JP3255765B2 - Method for producing high-strength hot-dip or alloyed hot-dip galvanized steel sheet - Google Patents

Method for producing high-strength hot-dip or alloyed hot-dip galvanized steel sheet

Info

Publication number
JP3255765B2
JP3255765B2 JP17409393A JP17409393A JP3255765B2 JP 3255765 B2 JP3255765 B2 JP 3255765B2 JP 17409393 A JP17409393 A JP 17409393A JP 17409393 A JP17409393 A JP 17409393A JP 3255765 B2 JP3255765 B2 JP 3255765B2
Authority
JP
Japan
Prior art keywords
hot
oxidation
steel sheet
dip
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17409393A
Other languages
Japanese (ja)
Other versions
JPH0734210A (en
Inventor
野 一 章 京
岡 志 典 宮
戸 延 行 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP17409393A priority Critical patent/JP3255765B2/en
Publication of JPH0734210A publication Critical patent/JPH0734210A/en
Application granted granted Critical
Publication of JP3255765B2 publication Critical patent/JP3255765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は主として自動車材料用の
溶融亜鉛めっき高張力鋼板、合金化溶融亜鉛めっき高張
力鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hot-dip galvanized high-strength steel sheet and a galvannealed high-strength steel sheet for automotive materials.

【0002】[0002]

【従来の技術】合金化溶融亜鉛めっき鋼板は優れた塗装
後耐食性を有しているために、自動車車体の内板、外
板、構造部品などの自動車材料に広く使用されている。
合金化溶融亜鉛めっきの製法としては各種あるが、コス
ト、生産能率のためにライン内焼鈍方式(材質を得るた
めの焼鈍と表面のFe酸化物を還元する焼鈍を兼ねて焼
鈍し、その後溶融亜鉛めっきし、加熱により合金化処理
する)が主流である(鉄鋼便覧第3版第6巻421p
(1982)丸善)。ライン内焼鈍方式の中でも初期の
ゼンジミア方式ではバーナーのフレームの直火による酸
化により油などのクリーニングを行い、その後還元焼鈍
するもの(いわゆる酸化炉)であったが、Feが酸化さ
れること、昇温速度が遅くライン長さが長大化するなど
の問題があった。そのため、現在ではゼンジミア方式は
廃れ、無酸化炉方式、さらには電解脱脂方式が主流とな
っている。すなわち油などの除去の表面清浄化を工夫
し、鋼板表面のFeを酸化させない方式となっている。
これらの方法で通常の鋼板を何の問題もなく、溶融亜鉛
めっき、合金化溶融亜鉛めっきしている。
2. Description of the Related Art Alloyed hot-dip galvanized steel sheets are widely used as automotive materials such as inner and outer plates of automobile bodies and structural parts because of their excellent corrosion resistance after painting.
There are various methods for producing galvannealed alloys. In order to reduce cost and production efficiency, an in-line annealing method (annealing to obtain the material and annealing to reduce the Fe oxide on the surface, followed by hot dip galvanizing) Plating and alloying by heating) are the mainstream (Steel Handbook, 3rd edition, Vol. 6, 421p)
(1982) Maruzen). Among the in-line annealing methods, in the early Sendzimir method, oil and the like were cleaned by oxidizing the flame of the burner by direct flame, and then reduction annealing was performed (a so-called oxidation furnace). There was a problem that the heating speed was slow and the line length was long. For this reason, the Sendzimir method has been abolished at present, and the non-oxidizing furnace method and the electrolytic degreasing method have become mainstream. In other words, the surface is cleaned to remove oil and the like, and the Fe on the steel sheet surface is not oxidized.
With these methods, a normal steel sheet is hot-dip galvanized or alloyed hot-dip galvanized without any problem.

【0003】一方、自動車車体の軽量化のために、鉄鋼
材料の高張力化が要求されている。特にCAFEで自動
車の燃費の向上が要求されたため、そのニーズは強いも
のがある。従って合金化溶融亜鉛めっき高張力鋼板が必
要となった。高張力化する場合、固溶強化や組織強化な
どの方法があるが、いずれにしろ、Fe以外の添加元素
が必要である。
[0003] On the other hand, in order to reduce the weight of an automobile body, it is required to increase the tensile strength of a steel material. In particular, CAFE has demanded an improvement in fuel efficiency of automobiles, and there is a strong need for that. Therefore, an alloyed hot-dip galvanized high-strength steel sheet was required. To increase the tension, there are methods such as solid solution strengthening and structure strengthening, but in any case, additional elements other than Fe are required.

【0004】[0004]

【発明が解決しようとする課題】強化元素としては、
C,Si,Mn,P,Cr,Ni,Mo,Ti,Nbな
どがあるが、これらの内Si,Mn,Crは著しくめっ
き性を阻害することを知見した。すなわち、Si,M
n,Crを1種以上を合計で1.0%以上添加した45
kg/m2 以上の高張力鋼板の合金化溶融Znめっき鋼
板を製造しようとした場合、溶融亜鉛めっき時に亜鉛め
っきが全面を覆わず、不めっきが発生した。
The reinforcing elements include:
There are C, Si, Mn, P, Cr, Ni, Mo, Ti, Nb, etc. Among them, it has been found that Si, Mn, Cr significantly impairs the plating property. That is, Si, M
n or Cr is added at least 1.0% in total, and
When an alloyed hot-dip galvanized steel sheet of a high-strength steel sheet of kg / m 2 or more was to be manufactured, the hot-dip galvanizing did not cover the entire surface, and non-plating occurred.

【0005】本発明は上記の不めっきを抑制した特にS
i,Mn,Crなどの添加元素を1種以上合計で1.0
wt%以上含有する45kg/m2 以上の溶融亜鉛めっ
き鋼板または合金化溶融亜鉛めっき高張力鋼板の製造方
法を提供することを目的とするものである。
According to the present invention, the above-mentioned non-plating is suppressed, in particular, S
One or more additional elements such as i, Mn, and Cr
An object of the present invention is to provide a method for producing a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized high-strength steel sheet of 45 kg / m 2 or more containing not less than wt%.

【0006】[0006]

【課題を解決するための手段】上記の問題を解決するた
めの従来技術としては、特開昭55−122865号
(無酸化炉方式(NOF)において鋼板表面酸化膜を4
00−10000Åとする)がある。しかしながらこの
方法では見体的方法としてNOFを使用しているため
に、効果が安定しないという致命的な欠陥があった。こ
の技術をさらに発展させたものとして特開平4−202
630号、同202632号、同202633号、同2
02631号、同254531号、同254532号な
ど多数の改良技術がある。これらの技術は特開昭55−
122865号では効果が安定して得られないことか
ら、例えば、酸化速度や還元量を規定したり、酸化帯で
の酸化膜厚を実測し、これから酸化条件や還元条件を制
御して効果を安定化させようとしたものである。しか
し、我々の検討結果からはこれら技術でもなお効果は不
安定であった。これらの従来技術はいずれもNOF型の
加熱方式によるものである。
As a prior art for solving the above-mentioned problem, Japanese Patent Application Laid-Open No. 55-122865 (4) discloses a method of depositing an oxide film on the surface of a steel sheet in an oxidationless furnace system (NOF).
00-10000 °). However, this method has a fatal defect that the effect is not stable because NOF is used as an apparent method. Japanese Patent Laid-Open No. 4-202 is a further development of this technology.
No. 630, No. 202632, No. 202633, No. 2
There are a number of improved technologies such as No. 02631, No. 254531, and No. 254532. These techniques are disclosed in
Since the effect cannot be obtained stably in 122865, for example, the oxidation rate and the reduction amount are specified, the oxide film thickness in the oxidation zone is actually measured, and the oxidation condition and the reduction condition are controlled from here on to stabilize the effect. It was intended to be. However, the results of our studies showed that the effects were still unstable with these technologies. These prior arts are all based on a NOF type heating system.

【0007】加熱方式としてNOFでなくオールラジア
ント方式の炉を有するCGLが近年開発されており、そ
の場合、NOFでは無く、別の酸化方法が必要となる。
そこで、本発明者らは、NOFを使用した酸化方式では
何故に効果が安定しないかの原因追求を行い、NOF以
外の安定した効果を得られる酸化方法を検討した結果、
本発明に至ったものである。
[0007] As a heating method, a CGL having an all-radiant furnace instead of a NOF has recently been developed. In this case, a different oxidation method is required instead of the NOF.
Then, the present inventors pursued the cause of why the effect is not stable in the oxidation method using NOF, and as a result of examining an oxidation method capable of obtaining a stable effect other than NOF,
This has led to the present invention.

【0008】すなわち、本発明は、焼鈍炉を有する連続
溶融亜鉛めっき設備を用いて、溶融亜鉛めっき鋼板また
は合金化溶融亜鉛めっき鋼板を製造するに際し、焼鈍炉
の予熱帯(プリヒートセクション)にて、その雰囲気
を、O 2 :0.1%以上を含有し、かつ、H 2 O:1%
以上および/またはCO 2 :0.1%以上を含有するO
2 −N 2 系ガスとし、板温400〜650℃に加熱して
Feを酸化させた後、通常の還元焼鈍、溶融Znめっ
き、合金化処理を行うことを特徴とする高張力溶融また
は合金化溶融亜鉛めっき鋼板の製造方法を提供するもの
である。
That is, the present invention relates to a method for producing a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet by using a continuous hot-dip galvanizing equipment having an annealing furnace . Its atmosphere
Contains O 2 : 0.1% or more, and H 2 O: 1%
And / or O containing 0.1% or more of CO 2 :
High tension melting or alloying characterized by performing a normal reduction annealing, hot-dip Zn plating, and alloying treatment after oxidizing Fe by heating to a plate temperature of 400 to 650 ° C. using a 2- N 2 -based gas . It is intended to provide a method for producing a hot-dip galvanized steel sheet.

【0009】ここで、酸化のための加熱方式は、オール
ラジアント式、誘導加熱式、ガスジェット式、通電加熱
式、電気炉式のいずれかが好ましい。
[0009] Here, the heating method for oxidation are all radiant, inductive heating, gas jet, energization heating, or electric furnace type is preferred.

【0010】[0010]

【作用】以下に本発明をさらに詳細に説明する。NOF
においてめっき性の改善効果が不安定であるのは、酸化
量が変動してしまうためである。そのため、酸化量不足
や過多、また、その後の還元焼鈍時の還元不足によるF
e酸化物による不めっきや還元過多によるSi,Mnな
どの添加元素の表面濃化による不めっきが発生する。
The present invention will be described below in more detail. NOF
The reason why the improvement effect of the plating property is unstable is that the oxidation amount fluctuates. For this reason, the amount of oxidation is insufficient or excessive, and F
Non-plating occurs due to non-plating due to the e-oxide or surface concentration of additional elements such as Si and Mn due to excessive reduction.

【0011】そこで、雰囲気中の組成が酸化量に及ぼす
影響を調査した。その結果を図1に示す。図1から明ら
かなように、O2 濃度0.1%以下では、O2 濃度によ
り酸化量の変動が著しく大きいことがわかる。NOFの
操業条件である空気比(空気/燃料の理論比率)が1.
0未満ではO2 濃度は理論上0%であるが、実際には
0.01〜0.08%程度のO2 濃度が測定される。ま
た空気比1.0〜1.1では0.01〜0.5%程度の
2 濃度が測定される。すなわち、NOFによる酸化で
は、空気比が通常0.90〜0.99で操業され、前述
の従来技術0.9〜1.1の範囲では酸化量が本質的に
変動しやすい。
Therefore, the effect of the composition in the atmosphere on the amount of oxidation was investigated. The result is shown in FIG. As is clear from FIG. 1, when the O 2 concentration is 0.1% or less, the fluctuation of the oxidation amount is remarkably large depending on the O 2 concentration. The air ratio (the theoretical ratio of air / fuel), which is the operating condition of NOF, is 1.
If it is less than 0, the O 2 concentration is theoretically 0%, but actually, an O 2 concentration of about 0.01 to 0.08% is measured. At an air ratio of 1.0 to 1.1, an O 2 concentration of about 0.01 to 0.5% is measured. That is, in the oxidation by NOF, the operation is usually performed at an air ratio of 0.90 to 0.99, and the oxidation amount is liable to fluctuate essentially in the range of the above-mentioned conventional technology of 0.9 to 1.1.

【0012】NOFはバーナーの炎やその排ガスにより
加熱するものであり、鋼板表面の巾方向、長手方向とも
雰囲気的に均一でなく、このことも酸化量変動を大きく
し、効果の不安定化の原因となる。さらに、供給される
燃料ガス中のO2 濃度も0.1%程度の変動は十分おこ
りうることであり、これも酸化量変動を招く。そもそも
0.1%以下のO2 量を正確に測定することすら容易と
は言えない。
The NOF is heated by the burner flame or its exhaust gas, and is not atmospherically uniform in the width direction and the longitudinal direction of the surface of the steel sheet. This also increases the fluctuation of the amount of oxidation and destabilizes the effect. Cause. Furthermore, the O 2 concentration in the supplied fuel gas can sufficiently fluctuate by about 0.1%, which also causes a fluctuation in the oxidation amount. In the first place, it is not easy to accurately measure an O 2 amount of 0.1% or less.

【0013】一方、O2 濃度0.1%以上であれば、O
2 濃度により酸化量はほとんど変化しない。この理由
は、O2 濃度0.1%以下ではO2 供給律速であるが、
0.1%以上であれば十分にO2 が供給されるために、
2 濃度が酸化速度に影響を与えなくなるためである。
従ってO2 濃度0.1〜100%が本発明の雰囲気の範
囲となる。
On the other hand, if the O 2 concentration is 0.1% or more,
(2) The amount of oxidation hardly changes with the concentration. The reason is that the O 2 supply is rate-determined when the O 2 concentration is 0.1% or less,
If it is 0.1% or more, O 2 is sufficiently supplied.
This is because the O 2 concentration does not affect the oxidation rate.
Therefore, the O 2 concentration of 0.1 to 100% is the range of the atmosphere of the present invention.

【0014】酸素濃度が低い場合には、焼鈍される鋼板
の種類により、元々表面に存在する水や酸化膜の影響を
受けたり、あるいはラインスピードの変動によりO2
供給律速になることがあるので、好ましくはO2 濃度
0.5%以上が良い。さらに、好ましくは1.0%〜2
1%が良い。21%以下では無料の空気が使用できる
が、21%以上では安いけれども相対的には高価なO2
を供給しなでればならないためである。
When the oxygen concentration is low, depending on the type of the steel sheet to be annealed, the supply of O 2 may be limited by the influence of water or an oxide film originally present on the surface or by fluctuations in the line speed. Therefore, the O 2 concentration is preferably 0.5% or more. Furthermore, preferably 1.0% to 2%
1% is good. Free air can be used below 21%, but cheaper but relatively expensive O 2 above 21%
Must be supplied.

【0015】もちろん、NOFを使用することは前述し
たように不適当であり、本発明においてはオールラジア
ントチューブ方式の焼鈍炉のプリヒートセクション(予
熱帯)にて雰囲気制御して酸化する。その温度は400
〜650℃が適当であり、650℃を超えるとFeOが
生成し、酸化膜の密着性が著しく劣化する。400℃未
満では、連続炉方式では十分な酸化膜量が得られない。
好ましくは500〜600℃が良い。
Of course, the use of NOF is unsuitable as described above, and in the present invention, oxidation is performed by controlling the atmosphere in a preheating section (pre-tropical zone) of an all-radiant tube type annealing furnace. The temperature is 400
650 ° C. is appropriate. If the temperature exceeds 650 ° C., FeO is generated, and the adhesion of the oxide film is significantly deteriorated. If the temperature is lower than 400 ° C., a sufficient amount of the oxide film cannot be obtained by the continuous furnace method.
Preferably, 500 to 600 ° C is good.

【0016】その後の還元焼鈍溶融亜鉛めっき、合金化
は通常の条件でよく、還元焼鈍は例えばH2 濃度2〜5
0%、露点−10〜−50℃、焼鈍温度700〜950
℃である。溶融亜鉛めっき条件は例えばAl濃度0.1
2〜0.2%、浴温450〜500℃、侵入板温400
〜600℃である。合金化条件は例えば温度400℃〜
600℃である。
[0016] subsequent reduction annealing galvanizing, alloying may under normal conditions, the reduction annealing such as H 2 concentration 2-5
0%, dew point -10 to -50 ° C, annealing temperature 700 to 950
° C. The hot-dip galvanizing conditions are, for example, Al concentration 0.1
2-0.2%, bath temperature 450-500 ° C, penetration plate temperature 400
600600 ° C. Alloying conditions are, for example, a temperature of 400 ° C.
600 ° C.

【0017】上述のプリヒートセクションにてO2 存在
下で酸化処理を行う場合、バーナーを使用したり、燃焼
廃ガスを使用することが考えられる。しかし、その場
合、NOFと同じような不安定化がおこる。これはO2
を供給してO2 濃度を0.1%以上に高くしてもNOF
よりは改善されるがおこることがあり、その原因として
燃料中の不純物(NやS)とCO,H2 などの還元性ガ
スの影響がある。COやH2 などの還元性ガスはO2
反応することにより、O2 とFeとの反応のバランスを
くずすためと思われる。
When performing the oxidation treatment in the presence of O 2 in the above-mentioned preheat section, it is conceivable to use a burner or use a combustion waste gas. However, in that case, instability similar to NOF occurs. This is O 2
NOF even if O 2 concentration is increased to 0.1% or more
However, there are cases in which the effect is caused by impurities (N and S) in the fuel and reducing gases such as CO and H 2 . Reducing gas such as CO or H 2 by reacting with O 2, it is believed to be due to imbalance of the reaction between O 2 and Fe.

【0018】図2にO2 1%存在下での露点とCOの影
響を示す。露点が低い場合にはCOの影響を受け、酸化
量が著しく少なくなっている。露点が高い場合にはCO
の影響を受けない。またCOが無い場合には露点の影響
を受けない。従来の酸化炉やNOFの雰囲気中にはC
O,H2 ,露点(H2 O),CO2 ,O2 が含有されて
いるため、O2 濃度だけでなく、CO,H2 ,H2 O,
CO2 の影響まで受けるため酸化量が極めて制御しにく
くなっていると言える。
FIG. 2 shows the influence of dew point and CO in the presence of 1% of O 2 . When the dew point is low, the amount of oxidation is significantly reduced due to the influence of CO. CO when dew point is high
Not affected by When there is no CO, it is not affected by the dew point. C in a conventional oxidation furnace or NOF atmosphere
Since it contains O, H 2 , dew point (H 2 O), CO 2 , and O 2 , not only O 2 concentration but also CO, H 2 , H 2 O,
It can be said that the amount of oxidation is extremely difficult to control because it is affected by CO 2 .

【0019】そこで本発明では、バーナー、NOFやそ
の排ガスは使用せず、CO,H2 Oを含まない雰囲気と
することが好ましい。また、燃料ガス中に含有される不
純物の窒素化合物やイオウ化合物は解媒作用とその被毒
作用があり、Feの酸化を阻害したり、著しく促進した
りする作用があるため、制御不能となるので不適当であ
る。
Therefore, in the present invention, it is preferable that the burner, NOF and its exhaust gas are not used, and the atmosphere is free from CO and H 2 O. Further, nitrogen compounds and sulfur compounds as impurities contained in the fuel gas have a decomposing action and a poisoning action, and have an action of inhibiting or remarkably accelerating the oxidation of Fe, so that control becomes impossible. It is inappropriate.

【0020】ゼンジミアタイプの酸化炉ではバーナーの
フレームによる油の燃焼除去であるため、上記のCO,
2 あるいはN化合物,S化合物の影響があり、酸化量
は制御できない。実際、酸化量問題で駆遂された方法で
ある。実際、バーナーを使用した場合、酸化量の再現性
は著しく不良であった。
In the Sendzimir-type oxidizing furnace, oil is burned and removed by a burner frame.
The amount of oxidation cannot be controlled due to the influence of H 2 or N compounds and S compounds. In fact, it is a method that has been pursued on the issue of oxidation. In fact, when a burner was used, the reproducibility of the oxidation amount was extremely poor.

【0021】従って雰囲気はO2 −N2 系のみのガスと
することが好ましい。ただし不活性ガスであるAr,大
気中に含まれる程度の微量のCO2 やH2 Oは無関係で
あり、含んでいでもさしつかえない。
Therefore, it is preferable that the atmosphere be a gas of only O 2 -N 2 system. However, Ar, which is an inert gas, and a small amount of CO 2 or H 2 O contained in the atmosphere are irrelevant and may be contained.

【0022】このように、本発明の酸化処理は従来の酸
化と異なり、バーナーやフレーム、廃ガスを使用しない
のでCO,H2 ,N化合物,S化合物の影響を受けない
ため、安定した酸化量が得られる。
As described above, unlike the conventional oxidation, the oxidation treatment of the present invention does not use a burner, a flame, and waste gas, and is not affected by CO, H 2 , N compounds, and S compounds. Is obtained.

【0023】一方ではバーナーやフレームを使用しない
ため、揮発成分は蒸発し、ある程度熱分解もするが、酸
化炉の技術思想である油の燃焼除去作用は無い。従っ
て、前処理として電解脱脂などの脱脂が必要であり、ま
た酸洗による活性化も酸化の安定化のために好ましい。
On the other hand, since a burner or a flame is not used, volatile components evaporate and are thermally decomposed to some extent, but there is no effect of burning and removing oil which is a technical idea of an oxidation furnace. Therefore, degreasing such as electrolytic degreasing is required as pretreatment, and activation by pickling is also preferable for stabilizing oxidation.

【0024】雰囲気としては実質的にO2 −N2 系が必
要であるので、従来のようなバーナーやフレーム、廃ガ
スは使用しない方が良い。従ってオールラジアント型の
加熱方式、通電加熱方式、誘導加熱方式、電気炉方式の
いずれかが適切である。特に、加熱速度が早い点から誘
導加熱方式が最も優れ、コストの点からはオールラジア
ント型が優れている。
Since the atmosphere substantially requires an O 2 —N 2 system, it is better not to use a conventional burner, a frame, or waste gas. Therefore, any of an all-radiant heating method, an electric heating method, an induction heating method, and an electric furnace method is appropriate. In particular, the induction heating method is the best because the heating rate is fast, and the all-radiant type is excellent from the viewpoint of cost.

【0025】また、O2 −N2 系の雰囲気中にH2 Oや
CO2 を少量添加すると、酸化量はほとんど変わらない
が、酸化膜の密着性が向上する傾向があるため、本発明
においては、O 2 −N 2 系ガスは2 を1%以上、好
ましくは2%以上、より好ましくは5%以上および/ま
たはCO2 0.1%以上好ましくは2%以上含有す
Further, when the O 2 -N 2 system by adding a small amount of H 2 O and CO 2 in the atmosphere, but the oxidation amount hardly changes, since there is a tendency to improve the adhesion of the oxide film, the present invention
In, O 2 -N 2 system gas H 2 O 1% or more, good
Preferably 2% or more, more preferably 5% or more and / or
Other CO 2 0.1% or more, preferably to contain more than 2%
You .

【0026】本法による酸化により、通常は酸化膜の密
着性は問題無いが、Si,Mn添加量ががなり多いハイ
ラン材の場合、酸化膜の密着性劣化による表面濃化防止
能力の低下、酸化物の剥離によるラインでの欠陥発生が
問題になることがある。この場合には酸化温度の低減や
2 O,CO2 の添加が有効である。
By the oxidation according to the present method, there is usually no problem in the adhesion of the oxide film. However, in the case of a high-lane material containing a large amount of Si and Mn, the ability to prevent the surface concentration from being reduced due to the deterioration of the adhesion of the oxide film. Occurrence of defects in the line due to oxide peeling may be a problem. In this case, reduction of the oxidation temperature and addition of H 2 O and CO 2 are effective.

【0027】本法の酸化は雰囲気中にてただ単に板温を
保持すれば良く、保持時間としては瞬時〜5秒程度が適
当である。なお、酸化量は温度によってほぼ決定され、
時間の影響は上記範囲では誤差範囲である。これは酸化
膜を経由する拡散律速になっているためである。
The oxidation in the present method may be carried out simply by maintaining the sheet temperature in an atmosphere, and a suitable holding time is about instantaneously to about 5 seconds. In addition, the oxidation amount is almost determined by the temperature,
The influence of time is an error range in the above range. This is because diffusion is controlled by an oxide film.

【0028】酸化量は鋼種によっても影響されるが40
0〜650℃ではほぼOとして200〜700mg/m
2 である。Si,Mn添加量が多い場合には酸化温度を
高くし、酸化量を多くして表面濃化防止能力を強くする
必要があり、鋼成分により設定すれば良い。Si,Mn
などの合金元素が多いほど酸化されにくく還元されやす
い傾向があるため、還元条件はほとんど変更する必要が
無く、その後の還元焼鈍は通常のN2 −H2 雰囲気下で
行えば良い。
The amount of oxidation is affected by the type of steel.
200 to 700 mg / m as almost O at 0 to 650 ° C
2 When the addition amount of Si and Mn is large, it is necessary to increase the oxidation temperature and increase the oxidation amount to enhance the ability to prevent surface concentration, and may be set according to the steel component. Si, Mn
Since there is a tendency that the more the alloying element is, the more difficult it is to be oxidized and reduced, the reduction conditions hardly need to be changed, and the subsequent reduction annealing may be performed in a normal N 2 -H 2 atmosphere.

【0029】上述したように、本発明は、酸化温度を変
更して酸化量を変えることのみによりほぼ全ての鋼種に
対応することができ、酸化温度を管理すれば安定した効
果が得られる。なお、Si,Mnの添加量が合計で2.
7%以上、Si0.7%以上となると大きな表面濃化抑
制効果を有してはいるが、完全には表面濃化を抑制でき
なくなる。その場合には亜鉛浴温の高温化やAl濃度の
低下、侵入板温の上昇を併用すると不めっき抑制には効
果的である。
As described above, the present invention can be applied to almost all types of steels only by changing the oxidation temperature to change the oxidation amount, and a stable effect can be obtained by controlling the oxidation temperature. The total amount of Si and Mn added is 2.
When the content is 7% or more and Si is 0.7% or more, although a large surface concentration suppressing effect is obtained, the surface concentration cannot be completely suppressed. In this case, it is effective to suppress the non-plating when the zinc bath temperature is increased, the Al concentration is decreased, and the penetration plate temperature is increased.

【0030】なお、本発明における酸化量(mg/
2 )は蛍光X線にてOを定量化したものであり、Fe
酸化物皮膜量は約3.6倍になる。
In the present invention, the amount of oxidation (mg /
m 2 ) is a value obtained by quantifying O by fluorescent X-ray,
The amount of oxide film increases about 3.6 times.

【0031】[0031]

【実施例】以下に本発明を実施例に基づいて具体的に説
明する。 (実施例)表1に示す成分の高張力鋼板に、同じく表1
に示す酸化処理を施し、次いで還元焼鈍、溶融亜鉛めっ
き、合金化処理を行った。その結果を表面濃化およびめ
っき性で評価し、あわせて表1に示す。 (1)表面濃化 めっき性に特に有害なSiとMnの表面濃化はGDSに
より下記の通り評価した。 ○=表面濃化なし〜著しく抑制 △=表面濃化抑制効果あり ×=表面濃化抑制効果なし (2)めっき性 めっき性は目視により下記のとおり評価した。 ○=不めっきなし △=不めっきわずかにあり(侵入板温、浴温などにより
改善可能) ×=不めっき(めっき条件では改善不可)
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. (Example) A high-strength steel sheet having the components shown in Table 1
Then, reduction annealing, hot-dip galvanizing, and alloying treatment were performed. The results were evaluated in terms of surface concentration and plating properties, and are shown in Table 1. (1) Surface Concentration The surface concentration of Si and Mn, which are particularly harmful to plating properties, was evaluated by GDS as follows. == No surface thickening-significantly suppressed △ = Surface thickening inhibitory effect × = No surface thickening inhibitory effect (2) Plating properties Plating properties were visually evaluated as follows. ○ = No plating △ = Slightly non-plating (can be improved by penetration plate temperature, bath temperature, etc.) × = Unplated (cannot be improved under plating conditions)

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】従来のNOFや酸化炉では酸化量制御が
困難である。その原因であるO2 濃度を特定し、また酸
化量の著しい変動原因であるCO,H2 などの還元性ガ
スと燃料ガス中のイオウ化合物と窒素化合物を排除する
ことにより、安定した酸化量が得られる。その結果、そ
の後の還元焼鈍時のSiやMnの表面濃化を抑制でき、
安定しためっき性を確保できる。
According to the conventional NOF or oxidation furnace, it is difficult to control the amount of oxidation. By specifying the O 2 concentration, which is the cause, and eliminating reductive gases such as CO and H 2 and the sulfur compounds and nitrogen compounds in the fuel gas, which are the causes of the remarkable fluctuation of the oxidation amount, a stable oxidation amount can be obtained. can get. As a result, the surface concentration of Si and Mn during the subsequent reduction annealing can be suppressed,
Stable plating properties can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 酸化量に及ぼす雰囲気中酸素濃度の影響を示
す図である。
FIG. 1 is a diagram showing the effect of oxygen concentration in the atmosphere on the amount of oxidation.

【図2】 酸化量に及ぼす雰囲気中露点とCO濃度の影
響を示す図である。
FIG. 2 is a diagram showing the influence of an atmospheric dew point and a CO concentration on an oxidation amount.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−51714(JP,A) 特開 平4−202631(JP,A) 特開 平3−134147(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 2/00 - 2/40 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-51714 (JP, A) JP-A-4-2022631 (JP, A) JP-A-3-134147 (JP, A) (58) Field (Int. Cl. 7 , DB name) C23C 2/00-2/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】焼鈍炉を有する連続溶融亜鉛めっき設備を
用いて、溶融亜鉛めっき鋼板または合金化溶融亜鉛めっ
き鋼板を製造するに際し、焼鈍炉の予熱帯(プリヒート
セクション)にて、その雰囲気を、O 2 :0.1%以上
を含有し、かつ、H 2 O:1%以上および/またはCO
2 :0.1%以上を含有するO 2 −N 2 系ガスとし、
温400〜650℃に加熱してFeを酸化させた後、通
常の還元焼鈍、溶融亜鉛めっき、必要に応じ合金化処理
を行うことを特徴とする高張力溶融または合金化溶融亜
鉛めっき鋼板の製造方法。
When producing a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet using a continuous hot-dip galvanizing equipment having an annealing furnace , the atmosphere in a pre-tropical zone (preheat section) of the annealing furnace is O 2 : 0.1% or more
And H 2 O: 1% or more and / or CO
2 : O 2 -N 2 -based gas containing 0.1% or more , heated to a plate temperature of 400 to 650 ° C. to oxidize Fe, followed by ordinary reduction annealing, hot-dip galvanizing, and alloying if necessary A method for producing a high tension hot-dip or alloyed hot-dip galvanized steel sheet, comprising performing a treatment.
【請求項2】酸化のための加熱方式がオールラジアント
式、誘導加熱式、ガスジェット式、通電加熱式、電気炉
式のいずれかである請求項1に記載の高張力溶融または
合金化溶融亜鉛めっき鋼板の製造方法。
2. The high-tension molten or alloyed molten zinc according to claim 1, wherein the heating system for oxidation is any of an all-radiant system, an induction heating system, a gas jet system, an electric heating system, and an electric furnace system. Manufacturing method of plated steel sheet.
JP17409393A 1993-07-14 1993-07-14 Method for producing high-strength hot-dip or alloyed hot-dip galvanized steel sheet Expired - Lifetime JP3255765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17409393A JP3255765B2 (en) 1993-07-14 1993-07-14 Method for producing high-strength hot-dip or alloyed hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17409393A JP3255765B2 (en) 1993-07-14 1993-07-14 Method for producing high-strength hot-dip or alloyed hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JPH0734210A JPH0734210A (en) 1995-02-03
JP3255765B2 true JP3255765B2 (en) 2002-02-12

Family

ID=15972536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17409393A Expired - Lifetime JP3255765B2 (en) 1993-07-14 1993-07-14 Method for producing high-strength hot-dip or alloyed hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP3255765B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288550A (en) 2000-01-31 2001-10-19 Kobe Steel Ltd Galvanized steel sheet
BE1014997A3 (en) * 2001-03-28 2004-08-03 Ct Rech Metallurgiques Asbl Continuous annealing of steel strip prior to galvanising using direct flame preheating to form an oxide film followed by full annealing and reduction stages to mature this oxide film
EP1587966B1 (en) 2003-01-15 2017-05-17 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
EP1829983B1 (en) 2004-12-21 2016-04-13 Kabushiki Kaisha Kobe Seiko Sho Method and facility for hot dip zinc plating
BE1017086A3 (en) * 2006-03-29 2008-02-05 Ct Rech Metallurgiques Asbl PROCESS FOR THE RECLAIMING AND CONTINUOUS PREPARATION OF A HIGH STRENGTH STEEL BAND FOR ITS GALVANIZATION AT TEMPERATURE.
JP5586024B2 (en) * 2007-05-02 2014-09-10 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ Method for hot dip galvanizing of AHSS or UHSS strip material and such material
JP5354156B2 (en) * 2008-09-03 2013-11-27 Jfeスチール株式会社 Method for producing galvannealed steel sheet
JP5966528B2 (en) 2011-06-07 2016-08-10 Jfeスチール株式会社 High strength hot-dip galvanized steel sheet with excellent plating adhesion and method for producing the same
WO2013157146A1 (en) 2012-04-17 2013-10-24 Jfeスチール株式会社 Method for producing alloyed hot-dip galvanized steel sheet having excellent adhesion to plating and excellent sliding properties
JP5920249B2 (en) 2013-03-05 2016-05-18 Jfeスチール株式会社 High strength hot-dip galvanized steel sheet with excellent plating adhesion and method for producing the same
DE102013105378B3 (en) * 2013-05-24 2014-08-28 Thyssenkrupp Steel Europe Ag Process for the preparation of a hot-dip coated flat steel product and continuous furnace for a hot-dip coating machine
US10138530B2 (en) 2013-12-13 2018-11-27 Jfe Steel Corporation Method for producing high-strength galvannealed steel sheets
JP6137002B2 (en) * 2014-03-17 2017-05-31 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
KR101889795B1 (en) 2014-09-08 2018-08-20 제이에프이 스틸 가부시키가이샤 Method and facility for producing high-strength galvanized steel sheets
JP6237937B2 (en) 2016-03-11 2017-11-29 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet
JP6323628B1 (en) 2016-10-25 2018-05-16 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JPH0734210A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
JP3255765B2 (en) Method for producing high-strength hot-dip or alloyed hot-dip galvanized steel sheet
EP2171117B1 (en) Process for manufacturing a galvanized or a galvannealed steel sheet by dff regulation
CA2701091C (en) Process for manufacturing a galvannealed steel sheet by dff regulation
JP5648741B2 (en) Steel sheet provided with hot-dip galvanized layer excellent in plating wettability and plating adhesion and its manufacturing method
JP5648755B2 (en) Method for producing hot-dip galvanized steel sheet
JP2016084543A (en) Hot-dip plating steel sheet excellent in plating adhesion and method for manufacturing the same
KR100786052B1 (en) High tensile strength hot dip plated steel sheet and method for production thereof
KR20050092113A (en) High-strength hot-dip galvanized steel sheet and method for producing the same
WO2014073520A1 (en) Alloyed hot-dip galvanized steel sheet and method for manufacturing same
JP3415191B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet
KR20140131203A (en) Method for manufacturing high-strength hot-dip zinc surface quality, plating adhesion and superior weldability galvanized steel sheet
JP2587725B2 (en) Method for producing P-containing high tensile alloyed hot-dip galvanized steel sheet
JP4816068B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating adhesion
JP3870891B2 (en) High strength cold-rolled steel sheet
WO2013042356A1 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance after coating
JPH09176815A (en) High strength hot dip galvanized steel sheet excellent in plating adhesion
KR20140123921A (en) Method for manufacturing high strength galvanized steel sheet having excellent surface property and coating adhesion
JP7401857B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JP2001262303A (en) Method for producing alloyed galvanized steel sheet and galvannealed steel sheet excellent in hot dip metal coated property
WO2021006131A1 (en) Methods respectively for manufacturing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
WO2023182524A1 (en) Method for producing high-strength hot dipped galvanized steel sheet
KR100627477B1 (en) High strength hot dip zinc plated steel sheet with excellent coating adhesion and method for manufacturing the same
KR100685034B1 (en) Method for manufacturing high strength galvannealed steel sheet
JP5103759B2 (en) Hot-dip galvanized steel sheet and method for producing galvannealed steel sheet
JP2001335909A (en) Method for producing galvanized steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 12

EXPY Cancellation because of completion of term