EP3391388B1 - Kabel sowie verfahren zur herstellung des kabels - Google Patents

Kabel sowie verfahren zur herstellung des kabels Download PDF

Info

Publication number
EP3391388B1
EP3391388B1 EP16822437.6A EP16822437A EP3391388B1 EP 3391388 B1 EP3391388 B1 EP 3391388B1 EP 16822437 A EP16822437 A EP 16822437A EP 3391388 B1 EP3391388 B1 EP 3391388B1
Authority
EP
European Patent Office
Prior art keywords
layer
cable
sheath
sheath layer
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16822437.6A
Other languages
English (en)
French (fr)
Other versions
EP3391388A1 (de
Inventor
Florian Angerer
Johannes HALLMEYER
Uwe RUDORF
Simone Streit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leoni Kabel GmbH
Original Assignee
Leoni Kabel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leoni Kabel GmbH filed Critical Leoni Kabel GmbH
Publication of EP3391388A1 publication Critical patent/EP3391388A1/de
Application granted granted Critical
Publication of EP3391388B1 publication Critical patent/EP3391388B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • H01B7/2825Preventing penetration of fluid, e.g. water or humidity, into conductor or cable using a water impermeable sheath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/24Sheathing; Armouring; Screening; Applying other protective layers by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/302Polyurethanes or polythiourethanes; Polyurea or polythiourea
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/448Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from other vinyl compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/14Submarine cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame

Definitions

  • the invention relates to a cable and a method for producing such a cable.
  • the invention is based on the object of specifying a cable and a method for producing the cable, the cable being used in moist or wet environments and also for digital signal transmissions, especially when used as an underwater cable, such as, for example, Booting is suitable.
  • a water- and fire-resistant data transmission cable with a sheath consisting of two sheath layers, each containing inorganic components, can be found.
  • the inner layer is for good resistance to moisture and the outer layer is designed as a fire-resistant layer.
  • silane-based additives are provided for integrating the inorganic constituents into the respective polymer matrix.
  • a water- and fire-resistant cable with a multi-layer jacket can also be found.
  • Magnesium hydroxide for example, is incorporated in the outer jacket layer.
  • An additive supports its integration into the polymer matrix.
  • the object is achieved according to the invention by a cable with the features of claim 1.
  • the object is further achieved by a method with the features of claim 14.
  • the cable has a central element and a cable jacket designed as a double jacket, which has a first, inner and hydrophobic jacket layer and a second, outer jacket layer applied thereon, which consists of a plastic that is different from the first jacket layer.
  • a firm connection is formed between the two jacket layers.
  • at least one of the two jacket layers, in particular the inner jacket layer is chemically functionalized.
  • the surface of at least one of the jacket layers, especially the surface of the inner jacket layer is activated during manufacture, so that the two different jacket layers form a firm connection.
  • connection is in particular a form-tight and pressure-tight connection.
  • “Dense connection” is generally understood to mean that water which penetrates through the second, outer jacket layer to the first, inner jacket layer cannot flow in the longitudinal direction between the two jacket layers. Such ingress of water would also be possible at the end of the cable, for example on a connector. Such a flow between the sheath layers would lead to the possibility that moisture could get into an end connector connected to the cable.
  • Pressure tightness also means that both layers are firmly connected with one another without a gap. There is no gap between the two jacket layers. At low and high pressures, water cannot flow in the longitudinal direction between the two jacket layers or in the transverse direction from the outer jacket layer into a gap between the two jacket layers.
  • the connection of the two jacket layers is such that the two jacket layers cannot be prepared manually or independently under pressure for a peeling test, that is, they can be separated
  • Activation of the surface is generally understood to mean that in the area of the parting plane between the two jacket layers, at least in one of the jacket layers, a special measure is carried out during manufacture in order to achieve the desired tight, firm connection.
  • the plastic for the first, inner hydrophobic layer is a non-polar polyolefin plastic.
  • these are in particular PE, PP, in particular a medium density polyethylene is used, which typically has a density in the range between 0.93 and 0.94 g / cm 3 .
  • a polyolefinic copolymer, a polyolefinic elastomer or a polyolefinic blend is used.
  • a polyethylene copolymer, EPDM, EVA or EO (ethylene-octene copolymer) or a polyethylene elastomer (for example an ethylene-octene copolymer) is used.
  • the hydrophobic property of the inner jacket layer due to the non-polar property of the plastic ensures that the inner jacket layer is watertight.
  • a non-hydrophobic, polar plastic is used for the outer layer, which is typically softer than that of the inner layer.
  • a polyurethane and in particular a polyether polyurethane is preferably used for the outer jacket layer. This ensures that it can be assembled, that is, the (tight) attachment of a connector or connector housing.
  • the outer polyurethane jacket layer can be cast in a pressure-tight manner in connectors and housings.
  • the two jacket layers Due to the different material properties of the two jacket layers, in particular since the plastic of the inner jacket layer is a non-polar plastic, the two jacket layers do not bond, or only insufficiently, in conventional extrusion without further measures.
  • the chemical functionalization of the plastic according to the invention achieves the desired (longitudinal water) tight material connection with the outer jacket layer.
  • Chemical functionalization or modification is generally understood to mean the addition of an additive to the non-polar polyolefinic plastic, which brings about a chemical connection or reaction with constituents of the material of the outer jacket layer.
  • chemically reactive groups are added to the (base) material of the jacket layer.
  • a catalyst system is also introduced in the outer jacket layer in order to support a chemical reaction between the two jacket layers.
  • the chemical functionalization takes place in the inner layer and the addition of the catalyst in the outer layer.
  • a silane-modified polyolefinic plastic is preferably used for the chemically functionalized cladding layer.
  • a polymer is added to the polyolefin of the (inner) cladding layer, which is reactively equipped with silicon-functional groups. In one variant, this is a silane-crosslinkable polymer.
  • silane compound or "silane” is referred to in the following, this means in particular a chemical functionalization with such reactive silicon-functional groups.
  • a polymer is used for the plastic of the inner jacket layer, which is copolymerized with a reactive silicon-functional compound.
  • the reactive, silicon-functional compound is, for example, an organoalkoxysilane.
  • the reactive silicon functional group is alternatively applied to the polyolefin by chemical grafting of an organo and silicon functional compound.
  • the organo and silicon functional group is in particular a vinyl silane, for example vinyl trimethoxysilane or vinyl triethoxysilane or a similar organosilane compound.
  • vinylsilane is referred to below, this is to be understood as meaning a silicon-functional vinylsilane, in particular vinyltrimethoxysilane or vinyltriethoxysilane.
  • the hydrolysis-sensitive group (alkoxy, halogen, amino, etc.) can change to a silanol group in a moist environment.
  • the silanol groups can then react further in a condensation reaction to form a siloxane compound.
  • the first coat layer is preferably activated after the application (extrusion) of the first coat layer, in particular by corona treatment or also by plasma radiation, before the outer coat layer is subsequently extruded in a second, separate operation.
  • a polarization of the surface, in particular of the polyolefin plastic of the inner cladding layer, is preferably provided. This measure creates a good connection with the polar polyurethane.
  • the formation of so-called oxidation radicals is also provided in a preferred embodiment.
  • the polarization of the surface and / or the formation of radicals is preferably carried out by the corona treatment or by the plasma treatment, in particular of the inner polyolefinic jacket layer.
  • the surface of the jacket layer is generally exposed to an electrical discharge for a short time (fraction of a second). This results in a modification of the plastic close to the surface. Specifically, an oxygen enrichment takes place in a layer near the surface, as a result of which the oxidation radicals are formed overall.
  • the inner jacket layer is activated after its extrusion, before the outer jacket layer is subsequently extruded.
  • a silane-modified, polyolefinic plastic is preferably used, preferably a polyolefin copolymerized with a silicon-functional vinylsilane, especially a polyolefin copolymerized with vinyltrialkoxysilane (or comparable silanes).
  • This is especially a polyethylene, especially a medium density polyethylene (PE-MD).
  • the polyolefin polymer is grafted with a reactive silane group, for example an alkoxylsilane compound.
  • the chemical functionalization can also be carried out by applying a silane-containing adhesion promoter, that is to say an adhesion promoter which contains silicon-functional silanes, to the coating layer.
  • a silane-containing adhesion promoter that is to say an adhesion promoter which contains silicon-functional silanes
  • an alternative to silane modification is added to the polyolefin polymer, in particular a medium-density polyethylene, a maleic acid or a comparable acid.
  • a maleic anhydride is added in particular during the production.
  • the chemical functionalization takes place during production preferably by processing polymer blends / polymer blends in the extrusion.
  • a weight fraction of a (blend) partner is added to the polyolefinic polymer for the jacket material to form the chemically functionalized polyolefinic polymer (in particular a thermoplastic, e.g. EVA, PP, PE, grafted with maleic anhydride and / or silicon-functional silanes).
  • the proportion of the blend partner metered in is preferably in the range between 1-50% by weight and in particular in the range of 5-20% by weight.
  • the weight fraction of the silicon-functional silanes is generally preferably in the range between 0.1-5.0% by weight.
  • the proportion by weight added is generally in the range between 0.1 to 3.0% by weight.
  • the weight percentages given are based in each case on the total weight of the materials used for the respective jacket layer, in particular the inner jacket layer, during manufacture, that is to say based on the starting materials.
  • the catalyst system is generally integrated in the outer jacket layers, which preferably supports the chemical reaction at room temperature and / or under the influence of moisture, or also without moisture.
  • the catalyst system is preferably a Bronsted or a Lewis acid.
  • a sulfonic acid for example dodecylbenzenesulfonic acid, such as is obtained, for example, from the DE 694 23 002 T2 can be seen.
  • an organotin compound is used for the catalyst system.
  • the catalyst system is introduced into the outer, second jacket layer.
  • the proportion by weight of the catalyst system metered in during production is preferably in the range from 0.01 to 5.0% by weight and in particular in the range from 0.01 to 2% by weight, based on the total weight of the starting components for the shell layer.
  • a combination of corona activation of the inner, chemically functionalized polyolefinic sheath layer is particularly preferred - in particular of a medium density PE and copolymerized with vinylsilane, e.g. Vinylaloxysilane or grafted with silane groups (silicon-functional silanes or reactive silane groups) - with the integration of the catalyst system into the outer polyurethane jacket layer.
  • vinylsilane e.g. Vinylaloxysilane or grafted with silane groups (silicon-functional silanes or reactive silane groups)
  • the value of the insulation resistance of the first, inner jacket layer is at least 10 times greater than the insulation resistance of the second, outer jacket layer.
  • the cable has an overall diameter that is between 5 mm and 45 mm, depending on the application.
  • the cable is, in particular, a data cable, preferably with a plurality of data channels, each of which is formed, for example, by a pair of wires.
  • the wall thickness of the inner jacket layer is preferably between 0.1 mm for a small overall diameter and 1.5 mm for a large overall diameter.
  • the wall thickness preferably increases proportionally or at least approximately proportionally to the overall diameter.
  • the outer wall thickness of the outer jacket layer is preferably between 0.2 mm for a small overall diameter to 2.0 mm for a large overall diameter.
  • the wall thickness preferably increases proportionally or at least approximately proportionally to the overall diameter.
  • the outer wall thickness is preferably greater than the inner wall thickness, in particular by a factor of 1.5 to 2.5.
  • the cable is preferably pressure-resistant for several 10 bar, in particular up to at least 100 bar, especially also resistant to pressure changes.
  • a flame-retardant plastic mixture in particular an ether-based polyurethane, optionally with a flame retardant additive, is preferably used for one, preferably for both, the outer layers.
  • the jacket is sufficiently tight overall and further measures for sealing are preferably dispensed with.
  • no separating layer is arranged between the two jacket layers and there is also no swelling fleece or fillers.
  • the cable is generally preferably used in damp or wet environments, in particular also under considerable pressure, especially as an underwater cable, for example in submarines.
  • the cable is also used as a floor cable for laying in the ground (earth) or for laying in, for example, water-bearing or water-containing areas, such as ducts, containers or water-bearing soil.
  • the cable is designed and used in particular as a data cable, via which data signals are transmitted during operation.
  • the data cable ensures the secure transmission of digital signals.
  • the inner polyethylene layer with a low saturation rate is important for this.
  • the outer polyurethane layer is essential for this.
  • the chemical functionalization with the corona treatment ensures that the two jacket layers are connected to one another in a pressure-tight manner, so that water does not flow between the two jacket layers, for example in the event of superficial jacket damage or leaks in the connector.
  • this shows a cross section through a cable 2 with a central element 4, which is surrounded by a double-walled jacket 6.
  • This has an inner jacket layer 8, which is applied directly to the central element 4, in particular by extrusion.
  • the inner jacket layer 8 is directly surrounded by an outer jacket layer 10, which is also preferably applied to the inner jacket layer 8 by extrusion.
  • the jacket 6 has a total thickness D which is in the range between 5 mm and 45 mm.
  • the inner jacket layer 8 has an inner wall thickness d1 in the range from 0.1 mm to 1.5 mm.
  • the outer jacket layer 10 has an outer wall thickness d2 in the range from 0.2 mm to 2 mm.
  • the structure can be surrounded by a further outer sheath or a plurality of such cables 2, in particular also in combination with other elements, form a composite which is surrounded by a common outer sheath.
  • the outer jacket layer 10 preferably forms an outer jacket.
  • the central element 4 is in particular a cable core made up of individual cable elements.
  • the cable 2 is a data cable with several data transmission wires that form the cable core 4.
  • the data transmission elements are, in particular, electrical line wires, which are preferably arranged in pairs for symmetrical data transmission.
  • a respective pair of wires is stranded or stranded and provided with or without a pair shield.
  • optical transmission elements can also be integrated.
  • a diffusion of water into the central element 4 is avoided or at least reduced sufficiently by selecting a plastic as the jacket material for the inner jacket layer 8, which has a very low diffusion and has saturation rate.
  • a plastic as the jacket material for the inner jacket layer 8, which has a very low diffusion and has saturation rate.
  • Halogen-free, polyolefinic materials with hydrophobic properties such as polyethylene, polypropylene or polyolefinic elastomers (POE), are particularly suitable here.
  • a soft polyurethane preferably with a Shore hardness between 64D and 95A, is used for the outer jacket layer .
  • Activation is preferably carried out by corona machining the inner layer of the polyolefin material with the water-repellent properties.
  • plasma processing is provided.
  • oxidation radicals are formed and / or the surface is polarized.
  • an adhesion promoter or an adhesive is applied.
  • the polyolefinic material is modified for chemical functionalization.
  • polyolefinic materials are used which are grafted with maleic anhydride.
  • polyolefinic materials are used which are grafted or copolymerized with reactive or functionalized or silicon-functional silanes (e.g. alkoxysilane compounds).
  • a medium density polyethylene is used which is copolymerized or grafted with vinylsilane, in particular vinylalkosysilane.
  • the formation of the tight connection between the jacket layers 6, 8 is additionally supported by a catalyst system introduced into the outer jacket layer 8.
  • a catalyst system introduced into the outer jacket layer 8.
  • an organotin compound, but preferably a sulfonic acid is incorporated into the material for the outer jacket layer 10 as the catalyst system.
  • the corona-activated polyolefinic coating layer reacts with the amide groups of the urethane group and this is accelerated by the catalyst which has been added to the polyurethane coating.
  • a cable 2 with a silane-modified inner jacket layer 8 with an outer TPU jacket layer 10 with a sulfonic acid as a catalyst system was produced.
  • the diameter of the central element (cable core 4) was 14 mm.
  • the inner wall thickness d1 was approx. 1 mm.
  • the corona electrodes were positioned in such a way that they covered the entire circumference of the cable. 3 electrodes are preferably used.
  • the corona voltage was 7 kV.
  • the corona treatment is carried out inline subsequently to the extrusion of the inner layer 8, ie immediately after the extrusion and continuously during the production. Subsequent to the corona treatment, the outer jacket layer was extruded.
  • the outer jacket layer 10 was extruded at a (line) speed of 2.4 m / min.
  • the outer wall thickness d2 was also about 1mm.
  • the cable 2 is in particular an underwater cable.
  • It has at least one element that has a defined impedance (Ethernet, Cat 6, Cat 7 with 100 ohm elements each; Profibus, Profinet, Canbus with 120 or 150 ohm elements; coaxial cable) and any other elements as a hybrid cable.
  • a defined impedance Ethernet, Cat 6, Cat 7 with 100 ohm elements each; Profibus, Profinet, Canbus with 120 or 150 ohm elements; coaxial cable
  • the inner jacket layer 8 preferably has a PE material, for example HDPE (high density PE), an LDPE (low density PE) and in particular an MDPE (medium density PE) with silane grafting, or a silane copolymer is used.
  • a PE material for example HDPE (high density PE), an LDPE (low density PE) and in particular an MDPE (medium density PE) with silane grafting, or a silane copolymer is used.
  • the inner jacket layer preferably generally has a Shore hardness of 45 D to 65 D.
  • a polyurethane with a Shore hardness of 80A to 64D is used as the preferred material for the outer jacket layer 10.

Description

  • Die Erfindung betrifft ein Kabel sowie ein Verfahren zur Herstellung eines solchen Kabels.
  • Bei Kabeln, die in feuchten oder nassen Umgebungen und speziell im Unterwasserbereich eingesetzt werden, ist die Diffusion von Wasser in den Kabelaufbau immer ein Problem, da die als Mantelwerkstoff eingesetzten Kunststoffe nicht komplett wasserdicht sind. Die Wasserdichtheit kann beispielsweise durch die Integration einer metallischen Zwischenschicht in das Kabel erzielt werden, was aber wegen der dann vorhandenen Steifigkeit des Kabels für die meisten Einsatzfälle nicht mehr geeignet wäre. Deshalb können für die Installation der Kabel beispielsweise an U-Booten nur Kabel eingesetzt werden, die über einen Kunststoffmantel verfügen.
  • Es ist bekannt, dass Kunststoffe unterschiedliche Diffusions- und Sättigungsraten beim dauerhaften Einsatz im Wasser besitzen. Bekannt sind Kabelkonstruktionen mit einem Schichtenmantel aus unterschiedlichen Polyurethantypen. Diese werden bisher eingesetzt bei Kabeln, die der Übertragung von analogen Signalen dienen, wobei als innere Lage ein härterer Polyurethantyp mit einer geringeren Diffusions- und Sättigungsrate zum Einsatz kommt während die äußere Lage von einem weicheren Polyurethantyp gebildet wird, der sich gut in Steckverbindern und Gehäusen druckdicht vergießen lässt. Dies ist technisch anspruchsvoll, da durch das vielmalige Ab- und Auftauchen des U-Bootes eine ständige Druck- Belastungsänderung zwischen 1 bar (Fahrt an der Wasseroberfläche) und bis zu 100 bar erfolgt, womit der Kabelmantel und vor allem die Verbindung zwischen der inneren und der äußeren Mantelschicht ständigen mechanischen Belastungen ausgesetzt ist.
  • Bei neuen (Daten-) Kabeln ist eine digitale Signalübertragung insbesondere mittels Ethernetelementen vorgesehen. Diese Datenkabel (100- Ohm-Elemente) reagieren sehr empfindlich auf Wasser, das in das Kabel diffundiert, mit einer Impedanzänderung. Diese Impedanzänderung ruft wiederum eine Änderung weiterer Übertragungseigenschaften hervor, die zu einer Verschlechterung der Signalqualität bis hin zum Komplettausfall der Signalübertragung führen kann. Ausgehend hiervon liegt der Erfindung die Aufgabe zu Grunde, ein Kabel sowie ein Verfahren zur Herstellung des Kabels anzugeben, wobei das Kabel für Einsatzzwecke in feuchten oder nassen Umgebungen und auch für digitale Signal-übertragungen, speziell bei der Verwendung als Unterwasserkabel wie beispielsweise bei U-Booten geeignet ist.
  • Aus der WO 98/40895 A1 ist ein wasser- sowie feuerwiderstandsfähiges Datenübertragungskabel mit einem Mantel aus zwei Mantellagen zu entnehmen, die jeweils anorganische Bestandteile enthalten. Die innere Lage ist dabei für eine gute Resistenz gegen Feuchtigkeit und die äußere Lage ist als feuerwiderstandsfähige Lage ausgebildet. Für die Einbindung der anorganischen Bestandteile in die jeweilige Polymermatrix sind beispielsweise silanbasierte Additive vorgesehen.
  • Aus der US 2001/0025720 A1 ist ebenfalls ein wasser- sowie feuerwiderstandsfähiges Kabel mit einem mehrlagigen Mantel zu entnehmen. In der äußeren Mantellage ist beispielsweise Magnesiumhydroxid eingebracht. Über ein Additiv wird dessen Einbindung in die Polymermatrix unterstützt.
  • Die Aufgabe wird gemäß Erfindung gelöst durch ein Kabel mit den Merkmalen des Anspruchs 1. Die Aufgabe wird weiterhin gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 14.
  • Bevorzugte Weiterbildungen sind in den Unteransprüchen enthalten. Die im Hinblick auf das Kabel angeführten Vorteile und bevorzugten Ausgestaltungen gelten sinngemäß gleichermaßen für das Verfahren und umgekehrt.
  • Das Kabel weist ein Zentralelement sowie einen als Doppelmantel ausgebildeten Kabelmantel auf, welcher eine erste, innere und hydrophobe Mantellage sowie eine auf diese aufgebrachte zweite, äußere Mantellage aufweist, welche aus einem zur ersten Mantellage verschiedenen Kunststoff besteht. Zwischen den beiden Mantellagen ist eine feste Verbindung ausgebildet. Hierzu ist zumindest eine der beiden Mantellagen, insbesondere die innere Mantellage chemisch funktionalisiert. Weiterhin wird die Oberfläche zumindest einer der Mantellagen, speziell die Oberfläche der inneren Mantellage bei der Herstellung aktiviert wird, so dass die beiden unterschiedlichen Mantellagen die feste Verbindung eingehen.
  • Bei der Verbindung handelt es sich insbesondere um eine form- und druckdichte Verbindung. Unter "dichte Verbindung" wird allgemein verstanden, dass Wasser, welches durch die zweite, äußere Mantellage zur ersten, inneren Mantellage dringt, nicht in Längsrichtung zwischen den beiden Mantellagen fließen kann. Möglich wäre solch ein Wassereinbruch auch am Ende des Kabels, zum Beispiel an einem Steckverbinder. Ein solches Fließen zwischen den Mantellagen würde dazu führen, dass unter Umständen Feuchtigkeit in einem endseitigen am Kabel angeschlossenen Stecker gelangen könnte.
  • Druckdichtigkeit bedeutet weiterhin, dass beide Schichten fest und ohne Spalt miteinander verbunden. Es besteht kein Spalt zwischen beiden Mantellagen. Wasser kann bei geringem und höheren Druck weder in Längsrichtung zwischen den beiden Mantellagen oder in Querrichtung von der äußeren Mantellage in einen Spalt zwischen die beiden Mantellagen fließen. Die Verbindung beider Mantellagen ist dabei derart, dass die beiden Mantellagen sich händisch oder selbständig unter Druckbelastung nicht für einen Schälversuch präparieren, also auftrennen lassen
  • Unter Aktivierung der Oberfläche wird allgemein verstanden, dass im Bereich der Trennebene zwischen den beiden Mantellagen zumindest in einer der Mantellagen eine spezielle Maßnahme während der Herstellung erfolgt, um die gewünschte dichte, feste Verbindung zu erzielen.
  • Bei dem Kunststoff für die erste, innere hydrophobe Mantellage handelt es sich um einen unpolaren polyolefinischen Kunststoff. Hierbei handelt es sich insbesondere um PE, PP, speziell wird ein Polyethylen mittlerer Dichte verwendet, welches typischerweise eine Dichte im Bereich zwischen 0,93 und 0,94 g/cm3 aufweist. Alternativ wird ein polyolefinisches Copolymer, ein polyolefinisches Elastomer oder ein polyolefinisches Blend verwendet. Beispielsweise wird ein Polyethylencopolymer, EPDM, EVA oder EO (Ethylen-Octen Copolymer) oder ein Polyethylenelastomer (z.B. ein Ethylen-Octen Copolymer) verwendet.
  • Durch die hydrophobe Eigenschaft der inneren Mantellage infolge der unpolaren Eigenschaft des Kunststoffes ist die gewünschte Wasserdichtheit der inneren Mantellage gewährleistet. Im Unterschied zur inneren Mantellage wird für die äußere Mantellage ein nicht hydrophober, polarer Kunststoff verwendet, der typischerweise weicher ist als der der inneren Mantellage. Bevorzugt wird ein Polyurethan und insbesondere ein Polyether-Polyurethan für die äußere Mantellage verwendet. Hierdurch wird die Konfektionierbarkeit, also das (dichte) Anschlagen eines Steckers oder Steckergehäuses gewährleistet. Die äußere Polyurethan-Mantellage lässt sich gut in Steckverbindern und Gehäusen druckdicht vergießen.
  • Aufgrund der unterschiedlichen Materialeigenschaften der beiden Mantellagen, insbesondere da es sich bei dem Kunststoff der inneren Mantellage um einen unpolaren Kunststoff handelt, verbinden sich die beiden Mantellagen bei einer herkömmlichen Extrusion ohne weitere Maßnahmen nicht oder nur ungenügend. Durch die erfindungsgemäße chemische Funktionalisierung des Kunststoffes wird die gewünschte (Längswasser-) dichte stoffliche Verbindung mit der äußeren Mantellage erreicht.
  • Unter chemischer Funktionalisierung oder auch Modifizierung wird allgemein die Zugabe eines Additives zu dem unpolaren polyolefinischen Kunststoff verstanden, der eine chemische Verbindung oder Reaktion mit Bestandteilen des Materials der äußeren Mantellage bewirkt. Insbesondere werden dem (Basis-) Material der Mantellage chemisch reaktive Gruppen zugegeben.
  • Ergänzend ist vorgesehen, dass in der äußeren Mantellage noch ein Katalysatorsystem eingebracht ist, um eine chemische Reaktion zwischen den beiden Mantellagen zu unterstützen.
  • Die chemische Funktionalisierung erfolgt in der inneren Mantellagen und die Zugabe des Katalysators in der äußeren Mantellage.
  • Bevorzugt ist für die chemisch funktionalisierte Mantellage ein silanmodifizierter polyolefinischer Kunststoff verwendet, Zur chemischen Funktionalisierung wird dem Polyolefin der (inneren) Mantellage hierzu ein Polymer zugegeben, welches mit siliciumfunktionellen Gruppen reaktiv ausgerüstet ist. In einer Variante handelt es sich hierbei um ein silanvernetzbares Polymer handeln.
  • Sofern nachfolgend von 'Silanverbindung" oder "Silan" gesprochen wird, so wird hierunter insbesondere eine chemische Funktionalisierung mit solchen reaktiven siliciumfunktionellen Gruppen verstanden.
  • Insbesondere wird für den Kunststoff der inneren Mantellage ein Polymer verwendet, welches mit einer reaktionsfähigen siliciumfunktionellen Verbindung copolymerisiert ist. Bei der reaktionsfähigen, siliciumfunktionellen Verbindung handelt es sich beispielsweise um ein Organoalkoxysilan.
  • Die reaktionsfähige siliciumfunktionelle Gruppe wird alternativ durch chemische Pfropfung einer Organo- und siliciumfunktionellen Verbindung auf das Polyolefin aufgebracht. Bei der Organo- und Siliciumfunktionellen Gruppe handelt es sich insbesondere um ein Vinylsilan, z.B. um Vinyltrimethoxysilan oder Vinyltriethoxysilan oder eine ähnliche Organosilanverbindung.
  • Sofern nachfolgend von Vinylsilan gesprochen wird, so ist hierunter ein siliciumfunktionelles Vinylsilan zu verstehen, insbesondere Vinyltrimethoxysilan oder Vinyltriethoxysilan.
  • Die hydrolyseempfindliche Gruppe (Alkoxy, Halogen, Amino, etc.) kann in feuchter Umgebung zu einer Silanolgruppe übergehen. Die Silanolgruppen können dann in einer Kondensationsreaktion zu einer Siloxanverbindung weiterreagieren.
  • Es besteht auch die Möglichkeit, dass die reaktive, siliciumfunktionelle Verbindung der unpolaren, inneren Mantellage mit dem Stickstoffatom der Urethangruppe aus der äußeren TPU-Mantellage z.B. in einer Polyadditionsreaktion eine kovalente chemische Verbindung ausbildet.
  • Bei der Herstellung wird dabei vorzugsweise nach dem Aufbringen (Extrusion) der ersten Mantellage diese insbesondere durch eine Korona-Behandlung oder auch durch eine Plasmabestrahlung aktiviert, bevor anschließend in einem zweiten, separaten Arbeitsgang die äußere Mantellage aufextrudiert wird.
  • Speziell die Kombination der chemischen Funktionalisierung der ersten Mantellage in Verbindung mit der anschließenden Behandlung, insbesondere Korona-Behandlung führte zu einer besonders guten und dichten Verbindung zwischen den beiden Mantellagen.
  • Für die Aktivierung an der Oberfläche an zumindest einer der Mantellage stehen grundsätzlich unterschiedliche Möglichkeiten zur Verfügung, die teilweise auch in Kombination verwendet werden können.
  • Vorzugsweise ist eine Polarisierung der Oberfläche insbesondere des polyolefinischen Kunststoffes der inneren Mantellage vorgesehen. Durch diese Maßnahme wird eine gute Verbindung mit dem polaren Polyurethan erzeugt. Neben der Polarisierung ist in bevorzugter Ausgestaltung auch eine Ausbildung von sogenannten Oxidationsradikalen vorgesehen.
  • Die Polarisierung der Oberfläche und/oder die Ausbildung von Radikalen erfolgt dabei vorzugsweise durch die Koronabehandlung oder durch die Plasmabehandlung speziell der inneren polyolefinischen Mantellage.
  • Bei der Koronabehandlung wird allgemein die Oberfläche der Mantellage kurzfristig (Bruchteil von Sekunden) einer elektrischen Entladung ausgesetzt. Hierdurch erfolgt eine oberflächennahe Modifizierung des Kunststoffes. Speziell erfolgt hierbei eine Sauerstoffanreicherung in einer oberflächennahen Schicht, wodurch insgesamt die Oxidationsradikale ausgebildet werden.
  • Generell ist vorgesehen, dass die innere Mantellage nach deren Extrusion aktiviert wird, bevor nachfolgend die äußere Mantellage aufextrudiert wird.
  • Zur chemischen Funktionalisierung wird bevorzugt ein silanmodifizierter, polyolefinischer Kunststoff verwendet, vorzugsweise ein mit einem siliciumfunktionellen Vinylsilan, speziell ein mit Vinyltrialkoxysilan (oder vergleichbaren Silanen) copolymerisiertes Polyolefin. Bei diesem handelt es sich insbesondere um ein Polyethylen, speziell um ein Polyethylen mittlerer Dichte (PE-MD).
  • Bei dem silanmodifizierten Polyolefin ist das Polyolefin-Polymer mit einer reaktiven Silangruppe, beispielsweise einer Alkoxylsilanverbindung gepfropft.
  • Die chemische Funktionalisierung kann auch erfolgen, indem auf die Mantellage ein silanhaltiger Haftvermittler aufgebracht wird, also ein Haftvermittler, der siliciumfunktionelle Silane enthält.
  • Als reaktive funktionale Gruppe zur chemischen Funktionalisierung wird alternativ zur Silanmodifizierung dem Polyolefin-Polymer, insbesondere ein Polyethylen mittlerer Dichte, eine Maleinsäure oder eine vergleichbare Säure zugegeben. Bei der Herstellung wird hierzu insbesondere ein Maleinsäureanhydrid zugegeben.
  • Die chemische Funktionalisierung erfolgt bei der Herstellung vorzugsweise dadurch, dass Polymermischungen / Polymerblends in der Extrusion verarbeitet werden. Hierfür wird für das Mantelmaterial dem polyolefinischen Polymer ein Gewichtsanteil eines (Blend-) Partners zudosiert zur Ausbildung des chemisch funktionalisierten polyolefinischen Polymers (insbesondere ein Thermoplast, z.B. EVA, PP, PE, gegraftet mit Maleinsäureanhydrid und/oder siliciumfunktionelle Silanen).
  • Der Anteil des zudosierten Blendpartners liegt dabei vorzugsweise im Bereich zwischen 1 - 50 Gew.% und insbesondere im Bereich von 5-20 Gew.%.
  • Im Falle eines silanmodifizierten Polymers liegt der Gewichtsanteil der siliciumfunktionellen Silane allgemein bevorzugt im Bereich zwischen 0,1 - 5,0 Gew. %.
  • Bei der Verwendung einer reaktiven funktionalen Gruppe, insbesondere Maleinsäureanhydrid, liegt der zudosierte Gewichtsanteil allgemein im Bereich zwischen 0,1 bis 3,0 Gew. %.
  • Die angegebenen Gewichtsanteile sind jeweils bezogen auf das Gesamtgewicht der für die jeweilige Mantellage, insbesondere innere Mantellage, verwendeten Materialien bei der Herstellung, also bezogen auf die Ausgangsmaterialien.
  • Durch diese beschriebenen Maßnahmen zur chemischen Funktionalisierung wird in bevorzugter Weise ein vernetzungsfähiges System etabliert, welches dann beispielsweise durch eine entsprechende weitergehende Aktivierung eine Vernetzung mit der weiteren Mantellage für die angestrebte feste und dichte Verbindung eingeht.
  • Für diese chemische Vernetzungsreaktion ist allgemein das Katalysatorsystem in der äußeren Mantellagen integriert, welches vorzugsweise unter Feuchtigkeitseinfluss oder auch ohne Feuchtigkeitseinfluss die chemische Reaktion bei Raumtemperatur und/oder unter Wärmezufuhr unterstützt.
  • Bei dem Katalysatorsystem handelt es sich dabei bevorzugt um eine Brönsted oder eine Lewis Säure. Bevorzugt wird als Katalysator eine Sulfonsäure, z.B. Dodecylbenzolsulfonsäure verwendet, wie sie beispielsweise aus der DE 694 23 002 T2 zu entnehmen ist.
  • Alternativ oder ergänzend wird für das Katalysatorsystem eine zinnorganische Verbindung verwendet.
  • Das Katalysatorsystem wird dabei in die äußere, zweite Mantellage eingebracht. Der Gewichtsanteil des bei der Herstellung zudosierten Katalysatorsystems liegt dabei vorzugsweise im Bereich von 0,01 - 5,0 Gew. % und insbesondere im Bereich von 0,01 bis 2 Gew.% bezogen auf das Gesamtgewicht der Ausgangskomponenten für die Mantellage.
  • Besonders bevorzugt ist eine Kombination der Koronaaktivierung der inneren, chemisch funktionalisierten polyolefinischen Mantelschicht - insbesondere aus einem PE mittlerer Dichte und copolymerisiert mit Vinylsilan, z.B. Vinylaloxysilan oder gegraftet mit Silangruppen (siliciumfunktionelle Silane oder reaktive Silangruppen) - mit der Integration des Katalysatorsystems in die äußere Polyurethan Mantellage.
  • Typischerweise ist der Wert des Isolationswiderstands der ersten, inneren Mantellage dabei mindestens um den Faktor 10 größer als der Isolationswiderstand der zweiten, äußeren Mantellage.
  • Das Kabel weist insgesamt einen Gesamtdurchmesser auf, der je nach Anwendungsfall zwischen 5 mm und 45 mm liegt. Beim Kabel handelt es sich insbesondere um ein Datenkabel vorzugsweise mit mehreren Datenkanälen, die jeweils beispielsweise durch ein Adernpaar gebildet sind.
  • Vorzugsweise liegt die Wanddicke der inneren Mantellage zwischen 0,1 mm bei einem kleinen Gesamtdurchmesser bis 1,5 mm bei einem großen Gesamtdurch-messer. Die Wanddicke nimmt dabei vorzugsweise korrespondierend zum Gesamtdurchmesser proportional oder zumindest annähernd proportional zu.
  • Die äußere Wanddicke der äußeren Mantellage liegt weiterhin vorzugsweise zwischen 0,2 mm bei einem kleinen Gesamtdurchmesser bis 2,0mm bei großem Gesamtdurchmesser. Die Wanddicke nimmt dabei vorzugsweise korrespondierend zum Gesamtdurchmesser proportional oder zumindest annähernd proportional zu. Bevorzugt ist die äußere Wanddicke größer als die innere Wanddicke, insbesondere um den Faktor 1,5 bis 2,5.
  • Das Kabel ist vorzugsweise druckbeständig für mehrere 10 bar, insbesondere bis zumindest 100 bar, speziell auch beständig gegen Druckwechselbeanspruchungen.
  • Für eine, vorzugsweise für beide Mantellagen ist vorzugsweise eine flammwidrige Kunststoffmischung verwendet, insbesondere ein Polyurethan auf Etherbasis, gegebenenfalls mit einem Flammschutz-Additiv.
  • Aufgrund der dichten Verbindung zwischen den beiden Mantellagen ist der Mantel insgesamt ausreichend dicht und es ist bevorzugt auf weitere Maßnahmen zur Abdichtung verzichtet. Insbesondere ist zwischen den beiden Mantellagen keine Trennlage angeordnet und es ist auch auf ein Quellvlies oder auf Füllstoffe verzichtet.
  • Das Kabel wird allgemein vorzugsweise in feuchten oder nassen Umgebungen eingesetzt, insbesondere auch unter erheblichen Druckbeanspruchungen speziell als Unterwasserkabel beispielsweise bei U-Booten. Daneben wird das Kabel auch als Bodenkabel zur Verlegung im Boden (Erde) verwendet oder zur Verlegung in beispielsweise wasserführenden oder wasserenthaltenden Bereichen, wie beispielsweise Kanäle, Behälter oder wasserführendes Erdreich. Das Kabel ist insbesondere als Datenkabel ausgebildet und verwendet, über das im Betrieb Datensignale übertragen werden.
  • Das Datenkabel gewährleistet einerseits eine sichere Übertragung von digitalen Signalen. Hierzu ist die innere Polyethylenschicht mit geringer Sättigungsrate von Bedeutung. Andererseits ist gewährleistet, dass das Kabel mittels Vergießen weiterverarbeitbar ist. Hierzu ist die äußere Polyurethanschicht wesentlich. Darüber hinaus ist durch die chemische Funktionalisierung mit der Koronabehandlung gewährleistet, dass beide Mantellagen druckdicht miteinander verbunden sind, so dass ein Fließen von Wasser zwischen den beiden Mantellagen, z.B. bei oberflächlichen Mantelbeschädigungen oder über Undichtigkeiten im Steckverbinder verhindert sind.
  • Ein Ausführungsbeispiel der Erfindung wird anhand der einzigen Figur beschrieben.
  • Diese zeigt in vereinfachter Darstellung einen Querschnitt durch ein Kabel 2 mit einem Zentralelement 4, welches von einem doppelwandigen Mantel 6 umgeben ist. Dieser weist eine innere Mantellage 8 auf, die unmittelbar auf das Zentralelement 4 insbesondere durch Extrusion aufgebracht ist. Die innere Mantellage 8 ist unmittelbar von einer äußeren Mantellage 10 umgeben, die auf die innere Mantellage 8 ebenfalls vorzugsweise durch Extrusion aufgebracht ist. Der Mantel 6 weist eine Gesamtdicke D auf, die im Bereich zwischen 5 mm und 45 mm liegt. Die innere Mantellage 8 weist eine innere Wanddicke d1 im Bereich von 0,1 mm bis 1,5 mm auf. Die äußere Mantellage 10 weist eine äußere Wanddicke d2 im Bereich von 0,2 mm bis 2 mm auf. Der Aufbau kann von einem weiteren Außenmantel umgeben sein bzw. mehrere derartige Kabel 2 insbesondere auch in Kombination mit anderen Elementen bilden einen Verbund, der von einem gemeinsamen Außenmantel umgeben ist. Bevorzugt bildet jedoch die äußere Mantellage 10 einen Außenmantel.
  • Bei dem Zentralelement 4 handelt es sich insbesondere um eine Kabelseele aus einzelnen Kabelelementen. Speziell handelt es sich bei dem Kabel 2 um ein Datenkabel mit mehreren Datenübertragungsadern, die die Kabelseele 4 bilden. Es liegen bevorzugt also ausschließlich Datenübertragungselemente in der Kabelseele 4 vor. Prinzipiell ist es auch möglich, dass neben den Datenübertragungselementen auch Leistungselemente integriert sind. Bei den Datenübertragungselementen handelt es sich insbesondere um elektrische Leitungsadern, die vorzugsweise paarweise für eine symmetrische Datenübertragung angeordnet sind. Ein jeweiliges Adernpaar ist dabei verseilt oder unverseilt und mit oder ohne einer Paarschirmung versehen. Daneben können auch optische Übertragungselemente integriert sein.
  • Allgemein wird ein Eindiffundieren von Wasser in das Zentralelement 4 dadurch vermieden oder zumindest ausreichend reduziert, indem für die innere Mantellage 8 ein Kunststoff als Mantelwerkstoff ausgewählt wird, der eine sehr geringe Diffusions- und Sättigungsrate besitzt. Hier kommen vor allem halogenfreie, polyolefinische Materialien mit hydrophoben Eigenschaften in Frage, wie z.B. Polyethylen, Polypropylen oder polyolefinische Elastomere (POE).
  • Da auch weiterhin die Forderung besteht, dass das Kabel einerseits flexibel ist und sich andererseits gut in Steckverbindern und Gehäusen druckdicht mittels einer Polyurethan basierten Vergussmasse vergießen lassen muss, wird für die äußerer Mantellage ein weiches Polyurethan, vorzugsweise mit einer Shorehärte zwischen 64D und 95A, verwendet.
  • Es ist eine physikalische Grundeigenschaft, dass polyolefinische Werkstoffe eine geringe Oberflächenspannung besitzen und daher eine sehr geringe Neigung zeigen, sich mit dem polaren Polyurethan, welches eine hohe Oberflächenspannung aufweist, zu verbinden.
  • Extrudiert man das Polyurethan auf ein Kabel mit einer normalen polyolefinischen wasserabweisenden Schicht, liegen beide Mäntel nahezu unverbunden aufeinander und können ohne große Schälkraft voneinander getrennt werden. Die Verbindung ist nicht formschlüssig und auch nicht druckdicht in Längsrichtung.
  • Das würde jedoch bedeuten, dass Wasser, das durch den äußeren Polyurethanmantel diffundiert ist, auf dem inneren Polyethylen- bzw. Polypropylenmantel in Längsrichtung fließt und so in die Steckverbinder oder Gehäuse gelangen würde.
  • Um dieses Problem zu vermeiden ist daher erfindungsgemäß eine chemische Funktionalisierung des Polymers der inneren Mantellage 8 sowie eine Aktivierung insbesondere der Oberfläche der inneren Mantellage 8 vorgesehen, und zwar derart, dass sich die Polyurethanschicht, die in einem weiteren Arbeitsgang auf den inneren Polyethylen- bzw. Polypropylenmantel aufextrudiert wird, mit der inneren Schicht form- und druckdicht verbindet.
  • Die Aktivierung erfolgt vorzugsweise durch eine Koronabearbeitung der inneren Mantellage aus dem polyolefinischen Werkstoff mit den wasserabweisenden Eigenschaften. Alternativ ist eine Plasmabearbeitung vorgesehen. Hierbei werden Oxidationsradikale ausgebildet und / oder es erfolgt eine Polarisierung der Oberfläche.
  • In weiteren Alternativen wird ein Haftvermittlers oder ein Kleber aufgetragen.
  • Zur chemischen Funktionalisierung wird der polyolefinische Werkstoff modifiziert. Gemäß einer ersten Variante werden polyolefinische Werkstoffe verwendet, die mit Maleinsäureanhydrid gegraftet sind. Gemäß einer zweiten Variante werden polyolefinische Werkstoffe verwendet, die mit reaktiven oder funktionalisierten oder siliciumfunktionellen Silanen (z.B. Alkoxysilanverbindungen) gepfropft oder copolymerisiert sind. Speziell wird ein Polyethylen mittlerer dichte verwendet, welches mit Vinylsilan, insbesondere Vinylalkosysilan copolymerisiert ist oder gepfropft ist.
  • Die Ausbildung der dichten Verbindung zwischen den Mantellagen 6,8 wird ergänzend unterstützt durch ein in die äußere Mantellage 8 eingebrachtes Katalysatorsystem. Als Katalysatorsystem wird in das Material für die äußere Mantellage 10 beispielsweise eine zinnorganische Verbindung, vorzugsweise jedoch eine Sulfonsäure eingearbeitet.
  • Insgesamt kommt es zu einer (chemischen) Reaktion zwischen der (koronaaktivierten) polyolefinischen MDPE Mantelschicht und der mit dem Katalysator versehenen TPU Mantelschicht.
  • Vorstellbar ist z.B., dass die koronaaktivierte polyolefinische Mantelschicht mit den Amidgruppen der Urethangruppe reagiert und dies durch den Katalysator, welche dem Polyurethanmantel zugegeben wurde, beschleunigt wird.
  • Bei einer Musterfertigung wurde ein Kabel 2 mit einer silanmodifizierten inneren Mantellage 8 mit einer äußeren TPU- Mantellage 10 mit einer Sulfonsäure als Katalysatorsystem hergestellt. Der Durchmesser des Zentralelements (Kabelseels 4) betrug 14 mm. Die innere Wanddicke d1 betrug ca. 1 mm. Die Korona-Elektroden wurden derart positioniert, dass sie den gesamten Kabelumfang überlappend behandelt haben. Bevorzugt werden 3 Elektroden eingesetzt. Die Koronaspannung betrug 7 kV. Die Koronabehandlung erfolgt Inline nachfolgend zur Extrusion der inneren Mantellage 8, d.h. unmittelbar nach der Extrusion und kontinuierlich während der Herstellung. Nachfolgend zur Koronabehandlung wurde die äußere Mantellage aufextrudiert. Die äußere Mantellage 10 wurde mit einer (Linien-) Geschwindigkeit von 2,4 m/min aufextrudiert. Die äußere Wanddicke d2 betrug ebenfalls etwa 1mm.
  • Das Kabel 2 ist insbesondere ein Unterwasserkabel.
  • Es weist mindestens ein Element auf, das eine definierte Impedanz besitzt (Ethernet, Cat 6, Cat 7 mit jeweils 100-Ohm-Elementen; Profibus, Profinet, Canbus mit 120- bzw. 150 Ohm-Elementen; Koaxialkabel) sowie ggf. weitere Elemente als Hybridkabel. Es ist aber auch möglich, das Prinzip für weitere Unterwasserkabelaufbauten, zum Beispiel für Lichtwellenleiterkabel, aber auch Signal- und Energiekabel einzusetzen. Möglich ist auch der Einsatz der Erfindung für alle Kabel, die in erhöhtem Maße vor dem Eindringen von Wasser oder Feuchtigkeit geschützt werden müssen. Ebenso ist es denkbar, die vorgeschlagene Materialkombination und den Schichtaufbau zu wählen um weitere Eigenschaftenkombinationen zu erzielen wie zum Beispiel eine bessere mechanische Einsetzbarkeit des Kabels oder eine Verbesserung der Abriebfestigkeit.
  • Als Mantelwerkstoffe können prinzipiell flammwidrige und nicht flammwidrige Mischungen eingesetzt werden. Vorzugsweise weist die innere Mantellage 8 ein PE-Material beispielsweise HDPE (PE hoher Dichte), ein LDPE (PE geringer Dichte) und insbesondere ein MDPE (PE mittlerer Dichte) mit Silanpfropfung auf oder es ist ein Silancopolymer verwendet.
  • Die innere Mantellage weist vorzugsweise allgemein eine Shorehärte von 45 D bis 65 D auf. Für die äußere Mantellage 10 wird als bevorzugtes Material ein Polyurethan mit Shorehärten von 80A bis 64D eingesetzt.
  • Bei Untersuchungen zeigten sich die besten Eigenschaften bei der Verwendung eines silanmodifizierten Polyethylens mittlerer Dichte in Kombination mit einem TPU, das mit einem Katalysatorsystem, insbesondere mit einer Sulfonsäure, versetzt war. Insbesondere wurde für die innere Mantellage das unter dem Handelsnamen Visico ME4425 erhältliche Copolymer und für die äußere Mantellage das unter dem Handelsnamen Elastollan 1185A10 beziehungsweise Elastollan 1185A10FHF erhältliche TPU, versetzt mit 6 bis 10%Ambicat verwendet.

Claims (15)

  1. Kabel mit einem Zentralelement und einem Kabelmantel, welcher eine innere hydrophobe Mantellage aus einem ersten unpolaren Kunststoff sowie eine auf diese aufgebrachte äußere Mantellage aus einem zur inneren Mantellage verschiedenen nicht hydrophoben, polaren Kunststoff aufweist, für den ein thermoplastisches Elastomer verwendet ist wobei für die innere Mantellage ein polyolefinischer Kunststoff verwendet ist und die innere Mantellage durch Zugabe eines Additives zu dem unpolaren polyolefinischen Kunststoff chemisch funktionalisiert ist, so dass eine chemische Reaktion mit Bestandteilen des Materials der äußeren Mantellagen bewirkt wird, wobei zwischen den beiden Mantellagen eine dichte Verbindung ausgebildet ist und zur Ausbildung der dichten Verbindung zwischen den Mantellagen in die äußere Mantellage ein Katalysatorsystem eingebracht ist, welches die chemische Reaktion zwischen den beiden Mantellagen unterstützt.
  2. Kabel nach dem vorhergehenden Anspruch, bei dem für die innere Mantellage ein Polyethylen mittlerer Dichte copolymerisiert mit Vinylsilan und für die äußere Mantellage ein thermoplastisches Polyurethan verwendet wird.
  3. Kabel nach einem der Ansprüche 1 oder 2, bei dem für die chemisch funktionalisierte Mantellage ein silanmodifizierter polyolefinischer Kunststoff mit siliciumfunktionellen Gruppen verwendet ist, wobei der Anteil der Silane in der chemisch funktionalisierten Mantellage insbesondere im Bereich zwischen 0,1 - 5,0 Gew.% liegt.
  4. Kabel nach Anspruch 1, bei dem zur chemisch Funktionalisierung ein Kunststoff mit einer reaktiven funktionalen Gruppe, insbesondere Maleinsäure verwendet ist, wobei der Anteil der reaktiven funktionalen Gruppe an der chemisch funktionalisierten Mantellage insbesondere im Bereich zwischen 0,01 - 3,0 Gew.% liegt.
  5. Kabel nach einem der vorhergenenden Ansprüche, bei dem für die innere chemisch funktionalisierte Mantellage ein Polyolefin wie PE, EVA, oder PP mit einem Blendpartner verwendet wird, vorzugsweise ein Polyethylen mittlerer Dichte copolymerisiert mit Vinylsilan.
  6. Kabel nach dem vorhergehenden Anspruch, bei dem der Anteil des Blendpartners im Bereich von 1 - 50 Gew.%, bevorzugt im Bereich von 5-20 Gew.% liegt.
  7. Kabel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil des Katalysatorsystens im Bereich von 0,1 - 5,0 Gew.% liegt.
  8. Kabel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die innere Mantellage eine Shorehärte von 45D bis 65D und / oder die äußere Mantellage eine Shorehärte von 70A bis 70D aufweist.
  9. Kabel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kabel einen Gesamtdurchmesser zwischen 5 mm bis 45 mm aufweist.
  10. Kabel nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die innere Mantellage eine innere Wanddicke aufweist, die zwischen 0,1 mm bei einem kleinen Gesamtdurchmesser bis 1,5 mm bei einem großen Gesamtdurchmesser liegt und dass die äußere Mantellage eine äußere Wanddicke aufweist, die zwischen 0,2 mm bei einem kleinen Gesamtdurchmesser bis 2,0 mm bei großem Gesamtdurchmesser liegt.
  11. Kabel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es druckbeständig ist für mehrere 10bar, speziell auch beständig gegen Druckwechselbeanspruchungen.
  12. Kabel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Kunststoff für zumindest eine Mantellage eine flammwidrige Kunststoffmischung verwendet ist.
  13. Kabel nach einem der vorhergehenden Ansprüche, bei dem auf weitere Maßnahmen zur Gewährleistung der Dichtigkeit, wie eine Trennlage zwischen den Mantellagen, ein Quellvlies oder Füllstoffe verzichtet ist.
  14. Verfahren zur Herstellung eines Kabels, bei dem auf einem Zentralelement ein Kabelmantel aufgebracht wird, der eine innere hydrophobe Mantellage aus einem ersten unpolaren Kunststoff sowie eine auf diese aufgebrachte äußere Mantellage aus einem zur inneren Mantellage verschiedenen nicht hydrophoben, polaren Kunststoff aufweist, für den ein thermoplastisches Elastomer verwendet wird, wobei für die innere Mantellage ein polyolefinischer Werkstoff verwendet wird, welcher durch Zugabe eines Additives zu dem unpolaren polyolefinischen Kunststoff chemisch funktionalisiert ist, so dass eine chemische Reaktion mit Bestandteilen des Materials der äußeren Mantellagen bewirkt wird, wobei zwischen den beiden Mantellagen eine dichte Verbindung ausgebildet wird, und zur Ausbildung der dichten Verbindung zwischen den Mantellagen in die äußere Mantellage ein Katalysatorsystem eingebracht ist welches die chemische Reaktion zwischen den beiden Mantellagen unterstützt.
  15. Verfahren nach dem vorhergehenden Anspruch, bei dem die innere Mantellage vor dem Aufbringen der äußeren Mantellage aktiviert wird, indem die Oberfläche der inneren Mantellage einer Koronabehandlung oder einer Plasmabehandlung unterzogen wird.
EP16822437.6A 2015-12-18 2016-12-16 Kabel sowie verfahren zur herstellung des kabels Active EP3391388B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015226060 2015-12-18
PCT/EP2016/081566 WO2017103198A1 (de) 2015-12-18 2016-12-16 Kabel sowie verfahren zur herstellung des kabels

Publications (2)

Publication Number Publication Date
EP3391388A1 EP3391388A1 (de) 2018-10-24
EP3391388B1 true EP3391388B1 (de) 2020-07-01

Family

ID=57737711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16822437.6A Active EP3391388B1 (de) 2015-12-18 2016-12-16 Kabel sowie verfahren zur herstellung des kabels

Country Status (4)

Country Link
US (1) US10529462B2 (de)
EP (1) EP3391388B1 (de)
KR (1) KR20180095666A (de)
WO (1) WO2017103198A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018217575B4 (de) * 2018-10-15 2024-01-18 Continental Automotive Technologies GmbH Verfahren zur Herstellung einer Kabelanordnung zum Anschluss eines Raddrehzahlsensors und einer elektrischen Parkbremse, Kabelanordnung und Verwendung einer Kabelanordnung
WO2020141931A1 (ko) * 2019-01-04 2020-07-09 엘에스전선 주식회사 케이블 시스용 조성물, 이로부터 제조된 케이블 시스를 포함하는 케이블 및 이의 제조방법

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852518A (en) * 1973-11-29 1974-12-03 Gen Cable Corp Irradiation cross-linked composite low density/high density polyethylene insulated 600 volt power cables
US4962992A (en) * 1989-05-15 1990-10-16 At&T Bell Laboratories Optical transmission media and methods of making same
EP0440118A3 (en) * 1990-01-31 1992-02-26 Fujikura Ltd. Electric insulated wire and cable using the same
TW215964B (en) * 1992-05-29 1993-11-11 American Telephone & Telegraph Communication cable having water-blocking capabilities
US5475041A (en) * 1993-10-12 1995-12-12 Polytechnic University Flame retardant polyolefin wire and cable insulation
SE502171C2 (sv) 1993-12-20 1995-09-04 Borealis Holding As Polyetenkompatibla sulfonsyror som silanförnätningskatalysatorer
MX9603299A (es) * 1996-08-09 1998-04-30 Serivicios Condumex S A De C V Cable conductor electrico co-extruido en tres capas aislante de baja absorcion de humedad metodo electrico, baja emision de gases toxicos y humos, retardante a la flama.
CA2283312C (en) * 1997-03-13 2005-05-24 Pirelli Cavi E Sistemi S.P.A. Cable with fire-resistant, moisture-resistant coating
TW460485B (en) 1998-06-19 2001-10-21 Japan Polyolefins Co Ltd Ethylene.Α-olefin copolymer, and combinations, films and use thereof
US6392153B1 (en) * 1998-12-18 2002-05-21 Equistar Chemicals, Lp Electrical conductive assembly
JP2000322946A (ja) 1999-05-10 2000-11-24 Hitachi Cable Ltd 電線・ケーブル
US6828022B2 (en) * 2000-02-21 2004-12-07 Cables Pirelli Fire-resistant and water-resistant halogen-free low-voltage cables
US6824815B2 (en) * 2000-12-27 2004-11-30 Pirelli Cavi E Sistemi S.P.A. Process for producing an electrical cable, particularly for high voltage direct current transmission or distribution
US20030059613A1 (en) * 2001-09-04 2003-03-27 Diego Tirelli Self-extinguishing cable and flame-retardant composition used therein
EP1495474B1 (de) * 2002-04-16 2008-11-12 Prysmian Cavi e Sistemi Energia S.r.l. Elektrisches kabel und herstellungsverfahren
PT1528574E (pt) 2003-10-24 2006-10-31 Borealis Tech Oy Cabo de alimentacao de baixa tensao com camada isoladora compreendendo poliolefina com grupos polares
CA2668142A1 (en) 2006-11-01 2008-05-15 Dow Global Technologies Inc. Polyurethane compositions and articles prepared therefrom, and methods for making the same
JP5640889B2 (ja) * 2011-05-20 2014-12-17 日立金属株式会社 電線・ケーブル
JP5761151B2 (ja) * 2012-10-16 2015-08-12 日立金属株式会社 絶縁電線及びコイル
JP6202390B2 (ja) * 2012-12-27 2017-09-27 日立金属株式会社 電線及びケーブル
US9496070B2 (en) * 2013-01-09 2016-11-15 Tyco Electronics Corporation Multi-layer insulated conductor having improved scrape abrasion resistance
EP2879135A1 (de) * 2013-11-28 2015-06-03 Nexans Feuerfeste Zusammensetzungen
JP6398663B2 (ja) * 2014-12-03 2018-10-03 日立金属株式会社 ノンハロゲン架橋性樹脂組成物、架橋絶縁電線及びケーブル
KR20160073539A (ko) * 2014-12-17 2016-06-27 삼성메디슨 주식회사 소수성 케이블
JP6745093B2 (ja) * 2015-07-06 2020-08-26 日立金属株式会社 耐熱電線及び耐熱ケーブル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3391388A1 (de) 2018-10-24
US20180286533A1 (en) 2018-10-04
WO2017103198A1 (de) 2017-06-22
KR20180095666A (ko) 2018-08-27
US10529462B2 (en) 2020-01-07

Similar Documents

Publication Publication Date Title
DE60125948T2 (de) Kabel versehen mit einem äusseren Extrusionsmantel und Verfahren zur Herstellung des Kabels
DE102009054551A1 (de) Flammhemmendes Kabel
DE602006000170T2 (de) Elektrische Leitung
DE112006001039T5 (de) Nicht-halogenhaltiger isolierter Draht und Kabelbaum
EP3391388B1 (de) Kabel sowie verfahren zur herstellung des kabels
DE102010029801A1 (de) Twinax-Kabel
EP0186062A2 (de) Schwimmfähige, flexible elektrische und/oder optische Leitung
EP1102282A1 (de) Elektrokabel
DE19503672A1 (de) Mehradriges, kunststoffisoliertes Niederspannungs-Starkstromkabel
EP3142125B1 (de) Kabel
EP1031864B1 (de) Langgestrecktes flexibles Element mit extrudierter Umhüllung
EP2486637A2 (de) Kabeldurchführung in steckverbindergehäusen
DE3813200C2 (de) Thermoplastisch verarbeitbare Kunststoffmischung
EP1388867B1 (de) Elektrisches kabel
CN106205797A (zh) 一种漂浮电缆及其制备方法
EP1602686B1 (de) Polymermischung insbesondere für ein strangförmiges Produkt
EP0031789B1 (de) Längswasserdichtes elektrisches Kabel und Verfahren zu seiner Herstellung
DE3544085C2 (de)
DE1590802B1 (de) Verfahren zur herstellung eines zusammengesetzten elektrischen leiters
DE3632091C2 (de) Halogenfreie und schwer entflammbare Umhüllung für langgestrecktes Gut
DE2007695A1 (de) Isolierte elektrische Leiter und Verfahren zur Herstellung dieser Leiter
DE102017213441A1 (de) Elektrische Leitung
CH696011A5 (de) Strangförmiges Produkt mit Anschluss- und/oder Befestigungsmitteln.
DE3151234A1 (de) Flexible elektrische leitung
DE102010014835B4 (de) Offshore- Isolationselement für Öl- oder Gaspipelines und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190827

RIC1 Information provided on ipc code assigned before grant

Ipc: H01B 3/44 20060101ALI20191211BHEP

Ipc: H01B 7/282 20060101AFI20191211BHEP

Ipc: H01B 3/30 20060101ALI20191211BHEP

Ipc: H01B 7/295 20060101ALI20191211BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200127

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEONI KABEL GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1286925

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010405

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016010405

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201002

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201001

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201101

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010405

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

26N No opposition filed

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201216

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201216

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016010405

Country of ref document: DE

Owner name: BIZLINK INDUSTRY GERMANY GMBH, DE

Free format text: FORMER OWNER: LEONI KABEL GMBH, 91154 ROTH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201101

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1286925

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211216

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 8