EP3394867A1 - Transformateur électrique pour des équipements haute tension distants - Google Patents

Transformateur électrique pour des équipements haute tension distants

Info

Publication number
EP3394867A1
EP3394867A1 EP16825455.5A EP16825455A EP3394867A1 EP 3394867 A1 EP3394867 A1 EP 3394867A1 EP 16825455 A EP16825455 A EP 16825455A EP 3394867 A1 EP3394867 A1 EP 3394867A1
Authority
EP
European Patent Office
Prior art keywords
cable
windings
winding
transformer
primary circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16825455.5A
Other languages
German (de)
English (en)
Other versions
EP3394867B1 (fr
Inventor
Arnaud Allais
Albert PEREIRA
Michel Mermet-Guyennet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SuperGrid Institute SAS
Original Assignee
SuperGrid Institute SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SuperGrid Institute SAS filed Critical SuperGrid Institute SAS
Priority to PL16825455T priority Critical patent/PL3394867T3/pl
Publication of EP3394867A1 publication Critical patent/EP3394867A1/fr
Application granted granted Critical
Publication of EP3394867B1 publication Critical patent/EP3394867B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • H01F2027/2833Wires using coaxial cable as wire

Definitions

  • the invention relates to equipment for high voltage networks, in particular the transmission of electrical power between remote equipment of an electrical network, the galvanic isolation between these remote devices and the transformation of the voltage level between these remote devices.
  • the coaxial transformer includes two arms, interconnected at their ends and supported by an armature. Each arm includes an internal section provided with several windings of the primary circuit, and an outer section provided with several windings of the secondary circuit. The primary and secondary windings are isolated from each other.
  • a magnetic core is positioned at the periphery of the primary and secondary windings. This magnetic core comprises several spaced sections, to promote the cooling of the transformer. To gain compactness, the magnetic cores of the two arms are intertwined.
  • the converter is connected by its input to a first network, its output being connected to the second network by electric cables.
  • Such a coaxial transformer is then inappropriate.
  • transformers provided with a magnetic core surrounded by primary and secondary windings.
  • the electrical insulation is most often made by a fluid such as gas or oil circulating between the primary and secondary windings.
  • the management of such a fluid presents problems of safety, environment, maintenance and bulk, particularly troublesome when the transformer is placed in a hostile environment, for example in a field of marine wind turbines.
  • DE4318270 discloses a coaxial electric transformer, comprising a winding of a primary circuit, a magnetic core surrounding the primary circuit winding, and a winding of a secondary circuit surrounding the magnetic core.
  • US201 1/0291 792 discloses a coaxial transformer where the windings of the primary and secondary circuits are arranged within a magnetic core.
  • GB2447963 discloses a coaxial electric transformer, comprising a winding of a primary circuit, a magnetic core surrounding the primary circuit winding, and a winding of a secondary circuit surrounding the magnetic core.
  • the invention aims to solve one or more of these disadvantages.
  • the invention thus relates to an electrical transformer, as defined in appended claim 1.
  • the invention also relates to the variants defined in the appended dependent claims. It will be understood by those skilled in the art that each of the features of these variants may be independently combined with the features of claim 1, without necessarily constituting an intermediate generalization.
  • the invention also relates to an electrical infrastructure as defined in the appended claims.
  • FIG 1 is a schematic representation of an example of implantation of a transformer according to the invention.
  • FIG. 2 is a schematic cross-sectional view illustrating different sections of a cable of an exemplary transformer according to the invention
  • FIG. 3 is a cross-sectional view of a first embodiment of cable for a transformer according to the invention.
  • FIG 4 is a sectional view along a longitudinal plane of the cable of Figure 3;
  • FIG 5 is a cross-sectional view of a second embodiment of cable for a transformer according to the invention.
  • FIG 6 is a sectional view along a longitudinal plane of the cable of Figure 5;
  • FIG. 7 is a longitudinal sectional view of an example of interconnections at the end of a cable
  • FIGS. 8 and 9 are diagrammatic representations of an example of wiring between windings of a secondary circuit
  • FIG 10 is a cross-sectional view of a variant of the first embodiment of cable for a transformer according to the invention.
  • the invention provides an electrical transformer in which the windings of the primary circuit and the secondary circuit are housed in a single cable, for example for the connection of two remote devices of a high voltage network.
  • the cable of such a transformer comprises a central section, an intermediate section and a concentric peripheral section.
  • the central section comprises at least one winding of the primary circuit, a winding of the secondary circuit and a galvanic isolation between this winding of the primary circuit and this winding of the secondary circuit.
  • the intermediate section surrounds the central section and has a magnetic core.
  • the peripheral section surrounds the intermediate section and comprises a winding of the primary circuit and a winding of the secondary circuit.
  • the peripheral section also comprises a galvanic isolation between this winding of the primary circuit and this winding of the secondary circuit.
  • These two windings of the primary circuit, included respectively in the central section and in the peripheral section, are electrically connected at an axial end of the cable.
  • These two windings of the secondary circuit, included respectively in the central section and in the peripheral section, are electrically connected at an axial end of the cable.
  • FIG. 1 illustrates an example of implantation of a transformer 1 according to the invention.
  • the transformer 1 comprises an elongated cable 11 having axial ends 11 1 and 11.2.
  • the cable 11 includes windings of a primary transformer circuit, windings of a secondary transformer circuit, and a core. magnetic, as detailed later.
  • the cable 1 1 has connection terminals 1 21 and 1 23 forming the terminals of the primary circuit of the transformer 1.
  • the cable 1 1 has connection terminals 1 22 and 124 forming the terminals of the secondary circuit of the transformer 1.
  • the transformer 1 is used for the transmission of electrical energy and the transformation of voltage level between two equipment 82 and 84 remote from a high-voltage network.
  • the terminals 1 21 and 1 23 of the primary circuit are connected to an alternating interface of a DC / AC converter 81.
  • the equipment 82 is connected to a continuous interface of the DC / AC converter 81.
  • Terminals 1 22 and 1 24 of the secondary circuit are connected to an alternating interface of a DC / AC converter 83.
  • the equipment 84 is connected to a DC interface of the DC / AC converter 83.
  • Fig. 2 is a schematic cross-sectional view illustrating different sections of a cable 1 1 of an exemplary transformer 1 according to the invention.
  • this cable 1 1 it is possible to define a central section 2, an intermediate section 3 and a peripheral section 4, the sections 2, 3 and 4 being concentric.
  • the peripheral section 4 surrounds the intermediate section 3, which surrounds the central section 2.
  • Figure 3 is a cross-sectional view of a first exemplary embodiment of the cable 1 1 of a transformer 1 according to the invention.
  • Figure 4 is a sectional view along a longitudinal plane of the cable January 1.
  • the central section 2 of the cable 1 1 comprises several windings 21 of the primary circuit of the transformer 1, several windings 22 of the secondary circuit of the transformer 1, and a solid galvanic isolation 23.
  • the galvanic isolation 23 is in the form of an electrically insulating layer (solid at room temperature) surrounding the windings 21 of the primary circuit.
  • the windings 22 of the secondary circuit are positioned in contact with the outer surface of this insulating layer 23.
  • the windings 21 are distributed radially around the axis of the cable January 1.
  • the different windings 21 are separated and insulated by insulating walls 25 (solid at ambient temperature), extending in a radial direction between these windings 21.
  • the windings 22 are distributed radially around the axis of the cable January 1.
  • the different windings 22 are separated and insulated by insulating walls 26 (solid at room temperature), extending in a radial direction between these windings 22.
  • the intermediate section 3 surrounds the central section 2.
  • the intermediate section 3 comprises a core or magnetic circuit 31.
  • the magnetic core 31 here surrounds the central section 2.
  • the magnetic core 31 here occupies the entire volume of the intermediate section 3.
  • the peripheral section 4 of the cable 1 1 comprises several windings
  • Galvanic isolation 43 is in the form of an electrically insulating layer (solid at room temperature) surrounding the windings.
  • the windings 42 are distributed radially around the axis of the cable January 1.
  • the windings 42 are here in contact with the magnetic core 31.
  • the different windings 42 are separated and isolated by insulating walls 46 (solid at room temperature), extending in a radial direction between these windings 42.
  • the windings 41 of the primary circuit are positioned in contact with the outer surface of this insulating layer 43.
  • the windings 41 are distributed radially around of the cable axis 1 1.
  • the different windings 41 are separated and isolated by insulating walls 45 (solid at room temperature), extending in a radial direction between these windings 41.
  • Such a transformer 1 has a convection cooling along the entire length of the cable January 1.
  • the length of the cable 1 1 thus promotes the cooling of the transformer 1, which avoids or limits the need to plunge the cable 1 1 in a flow of cooling fluid.
  • the galvanic isolation is here obtained by solid materials, which limits the risk of leakage maintenance constraints for the transformer 1.
  • the electrical transformation being performed along the length of the cable 1 1 also used for the transmission of energy, the size of the transformer 1 is particularly reduced at the remote equipment to which it is connected.
  • this embodiment it is intended to promote the ease of manufacture of the cable January 1, by arranging the windings of the primary circuit and the windings of the secondary circuit in different layers.
  • the manufacture of such a cable is facilitated, the galvanic insulation 23 and 43 can easily be made by extrusion or wrapping, by methods known per se.
  • this embodiment makes it easy to achieve galvanic insulation of significant thickness between the different windings.
  • the peripheral section 4 of the cable 1 1 further comprises an insulating wall 48 (solid at ambient temperature) surrounding the windings 41.
  • the peripheral section 4 of the cable 1 1 also advantageously comprises a conductive layer 49 (for example a metal layer forming a screen or electromagnetic shielding)
  • the screen layer 49 surrounds the insulating wall 48.
  • the cable 1 1 advantageously comprises a mechanical reinforcement 29.
  • the mechanical reinforcement advantageously extends over the entire length of the cable 1 1 (or protrude from the cable 1 1, to allow its attachment by its ends).
  • the mechanical reinforcement 29 is advantageously positioned in the center of the central section 2, at the axis of the cable 1 1, in order to undergo less deformation during bending of the cable January 1.
  • the mechanical reinforcement 29 may for example include insulated wire rope, synthetic fiber or fiber reinforced polymer.
  • the insulating walls 25 extend radially between the mechanical reinforcement 29 and the insulating layer 23.
  • the insulating walls 26 extend radially between the insulating layer 23 and the magnetic core 31.
  • the insulating walls 46 extend between the magnetic core 31 and the insulating layer 43.
  • the insulating walls 45 extend between the insulating layer 43 and the insulating layer 43. and the insulating layer 48.
  • the magnetic core 31 has for example a shape that can be obtained by extrusion or concentric wrapping.
  • the magnetic core 31 may for example be formed from a polymer resin loaded with magnetic powder.
  • the magnetic core 31 may for example also be formed of rolled sheet and coated with an insulator.
  • Such a material may for example be chosen to have a relative magnetic permeability of at least 1 50, preferably at least 200, advantageously 500. According to simulations, the magnetic coupling is at least 0.99 for magnetic permeability. relative to at least 1 50 of the magnetic core 31.
  • the material used for one of the solid insulators 23, 25, 26, 43, 45 or 46 is for example chosen from the group comprising insulating crosslinked polyethylene, polypropylene, rubber (EPR, HEPR) or silicone.
  • the material used for the windings 21, 22, 41 or 42 is for example chosen from the group comprising copper and its alloys or aluminum and its alloys.
  • N the number of turns of the winding
  • B magnetic induction
  • the material chosen for the windings 21, 22, 41 and 42 is copper.
  • the material chosen for the screen layer 49 is aluminum.
  • the material used for the solid insulators 23, 26, 43 and 46 is crosslinked polyethylene.
  • the number of windings of the primary circuit in the central section 2 (and in the peripheral section 4) is 1.
  • the number of windings of the secondary circuit in the central section 2 (and in the peripheral section 4) is 1 0.
  • An air passage (not shown in Figure 3) is provided in the center of the central section 2 instead of the mechanical reinforcement 29 and has a radius of 1 0 mm.
  • the thickness of the winding 21 is 1 0.5 mm.
  • the thickness of the insulating layer 23 is 5 mm.
  • the thickness of the windings 22 is 5.6 mm.
  • the width of the insulating walls 26 is at least 1 mm, preferably at least 2 mm.
  • the thickness of the magnetic core 31 is 10 mm.
  • the thickness of the windings 42 is 3.7 mm.
  • the thickness of the insulating layer 43 is 5 mm.
  • the thickness of the winding 41 is 3.1 mm.
  • the thickness of the insulating layer 48 is 5 mm.
  • the thickness of the screen layer 49 is 2.75 mm.
  • the cable 1 1 has a length of 62.5 m.
  • the winding pitch of the windings 21 and 41 (here identical to the pitch for the windings 22 and 42) is for example between 5 and 30 times the diameter of the cable January 1.
  • the terminals 1 21 and 1 23 on the one hand and 1 22 and 1 24 on the other hand are disposed at opposite ends of the cable January 1.
  • the transformer 1 can also be used for local application, with terminals 121 to 24 positioned at the same end of the cable 11.
  • Such a transformer 1 also makes it possible to benefit from the cooling over the length of the cable and the insulating capacity of the solid galvanic insulation.
  • FIG. 7 An exemplary structure for the end of a cable January 1, with terminals at the same end, is illustrated in a longitudinal sectional view in Figure 7.
  • This illustration aims to represent interconnections between windings of the primary circuit of the central section 2 and the peripheral section 4, or between windings of the secondary circuit of the central section 2 and the peripheral section 4.
  • a tip 5 is thus attached to one end of the cable January 1.
  • the tip 5 may include connection terminals of the primary or secondary, not shown here.
  • the tip 5 comprises an electrical connector 52, electrically connecting a winding 42 of the peripheral section to a winding 22 of the central section 2.
  • the electrical connector 52 is for example fixed by welding to its respective windings 22 and 42.
  • the electrical connector 52 is covered at its periphery by an insulator 53.
  • the insulator 53 is disposed in the continuity of the insulating layers 23 and 43 and covers the axial end of the electrical connector 52.
  • the insulator 53 envelopes the electrical connector 52 .
  • the tip 5 also comprises an electrical connector 51, electrically connecting a winding 41 of the peripheral section to a winding
  • the electrical connector 51 is for example fixed by welding to its respective windings 21 and 41.
  • the electrical connector 51 is covered at its periphery by an insulator 54.
  • the insulator 54 is disposed in the continuity of the insulating layer 48 and covers the axial end of the electrical connector 51.
  • the mechanical reinforcement 29 here extends axially through the end piece 5 and beyond.
  • FIGS. 8 and 9 illustrate an example of interconnection for the windings 22 and 42 of a secondary circuit according to the numerical application detailed above (FIG. windings of the secondary circuit in each of sections 2 and 4).
  • Figures 8 and 9 illustrate the interconnections at respective opposite ends of the cable January 1.
  • the interconnections illustrated here make it possible to limit the potential difference between adjacent windings 22, or between adjacent windings 42.
  • the interconnections are here schematically illustrated in dashed lines. In FIG. 9, only the terminations of the interconnections have been illustrated for the sake of readability.
  • the windings 22 and 42 are numbered with an index n, windings
  • the windings 22 and 42 of index n being positioned radially opposite.
  • the windings 22, identified by their index n (and by analogy the windings 42), are positioned radially in the following order: 1 -2-4-6-8-10-9-7-5-3.
  • the interconnections between the windings are as follows:
  • the windings 22 and 42 of index 1 are electrically connected by the interconnection 521;
  • the windings 22 of index 1 and 42 of index 2 are electrically connected by the interconnection 61 2; the windings 22 and 42 of index 2 are electrically connected by the interconnection 522;
  • windings 22 of index 2 and 42 of index 3 are electrically connected by the interconnection 623;
  • windings 22 of index 3 and 42 of index 4 are electrically connected by the interconnection 634;
  • the windings 22 and 42 of index 4 are electrically connected by the interconnection 524;
  • windings 22 of index 4 and 42 of index 5 are electrically connected by the interconnection 645;
  • windings 22 and 42 of index 5 are electrically connected by the interconnection 525;
  • windings 22 of index 5 and 42 of index 6 are electrically connected by the interconnection 656;
  • windings 22 and 42 of index 6 are electrically connected by the interconnection 526;
  • windings 22 of index 6 and 42 of index 7 are electrically connected by the interconnection 667;
  • windings 22 of index 7 and 42 of index 8 are electrically connected by the interconnection 678;
  • windings 22 and 42 of index 8 are electrically connected by the interconnection 528;
  • windings 22 of index 8 and 42 of index 9 are electrically connected by the interconnection 689;
  • windings 22 of index 9 and 42 of index 10 are electrically connected by the interconnection 690;
  • the windings 22 and 42 of index 10 are electrically connected by the interconnection 520.
  • a similar interconnection mode can be used for the windings 21 and 41 in order to limit the electric field applied to the insulating walls 25 and 45.
  • Another example of dimensioning for a cable 1 1 of transformer 1 according to the first embodiment may be the following. We plan:
  • the material chosen for the windings 21, 22, 41 and 42 is copper.
  • the material chosen for the screen layer 49 is aluminum.
  • the material used for the solid insulators 23 and 43 is cross-linked polyethylene.
  • the number of windings of the primary circuit in the central section 2 (and in the peripheral section 4) is 1.
  • the number of windings of the secondary circuit in the central section 2 (and in the peripheral section 4) is 1.
  • An air passage (not shown in Figure 3) is provided in the center of the central section 2 instead of the mechanical reinforcement 29 and has a radius of 1 0 mm.
  • the thickness of the winding 21 is 2.8 mm.
  • the thickness of the insulating layer 23 is 5 mm.
  • the thickness of the winding 22 is 1.7 mm.
  • the thickness of the magnetic core 31 is 10 mm.
  • the thickness of the winding 42 is 1.1 mm.
  • the thickness of the insulating layer 43 is 5 mm.
  • the thickness of the winding 41 is 0.9 mm.
  • the thickness of the insulating layer 48 is 5 mm.
  • the thickness of the screen layer 49 is 2.75 mm.
  • the cable 1 1 has a length of 125 m.
  • the winding pitch of the windings 21 and 41 (here identical to the pitch for the windings 22 and 42) is for example between 5 and 30 times the diameter of the cable January 1.
  • Figure 5 is a cross-sectional view of a second exemplary embodiment of the cable 1 1 of a transformer 1 according to the invention.
  • Figure 6 is a sectional view along a longitudinal plane of the cable January 1.
  • the central section 2 of the cable 1 1 comprises several windings 21 of the primary circuit of the transformer 1, several windings 22 of the secondary circuit of the transformer 1.
  • the central section 2 here comprises an alternation of windings distributed around the axis of the cable January 1.
  • the number of windings 22 here is twice the number of windings 21.
  • the cable 1 1 further comprises a galvanic isolation in the form of insulating elements 27 (solid at room temperature).
  • the insulating elements 27 are distributed radially around the axis of the cable January 1.
  • the insulating elements 27 separate two adjacent windings from the central section 2.
  • the insulating elements 27 here form insulating walls extending in a radial direction between two adjacent windings 21 or 22.
  • the intermediate section 3 surrounds the central section 2.
  • the intermediate section 3 comprises a core or magnetic circuit 31.
  • the magnetic core 31 here surrounds the central section 2.
  • the magnetic core 31 here occupies the entire volume of the intermediate section 3.
  • the peripheral section 4 of the cable 1 1 comprises several windings 41 of the primary circuit of the transformer 1 and several windings 42 of the secondary circuit of the transformer 1.
  • the peripheral section 4 here comprises an alternation of windings distributed around the axis of the cable January 1.
  • the number of windings 42 here is twice the number of windings 41.
  • the cable 1 1 further comprises a galvanic isolation in the form of insulating elements 47 (solid at room temperature).
  • the insulating elements 47 are distributed radially around the axis of the cable January 1.
  • the insulating elements 47 separate two adjacent windings from the peripheral section 4.
  • the insulating elements 47 form here insulating walls extending in a radial direction between two adjacent windings 41 or 42.
  • the windings 41 of the primary circuit and the windings 42 of the secondary circuit are positioned in contact with the outer surface of the magnetic core 31.
  • the peripheral section 4 of the cable 1 1 further comprises an insulating wall 48 (solid at ambient temperature) surrounding the windings 41 and 42.
  • the peripheral section 4 of the cable 1 1 also advantageously comprises a conductive layer 49 (for example a metallic layer forming a screen or electromagnetic shielding The screen layer 49 surrounds the insulating wall 48.
  • the cable 1 1 advantageously comprises a mechanical reinforcement 29.
  • the mechanical reinforcement advantageously extends over the entire length of the cable 1 1 (or protrude from the cable 1 1, to allow its attachment by its ends).
  • the mechanical reinforcement 29 is advantageously positioned in the center of the central section 2, at the axis of the cable 1 1, in order to undergo less deformation during bending of the cable January 1.
  • the mechanical reinforcement 29 may have the same composition as for the first exemplary embodiment.
  • the insulating walls 27 extend radially between the mechanical reinforcement 29 and the magnetic core 31.
  • the insulating walls 47 extend between the magnetic core 31 and the insulating layer 48.
  • the various embodiments of the cable 1 1 of a transformer 1 according to the invention have been illustrated described with a cable 1 1 having a rectilinear axis, for the sake of simplification. However, such a cable 1 1 will be flexible in most configurations.
  • the axis of the cable 1 1 may thus be curvilinear, for example when the cable 1 1 is wound in a coil or when the middle portion of the cable 1 1 has deformations by bending.
  • the primary circuit and the secondary circuit of the transformer 1 each include several windings in the central section 2, and several windings in the peripheral section 4.
  • the primary circuit and / or the Secondary circuit of the transformer 1 includes a single winding in the central section 2 and a single winding in the peripheral section 4.
  • the length of the cable 1 1 is advantageously at least 100 times greater than its outer diameter.
  • the transformer 1 is used for power transmission between remote high voltage equipment.
  • the distance between the high voltage equipment may be greater than the length of the cable 1 1.
  • Figure 10 is a cross-sectional view of a variant of the first exemplary embodiment of the cable 1 1 of a transformer 1 according to the invention.
  • the cable 1 1 differs from that of FIG.
  • the galvanic isolation 91 advantageously isolates the windings 22 relative to the magnetic core 31;
  • the galvanic isolation 92 advantageously isolates the windings 42 from the magnetic core 31.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

L'invention concerne un transformateur électrique (1), comportant un câble (11) comprenant: -une section centrale (2), une section intermédiaire (3) et une section périphérique (4); -la section centrale (2) comportant un premier enroulement (21) d'un circuit primaire et un premier enroulement d'un circuit secondaire (22), et une première isolation (23) entre ledit enroulement du circuit primaire et ledit enroulement du circuit secondaire; -la section intermédiaire (3) entourant la section centrale (2) et comportant un noyau magnétique (31); -la section périphérique (4) entourant la section intermédiaire (3) et comportant un deuxième enroulement (41) du circuit primaire et un deuxième enroulement (42) du circuit secondaire, et une deuxième isolation (43) entre cet enroulement du circuit primaire et cet enrôlement du circuit secondaire; -des connexions électriques (51, 52) entre les premier et deuxième enroulements du circuit primaire d'une part, et entre les premier et deuxième enroulements du circuit secondaire d'autre part.

Description

TRANSFORMATEUR ELECTRIQUE POUR DES EQUIPEMENTS HAUTE TENSION DISTANTS
L'invention concerne les équipements pour réseaux haute tension, en particulier la transmission de puissance électrique entre des équipements distants d'un réseau électrique, l'isolation galvanique entre ces équipements distants et la transformation du niveau de tension entre ces équipements distants.
Le document de M. Arun Kadavelugu 'High-Frequency Design Considérations of Dual Active Bridge 1200V SiC Mosfet DC-DC converter', publié en 201 1 par ΓΙΕΕΕ aux pages 314 à 320, décrit un convertisseur continu/continu, dans lequel deux ponts en H sont isolés galvaniquement par un transformateur coaxial. Le transformateur coaxial inclut deux bras, interconnectés à leurs extrémités et supportés par une armature. Chaque bras inclut une section interne munie de plusieurs enroulements du circuit primaire, et une section externe munie de plusieurs enroulements du circuit secondaire. Les enroulements du primaire et du secondaire sont isolés l'un par rapport à l'autre. Un noyau magnétique est positionné à la périphérie des enroulements primaire et secondaire. Ce noyau magnétique comprend plusieurs tronçons espacés, afin de favoriser le refroidissement du transformateur. Pour gagner en compacité, les noyaux magnétiques des deux bras sont entrelacés.
Si l'on souhaite connecter deux réseaux ou équipements tension continue distants, le convertisseur est connecté par son entrée à un premier réseau, sa sortie étant connectée au deuxième réseau par des câbles électriques.
En pratique, une telle installation présente des inconvénients, puisque le volume occupé par le transformateur au niveau d'un des deux réseaux s'avère particulièrement volumineux pour des applications haute tension. Le refroidissement du transformateur induit notamment un encombrement non négligeable.
Un tel transformateur coaxial s'avère alors inapproprié. On choisit alors des transformateurs plus classiques, munis d'un noyau magnétique entouré d'enroulements primaires et secondaires. L'isolation électrique est le plus souvent réalisée par un fluide tel que du gaz ou de l'huile en circulation entre les enroulements primaires et secondaires. La gestion d'un tel fluide présente des problématiques de sécurité, d'environnement, de maintenance et d'encombrement, particulièrement gênantes lorsque le transformateur est placé en milieu hostile, par exemple dans un champ d'éoliennes marines.
Le refroidissement et l'isolation électrique de tels transformateurs plus classiques est également problématique, même pour des applications de transformation locales. Le document DE4318270 décrit un transformateur électrique coaxial, comprenant un enroulement d'un circuit primaire, un noyau magnétique entourant l'enroulement de circuit primaire, et un enroulement d'un circuit secondaire entourant le noyau magnétique.
Le document US201 1 /0291 792 décrit un transformateur coaxial où les enroulements des circuits primaire et secondaire sont disposés au sein d'un noyau magnétique.
Le document GB2447963 décrit un transformateur électrique coaxial, comprenant un enroulement d'un circuit primaire, un noyau magnétique entourant l'enroulement de circuit primaire, et un enroulement d'un circuit secondaire entourant le noyau magnétique.
L'invention vise à résoudre un ou plusieurs de ces inconvénients.
L'invention porte ainsi sur un transformateur électrique, tel que défini dans la revendication 1 annexée.
L'invention porte également sur les variantes définies dans les revendications dépendantes annexées. L'homme du métier comprendra que chacune des caractéristiques de ces variantes peut être combinée indépendamment aux caractéristiques de la revendication 1 , sans pour autant constituer une généralisation intermédiaire.
L'invention porte également sur une infrastructure électrique, telle que définie dans les revendications annexées.
D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
-la figure 1 est une représentation schématique d'un exemple d'implantation d'un transformateur selon l'invention ;
-la figure 2 est une vue en coupe transversale schématique illustrant différentes sections d'un câble d'un exemple de transformateur selon l'invention ;
-la figure 3 est une vue en coupe transversale d'un premier mode de réalisation de câble pour un transformateur selon l'invention ;
-la figure 4 est une vue en coupe selon un plan longitudinal du câble de la figure 3 ;
-la figure 5 est une vue en coupe transversale d'un deuxième mode de réalisation de câble pour un transformateur selon l'invention ;
-la figure 6 est une vue en coupe selon un plan longitudinal du câble de la figure 5 ;
-la figure 7 est une vue en coupe longitudinale d'un exemple d'interconnexions à l'extrémité d'un câble ; -les figures 8 et 9 sont des représentations schématiques d'un exemple de câblage entre enroulements d'un circuit secondaire ;
-la figure 10 est une vue en coupe transversale d'une variante du premier mode de réalisation de câble pour un transformateur selon l'invention.
L'invention propose un transformateur électrique dans lequel les enroulements du circuit primaire et du circuit secondaire sont logés dans un câble unique, par exemple pour la connexion de deux équipements distants d'un réseau haute tension. Le câble d'un tel transformateur comprend une section centrale, une section intermédiaire et une section périphérique concentrique. La section centrale comporte au moins un enroulement du circuit primaire, un enroulement du circuit secondaire et une isolation galvanique entre cet enroulement du circuit primaire et cet enroulement du circuit secondaire. La section intermédiaire entoure la section centrale et comporte un noyau magnétique. La section périphérique entoure la section intermédiaire et comporte un enroulement du circuit primaire et un enroulement du circuit secondaire. La section périphérique comporte également une isolation galvanique entre cet enroulement du circuit primaire et cet enroulement du circuit secondaire. Ces deux enroulements du circuit primaire, inclus respectivement dans la section centrale et dans la section périphérique, sont connectés électriquement au niveau d'une extrémité axiale du câble. Ces deux enroulements du circuit secondaire, inclus respectivement dans la section centrale et dans la section périphérique, sont connectés électriquement au niveau d'une extrémité axiale du câble.
La figure 1 illustre un exemple d'implantation d'un transformateur 1 selon l'invention. Le transformateur 1 comporte un câble 1 1 allongé, présentant des extrémités axiales 1 1 1 et 1 1 2. Le câble 1 1 inclut des enroulements d'un circuit primaire de transformateur, des enroulements d'un circuit secondaire de transformateur, et un noyau magnétique, comme détaillé par la suite. À l'extrémité 1 1 1 , le câble 1 1 comporte des bornes de connexion 1 21 et 1 23 formant les bornes du circuit primaire du transformateur 1 . À l'extrémité 1 1 2, le câble 1 1 comporte des bornes de connexion 1 22 et 124 formant les bornes du circuit secondaire du transformateur 1 .
Dans cet exemple particulier, le transformateur 1 est utilisé pour la transmission d'énergie électrique et la transformation de niveau de tension entre deux équipements 82 et 84 distants d'un réseau haute tension continu. Les bornes 1 21 et 1 23 du circuit primaire sont connectées à une interface alternatif d'un convertisseur continu/alternatif 81 . L'équipement 82 est connecté à une interface continu du convertisseur continu/alternatif 81 . Les bornes 1 22 et 1 24 du circuit secondaire sont connectées à une interface alternatif d'un convertisseur continu/alternatif 83. L'équipement 84 est connecté à une interface continu du convertisseur continu/alternatif 83. La figure 2 est une vue en coupe transversale schématique illustrant différentes sections d'un câble 1 1 d'un exemple de transformateur 1 selon l'invention. Dans ce câble 1 1 , on peut définir une section centrale 2, une section intermédiaire 3 et une section périphérique 4, les sections 2, 3 et 4 étant concentriques. La section périphérique 4 entoure la section intermédiaire 3, qui entoure la section centrale 2.
La figure 3 est une vue en coupe transversale d'un premier exemple de mode de réalisation du câble 1 1 d'un transformateur 1 selon l'invention. La figure 4 est une vue en coupe selon un plan longitudinal du câble 1 1 .
La section centrale 2 du câble 1 1 comprend plusieurs enroulements 21 du circuit primaire du transformateur 1 , plusieurs enroulements 22 du circuit secondaire du transformateur 1 , et une isolation galvanique solide 23.
L'isolation galvanique 23 est réalisée sous la forme d'une couche isolante électriquement (solide à la température ambiante) entourant les enroulements 21 du circuit primaire. Les enroulements 22 du circuit secondaire sont positionnés en contact avec la surface externe de cette couche isolante 23. Les enroulements 21 sont répartis radialement autour de l'axe du câble 1 1 . Les différents enroulements 21 sont séparés et isolés par des parois isolantes 25 (solides à la température ambiante), s'étendant selon une direction radiale entre ces enroulements 21 . Les enroulements 22 sont répartis radialement autour de l'axe du câble 1 1 . Les différents enroulements 22 sont séparés et isolés par des parois isolantes 26 (solides à la température ambiante), s'étendant selon une direction radiale entre ces enroulements 22.
La section intermédiaire 3 entoure la section centrale 2. La section intermédiaire 3 comporte un noyau ou circuit magnétique 31 . Le noyau magnétique 31 entoure ici la section centrale 2. Le noyau magnétique 31 occupe ici tout le volume de la section intermédiaire 3.
La section périphérique 4 du câble 1 1 comprend plusieurs enroulements
41 du circuit primaire du transformateur 1 , plusieurs enroulements 42 du circuit secondaire du transformateur 1 , et une isolation galvanique solide 43.
L'isolation galvanique 43 est réalisée sous la forme d'une couche isolante électriquement (solide à la température ambiante) entourant les enroulements
42 du circuit secondaire. Les enroulements 42 sont répartis radialement autour de l'axe du câble 1 1 . Les enroulements 42 sont ici en contact avec le noyau magnétique 31 . Les différents enroulements 42 sont séparés et isolés par des parois isolantes 46 (solides à la température ambiante), s'étendant selon une direction radiale entre ces enroulements 42. Les enroulements 41 du circuit primaire sont positionnés en contact avec la surface externe de cette couche isolante 43. Les enroulements 41 sont répartis radialement autour de l'axe du câble 1 1 . Les différents enroulements 41 sont séparés et isolés par des parois isolantes 45 (solides à la température ambiante), s'étendant selon une direction radiale entre ces enroulements 41 .
Un tel transformateur 1 présente un refroidissement par convection sur toute la longueur du câble 1 1 . La longueur du câble 1 1 favorise ainsi le refroidissement du transformateur 1 , ce qui permet d'éviter ou de limiter le besoin de plonger le câble 1 1 dans un écoulement de fluide de refroidissement. Par ailleurs, l'isolation galvanique est ici obtenue par des matériaux solides, ce qui permet de limiter les risques de fuite les contraintes de maintenance pour le transformateur 1 . En outre, la transformation électrique étant réalisée sur la longueur du câble 1 1 également utilisé pour la transmission d'énergie, l'encombrement du transformateur 1 est particulièrement réduit au niveau des équipements distants auxquels il est connecté.
Dans ce mode de réalisation, on vise à favoriser la facilité de fabrication du câble 1 1 , en disposant les enroulements du circuit primaire et les enroulements du circuit secondaire dans des couches différentes. En outre, la fabrication d'un tel câble est facilitée, les isolations galvaniques 23 et 43 pouvant aisément être réalisées par extrusion ou enrubannage, par des procédés connus en soi. Par ailleurs, ce mode de réalisation permet aisément de réaliser des isolations galvaniques d'épaisseur importante entre les différents enroulements.
La section périphérique 4 du câble 1 1 comporte en outre une paroi isolante 48 (solide à la température ambiante) entourant les enroulements 41 . La section périphérique 4 du câble 1 1 comporte également avantageusement une couche conductrice 49 (par exemple une couche métallique formant un écran ou blindage électromagnétique. La couche 49 formant écran entoure la paroi isolante 48.
Dans le mode de réalisation illustré, le câble 1 1 comporte avantageusement un renfort mécanique 29. Le renfort mécanique s'étend avantageusement sur toute la longueur du câble 1 1 (voire en saillie par rapport au câble 1 1 , pour permettre sa fixation par ses extrémités). Le renfort mécanique 29 est avantageusement positionné au centre de la section centrale 2, au niveau de l'axe du câble 1 1 , afin de subir une moindre déformation lors d'une flexion du câble 1 1 . Le renfort mécanique 29 peut par exemple comprendre un câble métallique recouvert d'isolant, des fibres synthétiques ou un polymère renforcé par des fibres.
Dans le mode de réalisation illustré, les parois isolantes 25 s'étendent radialement entre le renfort mécanique 29 et la couche isolante 23. Dans l'exemple de mode de réalisation illustré, les parois isolantes 26 s'étendent radialement entre la couche isolante 23 et le noyau magnétique 31 . Dans l'exemple de mode de réalisation illustré, les parois isolantes 46 s'étendent entre le noyau magnétique 31 et la couche isolante 43. Dans l'exemple de mode de réalisation illustré, les parois isolantes 45 s'étendent entre la couche isolante 43 et la couche isolante 48.
Le noyau magnétique 31 présente par exemple une forme pouvant être obtenue par extrusion ou enrubannage concentrique. Le noyau magnétique 31 peut par exemple être formé à partir d'une résine polymère chargée en poudre magnétique. Le noyau magnétique 31 peut par exemple également être formé en tôle roulée et revêtue d'un isolant. Un tel matériau pourra par exemple être choisi pour présenter une perméabilité magnétique relative d'au moins 1 50, de préférence au moins 200, avantageusement de 500. Selon des simulations, le couplage magnétique est d'au moins 0,99 pour une perméabilité magnétique relative d'au moins 1 50 du noyau magnétique 31 .
Le matériau utilisé pour l'un des isolants solides 23, 25, 26, 43, 45 ou 46 est par exemple choisi dans le groupe comprenant du polyéthylène réticulé isolant, du polypropylène, du caoutchouc (EPR, HEPR) ou du silicone.
Le matériau utilisé pour les enroulements 21 , 22, 41 ou 42 est par exemple choisi dans le groupe comprenant le cuivre et ses alliages ou l'aluminium et ses alliages.
Un exemple de dimensionnement pour un câble 1 1 de transformateur 1 selon le premier mode de réalisation peut être le suivant. On prévoit :
-la transmission d'une puissance de 1 0MW par le transformateur 1 ;
-une tension de 1 0 kV aux bornes du circuit primaire, une tension de 1 00 kV aux bornes du circuit secondaire ;
-un courant de 1000 A à travers le circuit primaire, un courant de 100 A à travers le circuit secondaire, avec une fréquence de 20 kHz ;
-une densité de courant de 1 A/mm2 ;
-une induction magnétique de 0,2T.
Pour rappel, la tension sinusoïdale V aux bornes d'un enroulement bobiné se calcule par la formule de Boucherot :
Avec N : le nombre de spires de l'enroulement, B : l'induction magnétique,
S : la section du circuit magnétique,
F : la fréquence de fonctionnement. Le matériau choisi pour les enroulements 21 , 22, 41 et 42 est du cuivre.
Le matériau choisi pour la couche écran 49 est de l'aluminium.
Le matériau utilisé pour les isolants solides 23, 26, 43 et 46 est du polyéthylène réticulé.
Le nombre d'enroulements du circuit primaire dans la section centrale 2 (et dans la section périphérique 4) est de 1 . Le nombre d'enroulements du circuit secondaire dans la section centrale 2 (et dans la section périphérique 4) est de 1 0.
Un orifice de passage d'air (non illustré à la figure 3) est ménagé au centre de la section centrale 2 en remplacement du renfort mécanique 29 et présente un rayon de 1 0 mm. L'épaisseur de l'enroulement 21 est de 1 0,5 mm. L'épaisseur de la couche isolante 23 est de 5 mm. L'épaisseur des enroulements 22 est de 5,6 mm. La largeur des parois isolantes 26 est au moins de 1 mm, de préférence d'au moins 2 mm. L'épaisseur du noyau magnétique 31 est de 1 0 mm. L'épaisseur des enroulements 42 est de 3,7 mm. L'épaisseur de la couche isolante 43 est de 5 mm. L'épaisseur de l'enroulement 41 est de 3,1 mm. L'épaisseur de la couche d'isolant 48 est de 5 mm. L'épaisseur de la couche écran 49 est de 2,75 mm. Le câble 1 1 présente une longueur de 62,5 m.
Le pas d'enroulement des enroulements 21 et 41 (ici identique au pas pour les enroulements 22 et 42) est par exemple compris entre 5 et 30 fois le diamètre du câble 1 1 .
Dans les exemples illustrés auparavant, les bornes 1 21 et 1 23 d'une part et 1 22 et 1 24 d'autre part, sont disposées à des extrémités opposées du câble 1 1 . Cependant, on peut également utiliser le transformateur 1 pour une application locale, avec des bornes 1 21 à 1 24 positionnées au niveau d'une même extrémité du câble 1 1 . Un tel transformateur 1 permet aussi de bénéficier du refroidissement sur la longueur du câble et sur la capacité d'isolation des isolations galvaniques solides.
Un exemple de structure pour l'extrémité d'un câble 1 1 , avec des bornes au niveau d'une même extrémité, est illustré dans une vue en coupe longitudinale à la figure 7. Cette illustration vise à représenter des interconnexions entre des enroulements du circuit primaire de la section centrale 2 et de la section périphérique 4, ou entre des enroulements du circuit secondaire de la section centrale 2 et de la section périphérique 4. Un embout 5 est ainsi fixé à une extrémité du câble 1 1 . L'embout 5 peut comprendre des bornes de connexion du primaire ou du secondaire, non illustrées ici. L'embout 5 comprend un connecteur électrique 52, reliant électriquement un enroulement 42 de la section périphérique à un enroulement 22 de la section centrale 2. Le connecteur électrique 52 est par exemple fixé par soudure à ses enroulements respectifs 22 et 42.
Le connecteur électrique 52 est recouvert à sa périphérie par un isolant 53. L'isolant 53 est disposé dans la continuité des couches isolantes 23 et 43 et vient recouvrir l'extrémité axiale du connecteur électrique 52. L'isolant 53 enveloppe le connecteur électrique 52.
L'embout 5 comprend également un connecteur électrique 51 , reliant électriquement un enroulement 41 de la section périphérique à un enroulement
21 de la section centrale 2. Le connecteur électrique 51 est par exemple fixé par soudure à ses enroulements respectifs 21 et 41 . Le connecteur électrique 51 est recouvert à sa périphérie par un isolant 54. L'isolant 54 est disposé dans la continuité de la couche isolante 48 et vient recouvrir l'extrémité axiale du connecteur électrique 51 .
Le renfort mécanique 29 s'étend ici axialement à travers l'embout 5 et au- delà.
En vue de limiter le champ électrique appliqué sur les différentes parois isolantes 26 et 46, les figures 8 et 9 illustrent un exemple d'interconnexion pour les enroulements 22 et 42 d'un circuit secondaire selon l'application numérique détaillée ci-dessus (10 enroulements du circuit secondaire dans chacune des sections 2 et 4). Les figures 8 et 9 illustrent les interconnexions au niveau d'extrémités respectives opposées du câble 1 1 . Les interconnexions illustrées ici permettent de limiter la différence de potentiel entre des enroulements 22 adjacents, ou entre des enroulements 42 adjacents. Les interconnexions sont ici illustrées de façon schématique en pointillés. A la figure 9, on a illustré uniquement les terminaisons des interconnexions, dans un souci de lisibillité. Les enroulements 22 et 42 sont numérotés avec un indice n, des enroulements
22 et 42 d'indice n étant positionnés en regard radialement. Les enroulements 22, identifiés par leur indice n (et par analogie les enroulements 42), sont positionnés radialement dans l'ordre suivant : 1 -2-4-6-8-10-9-7-5-3. Les interconnexions entre les enroulements sont les suivantes :
-les enroulements 22 et 42 d'indice 1 sont connectés électriquement par l'interconnexion 521 ;
-les enroulements 22 d'indice 1 et 42 d'indice 2 sont connectés électriquement par l'interconnexion 61 2 ; -les enroulements 22 et 42 d'indice 2 sont connectés électriquement par l'interconnexion 522 ;
-les enroulements 22 d'indice 2 et 42 d'indice 3 sont connectés électriquement par l'interconnexion 623 ;
-les enroulements 22 et 42 d'indice 3 sont connectés électriquement par l'interconnexion 523 ;
-les enroulements 22 d'indice 3 et 42 d'indice 4 sont connectés électriquement par l'interconnexion 634 ;
-les enroulements 22 et 42 d'indice 4 sont connectés électriquement par l'interconnexion 524 ;
-les enroulements 22 d'indice 4 et 42 d'indice 5 sont connectés électriquement par l'interconnexion 645 ;
-les enroulements 22 et 42 d'indice 5 sont connectés électriquement par l'interconnexion 525 ;
-les enroulements 22 d'indice 5 et 42 d'indice 6 sont connectés électriquement par l'interconnexion 656 ;
-les enroulements 22 et 42 d'indice 6 sont connectés électriquement par l'interconnexion 526 ;
-les enroulements 22 d'indice 6 et 42 d'indice 7 sont connectés électriquement par l'interconnexion 667 ;
-les enroulements 22 et 42 d'indice 7 sont connectés électriquement par l'interconnexion 527 ;
-les enroulements 22 d'indice 7 et 42 d'indice 8 sont connectés électriquement par l'interconnexion 678 ;
-les enroulements 22 et 42 d'indice 8 sont connectés électriquement par l'interconnexion 528 ;
-les enroulements 22 d'indice 8 et 42 d'indice 9 sont connectés électriquement par l'interconnexion 689 ;
-les enroulements 22 et 42 d'indice 9 sont connectés électriquement par l'interconnexion 529 ;
-les enroulements 22 d'indice 9 et 42 d'indice 10 sont connectés électriquement par l'interconnexion 690 ;
-les enroulements 22 et 42 d'indice 10 sont connectés électriquement par l'interconnexion 520.
Dans le cas où le circuit primaire comprend plusieurs enroulements dans la section centrale 2 et dans la section périphérique 4, un mode d'interconnexion similaire peut être utilisé pour les enroulements 21 et 41 afin de limiter le champ électrique appliqué sur les parois isolantes 25 et 45. Un autre exemple de dimensionnement pour un câble 1 1 de transformateur 1 selon le premier mode de réalisation peut être le suivant. On prévoit :
-la transmission d'une puissance de 1 MW par le transformateur 1 ;
-une tension de 5 kV aux bornes du circuit primaire, une tension de 5 kV aux bornes du circuit secondaire ;
-un courant de 200 A à travers le circuit primaire, un courant de 200 A à travers le circuit secondaire, avec une fréquence de 5 kHz ;
-une densité de courant de 1 A/mm2 ;
-un champ magnétique de 0,2T.
Le matériau choisi pour les enroulements 21 , 22, 41 et 42 est du cuivre. Le matériau choisi pour la couche écran 49 est de l'aluminium.
Le matériau utilisé pour les isolants solides 23 et 43 est du polyéthylène réticulé.
Le nombre d'enroulements du circuit primaire dans la section centrale 2 (et dans la section périphérique 4) est de 1 . Le nombre d'enroulements du circuit secondaire dans la section centrale 2 (et dans la section périphérique 4) est de 1 .
Un orifice de passage d'air (non illustré à la figure 3) est ménagé au centre de la section centrale 2 en remplacement du renfort mécanique 29 et présente un rayon de 1 0 mm. L'épaisseur de l'enroulement 21 est de 2,8 mm. L'épaisseur de la couche isolante 23 est de 5 mm. L'épaisseur de l'enroulement 22 est de 1 ,7 mm. L'épaisseur du noyau magnétique 31 est de 10 mm. L'épaisseur de l'enroulement 42 est de 1 , 1 mm. L'épaisseur de la couche isolante 43 est de 5 mm. L'épaisseur de l'enroulement 41 est de 0,9 mm. L'épaisseur de la couche d'isolant 48 est de 5 mm. L'épaisseur de la couche écran 49 est de 2,75 mm. Le câble 1 1 présente une longueur de 125 m.
Le pas d'enroulement des enroulements 21 et 41 (ici identique au pas pour les enroulements 22 et 42) est par exemple compris entre 5 et 30 fois le diamètre du câble 1 1 .
La figure 5 est une vue en coupe transversale d'un deuxième exemple de mode de réalisation du câble 1 1 d'un transformateur 1 selon l'invention. La figure 6 est une vue en coupe selon un plan longitudinal du câble 1 1 .
La section centrale 2 du câble 1 1 comprend plusieurs enroulements 21 du circuit primaire du transformateur 1 , plusieurs enroulements 22 du circuit secondaire du transformateur 1 . La section centrale 2 comprend ici une alternance d'enroulements répartis autour de l'axe du câble 1 1 . Le nombre d'enroulements 22 est ici le double du nombre d'enroulements 21 . Le câble 1 1 comprend en outre une isolation galvanique sous la forme d'éléments isolants 27 (solides à la température ambiante). Les éléments isolants 27 sont répartis radialement autour de l'axe du câble 1 1 . Les éléments isolants 27 séparent deux enroulements adjacents de la section centrale 2. Les éléments isolants 27 forment ici des parois isolantes s'étendant selon une direction radiale entre deux enroulements 21 ou 22 adjacents.
La section intermédiaire 3 entoure la section centrale 2. La section intermédiaire 3 comporte un noyau ou circuit magnétique 31 . Le noyau magnétique 31 entoure ici la section centrale 2. Le noyau magnétique 31 occupe ici tout le volume de la section intermédiaire 3.
La section périphérique 4 du câble 1 1 comprend plusieurs enroulements 41 du circuit primaire du transformateur 1 et plusieurs enroulements 42 du circuit secondaire du transformateur 1 . La section périphérique 4 comprend ici une alternance d'enroulements répartis autour de l'axe du câble 1 1 . Le nombre d'enroulements 42 est ici le double du nombre d'enroulements 41 .
Le câble 1 1 comprend en outre une isolation galvanique sous la forme d'éléments isolants 47 (solides à la température ambiante). Les éléments isolants 47 sont répartis radialement autour de l'axe du câble 1 1 . Les éléments isolants 47 séparent deux enroulements adjacents de la section périphérique 4. Les éléments isolants 47 forment ici des parois isolantes s'étendant selon une direction radiale entre deux enroulements 41 ou 42 adjacents.
Les enroulements 41 du circuit primaire et les enroulements 42 du circuit secondaire sont positionnés en contact avec la surface externe du noyau magnétique 31 .
La section périphérique 4 du câble 1 1 comporte en outre une paroi isolante 48 (solide à la température ambiante) entourant les enroulements 41 et 42. La section périphérique 4 du câble 1 1 comporte également avantageusement une couche conductrice 49 (par exemple une couche métallique formant un écran ou blindage électromagnétique. La couche 49 formant écran entoure la paroi isolante 48.
Dans le mode de réalisation illustré, le câble 1 1 comporte avantageusement un renfort mécanique 29. Le renfort mécanique s'étend avantageusement sur toute la longueur du câble 1 1 (voire en saillie par rapport au câble 1 1 , pour permettre sa fixation par ses extrémités). Le renfort mécanique 29 est avantageusement positionné au centre de la section centrale 2, au niveau de l'axe du câble 1 1 , afin de subir une moindre déformation lors d'une flexion du câble 1 1 . Le renfort mécanique 29 peut présenter la même composition que pour le premier exemple de mode de réalisation.
Dans le mode de réalisation illustré, les parois isolantes 27 s'étendent radialement entre le renfort mécanique 29 et le noyau magnétique 31 . Dans l'exemple de mode de réalisation illustré, les parois isolantes 47 s'étendent entre le noyau magnétique 31 et la couche isolante 48.
Les différents modes de réalisation du câble 1 1 d'un transformateur 1 selon l'invention ont été illustrés décrits avec un câble 1 1 présentant un axe rectiligne, dans un souci de simplification. Cependant, un tel câble 1 1 sera flexible dans la plupart des configurations. L'axe du câble 1 1 pourra ainsi être curviligne, par exemple lorsque le câble 1 1 est enroulé en bobine ou lorsque la partie médiane du câble 1 1 présente des déformations par flexion.
Dans les différents modes de réalisation décrits, le circuit primaire et le circuit secondaire du transformateur 1 incluent chacun plusieurs enroulements dans la section centrale 2, et plusieurs enroulements dans la section périphérique 4. On peut cependant également envisager que le circuit primaire et/ou le circuit secondaire du transformateur 1 incluent un unique enroulement dans la section centrale 2 et un unique enroulement dans la section périphérique 4.
Pour favoriser le refroidissement du câble 1 1 et servir à la transmission de puissance entre des équipements réseaux distants, la longueur du câble 1 1 est avantageusement au moins 100 fois supérieure à son diamètre extérieur.
Dans les exemples illustrés, le transformateur 1 est utilisé pour la transmission de puissance entre des équipements haute tension distants. La distance entre les équipements haute tension peut être supérieure à la longueur du câble 1 1 . Dans un tel cas de figure, on peut connecter un câble de transmission de puissance aux bornes du circuit primaire et/ou aux bornes du circuit secondaire pour s'adapter à la distance séparant ces équipements haute tension.
La figure 10 est une vue en coupe transversale d'une variante du premier exemple de mode de réalisation du câble 1 1 d'un transformateur 1 selon l'invention. Le câble 1 1 diffère de celui de la figure 3 :
-par la présence d'une isolation galvanique 91 ceinturant la section centrale 2. L'isolation galvanique 91 isole ici avantageusement les enroulements 22 par rapport au noyau magnétique 31 ;
-par la présence d'une isolation galvanique 92 ceinturant la section intermédiaire 3. L'isolation galvanique 92 isole ici avantageusement les enroulements 42 par rapport au noyau magnétique 31 .

Claims

REVENDICATIONS
Transformateur électrique (1 ), comportant un câble (1 1 ) présentant des première et deuxième extrémités axiales (1 1 1 ,1 12), caractérisé en ce que le câble comprend:
-une section centrale (2), une section intermédiaire (3) et une section périphérique (4) concentriques ;
-la section centrale
(2) comportant au moins un premier enroulement (21 ) d'un circuit primaire et au moins un premier enroulement d'un circuit secondaire (22), et au moins une première isolation galvanique solide (23) entre ledit premier enroulement du circuit primaire et ledit premier enroulement du circuit secondaire ;
-la section intermédiaire
(3) entourant la section centrale (2) et comportant un noyau magnétique (31 );
-la section périphérique
(4) entourant la section intermédiaire (3) et comportant au moins un deuxième enroulement (41 ) du circuit primaire et au moins un deuxième enroulement (42) du circuit secondaire, et au moins une deuxième isolation galvanique solide (43) entre ledit deuxième enroulement du circuit primaire et ledit deuxième enrôlement du circuit secondaire ;
-une connexion électrique (51 ) à une desdites extrémités axiales du câble entre les premier et deuxième enroulements du circuit primaire;
-une connexion électrique (52) à une desdites extrémités axiales du câble entre les premier et deuxième enroulements du circuit secondaire.
Transformateur électrique (1 ) selon la revendication 1 , comprenant deux bornes de connexion (121 , 123) au circuit primaire disposées au niveau de la première extrémité (1 1 1 ) du câble (1 1 ), et comprenant deux bornes de connexion (122, 123) au circuit secondaire disposées au niveau de la deuxième extrémité (1 12) du câble (1 1 ).
Transformateur électrique (1 ) selon la revendication 1 ou 2, dans lequel la section centrale (2) comprend un renfort mécanique (29) s'étendant sur toute la longueur du câble (1 1 ), ledit renfort mécanique (29) étant positionné au niveau du centre de la section centrale.
Transformateur électrique (1 ) selon l'une quelconque des revendications précédentes, dans lequel la section centrale (2) comporte une couche isolante (23) entourant plusieurs enroulements de l'un parmi le circuit primaire et le circuit secondaire, l'autre parmi le circuit primaire et le circuit secondaire comportant plusieurs enroulements en contact avec la surface externe de la couche isolante (23).
5. Transformateur électrique (1 ) selon la revendication 4, dans lequel lesdits enroulements (22) en contact avec la surface externe de la couche isolante (23) sont séparés les uns des autres par des parois isolantes (26) présentant une largeur au moins égale à 1 mm.
6. Transformateur électrique (1 ) selon l'une quelconque des revendications 1 à 3, dans lequel la section centrale (2) comporte une alternance d'enroulements du circuit primaire et d'enroulements du circuit secondaire répartis radialement autour de l'axe du câble, la première isolation galvanique comprenant des éléments isolants (27) répartis radialement autour de l'axe du câble et séparant les enroulements de cette alternance.
7. Transformateur électrique (1 ) selon l'une quelconque des revendications précédentes, dans lequel ladite première isolation galvanique comprend un matériau choisi dans le groupe incluant le Polypropylène, ou le polyéthylène réticulé.
8. Transformateur électrique (1 ) selon l'une quelconque des revendications précédentes, dans lequel le noyau magnétique (31 ) comprend un matériau choisi dans le groupe incluant le matériau commercialisé sous la référence Vitroperm 500F nanocristallin, ou le matériau commercialisé sous la référence Molypermalloy Powder Core.
9. Transformateur électrique (1 ) selon la revendication 8, dans lequel le noyau magnétique (31 ) s'étend en continu sur toute la longueur du câble (1 1 ).
1 0. Transformateur électrique (1 ) selon l'une quelconque des revendications précédentes, dans lequel le câble (1 1 ) présente une longueur au moins 100 fois supérieure à son diamètre.
1 1 . Transformateur électrique (1 ) selon l'une quelconque des revendications précédentes, dans lequel ladite première isolation galvanique présente une épaisseur d'au moins 2mm.
1 2. Transformateur électrique (1 ) selon l'une quelconque des revendications précédentes, dans lequel lesdits enroulements du circuit primaire sont enroulés avec un pas axial compris entre 5 et 30 fois le diamètre du câble de section circulaire.
1 3. Infrastructure électrique, comportant :
-un transformateur selon la revendication 2 ; -un premier équipement électrique (81 ) connecté aux bornes de connexion (121 ,
123) au circuit primaire au niveau de la première extrémité du câble (1 1 ) ;
-un second équipement électrique (83) connecté aux bornes de connexion (122,
124) au circuit secondaire au niveau de la deuxième extrémité du câble (1 1 ), le premier ou le second équipement électrique appliquant une tension au moins égale à 1 kV entre les bornes de connexion auxquelles il est connecté.
EP16825455.5A 2015-12-22 2016-12-06 Transformateur électrique pour des équipements haute tension distants Active EP3394867B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16825455T PL3394867T3 (pl) 2015-12-22 2016-12-06 Transformator elektryczny do odległych urządzeń wysokiego napięcia

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1563062A FR3045925B1 (fr) 2015-12-22 2015-12-22 Transformateur electrique pour des equipements haute tension distants
PCT/FR2016/053224 WO2017109317A1 (fr) 2015-12-22 2016-12-06 Transformateur électrique pour des équipements haute tension distants

Publications (2)

Publication Number Publication Date
EP3394867A1 true EP3394867A1 (fr) 2018-10-31
EP3394867B1 EP3394867B1 (fr) 2020-02-05

Family

ID=56263759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16825455.5A Active EP3394867B1 (fr) 2015-12-22 2016-12-06 Transformateur électrique pour des équipements haute tension distants

Country Status (8)

Country Link
EP (1) EP3394867B1 (fr)
JP (1) JP2019503074A (fr)
KR (1) KR20180095074A (fr)
CN (1) CN108463861A (fr)
ES (1) ES2773516T3 (fr)
FR (1) FR3045925B1 (fr)
PL (1) PL3394867T3 (fr)
WO (1) WO2017109317A1 (fr)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522088B2 (fr) * 1972-07-07 1977-01-19
JPS5069617U (fr) * 1973-10-30 1975-06-20
JPH06215964A (ja) * 1993-01-20 1994-08-05 Nippon Telegr & Teleph Corp <Ntt> 高周波用電源トランス
DE4318270A1 (de) * 1993-06-02 1994-12-08 Zielinski Adolf Herbert Astor Koaxialer Transformator, Arbeitsweise und Einrichtung zur elektromagnetischen Transformation von Energie
CN2243117Y (zh) * 1995-04-07 1996-12-18 中国铁路通信信号总公司西安器材研究所 防雷变压器
SE512105C2 (sv) * 1997-11-28 2000-01-24 Abb Ab Ställverksstation
JP2002343652A (ja) * 2001-05-18 2002-11-29 Nichicon Corp リアクトルまたは変圧器
NO319424B1 (no) * 2001-11-21 2005-08-08 Magtech As Fremgangsmate for styrbar omforming av en primaer vekselstrom/-spenning til en sekundaer vekselstrom/-spenning
JP4055125B2 (ja) * 2002-12-24 2008-03-05 日本光電工業株式会社 同軸ケーブルおよびそれを用いた伝送トランス
CN2749029Y (zh) * 2004-09-17 2005-12-28 特变电工股份有限公司 超导电抗器
WO2006064499A2 (fr) * 2004-12-14 2006-06-22 Alex Axelrod Dispositif d'induction magnetique
GB2447963B (en) * 2007-03-29 2011-11-16 E2V Tech High frequency transformer for high voltage applications
GB2462291B (en) * 2008-07-31 2012-07-18 E2V Tech Uk Ltd Multi-toroid transformer
EP2392017A1 (fr) * 2009-01-30 2011-12-07 Hbcc Pty Ltd Transformateurs haute fréquence
GB201101066D0 (en) * 2011-01-21 2011-03-09 E2V Tech Uk Ltd Interconnection for connecting a switched mode inverter to a load
DE102012218260B3 (de) * 2012-10-05 2013-12-05 Bruker Hts Gmbh Induktiver Fehlerstrombegrenzer mit geteilter Sekundärspulenanordnung
CN203481015U (zh) * 2013-09-13 2014-03-12 华中科技大学 一种大功率中频隔离变压器
CN203871145U (zh) * 2014-04-30 2014-10-08 广州西门子变压器有限公司 变压器线圈及其电力变压器

Also Published As

Publication number Publication date
EP3394867B1 (fr) 2020-02-05
CN108463861A (zh) 2018-08-28
WO2017109317A1 (fr) 2017-06-29
FR3045925B1 (fr) 2018-02-16
KR20180095074A (ko) 2018-08-24
JP2019503074A (ja) 2019-01-31
PL3394867T3 (pl) 2020-07-13
ES2773516T3 (es) 2020-07-13
FR3045925A1 (fr) 2017-06-23

Similar Documents

Publication Publication Date Title
AU2014405270B2 (en) Submarine electrical cable and submarine cable operation method
JP4372845B2 (ja) 電力変圧器/誘導器
JP2014505325A (ja) 高圧電気ケーブル
US20230019405A1 (en) AC Submarine Power Cable With Reduced Losses
US6525265B1 (en) High voltage power cable termination
JP2017535934A (ja) 接合された電力ケーブルおよび接合された電力ケーブルの製造方法
CN107408425B (zh) 具有金属幕杆的水密电力线缆
JP4372844B2 (ja) 電力変圧器/誘導器
EP3394867B1 (fr) Transformateur électrique pour des équipements haute tension distants
AU737052B2 (en) A power induction device
US11145455B2 (en) Transformer and an associated method thereof
KR20080066034A (ko) 사각파 프로파일을 갖는 교류의 전달을 위한 멀티-컨덕터케이블
KR20010049161A (ko) 고정 부분을 가진 전기 장치의 권선
GB2350495A (en) Coaxial power cable joint
JP7448746B2 (ja) 平行な巻線を有する中周波変圧器
AU5890398A (en) Winding in transformer or inductor
CN220420292U (zh) 一种防白蚁防鼠型交联聚乙烯绝缘超高压电力电缆
EP3672004B1 (fr) Système de câble d&#39;alimentation
JP2001509963A (ja) 電気巻線用のケーブルおよび巻線
Efobi et al. Frequency-Dependent Electrical Characteristics of Submarine Cables in Low Frequency High Voltage ac (LF-HVac) Transmission for Offshore Wind
RU100686U1 (ru) Устройство для передачи электрической энергии
WO2024110610A1 (fr) Câble capacitif à faible résistance
GB2350475A (en) Power cable termination
KR20220017435A (ko) 전력 케이블 종단 시스템
JP2001518698A (ja) 電力変圧器/リアクトルと、高電圧ケーブルを適合させる方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1230457

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016029245

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200205

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20200400479

Country of ref document: GR

Effective date: 20200511

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2773516

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200628

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200505

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016029245

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1230457

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016029245

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201206

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201206

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210707

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201207

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201207

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201206