding section is no longer separated at the annealing temperature, which makes it possible to save an airlock and possibly to avoid duplication of the gaseous atmosphere control equipment;
- that this method is much more effective than the methods known in the state of the art, from the point of view of the adhesion of the coating or the wettability of the strip;
- that the gaseous atmosphere used is less fragile for the equipment (for example the radiant tubes), in particular following the reduction of the content thereof in hydrogen.
Claims (12)
- Method for continuously annealing and preparing a strip of high-strength steel in order to coat it by hot dipping in a bath of molten metal, according to which said steel strip is treated in at least two sections, comprising successively, if considered in the flow direction of the strip:- a "heating and temperature-maintenance" section, in which the strip is heated, then maintained at a given annealing temperature under oxidising atmosphere with an air (or oxygen)/non-oxidising or inert gas mixture, in order to form a thin oxide film on the surface of the strip, whose thickness, preferably between 0.02 and 0.2 µm, is controlled, said heating of the strip being achieved either by direct flame or by radiation;- a "cooling and transfer" section in which, before it is transferred to the coating bath, the annealed strip is at least cooled and undergoes complete reduction to metallic iron from the iron oxide present in the oxide layer formed in the heating and temperature-maintenance section, under reducing atmosphere with a mixture of low level of hydrogen and inert gas, both said sections being separated from each other by a conventional airlock;wherein the oxidising atmosphere is at least partially separated from the reducing atmosphere, wherein a controlled oxygen level is maintained between 50 and 1,000 ppm in the heating and temperature-maintenance section and wherein a controlled hydrogen level is maintained in the cooling and transfer section at a value lower than 4% and preferably lower than 0.5%.
- Method as in Claim 1, wherein the controlled oxygen level in the heating and temperature-maintenance section is maintained between 50 and 400 ppm.
- Method as in Claim 1 or 2, wherein the oxidising atmosphere is separated from the reducing atmosphere by over-pressurising the oxidising atmosphere so that the oxygen introduced by the strip through the airlock completely reacts with the hydrogen of the cooling atmosphere by forming water steam.
- Method as in Claim 1 or 2, wherein the hydrogen present in the cooling and transfer section, which is at a pressure higher than the heating and temperature-maintenance section and which is introduced into the gaseous flow directed upstream, is allowed to react with the oxygen coming from the heating and temperature-maintenance section so as to form water steam.
- Method as in any of the above claims, wherein the control of the oxygen content of the oxide layer formed in the heating and temperature-maintenance section is achieved either by modifying the gaseous mixture with combustion air feeding the direct-flame heating means, or by the controlled injection of the air (or oxygen/inert gas mixture in the case of radiation or induction heating.
- Method as in any of the above claims, wherein the non-oxidising or inert gas is nitrogen or argon.
- Method as in any of the above claims, wherein the molten metal is zinc or one of its alloys.
- Method as in Claim 1, wherein the heating and temperature-maintenance zone is free of any reducing atmosphere.
- Method as in Claim 1, wherein the hot-dip coating method is galvanisation or a galvannealing treatment.
- Method as in any of the above claims, wherein the atmosphere in the heating and temperature-maintenance section and in the cooling and transfer section has a dewpoint lower than or equal to -10°C and preferably to - 20°C.
- Method as in any of the above clams, wherein the strip is heated up to a temperature between 650°C and 1,200°C, which includes the maintenance temperature.
- Method as in Claim 1, wherein the strip is then cooled to a temperature higher than 450°C at a cooling speed between 10 and 100°C/s.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL07719191T PL1999287T3 (en) | 2006-03-29 | 2007-03-13 | Method for continuously annealing and preparing strip of high-strength steel for the purpose of hot-dip galvanizing it |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE2006/0201A BE1017086A3 (en) | 2006-03-29 | 2006-03-29 | PROCESS FOR THE RECLAIMING AND CONTINUOUS PREPARATION OF A HIGH STRENGTH STEEL BAND FOR ITS GALVANIZATION AT TEMPERATURE. |
PCT/BE2007/000026 WO2007109865A1 (en) | 2006-03-29 | 2007-03-13 | Method for continuously annealing and preparing strip of high-strength steel for the purpose of hot-dip galvanizing it |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1999287A1 EP1999287A1 (en) | 2008-12-10 |
EP1999287B1 true EP1999287B1 (en) | 2009-08-19 |
Family
ID=37012151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07719191A Not-in-force EP1999287B1 (en) | 2006-03-29 | 2007-03-13 | Method for continuously annealing and preparing strip of high-strength steel for the purpose of hot-dip galvanizing it |
Country Status (18)
Country | Link |
---|---|
US (1) | US8409667B2 (en) |
EP (1) | EP1999287B1 (en) |
JP (1) | JP5140660B2 (en) |
KR (1) | KR101406789B1 (en) |
CN (1) | CN101466860B (en) |
AT (1) | ATE440156T1 (en) |
AU (1) | AU2007231473B2 (en) |
BE (1) | BE1017086A3 (en) |
BR (1) | BRPI0709419A2 (en) |
CA (1) | CA2644459C (en) |
DE (1) | DE602007002064D1 (en) |
ES (1) | ES2331634T3 (en) |
MX (1) | MX2008012494A (en) |
PL (1) | PL1999287T3 (en) |
RU (1) | RU2426815C2 (en) |
UA (1) | UA92079C2 (en) |
WO (1) | WO2007109865A1 (en) |
ZA (1) | ZA200808424B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013105378B3 (en) * | 2013-05-24 | 2014-08-28 | Thyssenkrupp Steel Europe Ag | Process for the preparation of a hot-dip coated flat steel product and continuous furnace for a hot-dip coating machine |
CN105358719A (en) * | 2013-07-04 | 2016-02-24 | 安赛乐米塔尔研发有限公司 | Cold rolled steel sheet, method of manufacturing and vehicle |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5586024B2 (en) | 2007-05-02 | 2014-09-10 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ | Method for hot dip galvanizing of AHSS or UHSS strip material and such material |
FR2920439B1 (en) * | 2007-09-03 | 2009-11-13 | Siemens Vai Metals Tech Sas | METHOD AND DEVICE FOR THE CONTROLLED OXIDATION / REDUCTION OF THE SURFACE OF A CONTINUOUSLY STRAY STEEL BAND IN A RADIANT TUBE OVEN FOR ITS GALVANIZATION |
JP2010018874A (en) * | 2008-07-14 | 2010-01-28 | Kobe Steel Ltd | Hot-dip galvannealed steel sheet and production method thereof |
CN101812578B (en) * | 2009-02-25 | 2012-05-23 | 宝山钢铁股份有限公司 | Flexible strip processing line suitable for producing various high-strength steel |
DE102009018577B3 (en) * | 2009-04-23 | 2010-07-29 | Thyssenkrupp Steel Europe Ag | A process for hot dip coating a 2-35 wt.% Mn-containing flat steel product and flat steel product |
CN102121089A (en) * | 2011-01-28 | 2011-07-13 | 浙江永丰钢业有限公司 | Reduction annealing and heat plating process of band steel continuous heat plating rare earth aluminium zinc alloy |
DE102011102659A1 (en) * | 2011-05-27 | 2012-11-29 | ThermProTEC Asia UG (haftungsbeschränkt) | Method and device for pre-oxidizing metal strips |
DE102011051731B4 (en) | 2011-07-11 | 2013-01-24 | Thyssenkrupp Steel Europe Ag | Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer |
KR101360734B1 (en) * | 2011-12-28 | 2014-02-10 | 주식회사 포스코 | Galvanized steel sheet having excellent coatibility and coating adhesion and method for manufacturing the same |
EP2840161B1 (en) * | 2012-04-17 | 2018-09-12 | JFE Steel Corporation | Method for producing alloyed hot-dip galvanized steel sheet having excellent adhesion to plating and excellent sliding properties |
CN104379776B (en) * | 2012-06-13 | 2016-07-06 | 杰富意钢铁株式会社 | The manufacture device of the continuous annealing method of steel band, the continuous annealer of steel band, the manufacture method of molten zinc plating steel band and molten zinc plating steel band |
CN103726003B (en) * | 2013-12-20 | 2015-10-28 | 东北大学 | Pickling hot galvanizing method exempted from by a kind of hot rolled strip based on scale reduction |
RU2705846C2 (en) * | 2015-04-02 | 2019-11-12 | Кокрий Ментенанс Эт Энженьери С.А. | Reaction control method and device |
WO2017182833A1 (en) | 2016-04-19 | 2017-10-26 | Arcelormittal | Method for producing a metallic coated steel sheet |
CN106119477B (en) * | 2016-08-25 | 2018-07-10 | 华冠新型材料股份有限公司 | For the reducing atmosphere method for building up and continuous annealing process of continuous annealing process |
CN106435105B (en) * | 2016-12-01 | 2017-12-26 | 浙江东南金属薄板有限公司 | A kind of preparation method of galvanizing coil of strip |
CN107164624B (en) * | 2017-04-10 | 2020-02-21 | 首钢集团有限公司 | Method for controlling pockmark defects on surface of phosphorus-containing cold-rolled high-strength steel |
CN107254572B (en) * | 2017-06-01 | 2019-07-02 | 首钢集团有限公司 | A kind of cold-reduced silicon manganese dual-phase steel surface point defects controlling method |
WO2019171157A1 (en) * | 2018-03-09 | 2019-09-12 | Arcelormittal | A manufacturing process of press hardened parts with high productivity |
FR3095452A1 (en) * | 2019-04-29 | 2020-10-30 | Fives Stein | Dual Purpose Metal Strip Continuous Processing Line |
CN111850262B (en) * | 2020-06-22 | 2022-07-26 | 鞍钢蒂森克虏伯汽车钢有限公司 | Production method of ultra-low carbon baking hardening continuous hot-dip galvanized steel sheet |
CN111850263B (en) * | 2020-06-22 | 2022-07-26 | 鞍钢蒂森克虏伯汽车钢有限公司 | Production method for improving aging resistance of continuous hot-dip galvanizing baking hardened steel plate |
CN112143992A (en) * | 2020-10-23 | 2020-12-29 | 杭州创力科技服务有限公司 | Temperature-variable oxidation-reduction integrated pretreatment process and treatment device thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3966351A (en) * | 1974-05-15 | 1976-06-29 | Robert Stanley Sproule | Drag reduction system in shrouded turbo machine |
US3925579A (en) * | 1974-05-24 | 1975-12-09 | Armco Steel Corp | Method of coating low alloy steels |
JP3255765B2 (en) * | 1993-07-14 | 2002-02-12 | 川崎製鉄株式会社 | Method for producing high-strength hot-dip or alloyed hot-dip galvanized steel sheet |
CA2330010C (en) * | 1999-02-25 | 2008-11-18 | Kawasaki Steel Corporation | Steel sheets, hot-dipped steel sheets and alloyed hot-dipped steel sheets as well as method of producing the same |
BE1014997A3 (en) * | 2001-03-28 | 2004-08-03 | Ct Rech Metallurgiques Asbl | Continuous annealing of steel strip prior to galvanising using direct flame preheating to form an oxide film followed by full annealing and reduction stages to mature this oxide film |
JP4168667B2 (en) | 2002-05-30 | 2008-10-22 | Jfeスチール株式会社 | In-line annealing furnace for continuous hot dip galvanizing |
JP2004280925A (en) | 2003-03-14 | 2004-10-07 | Shinano Kenshi Co Ltd | Optical disk device |
JP4415579B2 (en) * | 2003-06-30 | 2010-02-17 | Jfeスチール株式会社 | Method for producing hot-dip galvanized steel sheet |
JP4321181B2 (en) | 2003-08-25 | 2009-08-26 | Jfeスチール株式会社 | Method for forming an overcoat insulating film containing no chromium |
JP4140962B2 (en) | 2003-10-02 | 2008-08-27 | 日新製鋼株式会社 | Manufacturing method of low yield ratio type high strength galvannealed steel sheet |
JP4254823B2 (en) * | 2006-08-30 | 2009-04-15 | カシオ計算機株式会社 | Reaction apparatus and electronic equipment |
US7792392B2 (en) * | 2006-12-09 | 2010-09-07 | University of Pittsburgh—of the Commonwealth System of Higher Education | Fiber optic gas sensor |
-
2006
- 2006-03-29 BE BE2006/0201A patent/BE1017086A3/en not_active IP Right Cessation
-
2007
- 2007-03-13 UA UAA200812701A patent/UA92079C2/en unknown
- 2007-03-13 JP JP2009501786A patent/JP5140660B2/en not_active Expired - Fee Related
- 2007-03-13 AU AU2007231473A patent/AU2007231473B2/en not_active Ceased
- 2007-03-13 MX MX2008012494A patent/MX2008012494A/en active IP Right Grant
- 2007-03-13 AT AT07719191T patent/ATE440156T1/en active
- 2007-03-13 DE DE602007002064T patent/DE602007002064D1/en active Active
- 2007-03-13 ES ES07719191T patent/ES2331634T3/en active Active
- 2007-03-13 WO PCT/BE2007/000026 patent/WO2007109865A1/en active Application Filing
- 2007-03-13 CA CA2644459A patent/CA2644459C/en not_active Expired - Fee Related
- 2007-03-13 RU RU2008142434/02A patent/RU2426815C2/en not_active IP Right Cessation
- 2007-03-13 KR KR1020087026118A patent/KR101406789B1/en not_active IP Right Cessation
- 2007-03-13 US US12/295,084 patent/US8409667B2/en not_active Expired - Fee Related
- 2007-03-13 PL PL07719191T patent/PL1999287T3/en unknown
- 2007-03-13 CN CN2007800112062A patent/CN101466860B/en not_active Expired - Fee Related
- 2007-03-13 EP EP07719191A patent/EP1999287B1/en not_active Not-in-force
- 2007-03-13 BR BRPI0709419-1A patent/BRPI0709419A2/en not_active Application Discontinuation
-
2008
- 2008-10-02 ZA ZA200808424A patent/ZA200808424B/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013105378B3 (en) * | 2013-05-24 | 2014-08-28 | Thyssenkrupp Steel Europe Ag | Process for the preparation of a hot-dip coated flat steel product and continuous furnace for a hot-dip coating machine |
CN105358719A (en) * | 2013-07-04 | 2016-02-24 | 安赛乐米塔尔研发有限公司 | Cold rolled steel sheet, method of manufacturing and vehicle |
Also Published As
Publication number | Publication date |
---|---|
BE1017086A3 (en) | 2008-02-05 |
ZA200808424B (en) | 2009-12-30 |
US8409667B2 (en) | 2013-04-02 |
CN101466860B (en) | 2013-05-22 |
JP5140660B2 (en) | 2013-02-06 |
PL1999287T3 (en) | 2010-01-29 |
ATE440156T1 (en) | 2009-09-15 |
CA2644459A1 (en) | 2007-10-04 |
CN101466860A (en) | 2009-06-24 |
AU2007231473B2 (en) | 2010-12-02 |
RU2008142434A (en) | 2010-05-10 |
ES2331634T3 (en) | 2010-01-11 |
BRPI0709419A2 (en) | 2011-07-12 |
RU2426815C2 (en) | 2011-08-20 |
WO2007109865A1 (en) | 2007-10-04 |
KR101406789B1 (en) | 2014-06-12 |
KR20080111507A (en) | 2008-12-23 |
MX2008012494A (en) | 2008-12-12 |
UA92079C2 (en) | 2010-09-27 |
CA2644459C (en) | 2013-11-12 |
AU2007231473A1 (en) | 2007-10-04 |
EP1999287A1 (en) | 2008-12-10 |
US20100062163A1 (en) | 2010-03-11 |
JP2009531538A (en) | 2009-09-03 |
DE602007002064D1 (en) | 2009-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1999287B1 (en) | Method for continuously annealing and preparing strip of high-strength steel for the purpose of hot-dip galvanizing it | |
EP3783116B1 (en) | Pre-coated sheets allowing the production of press-hardened and coated steel parts | |
EP2188399B2 (en) | Controlled method and device for oxidation/reduction of the surface of a steel strip running continuously through a radiant tube oven for galvanisation thereof | |
CA2584449C (en) | Hot-dip coating method in a zinc bath for strips of iron/carbon/manganese steel | |
US20130177780A1 (en) | Hot Dip Plated Steel Sheet Having Excellent Plating Adhesiveness and Method of Manufacturing the Same | |
KR20070093415A (en) | Method for hot dip coating a strip of heavy-duty steel | |
CA2715174C (en) | Method for coating a metal strip and equipment for implementing said method | |
RU2647419C2 (en) | Method of sheet steel annealing | |
BE1014997A3 (en) | Continuous annealing of steel strip prior to galvanising using direct flame preheating to form an oxide film followed by full annealing and reduction stages to mature this oxide film | |
FR2828888A1 (en) | METHOD FOR HOT GALVANIZATION OF HIGH STRENGTH STEEL METAL STRIPS | |
BE1011131A6 (en) | Method of coating a steel strip by hot-dip galvanising | |
WO2009027593A1 (en) | Method for operating a continuous annealing or galvanisation line for a metal strip | |
FR2626010A1 (en) | Steel sheet coated with zinc alloy and process for its manufacture | |
EP0985054B1 (en) | Method for continuous manufacture of a steel band for drawing with improved surface properties | |
FR2758571A1 (en) | Steel sheet coated with double layer of aluminium@ alloys | |
EP0698671A1 (en) | Method of hot dip aluminium coating of a steel strip, containing at least 0,1% of manganese, especially stainless and/or alloyed steel | |
WO2004038057A2 (en) | Method of treating sheet metal before galvanisation | |
BE892218A (en) | CONTINUOUS GALVANIZATION PROCESS OF STEEL STRIPS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080923 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602007002064 Country of ref document: DE Date of ref document: 20091001 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: CRONIN INTELLECTUAL PROPERTY |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2331634 Country of ref document: ES Kind code of ref document: T3 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20090819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090819 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091219 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090819 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090819 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090819 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 6370 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091221 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091119 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090819 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090819 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090819 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090819 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20100520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100331 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091120 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090819 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20110501 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20110501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100313 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100220 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20160321 Year of fee payment: 10 Ref country code: SK Payment date: 20160303 Year of fee payment: 10 Ref country code: ES Payment date: 20160310 Year of fee payment: 10 Ref country code: IT Payment date: 20160229 Year of fee payment: 10 Ref country code: TR Payment date: 20160303 Year of fee payment: 10 Ref country code: CZ Payment date: 20160302 Year of fee payment: 10 Ref country code: DE Payment date: 20160229 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20160323 Year of fee payment: 10 Ref country code: PL Payment date: 20160302 Year of fee payment: 10 Ref country code: AT Payment date: 20160323 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20160329 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602007002064 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170313 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170313 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 440156 Country of ref document: AT Kind code of ref document: T Effective date: 20170313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170314 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 6370 Country of ref document: SK Effective date: 20170313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170313 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171003 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170331 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170313 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170331 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170313 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20220217 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170313 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230331 |