KR100685034B1 - Method for manufacturing high strength galvannealed steel sheet - Google Patents

Method for manufacturing high strength galvannealed steel sheet Download PDF

Info

Publication number
KR100685034B1
KR100685034B1 KR1020050075381A KR20050075381A KR100685034B1 KR 100685034 B1 KR100685034 B1 KR 100685034B1 KR 1020050075381 A KR1020050075381 A KR 1020050075381A KR 20050075381 A KR20050075381 A KR 20050075381A KR 100685034 B1 KR100685034 B1 KR 100685034B1
Authority
KR
South Korea
Prior art keywords
steel sheet
plating
high strength
alloying
steel
Prior art date
Application number
KR1020050075381A
Other languages
Korean (ko)
Inventor
김종상
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020050075381A priority Critical patent/KR100685034B1/en
Application granted granted Critical
Publication of KR100685034B1 publication Critical patent/KR100685034B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Abstract

A method for manufacturing a high strength galvannealed steel sheet, which can prevents transformation of residual austenite and can improve powdering resistance when performing alloying treatment on a steel sheet containing components that are hardly plated, is provided. In a method for manufacturing a high strength galvannealed steel sheet comprising one or more of 0.01 to 3.0 wt.% of Si, 0.1 to 3.0 wt.% of Mn and 0.1 to 3.0 wt.% of Al, the method comprises leading a steel sheet comprising a wustite-based iron oxide layer with a thickness of 0.1 to 1 mum and a porosity of 5 to 30% formed in a surface layer thereof into a hot-dip galvanizing bath at a temperature of 500 to 550 deg.C to galvanize the steel sheet; and alloying the galvanized steel sheet at a temperature of 460 to 500 deg.C. The hot-dip galvanizing bath has a composition comprising 0.10 to 0.135 wt.% of Al and the balance of Zn and other inevitable impurities.

Description

고강도 합금화 용융아연도금강판의 제조방법{METHOD FOR MANUFACTURING HIGH STRENGTH GALVANNEALED STEEL SHEET}Manufacturing method of high strength alloyed hot-dip galvanized steel sheet {METHOD FOR MANUFACTURING HIGH STRENGTH GALVANNEALED STEEL SHEET}

일본 공개특허공보 1980-122865Japanese Laid-Open Patent Publication 1980-122865

일본 공개특허공보 1992-027057Japanese Laid-Open Patent Publication 1992-027057

일본 공개특허공보 1994-172953Japanese Laid-Open Patent Publication 1994-172953

일본 공개특허공보 2001-226742Japanese Laid-Open Patent Publication 2001-226742

한국 특허출원번호 2004-0113084Korean Patent Application No. 2004-0113084

한국 특허출원번호 2004-0113085YKorean Patent Application No. 2004-0113085Y

본 발명은 난도금성 성분을 포함하는 고강도 합금화 용융아연도금강판의 제조방법에 관한 것으로, 보다 상세하게는 합금화처리온도를 낮추어 재질특성을 확보하면서 내파우더링성이 개선되는 합금화 용융아연도금강판의 제조방법에 관한 것이다. The present invention relates to a method for manufacturing a high strength alloyed hot-dip galvanized steel sheet containing a non-plating component, and more particularly, to a method for manufacturing an alloyed hot-dip galvanized steel sheet which improves powdering resistance while securing material properties by lowering alloying temperature. It is about.

최근 지구환경보전을 위한 과제로서 연비규제가 강화되면서 자동차 차체의 경 량화가 적극적으로 행해지고 있다. 그 대책의 하나로서 강판의 고강도화에 의한 자동차 소재의 무게 감소가 효과적이다. 고강도 자동차 소재로는 석출강화강, 소부경화강, 고용강화강, 변태강화강 등이 있다. 고강도강에서도 고용강화강 특히, 변태강화강은 도금특성이 좋지 않다. Recently, as fuel economy regulations are tightened as a task for global environmental preservation, automobile body weight has been actively reduced. As one of the countermeasures, it is effective to reduce the weight of the automobile material by increasing the strength of the steel sheet. High-strength automotive materials include precipitation hardening steel, shobu hardening steel, employment hardening steel, and transformation hardening steel. Even in high strength steels, solid solution hardened steels, especially transformation hardened steels, have poor plating properties.

고용강화강은 Si, Mn, P, Cr 등의 고용원소가 침입 또는 치환되어 스트레인 필드(Strain Field)를 형성하는 강화기구에 의해 고강도를 달성하는 강이다. Solid solution hardened steel is a steel which achieves high strength by a reinforcing mechanism in which a solid solution such as Si, Mn, P, Cr, or the like penetrates or is substituted to form a strain field.

변태강화강에는 이상조직 강(Dual Phase Steel, 이하 간단히 DP라고도 표기)이나 변태유기소성(Transformation Induced Plasticity, 이하 간단히 TRIP이라고도 표기)강 등이 있다. 이들 변태강화강을 신고강도강 (Advance High Strength Steel: AHSS)이라고도 한다. DP강은 연질의 페라이트내에 경질의 마르텐사이트가 미세 균질하게 분산되어 고강도를 확보하는 강종이다. TRIP강은 미세 균질하게 분산된 잔류오스테나이트를 상온에서 가공하면 마르텐사이트 변태를 일으키며 고강도 고연성을 확보하는 강종이다. DP, TRIP강에는 통상 난도금 성분인 Mn, Si의 함량이 높다. Transformed reinforced steels include dual phase steel (hereinafter simply referred to as DP) and transformation induced plasticity (hereinafter also referred to as TRIP). These metamorphic reinforced steels are also called Advance High Strength Steel (AHSS). DP steel is a steel grade in which hard martensite is finely and uniformly dispersed in soft ferrite to secure high strength. TRIP steel is a type of steel that secures high strength and ductility by causing martensite transformation when micro homogeneously dispersed residual austenite is processed at room temperature. DP and TRIP steels usually have a high content of Mn and Si, which are hard plating components.

고강도 강에는 난도금 성분인 Si, Mn, Al 등이 첨가되는데, 이들 난도금 성분은 표면에 농화하여 용융아연과의 젖음성이 좋지 않은 것들이다. 특히, Si의 경우 강중에 0.1중량%이상 함유시에는 열간압연과정 및 연속소둔 열처리공정중 Si이 강판표면으로 확산되어 농도가 모재(bulk) 보다 10~100배정도 높게 된다. 이와 같이 결정입계나 입내에 농화된 실리콘은 로내 분위기중의 극미량 수분이나 불순물과 반 응하여 SiO2산화물 피막을 형성하므로 용융아연 도금공정에서 용융아연과의 젖음성(wettability)을 크게 저하시킨다. 그 결과 부착성 확보가 곤란하게 되어 미도금 현상이 다발하게 되거나, 용융도금이 되더라도 도금부착성을 크게 열화시켜 가공시 도금박리가 발생하며 합금화 열처리시 합금화가 크게 지연되는 문제점이 있다. The high-strength steels include Si, Mn, and Al, which are non-plating components, which are concentrated on the surface and have poor wettability with molten zinc. Particularly, in the case of Si, when 0.1 wt% or more is contained in the steel, Si is diffused to the surface of the steel sheet during the hot rolling process and the continuous annealing heat treatment process, so that the concentration is about 10 to 100 times higher than that of the bulk material. As such, silicon concentrated in the grain boundary or in the mouth forms a SiO 2 oxide film in response to the trace amount of moisture or impurities in the furnace atmosphere, thereby greatly reducing wettability with molten zinc in the molten zinc plating process. As a result, it is difficult to secure the adhesion, so the unplated phenomenon is frequently caused, or even when the plating is hot, the plating adhesion is greatly deteriorated and plating peeling occurs during processing, and alloying is greatly delayed during the alloying heat treatment.

난도금 성분에 의한 용융아연도금 밀착성을 개선하기 위한 방법으로는 (1) 도금욕 성분관리, (2) 선도금 기술, (3) 산화환원법 등이 알려져 있다. As a method for improving the hot-dip galvanizing adhesion by the non-plating components, (1) plating bath component management, (2) lead gold technology, (3) redox method, and the like are known.

(1) 도금욕 성분관리(1) Plating bath ingredient management

이 기술은 강판에 잔존하는 SiO2산화물 등을 도금욕에서 환원하여 산화피막으로 인한 용융도금 젖음성의 저하를 방지하는 것이다. 즉, 도금욕의 Al첨가량을 0.10~0.20중량%의 수준에서 0.21~0.25중량% 수준으로 높게 관리하는 것이다. 이것에 의해 소지철과 도금층 계면에 Zn-Fe-Al-Si계 및 Fe-Al-Si계 합금층의 생성량을 증가시켜 합금원소의 산화층을 환원시키는 효과에 의해 산화피막으로 인한 용융도금의 젖음성 저하를 방지하는 것이다. 그러나, 도금욕내 알루미늄의 증가는 미니스팡글 강판의 제조시 도금욕에 불가피하게 불순물로 첨가되는 Pb와 공존시 입계부식이 발생하기 용이하기 때문에 경시 도금박리가 발생할 가능성이 높다. 또한 도금욕내 알루미늄농도의 증가는 도금욕내 상부드로스 발생량을 증가시키고, 합금화 반응을 크게 지연시키는 문제점이 있다. This technique reduces SiO 2 oxides and the like remaining in the steel sheet in the plating bath to prevent deterioration of the hot dip of wet plating due to the oxide film. That is, the amount of Al added in the plating bath is managed to a high level of 0.21 to 0.25% by weight at the level of 0.10 to 0.20% by weight. This increases the amount of Zn-Fe-Al-Si-based and Fe-Al-Si-based alloy layers formed at the interface between the base iron and the plating layer, thereby reducing the wettability of the molten plating due to the oxide film. To prevent it. However, the increase in aluminum in the plating bath is likely to cause plating peeling over time since grain boundary corrosion occurs easily when co-existing with Pb, which is inevitably added to the plating bath during the manufacture of the mini-spangle steel sheet. In addition, the increase in the aluminum concentration in the plating bath increases the amount of upper dross generated in the plating bath, and there is a problem of significantly delaying the alloying reaction.

(2) 선도금 기술(2) leading technology

용융도금 전에 Fe, Ni, 산화철피막 등의 다양한 합금원소계의 무전해 또는 전기도금에 의한 선도금(pre-coating)을 실시하여 용융아연층과의 젖음성을 확보하는 방법이다 이는 고온 소둔에 의해서 소지철계면에 합금원소가 농화되어도 예비도금층 하부에 농화됨으로써 소둔과정 또는 가열과정시 분위기중 수분과의 반응을 차단하는 것이다. 이 때문에 실리콘의 산화가 방지되므로 도금부착성 및 합금화처리성이 크게 향상된다. 그러나, 강판표면에 선도금하는 방법을 통상 전기도금방식으로 실시하기 때문에 소지철의 요철이 큰 열연산세강판을 도금소재로 하는 경우, 짧은 도금공정에 의해서 요철부에 도금부착량의 편차가 발생한다. 즉, 요철부는 평활한 도금층 표면보다 양극과의 간격차이가 있기 때문으로 볼록부는 평활한 표면보다 도금부착량이 많게 되나, 오목부분은 도금부착량이 적게 되거나 또는 전혀 도금이 되지 않는 문제점이 발생할 가능성이 있다. 이를 방지하기 위해서 전기도금공정을 길게 하거나, 감속작업을 행하는 방법이 있으나, 볼록부에서의 과도금이 발생하므로 바람직하지 않다. 특히 이와 같이 선도금하는 원소는 경도가 크고 연성이 부족한 원소로서 도금부착량이 큰 경우, 가공시 도금박리가 발생하는 문제가 있다. 또한 전처리 공정에서 선도금을 전기도금방식으로 실시할 경우, 설비가 복잡하고 제조원가도 높기 때문에 경제적으로도 바람직하지 않다. It is a method to secure wettability with the hot dip zinc layer by pre-coating electroless plating or electroplating of various alloy elements such as Fe, Ni, and iron oxide films before hot dip plating. Even if the alloying element is concentrated on the iron interface, it is concentrated under the preplating layer to block the reaction with moisture in the atmosphere during annealing or heating. For this reason, since the oxidation of silicon is prevented, plating adhesion and alloying treatment property are improved significantly. However, since the method of lead plating on the surface of the steel sheet is usually performed by electroplating, when the hot-calculated fine steel sheet having large unevenness of base iron is used as the plating material, a short plating process causes variations in the amount of plating deposition on the uneven portion. That is, since the uneven portion has a gap difference from the anode than the smooth plating layer surface, the convex portion has more plating adhesion than the smooth surface, but the concave portion may have less plating adhesion or no plating at all. . In order to prevent this, there is a method of lengthening the electroplating process or performing a deceleration operation, but it is not preferable because overplating occurs in the convex portion. In particular, the lead metal in this way has a problem that plating peeling occurs during processing when the plating adhesion amount is large as an element having a high hardness and insufficient ductility. In addition, when the leading gold is electroplated in the pretreatment process, it is not economically preferable because of the complicated equipment and high manufacturing cost.

(3) 산화환원법(3) redox method

일반적으로 냉간압연후 강판표면에는 약 0.05~0.1㎛ 얇은 산화피막이 잔존되어 있다. 이러한 얇은 산화피막은 소둔공정중에서 완전히 환원되기 때문에 강중 Si이나 Mn이 표면으로 농화되는 것을 차단하지 못하게 되어 도금부착성이 현저히 떨어지게 된다. 따라서, 소둔로를 산화대와 환원대로 구분하고, 산화대는 직화로 방식을 채택하여 직화로에서 과잉의 공기를 투입하여 산화피막을 의도적으로 형성하고 환원대에서는 환원분위기로 산화피막을 환원하여 Si등의 표면농화를 억제하는 산화환원법에 대한 연구가 활발히 진행되고 있다. 산화환원법과 관련된 선행기술로는 일본 공개특허공보 1980-122865호, 1992-27057호, 1994-172953호, 2001-226742호 등이 있다.Generally, about 0.05 to 0.1 탆 thin oxide film remains on the surface of the steel sheet after cold rolling. Since the thin oxide film is completely reduced during the annealing process, the Si and Mn in the steel cannot be prevented from being concentrated on the surface, thereby significantly reducing the plating adhesion. Therefore, the annealing furnace is divided into the oxidizing zone and the reducing zone, and the oxidizing zone adopts the direct furnace method to intentionally form an oxide film by injecting excess air from the direct furnace, and in the reduction zone, the oxide film is reduced with the reducing atmosphere, such as Si. Research on the redox method that suppresses surface thickening is actively progressing. Prior arts related to the redox method include Japanese Patent Application Laid-Open Nos. 1980-122865, 1992-27057, 1994-172953, 2001-226742, and the like.

일본 공개특허공보 1980-122865호는 난도금재의 강판에 산화막의 두께를 0.04~1㎛로 산화시킨 후 수소를 함유하는 분위기중에서 소둔하고 용융아연도금하는 기술이다. 이 기술은 철의 산화막에 의해 Si의 표면농화를 억제하여 도금밀착성을 확보하고 있다. Japanese Laid-Open Patent Publication No. 1980-122865 is a technique of oxidizing a thickness of an oxide film to 0.04 to 1 탆 on a steel plate of a non-plating material, followed by annealing in an atmosphere containing hydrogen and hot dip galvanizing. This technique ensures plating adhesion by suppressing the surface concentration of Si by the iron oxide film.

일본 공개특허공보 1992-276057호와 1994-172953호에서는 상기 일본 공개특허공보 1980-122865호에서는 철의 산화막의 환원시간의 조절이 실제 불가능하다고 주장하고 있다. 따라서, 환원시간이 길어지면 Si의 표면농화를 일으킬 수 있고 환원시간이 짤아지면 강판표면에 철의 산화막이 잔존하여 결과적으로 도금밀착성의 불량하다고 문제를 지적하고 있다. Japanese Unexamined Patent Publication Nos. 1992-276057 and 1994-172953 insist that Japanese Unexamined Patent Application Publication No. 1980-122865 claims that it is practically impossible to control the reduction time of an oxide film of iron. Therefore, it has been pointed out that a long reduction time can cause the surface concentration of Si, and when the reduction time is shortened, an iron oxide film remains on the surface of the steel sheet, resulting in poor plating adhesion.

이를 해결하기 위한 방안으로, 일본 공개특허공보 1992-276057호에서는 Si의 함량이 0.2%이상의 함유하는 강판을 연소공기비 0.9~1.2의 직화로에서 산화후 환원로에서 산화막을 0.05㎛이하로 환원후 Mn을 0.01~2%, Al을 0.01~2%, 나머지 Zn의 아연도금욕에서 용융도금처리함으로써 잔존하는 산화막의 환원을 욕중 Mn, Al에 의해 행하는 기술을 제안하고 있다. In order to solve this problem, Japanese Laid-Open Patent Publication No. 1992-276057 discloses that a steel sheet containing 0.2% or more of Si is reduced to 0.05 μm or less in a reduction furnace after oxidation in a direct combustion furnace having a combustion air ratio of 0.9 to 1.2. To reduce the residual oxide film by Mn and Al in the bath by performing a melt plating process on a zinc plating bath of 0.01 to 2%, Al to 0.01 to 2%, and remaining Zn.

또한, 일본 공개특허공보 1994-172953호에서는 Si의 함유량이 0.2~2.0%로 되는 고강도 강판을 연소공기비 0.9~1.2의 직화로에서 산화후 환원대에서 철산화막의 두께를 0.02-0.2㎛로 잔존하도록 환원시킨 후, Al 0~10%, Mn 1~10% 함유하고, 나머지 Zn의 아연도금욕에서 용융도금처리할 때 진동을 부여하여 잔존하는 산화막을 박리 제거하는 기술을 제안하고 있다. In addition, Japanese Patent Application Laid-Open No. 1994-172953 discloses a high-strength steel sheet having a Si content of 0.2 to 2.0% so that the thickness of the iron oxide film remains 0.02-0.2 μm in a reduction zone after oxidation in a direct combustion furnace having a combustion air ratio of 0.9 to 1.2. After reduction, Al 0-10% and Mn 1-10% are contained, and a technique of applying a vibration when performing a hot plating process in the zinc plating bath of the remaining Zn to peel off and remove the remaining oxide film is proposed.

상기한 종래의 산화환원법은 산화환원공정과 용융아연도금 공정을 거치는 과정에서 Si의 표면농화를 억제하고 최종적으로 강판표면과 도금층의 사이에는 철산화물을 제거하는 기술들이다. The conventional redox method is a technique of suppressing the surface concentration of Si during the redox process and the hot dip galvanizing process and finally removing iron oxide between the steel plate surface and the plating layer.

한편, 산화환원법을 신고강도강인 TRIP강에 실제 적용한 기술로는 일본 공개특허공보 2001-226742호가 있다. On the other hand, Japanese Laid-Open Patent Publication No. 2001-226742 is a technique in which the redox method is actually applied to TRIP steel, a high strength steel.

일본 공개특허공보 2001-226742호는 Si:0.3~2.5%, Mn:0.5~3.0%를 포함하는 TRIP강에 대해 선도금 또는/및 산화환원법을 적용하는 기술이 제안되어 있다. 선도금으로는 Ni, Fe, Cu의 1종 또는 2종이상이 적용하고 있다. 산화환원법은 환원소둔 전에 연소공기비 0.9~1.2로 산화하여 강판표면에 0.02~1㎛의 Fe산화물을 부여하는 기술이 제안되어 있다. 이 기술은 일본 공개특허공보 1980-122865호의 산화환원법을 단순히 TRIP강에 적용한 것으로서, 일본 공개특허공보 1992-276057호와 1994-172953호에서는 제기한 바와 같이, 철의 산화막의 환원시간의 조절방안에 대한 제시가 없다. 따라서, 환원시간이 길어지면 Si의 표면농화를 일으킬 수 있고 환원시간이 짧아지면 강판표면에 철의 산화막이 잔존하여 결과적으로 도금밀착성의 불량하다는 문제를 극복하지 못한 것으로 판단된다. Japanese Laid-Open Patent Publication No. 2001-226742 proposes a technique of applying a lead or / and redox method to TRIP steel containing Si: 0.3 to 2.5% and Mn: 0.5 to 3.0%. As the leading gold, one, two or more of Ni, Fe, and Cu are used. In the redox method, a technique of oxidizing a combustion air ratio of 0.9 to 1.2 to give a Fe oxide of 0.02 to 1 µm on the surface of a steel sheet before reduction annealing has been proposed. This technique simply applies the redox method of Japanese Patent Application Laid-Open No. 1980-122865 to TRIP steel. As disclosed in Japanese Laid-Open Publication Nos. 1992-276057 and 1994-172953, this technique is intended to control the reduction time of the oxide film of iron. There is no suggestion. Therefore, if the reduction time is prolonged, the surface of Si may be thickened. If the reduction time is short, iron oxide film remains on the surface of the steel sheet, and as a result, it is judged that the problem of poor plating adhesion is not overcome.

이상 살펴본 바와 같이, 산화환원법을 고강도 강판에 적용하기 위한 다양한 방법들이 제안되어 있다. 그러나, Si과 같은 난도금 성분의 함량이 높은 강종 특히 TRIP강에 용용아연도금을 적용하여 실제 제품생산을 하지는 못하고 있는 실정이다. As described above, various methods for applying the redox method to high strength steel sheets have been proposed. However, the application of molten zinc plating to steel grades, especially TRIP steel, having a high content of non-plating components such as Si, does not produce actual products.

한편, 본 발명자는 대한민국 특허출원번호 2004-0113084호와 2004-0113085호에 강판과 도금층 사이에 미세 기공이 분포된 철산화물층이 존재하도록 하여 이 철산화물층은 난도금 성분의 표면농화를 차단하고 상기 철산화물층의 미세기공에 의한 용융아연도금층의 잠금효과로 도금부착성이 개선되도록 하는 기술을 제안한 바 있다. 이 기술은 합금화처리하는 경우에 대해서는 별 다른 고려가 없다. On the other hand, the present inventors in the Republic of Korea Patent Application No. 2004-0113084 and 2004-0113085 so that the iron oxide layer with the fine pores are distributed between the steel plate and the plating layer so that the iron oxide layer blocks the surface thickening of the non-plating components It has been proposed a technique for improving the plating adhesion by the locking effect of the hot dip galvanized layer due to the fine pores of the iron oxide layer. This technique has little consideration in the case of alloying.

미세 기공이 분포된 철산화물층이 표층에 형성된 고강도 강판에 대해 아연도금을 하고 합금화처리를 하는 경우에 Si, Mn, Al의 농화가 현격히 감소되므로 Fe의 확산이 용이하여 합금화처리온도를 낮출 수는 있다. 그러나, 낮추어진 합금화처리 온도에서도 TRIP강의 경우에는 잔류오스테나이트가 템퍼드 마르텐사이트로 변태되어 재질특성의 확보가 어렵고 또한, 도금층에는 감마상이 두껍게 형성되어 파우더링이 발생할 우려가 있다. When the iron oxide layer with fine pores is galvanized and alloyed on the high-strength steel sheet formed on the surface layer, the concentration of Si, Mn, and Al is significantly reduced, so the Fe diffusion is easy and the alloying temperature can be lowered. have. However, in the case of TRIP steel, even at a lowered alloying temperature, residual austenite is transformed into tempered martensite, making it difficult to secure material properties, and a thick gamma phase is formed in the plating layer, which may cause powdering.

본 발명자들은 난도금 성분이 포함된 강판에 대해 합금화처리하는 경우에 잔류 오스테나이트의 변태를 방지하고 내파우더링성을 개선할 수 있는 합금화 용융아연도금강판의 제조방법을 제공하는데, 그 목적이 있다. The present inventors provide a method for producing an alloyed hot-dip galvanized steel sheet which can prevent transformation of residual austenite and improve powdering resistance when alloying a steel plate including a hard plated component.

상기 목적을 달성하기 위한 본 발명의 합금화 용융아연도금강판의 제조방법은, Si과 Mn, Al의 1종 또는 2종을 이상을 포함하는 고강도 합금화 용융아연도금강판의 제조방법에 있어서, In the manufacturing method of the alloyed hot-dip galvanized steel sheet of the present invention for achieving the above object, in the production method of high-strength alloyed hot-dip galvanized steel sheet containing one or two or more of Si, Mn, Al,

상기 강판을 용융아연 도금욕에 강판인입온도를 500~550℃로 하여 아연도금한 후에 460~500℃에서 합금화처리하는 것을 포함하여 이루어진다.And galvanizing the steel sheet in a hot dip galvanizing bath at a steel sheet drawing temperature of 500 to 550 ° C., followed by alloying at 460 to 500 ° C.

또한, 본 발명의 도금 대상이 되는 강판은, 표층에 0.1~1㎛ 두께의 철산화물층이 존재하고, 상기 철산화물층은 10000배율로 관찰한 기공율(porosity)이 5~30%인 것이 바람직하다. 본 발명에 따르면, 10000배율로 관찰한 상기 기공의 크기는 0.2~1㎛가 바람직하다. 또한, 상기 철산화물층은 우수타이트계(FeO)가 바람직 하다. 본 발명에 적용될 수 있는 강판은 난도금 성분이 포함된 것이면 모두 적용될 수 있으며, 그 예로는 Si, Mn, Al, P, Cr 등이 포함된 강이다. 구체적으로 예를 들면 , 상기 Si의 함량은 0.01~3.0중량%이고, 상기 Mn의 함량은 0.01~3.0중량%, Al: 0.1~3.0중량%이다. 본 발명은 소둔열처리를 하는 냉연강판에 적용되는 것이 바람직하다. 본 발명에서 아연도금욕에는 0.10~0.135%의 Al이 포함되는 것이 바람직하다. In the steel sheet to be plated of the present invention, an iron oxide layer having a thickness of 0.1 to 1 μm is present on the surface layer, and the iron oxide layer preferably has a porosity of 5 to 30% observed at 10000 magnification. . According to the present invention, the pore size observed at 10000 magnification is preferably 0.2 to 1 μm. In addition, the iron oxide layer is preferably an excellent titite (FeO). The steel sheet that can be applied to the present invention may be applied as long as it contains a non-plating component, and examples thereof include steel including Si, Mn, Al, P, Cr, and the like. Specifically, for example, the content of Si is 0.01 to 3.0% by weight, the content of Mn is 0.01 to 3.0% by weight, Al: 0.1 to 3.0% by weight. The present invention is preferably applied to a cold rolled steel sheet subjected to annealing heat treatment. In the present invention, the zinc plating bath preferably contains 0.10 to 0.135% of Al.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 산화환원법을 난도금재의 생산에 적용하기 위한 연구와 실험과정에서 아연도금층과 강판의 사이에 철산화층이 잔존하는 경우에 도리어 도금부착성이 개선되는 사실을 확인하여 대한민국 특허출원번호 2004-0113084호와 2004-0113085호에 제안한 바 있다. The inventors of the present invention confirmed that the plating adhesion is improved when the iron oxide layer remains between the zinc plated layer and the steel sheet during the research and experiment for applying the redox method to the production of the hard plated material. Proposed in 0113084 and 2004-0113085.

고강도 강판에 미세 기공이 분포된 철산화물층이 표층에 형성되는 경우에는 아연도금층과 강판의 계면 또는 강판의 결정립계에 Si, Mn, Al의 농화가 현격히 감소되므로 합금화처리과정에서 Fe의 확산이 용이하다. 또한, Fe의 확산은 철산화물층의 기공을 통해서도 촉진된다. In the case where the iron oxide layer in which the fine pores are distributed in the high strength steel sheet is formed on the surface layer, the concentration of Si, Mn and Al is significantly reduced at the interface between the galvanized layer and the steel sheet or at the grain boundary of the steel sheet, so it is easy to diffuse Fe during alloying. . In addition, the diffusion of Fe is also promoted through the pores of the iron oxide layer.

합금화처리에서 Fe의 확산이 용이하게 되면, 합금화처리온도를 낮출 수는 있지만, 500℃이하로 합금화처리온도를 낮추기는 어렵다. 아연도금욕에는 소량의 Al이 포함되기 때문에 도금과정에서 Fe2Al5가 형성되고, 합금화처리과정에서 Fe2Al5가 Fe의 확산을 방해하게 된다. 따라서, Fe2Al5를 파괴하기 위해 합금화처리온도를 500℃이하로 낮추기는 어렵다. 또한, TRIP강의 경우에 합금화처리온도가 500℃초과되면 잔류오스테나이트가 합금화처리과정에서 템퍼드 마르텐사이트로 변태해버리고 또한, 합금화도금층에 감마상이 두껍게 형성된다. If Fe is easily diffused in the alloying treatment, the alloying treatment temperature can be lowered, but it is difficult to lower the alloying treatment temperature below 500 ° C. Zinc plating bath is formed on the Al 5 Fe 2 in the plating procedure, since a small amount of Al contained, it is in the alloying process of Fe 2 Al 5 interfere with the diffusion of Fe. Therefore, it is difficult to lower the alloying treatment temperature below 500 ° C. in order to destroy Fe 2 Al 5 . In addition, in the case of TRIP steel, when the alloying temperature exceeds 500 ° C., the retained austenite is transformed into tempered martensite during the alloying process, and a thick gamma phase is formed on the alloy plated layer.

본 발명에서 합금화처리온도를 더욱 낮추기 위한 방안을 연구하는 과정에서 도출된 것으로, 강판입입 온도를 500~550℃로 높게 하면 아연도금과정에서 Fe2Al5가 형성과 동시에 깨져서 합금화처리에 장애가 되지 않는 다는 사실에 기초한 것이다.In the present invention was derived in the course of studying the method for further lowering the alloying treatment temperature, if the steel sheet inlet temperature is increased to 500 ~ 550 ℃ Fe 2 Al 5 is formed at the same time during the galvanizing process does not interfere with the alloying treatment It is based on the fact that

본 발명의 대상이 되는 강판은, 표면에 농화하여 용융아연과의 젖음성이 좋지 않는 난도금 성분이 포함된 강판이다. 난도금 성분은 Si, Mn, Cr, P, Al 등이 알려져 있다. 구체적으로 예를 들면 , 상기 Si의 함량은 0.01~3.0중량%이고, 상기 Mn의 함량은 0.01~3.0중량%, Al: 0.1~3.0중량%이다. 특히, 본 발명은 TRIP강에 적용된다. 본 발명의 대상이 되는 강판은 냉연강판이 바람직하다. The steel sheet which is the object of the present invention is a steel sheet containing a non-plated component which is concentrated on the surface and does not have good wettability with molten zinc. As the non-plating component, Si, Mn, Cr, P, Al and the like are known. Specifically, for example, the content of Si is 0.01 to 3.0% by weight, the content of Mn is 0.01 to 3.0% by weight, Al: 0.1 to 3.0% by weight. In particular, the present invention applies to TRIP steel. As for the steel plate which is the object of this invention, a cold rolled steel plate is preferable.

이러한 강판의 표층에는 철산화물층이 존재하는 것이 바람직하다. It is preferable that an iron oxide layer exists in the surface layer of such a steel plate.

상기 철산화물층의 두께는 0.1~1㎛가 바람직하다. 상기한 철산화물층의 미세기공 (면적분율)은 5~30%로 하는 것이 바람직하다. 이러한 미세기공의 기공율과 기공의 크기는 10000배의 고배율로 관찰한 것이다. 본 발명에서 철산화물층의 상(phase)은 강판부착성에 좋은 우수타이트(FeO)가 바람직하다. As for the thickness of the said iron oxide layer, 0.1-1 micrometer is preferable. The micropores (area fraction) of the iron oxide layer is preferably 5 to 30%. The porosity and pore size of these micropores is observed at a high magnification of 10,000 times. In the present invention, the phase of the iron oxide layer is preferred to excellent urethane (FeO) for the steel sheet adhesion.

다음으로 합금화 용융아연도금 강판의 제조방법을 설명한다.Next, a method for producing an alloyed hot dip galvanized steel sheet will be described.

본 발명에서는 강판을 소둔로의 산화대와 환원대를 거친 다음에 용융아연도금하고, 합금화처리한다. In the present invention, the steel sheet is subjected to oxidation zone and reduction zone of the annealing furnace, followed by hot dip galvanizing and alloying treatment.

본 발명에서는 미세기공을 갖는 철산화물층을 형성하기 위하여 산화대와 환원대의 열처리조건을 적절히 제어하는 것이 바람직하다. In the present invention, it is preferable to appropriately control the heat treatment conditions of the oxidation zone and the reduction zone to form the iron oxide layer having fine pores.

먼저, 산화대는 산소 농도가 1.0~21vol%인 조건에서 550~750℃의 온도에서 행하는 것이 바람직하다.First, it is preferable to perform an oxidation zone at the temperature of 550-750 degreeC on condition that oxygen concentration is 1.0-21 vol%.

산화대의 열처리에 의해 얻어지는 철산화물의 두께는 0.2~2mm 가 바람직하다. As for the thickness of the iron oxide obtained by the heat processing of an oxidation zone, 0.2-2 mm is preferable.

상기와 같이 산화대에서 열처리한 다음에 환원대에 열처리를 하는데, 이는 수소농도가 5~20%인 환원분위기에서 행하는 것이 바람직하다. 환원대의 열처리온도는 750~850℃가 바람직하다. 이러한 환원대의 열처리에 의해 두께가 0.1~1㎛이고 10000배율로 관찰한 기공율(porosity)이 5~30%이며, 기공의 크기는 0.2~1㎛인 우수타이트 철산화물층을 얻는 것이 바람직하다. The heat treatment in the oxidation zone as described above and then the heat treatment in the reduction zone, which is preferably carried out in a reducing atmosphere of 5 to 20% hydrogen concentration. As for the heat processing temperature of a reducing zone, 750-850 degreeC is preferable. By heat treatment of such a reducing zone, it is preferable to obtain a non-tight iron oxide layer having a thickness of 0.1 to 1 μm, porosity of 5 to 30%, and pore size of 0.2 to 1 μm.

본 발명에 따라 소둔로에서 산화환원 열처리한 강판은 냉각후 용융아연도금한다. In accordance with the present invention, the steel sheet subjected to redox heat treatment in an annealing furnace is hot dip galvanized after cooling.

용융아연욕에는 Al의 함량이 0.1~0.135%중량 포함되는 것이 보다 바람직하다. 용융아연욕에서 Al의 함량이 0.1%미만의 경우에는 철-알루미늄계의 초기 확산억제층이 소지철 표면을 피복하지 못하여 확산억제층이 없거나 얇은 부위에서 취약한 감마상의 형성을 촉진하여 파우더링량이 크게 증가한다. 반면 Al의 함량이 0.135%를 초과하면 초기 확산억제층이 두껍게 형성되어 철-아연간의 합금화반응이 매우 억제되기 때문에 델타상으로 이루어진 합금층을 형성하기 위해서는 합금화온도를 550℃ 보다 높게 가열해야 하므로 재질이 열화되고 파우더링이 심하게 u생하게 된다.The molten zinc bath is more preferably contained 0.1 to 0.135% by weight of Al content. If the Al content is less than 0.1% in the molten zinc bath, the initial diffusion inhibitory layer of iron-aluminum does not cover the surface of the base iron, thus promoting the formation of a weak gamma phase in the absence of diffusion inhibitory layer or thin powder, thereby greatly increasing the amount of powdering. Increases. On the other hand, if the Al content exceeds 0.135%, the initial diffusion suppression layer is formed thick and the alloying reaction between iron and zinc is very suppressed. Therefore, in order to form an alloy layer made of delta phase, the alloying temperature must be heated higher than 550 ° C. This deteriorates and the powdering is severely generated.

이러한 용융아연욕에 들어가는 강판인입온도는 500~550℃가 바람직하다. 강판의 온도가 500℃미만에서는 초기 확산 억제층인 Fe2Al5를 파괴하기 위해서 합금화처리온도를 500℃이상으로 하게 되는데, 이 경우에는 잔류오스테나이트가 합금화처리과정에서 템퍼드 마르텐사이트로 변태해버리고 또한, 합금층에 감마상이 두껍게 형성되어 파우더링이 심하게 발생한다. 반면, 강판의 온도가 550℃ 초과의 경우에는 도금욕과의 큰 온도차이로 인해 드로스결함의 발생이 증가하고 취약한 감마상이 두껍게 형성되어 파우더링이 심하게 발생한다.As for the steel plate introduction temperature which enters such a molten zinc bath, 500-550 degreeC is preferable. When the temperature of the steel sheet is less than 500 ° C, the alloying temperature is set to 500 ° C or higher in order to destroy the initial diffusion inhibiting layer Fe 2 Al 5. In this case, the residual austenite is transformed into tempered martensite during the alloying process. In addition, a thick gamma phase is formed in the alloy layer, so that powdering occurs severely. On the other hand, when the temperature of the steel sheet is higher than 550 ° C, the occurrence of dross defects increases due to a large temperature difference with the plating bath, and a weak gamma image is formed thick, thereby causing severe powdering.

이러한 아연도금욕에 인입하여 아연도금한 후에 460~500℃에서 합금화처리하는 것이 바람직하다. 아연도금욕에는 소량이 Al이 포함되기 때문에 도금과정에서 Fe2Al55가 형성되고 합금화처리과정에서 Fe2Al5가 Fe의 확산을 방해하게 된다. 따라서, 열역학적으로 안정한 합금상인 Fe2Al5를 파괴하기 위해서는 합금화처리온도를 460 ℃이상으로 하는 것이 바람직하다. 또한, TRIP강의 경우에 합금화처리온도가 500℃ 초과되면 잔류오스테나이트가 합금화처리과정에서 템퍼드 마르텐사이트로 변태해버리고 또한, 합금화도금층에 감마상이 두껍게 형성되어 파우더링이 심하게 발생한다. It is preferable to lead the galvanizing bath and then to galvanize the alloy at 460 to 500 ° C. Zinc plating bath has a small amount, since Al is included is formed Fe 2 Al 5 5 In the plating process in the alloying process of Fe 2 Al 5 is to prevent the diffusion of Fe. Therefore, in order to destroy Fe 2 Al 5 which is a thermodynamically stable alloy phase, it is preferable that the alloying treatment temperature be 460 ° C or higher. In addition, in the case of TRIP steel, if the alloying treatment temperature exceeds 500 ° C, the residual austenite is transformed into tempered martensite during the alloying treatment, and a thick gamma phase is formed on the alloy plating layer, thereby causing severe powdering.

이하 본 발명을 실시 예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by examples.

[실시예 1]Example 1

C: 0.20%, Si:1.0%, Mn:1.6%, Al: 0.5%를 포함하고 나머지 Fe및 기타 불가피한 불순물로 조성되고 두께 1.2mm의 인장강도 780Mpa급 TRIP냉연강판에 대해 산화 열처리는 대기 분위기(21% 산소)에서 유도가열로를 사용하여 700℃, 1초간 행하였다. 소둔로에서 환원대의 열처리조건은 수소함량이 10%인 환원로에서 800℃, 60초간 소둔하였다. Oxidation heat treatment for 780Mpa grade TRIP cold rolled steel sheet containing 0.20%, Si: 1.0%, Mn: 1.6%, Al: 0.5%, consisting of the remaining Fe and other unavoidable impurities and 1.2mm thick 21% oxygen) using an induction furnace for 1 second. Heat treatment conditions of the reducing zone in the annealing furnace were annealed at 800 ° C. for 60 seconds in a reducing furnace containing 10% hydrogen.

환원열처리가 끝난 강판은 Al:0.13중량%, Fe:0.02중량% 나머지 Zn으로 조성되는 460℃ 아연도금욕에 강판 인입온도를 달리하여 3초간 침적하여 도금부착량을 단면기준으로 50g/m2으로 하여 용융아연 도금하고, 합금화온도를 변경하여 합금화처 리를 행하였다. 이렇게 얻어진 합금화 용융아연 도금강판의 기계적 성질, 잔류 오스테나이트 분율 및 파우더링성을 관찰하였다. 기계적 성질은 JIS 5호 시편을 사용하여 인장시험기로 인장강도 및 연신율을 측정하였고, 소지철의 잔류 오스테나이트 분율은 X선 회절법을 이용하여 측정하였다. 또한 파우더링성은 컵성형시험기(Cupping tester)을 이용하여 도금층의 탈락량을 측정하여 정량 평가하였다.After the reduction heat treatment, the steel plate was immersed at 460 ℃ galvanizing bath composed of Al: 0.13% by weight and Fe: 0.02% by weight at different steel sheet inlet temperatures for 3 seconds to obtain 50g / m 2 of plating deposition on a cross-sectional basis. Hot dip galvanizing and alloying treatment were performed by changing the alloying temperature. The mechanical properties, residual austenite fraction and powdering properties of the alloyed hot-dip galvanized steel sheet thus obtained were observed. Mechanical properties were measured by tensile test and tensile strength test using a JIS No. 5 specimen, the residual austenite fraction of the iron was measured by X-ray diffraction method. In addition, powdering properties were quantitatively evaluated by measuring the amount of dropping of the plating layer using a cup forming tester.

구분division 강판의 인입온도 (℃)Inlet temperature of steel sheet (℃) 합금화온도 (℃)Alloying temperature (℃) 인장강도 (MPa)Tensile Strength (MPa) 연신율 (%)Elongation (%) 잔류오스테나이트 분율 (%)Residual austenite fraction (%) 파우더링량 (mg)Powdering amount (mg) 발명예1Inventive Example 1 500500 490490 835835 2525 6.16.1 88 발명예2Inventive Example 2 540540 480480 823823 2626 5.35.3 55 비교예1Comparative Example 1 460460 580580 650650 1818 0.50.5 3535 비교예2Comparative Example 2 480480 550550 683683 2121 1.11.1 2727

표 1에서 보듯이 본 발명의 조건을 만족하는 발명예(1-2)는 아연도금과정에서 Fe2Al5가 형성과 동시에 깨져서 합금화처리 온도를 500℃이하로 낮출 수 있게 되어 잔류 오스테나이트가 템퍼드 마르텐사이트로 변태되는 양이 매우 적어 기계적 성질이 우수하고, 취약한 감마상을 억제하여 파우더링성이 매우 양호하게 나타났다. 그러나 강판인입온도가 500℃ 미만으로 낮은 경우(비교예 1-2), 합금화온도가 통상 550℃를 초과하여 잔류오스테나이트가 템퍼드 마르텐사이트로 대부분 변태되어 재질이 열화되고, 감마상이 두껍게 형성되어 파우더링성이 크게 열화되었다. As shown in Table 1, Inventive Example (1-2), which satisfies the conditions of the present invention, is formed at the same time as Fe 2 Al 5 is formed in the galvanizing process, thereby lowering the alloying temperature below 500 ° C. The amount of transformation to de-martensite is very small, so the mechanical properties are excellent, and the fragile gamma image is suppressed, and the powdering property is very good. However, when the steel sheet inlet temperature is lower than 500 ° C (Comparative Example 1-2), the alloying temperature is usually higher than 550 ° C, and most of the residual austenite is transformed into tempered martensite, resulting in deterioration of the material and thickening of the gamma phase. Powdering properties deteriorated greatly.

상술한 바와 같이, 본 발명에서는 합금화처리온도를 낮추어 강판의 재질특성과 내파우더링특성이 개선된다. As described above, in the present invention, the alloying temperature is lowered to improve the material properties and the powder-resistant properties of the steel sheet.

Claims (4)

삭제delete Si과 Mn, Al의 1종 또는 2종을 이상을 포함하는 고강도 합금화 용융아연도금강판의 제조방법에 있어서, In the manufacturing method of high strength alloyed hot-dip galvanized steel sheet containing one or two or more of Si, Mn and Al, 상기 강판은 표층에 두께가 0.1~1㎛이고 기공율(porosity)이 5~30%인 우스타이트계 철산화물층이 존재하며, 이 강판을 용융아연도금욕에 500~550℃로 인입하여 아연도금한 후에 460~500℃에서 합금화처리하는 것을 포함하여 이루어지는 고강도 합금화 용융아연도금강판의 제조방법.The steel sheet has a wustite-based iron oxide layer having a thickness of 0.1 to 1 μm and a porosity of 5 to 30%. The steel sheet is introduced into a hot dip galvanizing bath at 500 to 550 ° C. and galvanized. A method of producing a high strength alloyed hot-dip galvanized steel sheet comprising after the alloying treatment at 460 ~ 500 ℃. 제 2항에 있어서, 상기 아연도금욕에는 0.10~0.135중량%의 Al이 포함되고, 나머지 Zn 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 고강도 합금화 용융아연도금강판의 제조방법.The method of claim 2, wherein the zinc plating bath contains 0.10 to 0.135% by weight of Al, and is composed of the remaining Zn and other unavoidable impurities. 제 2항에 있어서, 상기 Si의 함량은 0.01~3.0중량%이고, 상기 Mn의 함량은 0.1~3.0중량%, 상기 Al의 함량은 0.1~3.0중량%임을 특징으로 하는 고강도 합금화 용융아연도금강판의 제조방법.According to claim 2, wherein the content of Si is 0.01 to 3.0% by weight, the content of Mn is 0.1 to 3.0% by weight, the content of Al is 0.1 to 3.0% by weight of the high strength alloyed hot-dip galvanized steel sheet Manufacturing method.
KR1020050075381A 2005-08-17 2005-08-17 Method for manufacturing high strength galvannealed steel sheet KR100685034B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050075381A KR100685034B1 (en) 2005-08-17 2005-08-17 Method for manufacturing high strength galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050075381A KR100685034B1 (en) 2005-08-17 2005-08-17 Method for manufacturing high strength galvannealed steel sheet

Publications (1)

Publication Number Publication Date
KR100685034B1 true KR100685034B1 (en) 2007-02-20

Family

ID=38104172

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050075381A KR100685034B1 (en) 2005-08-17 2005-08-17 Method for manufacturing high strength galvannealed steel sheet

Country Status (1)

Country Link
KR (1) KR100685034B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499485A (en) * 2019-10-08 2019-11-26 安徽工业大学 A kind of alloying processing method preparing high anti-powdering hot dip galvanizing coating

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191046A (en) * 1989-12-19 1991-08-21 Kawasaki Steel Corp Manufacture of alloyed hot-dip galvanized steel sheet having excellent film workability
JPH0441658A (en) * 1990-06-07 1992-02-12 Nippon Steel Corp Galvannealed steel sheet excellent in powdering resistance and having baking hardenability and high strength and its production
JPH05320850A (en) * 1992-05-26 1993-12-07 Nkk Corp Production of galvannealed steel sheet having excellent powdering resistance and weldability
JPH09176813A (en) * 1995-12-22 1997-07-08 Nippon Steel Corp Production of high strength hot dip galvanized steel sheet excellent in workability and non-aging characteristic
JPH1081948A (en) 1996-02-22 1998-03-31 Sumitomo Metal Ind Ltd Alloyed galvannealed steel sheet and its production
KR20010056280A (en) * 1999-12-14 2001-07-04 이구택 Galvannealing method for decreasing crater
KR20050063917A (en) * 2003-12-23 2005-06-29 주식회사 포스코 Method for manufacturing high strength galvannealed steel sheets excellent in drawability and resistance of secondary work embrittlement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191046A (en) * 1989-12-19 1991-08-21 Kawasaki Steel Corp Manufacture of alloyed hot-dip galvanized steel sheet having excellent film workability
JPH0441658A (en) * 1990-06-07 1992-02-12 Nippon Steel Corp Galvannealed steel sheet excellent in powdering resistance and having baking hardenability and high strength and its production
JPH05320850A (en) * 1992-05-26 1993-12-07 Nkk Corp Production of galvannealed steel sheet having excellent powdering resistance and weldability
JPH09176813A (en) * 1995-12-22 1997-07-08 Nippon Steel Corp Production of high strength hot dip galvanized steel sheet excellent in workability and non-aging characteristic
JPH1081948A (en) 1996-02-22 1998-03-31 Sumitomo Metal Ind Ltd Alloyed galvannealed steel sheet and its production
KR20010056280A (en) * 1999-12-14 2001-07-04 이구택 Galvannealing method for decreasing crater
KR20050063917A (en) * 2003-12-23 2005-06-29 주식회사 포스코 Method for manufacturing high strength galvannealed steel sheets excellent in drawability and resistance of secondary work embrittlement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499485A (en) * 2019-10-08 2019-11-26 安徽工业大学 A kind of alloying processing method preparing high anti-powdering hot dip galvanizing coating
CN110499485B (en) * 2019-10-08 2021-06-11 安徽工业大学 Alloying treatment method for preparing high-pulverization-resistance hot-dip galvanized coating

Similar Documents

Publication Publication Date Title
JP6836600B2 (en) Hot stamping material
EP3733922B1 (en) Plating steel sheet for hot press forming and forming member using same
EP2371979B1 (en) High-strength cold-rolled steel sheet having excellent workability, molten galvanized high-strength steel sheet, and method for producing the same
EP3476968A1 (en) Low-density hot-dipped steel and manufacturing method therefor
KR20100032435A (en) Galvanized or galvannealed silicon steel
KR101510505B1 (en) Method for manufacturing high manganese galvanized steel steet having excellent coatability and ultra high strength and manganese galvanized steel steet produced by the same
EP3647445A1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
KR101726090B1 (en) High strength galvanized steel sheet having excellent surface property and coating adhesion and method for manufacturing the same
KR101825857B1 (en) Bake-hardening galvanized steel sheet
EP3636790B1 (en) Hot dipped high manganese steel and manufacturing method therefor
KR101528010B1 (en) High manganese hot dip galvanized steel sheet with superior weldability and method for manufacturing the same
KR101647225B1 (en) High-strength galvannealed sheet steels having excellent surface qualities and powdering resistance and method for manufacturing the same
KR20150066339A (en) Manufacturing Method of High Strength Zn-Al-Mg Hot-dip Galvanized Steel Sheet Having Excellent Zn Adhesion Property and Steel Sheet by the Same Method
KR101428151B1 (en) Zn-coated hot rolled steel sheet having high mn and method for manufacturing the same
KR101621630B1 (en) Galvannealed steel sheet having high corrosion resistance after painting
EP4215294A1 (en) Hot-pressed member, steel sheet for hot-pressing, and methods for producing same
KR100685034B1 (en) Method for manufacturing high strength galvannealed steel sheet
KR100797364B1 (en) High yield ratio and ultra high strength steel sheet having excellent bendability and the method for manufacturing hot dip galvanized steel sheet using the same
KR100851163B1 (en) Ultra high strength steel sheet having excellent coating adhesion and bendability and the method for manufacturing hot-dip galvanized steel sheet using the same
KR100627477B1 (en) High strength hot dip zinc plated steel sheet with excellent coating adhesion and method for manufacturing the same
JP5206114B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability, plating adhesion, corrosion resistance, and appearance quality
KR102547364B1 (en) Hot-dip galvanized steel sheet using high-strength steel and method for manufacturing the same
JP6136672B2 (en) High strength galvannealed steel sheet and method for producing the same
KR102484978B1 (en) High strength galvannealed steel sheet having excellent powdering resistance and manufacturing method for the same
KR101143072B1 (en) Ultra-high strength galvinized steel sheet having excellent coatability and bending-workability and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130206

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140212

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150206

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160212

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170209

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180209

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190212

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200212

Year of fee payment: 14