EP3386699A1 - Holzwerkstoffplatte mit reduzierter emission an flüchtigen organischen verbindungen (vocs) und verfahren zu deren herstellung - Google Patents

Holzwerkstoffplatte mit reduzierter emission an flüchtigen organischen verbindungen (vocs) und verfahren zu deren herstellung

Info

Publication number
EP3386699A1
EP3386699A1 EP16794249.9A EP16794249A EP3386699A1 EP 3386699 A1 EP3386699 A1 EP 3386699A1 EP 16794249 A EP16794249 A EP 16794249A EP 3386699 A1 EP3386699 A1 EP 3386699A1
Authority
EP
European Patent Office
Prior art keywords
wood
wood chips
heat
treated
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP16794249.9A
Other languages
English (en)
French (fr)
Inventor
Norbert Dr. Kalwa
Jens Siems
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swiss Krono Tec AG
Original Assignee
Swiss Krono Tec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swiss Krono Tec AG filed Critical Swiss Krono Tec AG
Publication of EP3386699A1 publication Critical patent/EP3386699A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • B27N1/003Pretreatment of moulding material for reducing formaldehyde gas emission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • B27K5/001Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • B27K5/0085Thermal treatments, i.e. involving chemical modification of wood at temperatures well over 100°C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/02Manufacture of substantially flat articles, e.g. boards, from particles or fibres from particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/18Auxiliary operations, e.g. preheating, humidifying, cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K2240/00Purpose of the treatment
    • B27K2240/10Extraction of components naturally occurring in wood, cork, straw, cane or reed

Definitions

  • VOCs volatile organic compounds
  • the present invention relates to a process for the production of wood-based panels, in particular chipboard or fiberboard according to the preamble of claim 1, with the process produced chipboard according to claim 10, produced by the method wood fiber boards according to claim 12, their use according to claim 14 and the use of heat-treated wood chips produced wood chips and wood fibers according to claim 15.
  • Wood-based panels such as chipboard or wood fiber boards, which in the present case are always medium or high density wood fiber boards (MDF / HDF) are understood to be the basis of many everyday objects, such as furniture or coverings for wall, floor or ceiling.
  • MDF / HDF medium or high density wood fiber boards
  • VOCs volatile organic compounds
  • chipboard and wood fiber boards are used uncoated on a larger scale (eg as tongue and groove panels, interior fittings, etc.).
  • the use of lightweight and super light wood fiber boards is often done without coating.
  • the volatile organic compounds VOC are either already present in the wood material and are released during workup from this or they are formed according to the current state of knowledge by the degradation of unsaturated fatty acids, which in turn are decomposition products of wood.
  • Typical conversion products that occur during processing are, for example, higher aldehydes or organic acids.
  • Organic acids are produced in particular as cleavage products of the wood constituents cellulose, hemicelluloses and lignin, alkanoic acids such as acetic acid, propionic acid, hexanoic acid or aromatic acids preferably being formed.
  • Aldehydes will be formed during the hydrolytic workup from the basic building blocks of cellulose or hemicellulose.
  • the aldehyde furfural is formed from mono- and disaccharides of cellulose or hemicellulose, while aromatic aldehydes can be liberated during the partial hydrolytic exclusion of lignin.
  • Other released aldehydes include i.a. the higher aldehydes hexanal, pentanal or octanal.
  • the pH in the wood matrix can be increased so as to prevent or reduce the acid catalyzed reactions taking place in the wood matrix (Roffael, E., et al, Holzzentralblatt 1990, 16: 1684-1 685).
  • Further possibilities for reducing the emission of volatile organic compounds are the addition of zeolite (WO 2010/136166), bisulfites or pyrosulfites (US2009 / 0130474 A1) as aldehyde scavenger or in the addition of polyamines to reduce released during the aqueous wood pulping aldehydes and organic acids (EP 2 567 798).
  • EP 0639434 B2 a manufacturing method for MDF wood fiber boards is described, which differs from the conventional method in the field of fiber pulping.
  • a CTMP chemo-thermo-mechanical-pulping
  • Na 2 S0 3 or NaOH was added as the chemical component.
  • this method has not yet prevailed on the market.
  • the present invention is therefore based on the technical object of providing a process for the production of wood-based panels, in particular of particle board or wood fiber boards, which allows the production of these wood-based panels with significantly improved VOC emissions. This should be done without any serious change to the usual manufacturing process and not lead to cost increases. In addition, the production itself should not generate higher emissions or place more pressure on the process waters that are usually generated. In addition, the resulting products should be processable without any problems in the subsequent value-added chain. This object is achieved by a process for the production of wood-based panels, in particular of particleboard and wood fiber boards with the features of claim 1 and produced by this method wood-based panels according to claims 1 0 and 1 2.
  • a process for making wood-based panels, in particular chipboard panels and reduced-volatile-matter (VOC) emission wood fiber panels comprising the steps of: a) making wood chips from suitable timbers, b) heat treatment of at least a portion of the woodchips at a temperature between 1 50 ° C and 300 ° C over a period of 1 h to 5 h; c) crushing the non-heat treated wood chips and at least a portion of the heat treated wood chips by machining to obtain wood chips or by digestion to obtain wood fibers; d) lining the wood chips or wood fibers with at least one binder; e) applying the glued wood chips to a conveyor belt to form a multi-layered chipboard or the glued wood fibers on a conveyor belt to form a single-layer fiber cake; and f) pressing the chip cake or the fiber cake into a wood-based panel.
  • VOC reduced-volatile-matter
  • the present method enables the production of wood-based panels such as chipboard and fiberboard using heat-treated wood, in particular heat-treated wood chips, which are introduced into a known manufacturing process in addition to or as an alternative to untreated, non-heat-treated wood chips.
  • a wood-based panel produced by the method according to the invention in particular in the form of a chipboard or a fiberboard with a typical density of 400 to 1200 kg / m 3 comprising wood chips or wood fibers produced from heat-treated wood chips has a reduced emission of volatile organic compounds, especially higher aldehydes and of organic acids.
  • the present method provides the present method, there are further advantages.
  • a simple production of wood-based panels, such as chipboard and wood fiber boards is possible without significantly affecting the usual process chain.
  • the emission of volatile compounds into the air during the manufacturing process of the wood-based panels and the burden of process water is reduced.
  • the presently applied heat treatment of the wood chips is preferably carried out in a saturated steam atmosphere, in particular under an elevated pressure, preferably above 5 bar.
  • the present heat treatment can be understood both as torrefaction known per se and, at least with regard to the pressure conditions, as a modification of the torrefaction known per se.
  • Torrefaction is a thermal treatment process in which the material to be torrefied is typically heated at atmospheric pressure in an oxygen-free gas atmosphere.
  • the treatment of biomass without air access leads to a pyrolytic decomposition and drying.
  • the process is carried out at relatively low temperatures of 250 to 300 ° C for pyrolysis.
  • the aim is, as in the case of coking, to increase the mass and volume-related energy density and thus the calorific value of the raw material, to increase transportability or to reduce the expense of subsequent biomass milling.
  • the step of heat treating the woodchips may be provided in various ways in the present process.
  • the step of heat treatment of the woodchips into the manufacturing process of the wood-based panels, such as chipboard and fiberboard, i. the heat treatment step is integrated into the overall process or process line and takes place online.
  • the step of heat treatment of the wood chips can be carried out separately from the production process of the wood-based panels, such as chipboard and wood fiber boards. Accordingly, the heat treatment step in this embodiment of the present method is outside the overall process or process line.
  • the woodchips are thereby discharged from the manufacturing process and introduced into the heat treatment apparatus (e.g., heat treatment reactor). Subsequently, the heat-treated woodchips may possibly be introduced again into the conventional manufacturing process after an intermediate storage. This allows a high flexibility in the manufacturing process.
  • the wood chips used in the present case may have a length between 10 to 100 mm, preferably 20 to 90 mm, particularly preferably 30 to 80 mm; a width between 5 to 70 mm, preferably 1 0 to 50 mm, particularly preferably 15 to 20 mm; and a thickness between 1 and 30 mm, preferably between 2 and 25 mm, particularly preferably between 3 and 20 mm.
  • the wood chips are heat treated at temperatures between 200 ° C and 280 ° C, more preferably between 220 ° C and 260 ° C.
  • the heat treatment process of the wood chips may be between 1 and 5 hours, preferably between 2 and 3 hours, with the duration of the process varying depending on the amount and type of starting material used.
  • the process de heat treatment is preferably terminated at a mass loss of wood chips from 1 0 to 30%, preferably 1 5 to 20%.
  • the wood chips are heat-treated by heating in a low-oxygen or oxygen-free atmosphere, in particular in a saturated steam atmosphere. This can be done under atmospheric pressure.
  • the heat treatment process preferably takes place at temperatures between 1 60 ° C and 220 ° C and pressures of 6 bar to 16 bar.
  • woodchips are heat treated at a moisture content of 20-50% by weight, i. no previous drying of the wood chips takes place here, but the wood chips are fed to the heat treatment device after further machining without further pretreatment.
  • the presently used heat treatment reactor can be present as a batch plant or as a continuously operated plant.
  • the pyrolysis gases released during the heat treatment process essentially from hemicelluloses and other low molecular weight compounds are used to generate process energy.
  • the amount of gas mixture formed as gaseous fuel is sufficient to operate the process energetically self-sufficient.
  • the heat-treated woodchips are preferably cooled to room temperature and, if appropriate, temporarily stored or returned to the production process directly, if necessary after moistening.
  • the heat-treated woodchips are cooled and watered in a water bath, wherein at least one wetting agent is added to the water.
  • the wetting agent for example a conventional surfactant, facilitates the wetting of the hydrophobic surface of the woodchip chips produced by the heat treatment with water.
  • the amount of wetting agent is in the water bath, in which the wood chips are transferred at 0, 1 to 1, 0% by weight. Watering positively influences the subsequent cutting or defibering process.
  • the wetting of the chips or fibers with binders containing water as a solvent is thereby improved.
  • the moisture content of the heat-treated chips is adjusted to 5 to 20%, preferably 1 0 to 1 5%.
  • the moisture content of the untreated, non-heat treated wood chips is adjusted accordingly.
  • the woodchips are in this step e.g. washed and cooked.
  • the water treatment is desirable so that the wood chips can be chipped or shredded.
  • without water in the machining or defibration would be very unwanted dust.
  • a machining process of the woodchips in a chipper or a defibration process of the wood chips in a refiner wherein wood chips or the wood fibers during the fiberization process also a wetting agent for improving the water wetting of the heat-treated wood or wood chips can also be added.
  • the wood chips produced in the cutting process are divided into fine and coarse chip material, wherein the larger wood chips are preferably used in the middle layer of the chipboard and the smaller wood chips are preferably used in the cover layers. It is preferred if the wood chips used in the middle layer were produced from heat-treated wood chips, since these typically have a dark color. When using the dark colored chips in the middle layer, the plate optics is thus not affected.
  • the middle layer is typically about 2/3 of a particle board, the effect on emission reduction is not adversely affected.
  • the wood fibers produced by the defibration process have a length of between 1, 5 mm and 20 mm and a thickness of between 0.05 mm and 1 mm.
  • the wood chips after the machining process or the wood fibers after the defibration process are brought into contact with at least one binder suitable for crosslinking the wood chips or fibers, the contacting of the wood chips and wood fibers with the binder in each case in different ways can be done.
  • the wood fibers can be contacted with the at least one binder in step d) in a blow-line process in which the binder is injected into the stream of wood fibers. It is possible that the binders described below for wood fiber crosslinking in the blow-line are fed to a wood fiber-steam mixture.
  • wood chips are preferably contacted with the binder in a mixing device.
  • the amount of binder added depends on the type of binder and the type of wood-based panel.
  • the amount of binder to be applied to the wood fibers is from 3 to 20% by weight, preferably from 5 to 15% by weight, more preferably from 8 to 12% by weight. If, on the other hand, polyurethane-containing binders, such as PMDI, are used for wood fiber boards, the necessary amount of binder is reduced to 1 to 10% by weight, preferably 2 to 8% by weight, particularly preferably 4 to 6% by weight.
  • Binders based on formaldehyde are preferably used in the case of wood chip boards, with binder amounts of from 5 to 8% by weight, preferably from 6 to 7% by weight, and from 6 to 10% by weight, preferably from 8 to 9% by weight, for the middle layer. be used.
  • the amount of binder in the middle layer is between 2 and 5% by weight, preferably 3% by weight, and in the top layer between 4 and 8% by weight, preferably 5% by weight.
  • a polymer adhesive is preferably used as a binder, which is selected from the group consisting of formaldehyde adhesives, polyurethane adhesives, epoxy adhesives, polyester adhesives, wherein mainly formaldehyde adhesives are used.
  • formaldehyde adhesive in particular, a phenol-formaldehyde resin adhesive (PF), a cresol / resorcinol-formaldehyde resin adhesive, urea-formaldehyde resin adhesive (UF), and / or melamine-formaldehyde resin adhesive (MF) can be used.
  • Polyurethane adhesives based on aromatic polyisocyanates in particular polydiphenylmethane diisocyanate (PMDI), tolylene diisocyanate (TDI) and / or diphenylmethane diisocyanate (MDI), with PMDI being particularly preferred, are available to a lesser extent as an alternative to the formaldehyde adhesive.
  • PMDI polydiphenylmethane diisocyanate
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • the flame retardant may typically be added in an amount of between 1 and 20% by weight, preferably between 5 and 15% by weight, more preferably 10% by weight, of the wood fiber-binder mixture.
  • Typical flame retardants are selected from the group comprising phosphates, borates, in particular ammonium polyphosphate, tris (tri-bromneopentyl) phosphate, zinc borate or boric acid complexes of polyhydric alcohols.
  • the wood chips or wood fibers are dried to a degree of moisture of 1 to 1 0%, preferably 3 to 5%.
  • the drying process is preferably carried out in a one-step process, e.g. in a drum dryer, whereas wood fibers can be dried in a two-stage process.
  • the dried wood chips or wood fibers are then sorted according to their size or sighted and preferably stored, for example, in silos or bunkers.
  • the screening of the chips or fibers after the drying process is typically associated with a post-cleaning.
  • the fibers are placed in an air stream and freed either largely by vortex formation, sharp deflections, impact vision, Steigluftsichtung or a combination of several effects of heavy particles such as glue lumps.
  • the fibers are again separated by cyclone from the air flow and fed to further use. In the case of sighting of wood chips, these are subdivided into coarser chips for the middle class and finer chips for the outer layers.
  • the gluing of the wood fibers can be done before drying.
  • the gluing of the wood chamfers can also be done after drying. In the case of the use of wood chips, however, the gluing is done after the screening, wherein the Beieimen done by mixing chips and glue.
  • the glued wood chips or wood fibers are sprinkled on a conveyor belt to form a chip cake or fiber cake.
  • the scattering station typically used in the case of wood fibers consists of a dosing bunker, a mat diffusion and a mat smoothing.
  • wood shavings it is customary to work with wind scattering, in which case firstly a first covering layer, followed by the middle layer and finally a second covering layer, is spread.
  • the chip cake or fiber cake is then first pre-pressed and then pressed hot at temperatures between 1 00 ° C and 250 ° C, preferably 130 ° C and 220 ° C, especially at 200 ° C.
  • the chip cake or the fiber cake is first weighed after spreading and measured the moisture.
  • the chip or fiber cake then passes into the pre-press.
  • the cake is reduced in thickness during the cold pre-compaction, so that the subsequent hot presses can be charged more efficiently and the risk of damage to the cake is reduced.
  • the trimming of the compacted cake or mat follows.
  • side strips are separated from the mat, so that the corresponding desired plate width can be produced.
  • the side strips are in front of the spreader in the Process returned.
  • Other measuring devices for density control or metal detection may follow.
  • a Mattenbesprühung to improve the surface qualities or acceleration of the Mattwartissermung can follow.
  • the hot pressing which can be clocked or continuously performed.
  • continuous hot pressing is preferred.
  • continuous presses are used, which work with a press belt or press plates, via which the pressure and the temperature are transmitted.
  • the tape is supported either by a roll carpet, a rod carpet or an oil pad against the mostly with thermal oil (more rarely with steam) heated heating plates.
  • This press system enables the production of plate thicknesses between 1, 5 mm and 60 mm.
  • On calender presses only thin chipboard or fibreboard can be produced. The pressing takes place here with press rolls and an outer belt on a heated calender roll.
  • the pressed plates are assembled. This is usually followed by a series of quality control measurements, in particular thickness control.
  • the present method for producing a particle board with reduced VOC emission comprises the following steps: a1) producing wood chips from suitable woods, b1) if necessary pre-drying the wood chips, c1) heat treatment of at least part of the wood chips in a Temperature between 1 50 ° C and 300 ° C over a period of 1 h to 5 h, d1) water treatment of the heat-treated wood chips, e1) cutting of the non-heat-treated woodchips and at least part of the heat-treated woodchips into woodchips; f1) sifting of the wood chips; (gl) cladding wood chips produced from heat-treated woodchips or a mixture of wood shavings produced from non-heat-treated wood chips and wood shavings produced from heat-treated wood chips with at least one binder; h1) sprinkling the glued wood chips onto a conveyor belt to form a multi-layered chipboard, the wood chips being spread over one another as first cover layer, middle layer and second cover layer; i1) pressing
  • the present method for producing a wood fiber board with reduced VOC emission comprises the following steps: a2) producing wood chips from suitable woods, b2) if necessary pre-drying the wood chips, c2) heat treatment of at least a portion of the wood chips in a Temperature between 1 50 ° C and 300 ° C over a period of 1 h to 5 h, d2) water treatment of the heat-treated wood chips, e2) fiber pulping of the non-heat-treated wood chips and at least part of the heat-treated wood chips to wood fibers; f2) mixing the wood fibers produced from heat-treated wood chips or a mixture of wood fibers produced from non-heat-treated wood chips and wood fibers produced from heat-treated wood chips with at least one binder; g2) sprinkling the glued wood fibers onto a conveyor belt to form a single-layered fiber cake, h2) pre-pressing the fiber cake, and i2) hot pressing the fiber cake to a fiberboard.
  • the use of heat-treated woodchips for the production of particle boards and fiberboard has a number of advantages.
  • the wood chips and wood fibers produced from the heat-treated wood chips are particularly easy to dry, which is due in particular to the low hydrophilicity of the heat-treated wood.
  • This is also advantageous for the use of the wood fiberboards produced, since the wood chips or wood fibers produced from the heat-treated wood chips have a lower equilibrium moisture content at defined temperatures and humidities than the non-heat-treated wood.
  • Another positive aspect of the use of heat-treated woodchips as starting material is that a homogenization of the starting raw material wood is achieved. This is of particular economic importance, since the use of wood chips for the production of chipboard, wood fiber boards or other wood materials, the seasonal variations of the raw material wood must be considered. Another advantage is that heat treated woodchips are not subject to biodegradation or other alterations due to storage, allowing storage of the heat treated woodchips for an extended period of time. Furthermore, no ingredients are washed out by contact with water, as they have been destroyed in the heat treatment process.
  • the present method enables the production of a particle board and fibrous board having reduced emission of volatile organic compounds (VOCs), which comprise wood chips or wood fibers produced from heat-treated wood chips, respectively.
  • VOCs volatile organic compounds
  • the present chipboard may consist entirely of wood chips produced from heat-treated wood chips or consist of a mixture of untreated (ie not heat-treated) wood chips and wood chips produced from heat-treated wood chips.
  • the present fiberboard may be wholly made of wood fibers made of heat-treated wood chips or may consist of a mixture of wood fibers made from untreated (ie not heat-treated) wood chips and wood fibers made from heat-treated wood chips.
  • the present chipboard or wood fiber board has a reduced emission of aldehydes released during the wood pulping, in particular pentanal, hexanal or octanal, and / or of organic acids, in particular acetic acid.
  • the present wood-based panel in the form of a chipboard or wood fiber board may have a bulk density between 400 and 1200 kg / m 3 , preferably between 500 and 1000 kg / m 3 , particularly preferably between 600 and 800 kg / m 3 .
  • the thickness of the present wood-based panel as chipboard or wood fiber board may be between 3 and 20 mm, preferably between 5 and 1 5 mm, in particular, a thickness of 1 0 mm is preferred.
  • the present chipboard consists of 60 to 90% by weight, preferably 70 to 80% by weight of wood chips and 5 to 20% by weight, preferably 10 to 15% by weight of binders.
  • the present wood fiber board consists of a fiber mixture comprising 60 to 90% by weight, preferably 70 to 80% by weight of wood fibers and 5 to 20% by weight, preferably 1 0 to 1 5% by weight of binders.
  • both the present wood chip board and the present wood fiber board may consist of a mixture of wood shavings / wood fibers produced from non-heat treated wood chips and wood shavings / wood fibers made of heat treated wood chips.
  • the mixture used in the chipboard and in the wood fiberboard may be between 10 and 50% by weight, preferably between 20 and 30% by weight, of chips / fibers produced from non-heat treated woodchips and between 50 and 90% by weight, preferably between 70 and 80% by weight. comprise chips / fibers produced from heat-treated wood chips.
  • the chips obtained from the heat-treated woodchips are preferably used in the middle layer.
  • Both the present chipboard and the present fiberboard can be used as a low-emission wood chip or wood fiber board for furniture and floor, wall or ceiling coverings.
  • the object of the present invention is also achieved with the use of wood chips or wood fibers produced from heat-treated wood chips according to claim 15. Accordingly, wood chips and wood fibers produced from heat-treated woodchips are used to reduce the emission of volatile organic compounds (VOCs) from wood chip boards or wood fiber boards.
  • VOCs volatile organic compounds
  • the wood chips and wood fibers produced from heat-treated woodchips are used to reduce aldehydes and / or organic acids released during wood pulping.
  • the wood chips / wood fibers produced from heat-treated woodchips are presently preferably used for reducing the emission of organic acids, in particular for reducing the emission of acetic acid and hexanoic acid.
  • Organic acids are produced in particular as cleavage products of the wood constituents cellulose, hemicelluloses and lignin, alkanoic acids such as acetic acid, propionic acid, hexanoic acid or aromatic acids preferably being formed.
  • wood shavings / wood fibers made from heat treated woodchips to reduce the emission of aldehydes. In this case, it is particularly preferred if the wood fibers are used to reduce aldehydes released during the aqueous wood pulping process.
  • the wood chips or wood fibers produced from heat-treated wood chips are used to reduce the emission of C1-C10 aldehydes, particularly preferably pentanal, hexanal or octanal.
  • Figure 1 is a schematic representation of a first embodiment of the inventive method for producing a wood fiber board
  • FIG. 2 is a schematic representation of a second embodiment of the method according to the invention for producing a wood fiber board.
  • the first embodiment of the method according to the invention shown in FIG. 1 describes the individual method steps beginning with the provision of the wood starting product to the finished fibreboard.
  • suitable wood starting material for producing the woodchips is first provided.
  • wood source material all conifers, hardwoods or mixtures thereof are suitable.
  • the roundwood is debarked and shredded in wood chippers or drum chippers (step 2), whereby the size of the wood chippings can be controlled accordingly.
  • step 3 After comminution and provision of the wood chips, they are possibly subjected to a predrying process, wherein a moisture content of 5-1 0% is set in relation to the initial moisture content of the woodchips.
  • a predrying process wherein a moisture content of 5-1 0% is set in relation to the initial moisture content of the woodchips.
  • step 3 At least some of the optionally predried woodchips are removed from the conventional production process and introduced into a heat treatment reactor (step 3).
  • the heat treatment of the discharged wood chips takes place in a temperature range between 220 ° and 260 ° C.
  • the resulting pyrolysis gases are used to generate the energy required for the process plant.
  • the heat-treated woodchips After completion of the heat treatment, which takes in the present case about 2 hours, the heat-treated woodchips be reintroduced into the process and optionally together with the non-heat treated wood chips in a washing and cooking step 4 back to a humidity of 1 0-20 % brought.
  • step 5 the wood fibers are subjected to the pulping process in a refiner (step 5), whereby a suitable wetting agent is supplied to the wood fibers in the course of the pulping process.
  • the wood fibers can be mixed immediately after the fiber pulping with a liquid binder and optionally a flame retardant (step 6).
  • the contacting of the wood fibers with the liquid binder can be carried out in this process stage, for example in a blow-Iine method.
  • the gluing step 6 is followed by a drying process of the glued wood fibers (step 7), wherein this drying process can take place in two stages I, II.
  • the dryer is designed as a 2-stage dryer, with the main drying in stage 1 being done by means of hot gases (air or superheated steam) and after-drying in stage 2, where it is also possible to use hot air or superheated steam.
  • the mixture is separated in / after each stage by means of separation cyclone and capsule plants.
  • the dried wood fibers are sorted according to their size (step 8).
  • the glued wood fibers are scattered on a conveyor belt (step 9), the formed fiber cake initially fed to a pre-press (step 1 0) and finally pressed in the hot press (step 1 1) to a large-sized wood fiber board.
  • the wood fiber board obtained is assembled in a suitable manner.
  • the second embodiment shown in Figure 2 differs from the first embodiment shown in Figure 1 in that the step of heat treatment of the woodchips (step 3) is integrated into the manufacturing process of the wood fiber boards, i.
  • the heat treatment step is integrated into the overall process or process line and takes place online. Removal of wood chips from the process line for heat treatment is thus eliminated. This is particularly advantageous if the wood fiber board is made entirely from wood fibers obtained from heat-treated wood chips.
  • Embodiment 1 Wood fiber board, in particular MDF
  • Wood chips are kept undried (humidity: approx. 50%, format: approx. 5 x 5 cm, thickness: approx. 1 cm) in a continuous heat treatment device at 220 ° C under saturated steam for approx. 2 h.
  • the device consists of a conveyor through which the wood chips are transported slowly by means of a screw conveyor.
  • the chips are cooled in the wood chips laundry and then led to the normal defibration.
  • the wood chips washing contained 0.1% of a commercially available surfactant. This was added to improve the wetting of the hydrophobic chips.
  • the water of the laundry showed a clear lower staining and exposure to organic compounds was reduced by about 90%.
  • the wood chips resulting after defibration were glued in the blowline with a commercially available urea-formaldehyde glue and dried. Subsequently, the fibers were scattered and processed into MDF having a density of 650 kg / m 3 and a thickness of 10 mm.
  • the resulting MDF is then tested for VOC emission according to the AgBB scheme along with a blank sample (from non-heat treated wood chips). For reasons of time, the 3-day value was determined.
  • Chamber parameters temperature 23C ° C; Humidity 50% + - 5%; Air change 0.5 / h + - 0.1 / h; Loading 1 m 2 / m 3; Chamber volume 225 m 3
  • Embodiment 2 Chipboard
  • the production of particleboard is generally known.
  • the heat treated wood chips analogous to Example 1 are fed to a chipper. After cutting, the wood chips are dried to a residual moisture content of approx. 2% in a drum dryer. After drying, the wood chips are sorted and separated into coarser chips for the middle layer and finer chips for the top layer.
  • the chips After filling with urea-formaldehyde glue, the chips are scattered to multilayer chip cake, wherein the chips used in the middle layer of heat treated wood chips was obtained, and pressed at temperatures of about 200 ° C to plates.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Holzwerkstoffplatten, insbesondere Holzspanplatten und Holzfaserplatten, mit reduzierter Emission an flüchtigen organischen Verbindungen (VOCs) umfassend die Schritte: a) Herstellen von Holzhackschnitzeln aus geeigneten Hölzern, b) Wärmebehandlung von zumindest einem Teil der Holzhackschnitzel bei einer Temperatur zwischen 150°C und 300°C über einen Zeitraum von 1 h bis 5h; c) Zerkleinern der nicht- wärmebehandelten Holzhackschnitzel und zumindest eines Teiles der wärmebehandelten Holzhackschnitzel durch Zerspanen zur Gewinnung von Holzspänen oder durch Aufschließen zur Gewinnung von Holzfasern; d) Beieimen der Holzspäne oder Holzfasern mit mindestens einem Bindemittel; e) Aufbringen der beleimten Holzspäne auf ein Transportband unter Ausbildung eines mehrschichtigen Spankuchens oder der beleimten Holzfasern auf ein Transportband unter Ausbildung eines einschichtigen Faserkuchens; und f) Verpressen des Spankuchens oder des Faserkuchens zu einer Holzwerkstoffplatte. Die vorliegende Erfindung betrifft ebenfalls eine Holzspanplatte und eine Holzfaserplatte hergestellt mit diesem Verfahren.

Description

Holzwerkstoffplatte mit reduzierter Emission an flüchtigen organischen Verbindungen (VOCs) und Verfahren zu deren Herstellung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Holzwerkstoffplatten, insbesondere Holzspanplatten oder Holzfaserplatten gemäß dem Oberbegriff nach Anspruch 1 , mit dem Verfahren hergestellte Holzspanplatten gemäß Anspruch 10, mit dem Verfahren hergestellte Holzfaserplatten gemäß Anspruch 12, deren Verwendung gemäß Anspruch 14 und die Verwendung von aus wärmebehandelten Holzhackschnitzeln hergestellten Holzspänen und Holzfasern gemäß Anspruch 15.
Beschreibung
Holzwerkstoffplatten, wie Holzspanplatten oder Holzfaserplatten, wobei vorliegend unter Holzfaserplatten immer mittel- oder hochdichte Holzfaserplatten (MDF/HDF) zu verstehen sind, bilden die Basis vieler Gegenstände des täglichen Lebens, beispielsweise von Möbeln oder Belägen für Wand, Boden oder Decke. Neben einigen technologischen Parametern, die die Festigkeit der Platten bei mechanischer Belastung betreffen, ist besonders die Emission aus den Produkten ein zunehmend wichtiges Qualitätskriterium. Üblicherweise stellen die Emissionen, insbesondere von flüchtigen organischen Verbindungen (VOCs), bei einer Holzspanplatte oder Holzfaserplatte nur ein untergeordnetes Problem dar, weil bei vielen Produkten die Oberfläche mit dekorativen Beschichtungen veredelt wird. Allerdings gibt es auch Anwendungen bei denen Holzspanplatten und Holzfaserplatten unbeschichtet in größerem Maßstab eingesetzt werden (z.B. als Nut- und Federplatten, im Innenausbau usw.). Auch der Einsatz von leichten und superleichten Holzfaserplatten erfolgt oft ohne Beschichtung. Dabei ist ein kritischer Aspekt, dass bei Emissionen häufig auf das sogenannte AgBB-Schema Bezug genommen wird, indem bei der Bestimmung von Emissionen von einer Raumbeladung von 1 m2/m3 und einem definierten Luftwechsel (0,5/h) ausgegangen wird. Durch Wand-, und Deckenverkleidungen, Bodenbeläge und Möbel aus MDF/HDF-Holzfaserplatten können diese Raumbeladungen aber deutlich überschritten werden. Auch der Luftwechsel von 0,5/h wird in modernen Niedrigenergie-Häusern häufig deutlich unterschritten. Dies kann in Kombination zu höheren Raumkonzentrationen an Holzinhaltsstoffen führen. Im Verlaufe der Herstellung von Holzwerkstoffplatten und insbesondere bedingt durch den Herstellungsprozess der Holzspäne und Holzfasern entstehen bzw. werden eine Vielzahl von flüchtigen organischen Verbindungen freigesetzt. Zu den flüchtigen organischen Verbindungen, auch VOCs genannt, gehören flüchtige organische Stoffe, die leicht verdampfen bzw. bereits bei niedrigeren Temperaturen, wie zum Beispiel Raumtemperatur als Gas vorliegen.
Die flüchtigen organischen Verbindungen VOC sind entweder bereits im Holzmaterial vorhanden und werden während der Aufarbeitung aus diesem abgegeben oder sie werden nach derzeitigem Erkenntnisstand durch den Abbau von ungesättigten Fettsäuren gebildet, die wiederum Zersetzungsprodukte des Holzes sind. Typische Umwandlungsprodukte, die während der Bearbeitung auftreten, sind zum Beispiel höhere Aldehyde oder auch organische Säuren. Organische Säuren fallen insbesondere als Spaltprodukte der Holzbestandteile Zellulose, Hemizellulosen und Lignin an, wobei bevorzugt Alkansäuren, wie Essigsäure, Propionsäure, Hexansäure oder aromatische Säuren gebildet werden. Aldehyde werden während der hydrolytischen Aufarbeitung aus den Grundbausteinen der Zellulose oder Hemizellulose gebildet werden. So wird z.B. der Aldehyd Furfural aus Mono-und Disacchariden der Zellulose bzw. Hemizellulose gebildet, während aromatische Aldehyde während des partiell stattfindenden hydrolytischen Ausschlusses von Lignin freigesetzt werden können. Weitere freigesetzte Aldehyde sind u.a. die höheren Aldehyde Hexanal, Pentanal oder Oktanal.
Um das Problem der VOC-Emission zu lösen wurden in der Vergangenheit verschiedene Ansätze beschrieben. Zum einen besteht die Möglichkeit Holzfasern mit anderen natürlichen Fasern wie z.B. Wolle, Hanfflachs, zu mischen, die sich im Hinblick auf ihr Emissionsverhalten günstiger verhalten, um somit eine ökologische Holzfaserplatte mit verbesserter Emissionscharakteristik zu erhalten. Ein Nachteil hierbei ist allerdings die mit diesen Fasern verbundenen hohen Kosten und eingeschränkte Verfügbarkeit, da teilweise für die entsprechenden Faserarten auch höherwertige Anwendungen existieren, die einen anderen Einsatz nahelegen.
Auch kann durch Zugabe von alkalischen Stoffen der pH-Wert in der Holzmatrix erhöht werden, um so die in der Holzmatrix ablaufenden säurekatalysierten Reaktionen zu verhindern bzw. zu reduzieren (Roffael, E., et al, Holzzentralblatt 1990, 1 16: 1684-1 685). Weitere Möglichkeiten in der Reduzierung der Emission von leichtflüchtigen organischen Verbindung bestehen in der Zugabe von Zeolith (WO 2010/ 1361 06), Bisulfiten oder Pyrosulfiten (US2009/0130 474 A1 ) als Aldehydfänger oder auch in der Zugabe von Polyaminen zur Reduzierung von während des wässrigen Holzaufschlusses freigesetzten Aldehyden und organischen Säuren (EP 2 567 798). In der EP 0639434 B2 wird ein Herstellungsverfahren für MDF- Holzfaserplatten beschrieben, welches sich von den konventionellen Verfahren im Bereich des Faseraufschlusses unterscheidet. Hier wird ein CTMP (chemo-thermo-mechanical-pulping) Verfahren zum Faseraufschluss verwendet, um eine Verringerung der Emission flüchtiger organischer Verbindungen in der fertigen Holzfaserplatte zu bewirken. Dazu wurde als chemische Komponente Na2S03 oder NaOH zugeführt. Dieses Verfahren hat sich bisher allerdings am Markt nicht durchgesetzt.
Entsprechend besteht nach wie vor ein sehr großer Bedarf an emissionsarmen Holzwerkstoffplatten sowie an möglichst einfachen und sicheren Herstellverfahren.
Der vorliegenden Erfindung liegt daher die technische Aufgabe zu Grunde, ein Verfahren zur Herstellung von Holzwerkstoffplatten, insbesondere von Holzspanplatten oder Holzfaserplatten bereitzustellen, welches die Herstellung dieser Holzwerkstoff platten mit deutlich verbesserten VOC-Emissionswerten ermöglicht. Dies sollte ohne gravierende Veränderung des üblichen Fertigungsprozesses erfolgen und nicht zu Kostensteigerungen führen. Auch sollte die Herstellung selbst keine höheren Emissionen erzeugen oder üblicherweise entstehende Prozesswässer stärker belasten. Zudem sollten die resultierenden Produkte ohne Probleme in der sich anschließenden Wertschöpfungskette verarbeitbar sein. Diese Aufgabe wird erfindungsgemäß durch ein Verfahren zur Herstellung von Holzwerkstoffplatten, insbesondere von Holzspanplatten und Holzfaserplatten mit den Merkmalen des Anspruchs 1 und mit diesem Verfahren hergestellte Holzwerkstoffplatten gemäß der Ansprüche 1 0 und 1 2 gelöst. Entsprechend wird ein Verfahren zur Herstellung von Holzwerkstoffplatten, insbesondere von Holzspanplatten und Holzfaserplatten mit reduzierter Emission an flüchtigen organischen Verbindungen (VOCs) bereitgestellt, welches die folgenden Schritte umfasst: a) Herstellen von Holzhackschnitzeln aus geeigneten Hölzern, b) Wärmebehandlung von zumindest einem Teil der Holzhackschnitzel bei einer Temperatur zwischen 1 50°C und 300°C über einen Zeitraum von 1 h bis 5h; c) Zerkleinern der nicht-wärmebehandelten Holzhackschnitzel und zumindest eines Teiles der wärmebehandelten Holzhackschnitzel durch Zerspanen zur Gewinnung von Holzspänen oder durch Aufschließen zur Gewinnung von Holzfasern; d) Beieimen der Holzspäne oder Holzfasern mit mindestens einem Bindemittel; e) Aufbringen der beleimten Holzspäne auf ein Transportband unter Ausbildung eines mehrschichtigen Spankuchens oder der beleimten Holzfasern auf ein Transportband unter Ausbildung eines einschichtigen Faserkuchens; und f) Verpressen des Spankuchens oder des Faserkuchens zu einer Holzwerkstoffplatte.
Das vorliegende Verfahren ermöglicht die Herstellung von Holzwerkstoffplatten wie Holzspanplatten und Holzfaserplatten unter Verwendung von wärmebehandelten Holz, insbesondere wärmebehandelten Holzhackschnitzeln, die zusätzlich oder alternativ zu unbehandelten, nicht- wärmebehandelten Holzhackschnitzeln in einen bekannten Herstellungsprozess eingeführt werden.
Eine mit dem erfindungsgemäßen Verfahren hergestellte Holzwerkstoffplatte, insbesondere in Form einer Holzspanplatte oder einer Holzfaserplatte mit einer typischen Rohdichte von 400 bis 1200 kg/m3 umfassend aus wärmebehandelten Holzhackschnitzeln hergestellten Holzspänen oder Holzfasern weist eine verminderte Emission von flüchtigen organischen Verbindungen, insbesondere von höheren Aldehyden sowie von organischen Säuren auf.
Durch die Bereitstellung des vorliegenden Verfahrens ergeben sich weitere Vorteile. So ist eine einfache Herstellung von Holzwerkstoffplatten, wie Holzspanplatten und Holzfaserplatten ohne wesentliche Beeinflussung der üblichen Prozesskette möglich. Zudem wird die Emission von flüchtigen Verbindungen in die Luft im Verlaufe des Herstellungsprozesses der Holzwerkstoffplatten und die Belastung der Prozesswässer reduziert. Die vorliegend angewendete Wärmebehandlung der Holzhackschnitzel erfolgt bevorzugt in einer Sattdampfatmosphäre insbesondere unter einem erhöhten Druck, bevorzugt über 5 bar. Die vorliegende Wärmebehandlung kann dabei sowohl als an sich bekannte Torrefizierung als auch, zumindest in Hinblick auf die Druckverhältnisse als eine Abwandlung der an sich bekannten Torrefizierung verstanden werden. Torrefizierung ist ein thermisches Behandlungsverfahren, bei welchem das zu torrefizierende Material in einer sauerstofffreien Gasatmosphäre typischerweise bei Atmosphärendruck erhitzt wird. Die Behandlung von Biomasse ohne Luftzutritt führt zu einer pyrolytischen Zersetzung und Trocknung. Das Verfahren wird bei für eine Pyrolyse relativ niedrigen Temperaturen von 250 bis 300 °C durchgeführt. Ziel ist, ähnlich wie bei einer Verkokung, die Erhöhung der massen- und volumenbezogenen Energiedichte und damit des Heizwerts des Rohmaterials, eine Steigerung der Transportwürdigkeit oder eine Reduzierung des Aufwands bei einem nachfolgenden Zermahlen von Biomasse.
Der Schritt der Wärmebehandlung der Holzhackschnitzel kann in dem vorliegenden Verfahren in verschiedener Weise vorgesehen sein.
So ist es gemäß einer Ausführungsform möglich, den Schritt der Wärmebehandlung der Holzhackschnitzel in den Herstellungsprozess der Holzwerkstoffplatten, wie Holzspanplatten und Holzfaserplatten zu integrieren, d.h. der Wärmebehandlungschritt ist in den Gesamtprozess bzw. Prozesslinie eingegliedert und erfolgt online.
In einer anderen Ausführungsvariante kann der Schritt der Wärmebehandlung der Holzhackschnitzel separat von dem Herstellungsprozess der Holzwerkstoffplatten, wie Holzspanplatten und Holzfaserplatten durchgeführt werden. Demnach erfolgt der Wärmebehandlungsschritt in dieser Ausführungsvariante des vorliegenden Verfahrens außerhalb des Gesamtprozesses bzw. der Prozesslinie. Die Holzhackschnitzel werden hierbei aus dem Herstellungsprozess ausgeschleust und in die Wärmebehandlungsvorrichtung (z.B. Wärmebehandlungsreaktor) eingeführt. Anschließend können die wärmebehandelten Holzhackschnitzel ggf. nach einer Zwischenlagerung wieder in den herkömmlichen Herstellungsprozess eingeschleust werden. Dies ermöglicht eine hohe Flexibilität im Herstellungsverfahren.
Die vorliegend verwendeten Holzhackschnitzel können eine Länge zwischen 1 0 bis 1 00 mm, bevorzugt 20 bis 90 mm, insbesondere bevorzugt 30 bis 80 mm; eine Breite zwischen 5 bis 70 mm, bevorzugt 1 0 bis 50 mm, insbesondere bevorzugt 15 bis 20 mm; und eine Dicke zwischen 1 und 30 mm, bevorzugt zwischen 2 und 25 mm, insbesondere bevorzugt zwischen 3 und 20 mm aufweisen.
In einer weiteren Ausführungsform des vorliegenden Verfahrens werden die Holzhackschnitzel bei Temperaturen zwischen 200°C und 280°C, insbesondere bevorzugt zwischen 220°C und 260°C wärmebehandelt.
Wie oben ausgeführt, kann der Wärmebehandlungsprozess der Holzhackschnitzel über einen Zeitraum zwischen 1 und 5 h, bevorzugt zwischen 2 und 3 h betragen, wobei die Dauer des Prozesses in Abhängigkeit der Menge und Art des eingesetzten Ausgangsmaterials variiert. Der Prozess de Wärmebehandlung wird bevorzugt bei einem Masseverlust der Holzhackschnitzel von 1 0 bis 30%, bevorzugt 1 5 bis 20% beendet.
Wie oben bereits erwähnt, werden in einer Ausführungsvariante des vorliegenden Verfahrens die Holzhackschnitzel durch Erhitzen in sauerstoffarmer oder sauerstofffreier Atmosphäre, insbesondere in einer Sattdampfatmosphäre wärmebehandelt. Dies kann unter Atmosphärendruck erfolgen. Im Falle der Verwendung von Sattdampf läuft der Wärmebehandlungsprozess bevorzugt bei Temperaturen zwischen 1 60°C und 220°C und Drücken von 6 bar bis 16 bar ab.
Es ist ebenfalls bevorzugt, wenn zumindest ein Teil der Holzhackschnitzel mit einer Feuchte von 20-50 Gew% wärmebehandelt werden, d.h. hier erfolgt keine vorherige Trocknung der Holzhackschnitzel, sondern die Holzhackschnitzel werden ohne weitere Vorbehandlung nach dem Zerspanen der Wärmebehandlungsvorrichtung zugeführt.
Der vorliegend zum Einsatz kommende Wärmebehandlungsreaktor kann als Batch-Anlage oder als kontinuierlich betriebene Anlage vorliegen.
Die während des Wärmebehandlungsprozesses im Wesentlichen aus Hemizellulosen und anderen niedermolekularen Verbindungen freigesetzten Pyrolysegase werden zur Erzeugung von Prozessenergie benutzt. Dabei ist die Menge an gebildeten Gasgemisch als gasförmiger Brennstoff ausreichend, um den Prozess energetisch autark zu betreiben.
Die wärmebehandelten Holzhackschnitzel werden bevorzugt auf Raumtemperatur abgekühlt und ggf. zwischengelagert oder dem Herstellungsprozess unmittelbar, ggf. nach Befeuchtung, wieder zugeführt. In einer Variante des vorliegenden Verfahrens werden die wärmebehandelten Holzhackschnitzel in einem Wasserbad abgekühlt und gewässert, wobei dem Wasser mindestens ein Benetzungsmittel zugegeben wird. Das Netzmittel z.B. ein herkömmliches Tensid erleichtert die Benetzung der durch die Wärmebehandlung entstandenen hydrophoben Oberfläche der Holzhackschnitzel mit Wasser. Die Menge Netzmittel liegt dabei in dem Wasserbad, in das die Holzhackschnitzel überführt werden bei 0, 1 bis 1 ,0 Gew%. Durch das Wässern wird der anschließende Zerspanungs- oder Zerfaserungsprozess positiv beeinflusst. Auch die Benetzung der Späne oder Fasern mit Bindemitteln, die Wasser als Lösemittel enthalten, wird hierdurch verbessert. Im Ergebnis des Wässerungsprozesses wird die Feuchte der wärmebehandelten Hackschnitzel auf 5 bis 20%, bevorzugt 1 0 bis 1 5% eingestellt.
Ebenfalls wird die Feuchte der unbehandelten, nicht- wärmebehandelten Holzhackschnitzel entsprechend eingestellt. Die Holzhackschnitzel werden in diesem Schritt z.B. gewaschen und gekocht. Die Wasserbehandlung ist wünschenswert, damit sich die Holzhackschnitzel zerspanen bzw. zerfasern lassen. Zudem würde ohne Wasser bei der Zerspanung bzw. Zerfaserung sehr viel unerwünschter Staub entstehen.
Es schließt sich ein Zerspanungsprozess der Holzhackschnitzel in einem Zerspaner oder ein Zerfaserungsprozess der Holzhackschnitzel in einem Refiner an, wobei Holzspänen bzw. den Holzfasern während des Zerfaserungsprozesses ebenfalls zusätzlich ein Benetzungsmittel zur Verbesserung der Wasserbenetzung des wärmebehandelten Holzes bzw. der Holzhackschnitzel zugegeben werden kann. Die im Zerspanungsprozess hergestellten Holzspäne werden in feines und grobes Spanmaterial unterteilt, wobei die größeren Holzspäne bevorzugt in der Mittelschicht der Spanplatte verwendet werden und die kleineren Holzspäne bevorzugt in den Deckschichten verwendet werden. Dabei ist es bevorzugt, wenn die in der Mittelschicht zum Einsatz kommenden Holzspäne aus wärmebehandelten Holzhackschnitzeln hergestellt wurden, da diese typischerweise eine dunkle Färbung aufweisen. Bei Verwendung der dunkel gefärbten Späne in der Mittelschicht wird die Plattenoptik somit nicht beeinträchtigt. Da die Mittelschicht typischerweise etwa 2/3 einer Spanplatte ausmacht, wird der Effekt auf Emissionsreduzierung zudem nicht negativ beeinflusst. Die mit dem Zerfaserungsprozess hergestellten Holzfasern weisen eine Länge zwischen 1 ,5 mm und 20 mm und eine Dicke zwischen 0,05 mm und 1 mm auf. In einem weiteren Schritt des vorliegenden Verfahrens werden die Holzspäne nach dem Zerspanungsprozess oder die Holzfasern nach dem Zerfaserungsprozess mit mindestens einem zur Vernetzung der Holzspäne oder Holzfasern geeigneten Bindemittel in Kontakt gebracht, wobei das In-Kontaktbringen der Holzspäne und Holzfasern mit dem Bindemittel jeweils in unterschiedlicher Weise erfolgen kann.
So können die Holzfasern mit dem mindestens einen Bindemittel in Schritt d) in einem Blow- Line-Verfahren kontaktiert werden, bei dem das Bindemittel in den Strom aus Holzfasern eingespritzt wird. Hierbei ist es möglich, dass die weiter unten beschriebenen Bindemittel zur Holzfaservernetzung in der Blow-Line einem Holzfaser-Dampfgemisch zugeführt werden.
Holzspäne werden hingegen bevorzugt in einer Mischvorrichtung mit dem Bindemittel kontaktiert.
Die Menge an zugegebenen Bindemittel ist abhängig von der Art des Bindemittels und der Art der Holzwerkstoffplatte.
Im Falle eines Bindemittels auf Formaldehydbasis für eine Holzfaserplatte beträgt die auf die Holzfasern aufzutragende Bindemittelmenge zwischen 3 bis 20 Gew%, bevorzugt 5 bis 15 Gew%, insbesondere bevorzugt zwischen 8 und 1 2 Gew%. Werden hingegen Polyurethanhaltige Bindemittel, wie PMDI, für Holzfaserplatten verwendet, reduziert sich die notwendige Bindemittelmenge auf 1 bis 1 0 Gew%, bevorzugt 2 bis 8 Gew%, insbesondere bevorzugt auf 4 bis 6 Gew%.
Im Falle von Holzspanplatten werden bevorzugt Bindemittel auf Formaldehydbasis eingesetzt, wobei für die Mittelschicht Bindemittelmengen zwischen 5 und 8 Gew%, bevorzugt zwischen 6 und 7 Gew%, und für die Deckschicht zwischen 6 und 1 0 Gew%, bevorzugt zwischen 8 und 9 Gew% eingesetzt werden. Bei Einsatz eines Bindemittels auf Polyurethan-Basis, wie PMD I, in Holzspanplatten beträgt die Bindemittelmenge in der Mittelschicht zwischen 2 und 5 Gew%, bevorzugt 3 Gew%, und in der Deckschicht zwischen 4 und 8 Gew%, bevorzugt 5 Gew%.
Wie bereits angedeutet wird in einer Ausführungsform des vorliegenden Verfahrens bevorzugt ein Polymerklebstoff als Bindemittel verwendet, der ausgewählt ist aus der Gruppe enthaltend Formaldehyd-Klebstoffe, Polyurethan-Klebstoffe, Epoxidharz-Klebstoffe, Polyester-Klebstoffe, wobei hauptsächlich Formaldehyd-Klebstoffe zum Einsatz kommen. Als Formaldehyd-Klebstoff kann insbesondere ein Phenol-Formaldehydharz-Klebstoff (PF), ein Kresol-/ Resorcin-Formaldehydharz-Klebstoff, Harnstoff-Formaldehyd Harz-Klebstoff (UF) und/oder Melamin-Formaldehyd Harz Klebstoff (MF) verwendet werden.
Als Alternative zum Formaldehyd-Klebstoff bieten sich in geringerem Umfang Polyurethan- Klebstoffe basierend auf aromatischen Polyisocyanaten, insbesondere Polydiphenylmethandiisocyanat (PMDI), Toluylendiisocyanat (TDI) und/oder Diphenylmethandiisocyanat (MDI), wobei PMDI besonders bevorzugt ist, an.
Möglich und vorstellbar wäre auch die Verwendung von Mischungen aus zwei oder mehreren Polymerklebstoffen, wie einem Formaldehyd-Klebstoff (wie MUF, MF, UF) und einem Polyurethanklebstoff (wie PMDI). Derartige Hybridklebstoffsysteme sind aus der EP 2 447 332 B1 bekannt.
Es ist ebenfalls möglich, zusammen oder separat mit dem Bindemittel den Holzspänen oder Holzfasern mindestens ein Flammschutzmittel zuzuführen.
Das Flammschutzmittel kann typischerweise in einer Menge zwischen 1 und 20 Gew%, bevorzugt zwischen 5 und 15 Gew%, insbesondere bevorzugt 10 Gew% dem Holzfaser- Bindemittel-Gemisch zugegeben werden.
Typische Flammschutzmittel sind ausgewählt aus der Gruppe umfassend Phosphate, Borate, insbesondere Ammoniumpolyphosphat, Tris(tri-bromneopentyl)phosphat, Zinkborat oder Borsäurekomplexe von mehrwertigen Alkoholen.
In einem nächsten Verfahrensschritt werden die Holzspäne oder Holzfasern bis zu einem Feuchtegrad von 1 bis 1 0 %, bevorzugt 3 bis 5 getrocknet %. Im Falle von Holzspänen erfolgt der Trocknungsprozess bevorzugt in einem einstufigen Prozess, z.B. in einem Trommeltrockner, wohingegen Holzfasern in einem zweistufigen Prozess getrocknet werden können.
Die getrockneten Holzspäne oder Holzfasern werden anschließend entsprechend ihrer Größe sortiert bzw. gesichtet und bevorzugterweise zwischengelagert, zum Beispiel in Silos oder Bunkern. Das Sichten der Späne oder Fasern nach dem Trocknungsprozess ist typischerweise verbunden mit einer Nachreinigung. Hierzu werden die Fasern in einen Luftstrom gegeben und entweder über Wirbelbildung, scharfe Umlenkungen, Prallsichtung, Steigluftsichtung oder einer Kombination mehrerer Effekte von Schwerteilen wie Leimklumpen weitestgehend befreit. Anschließend werden die Fasern erneut über Zyklonabscheider vom Luftstrom getrennt und der weiteren Verwendung zugeführt. Im Falle der Sichtung von Holzspänen werden diese in gröbere Späne für die Mittelschicht und feinere Späne für die Deckschichten unterteilt.
Wie oben ausgeführt kann die Beleimung der Holzfasern bereits vor dem Trocknen erfolgen. Die Beleimung der Holzfasen kann aber auch nach dem Trocknen erfolgen. Im Falle der Verwendung von Holzspänen erfolgt die Beleimung jedoch nach der Sichtung, wobei das Beieimen durch Vermischen von Spänen und Leim erfolgt.
Nach dem Sichten werden die beleimten Holzspäne oder Holzfasern auf ein Transportband unter Ausbildung eines Spankuchens oder Faserkuchens aufgestreut. Die im Falle der Holzfasern typischerweise verwendete Streustation besteht aus einem Dosierbunker, einer Mattenstreuung und einer Mattenglättung. Im Falle der Holzspäne wird üblicherweise mit einer Windstreuung gearbeitet, wobei zunächst eine erste Deckschicht, gefolgt von der Mittelschicht und abschließend eine zweite Deckschicht gestreut wird.
Der Spankuchen bzw. der Faserkuchen wird anschließend zunächst vorgepresst und anschließend bei Temperaturen zwischen 1 00°C und 250°C, bevorzugt 130°C und 220°C, insbesondere bei 200°C heiß verpresst. Hierbei wird der Spankuchen oder der Faserkuchen nach dem Streuen zunächst gewogen und die Feuchte gemessen. Der Span- bzw. Faserkuchen gelangt anschließend in die Vorpresse. Hier wird der Kuchen bei der kalten Vorverdichtung in der Dicke reduziert, damit die anschließenden Heißpressen effizienter beschickt werden können und die Gefahr der Beschädigung des Kuchens reduziert wird. Bei der Vorverdichtung im Durchlauf wird zumeist mit Bandvorpressen, nach dem Prinzip des Förderbandes (seltener mit Plattenbandvorpressen, nach dem Prinzip der Panzerkette, oder mit Walzenbandvorpressen, nach dem Prinzip des Pyramidensteintransportes mit Rundhölzern) gearbeitet.
Nach der Vorpressung folgt die Besäumung des verdichteten Kuchens bzw. der Matte. Hier werden Seitenstreifen von der Matte abgetrennt, so dass die entsprechend gewünschte Plattenbreite produziert werden kann. Die Seitenstreifen werden vor der Streumaschine in den Prozess zurückgeführt. Weitere Messgeräte zur Dichtekontrolle oder Metallerkennung können folgen. Auch eine Mattenbesprühung zur Verbesserung der Oberflächenqualitäten oder Beschleunigung der Mattendurchwärmung kann folgen. Es schließt sich die Heißpressung an, die getaktet oder kontinuierlich durchgeführt werden kann. Vorliegend ist ein kontinuierlich durchgeführtes Heißpressen bevorzugt. Hierzu werden kontinuierlich arbeitende Pressen verwendet, die mit einem Pressband oder mit Pressplatten arbeiten, über die der Druck und die Temperatur übertragen werden. Das Band wird dabei entweder von einem Rollenteppich, einem Stabteppich oder einem Ölpolster gegenüber den zumeist mit Thermalöl (seltener mit Dampf) beheizten Heizplatten abgestützt. Dieses Pressensystem ermöglicht die Produktion von Plattendicken zwischen 1 ,5 mm und 60 mm. Auf Kalanderpressen können ausschließlich dünne Span- oder Faserplatten hergestellt werden. Die Pressung erfolgt hier mit Presswalzen und einem Außenband auf einer beheizten Kalanderwalze.
Nach dem Heißpressen werden die verpressten Platten konfektioniert. Es folgt zumeist eine Reihe von Messungen zur Qualitätskontrolle, insbesondere Dickenkontrolle.
In einer besonders bevorzugten Ausführungsform umfasst das vorliegende Verfahren zur Herstellung einer Holzspanplatte mit reduzierter VOC-Emission die folgenden Schritte: a1 ) Herstellen von Holzhackschnitzeln aus geeigneten Hölzern, b1 ) ggf. Vortrocknen der Holzhackschnitzel, c1 ) Wärmebehandlung von zumindest einem Teil der Holzhackschnitzel bei einer Temperatur zwischen 1 50°C und 300°C über einen Zeitraum von 1 h bis 5h, d1 ) Wasserbehandlung der wärmebehandelten Holzhackschnitzel, e1 ) Zerspanen der nicht- wärmebehandelten Holzhackschnitzel und zumindest eines Teiles der wärmebehandelten Holzhackschnitzel zu Holzspänen ; f1 ) Sichten der Holzspäne; gl ) Beieimen der aus wärmebehandelten Holzhackschnitzel hergestellten Holzspäne oder einer Mischung von aus nicht- wärmebehandelten Holzhackschnitzel hergestellten Holzspänen und aus wärmebehandelten Holzhackschnitzel hergestellten Holzspänen mit mindestens einem Bindemittel ; h1 ) Aufstreuen der beleimten Holzspäne auf ein Transportband unter Ausbildung eines mehrschichtigen Spankuchens, wobei die Holzspäne übereinander als erste Deckschicht, Mittelschicht und zweite Deckschicht gestreut werden ; i1 ) Verpressen des Spankuchens zu einer Holzspanplatte.
In einer besonders bevorzugten Ausführungsform umfasst das vorliegende Verfahren zur Herstellung einer Holzfaserplatte mit reduzierter VOC-Emission die folgenden Schritte: a2) Herstellen von Holzhackschnitzeln aus geeigneten Hölzern, b2) ggf. Vortrocknen der Holzhackschnitzel, c2) Wärmebehandlung von zumindest einem Teil der Holzhackschnitzel bei einer Temperatur zwischen 1 50°C und 300°C über einen Zeitraum von 1 h bis 5h, d2) Wasserbehandlung der wärmebehandelten Holzhackschnitzel, e2) Faseraufschluss der nicht- wärmebehandelten Holzhackschnitzel und zumindest eines Teiles der wärmebehandelten Holzhackschnitzel zu Holzfasern; f2) Vermischen der aus wärmebehandelten Holzhackschnitzel hergestellten Holzfasern oder einer Mischung von aus nicht- wärmebehandelten Holzhackschnitzel hergestellten Holzfasern und aus wärmebehandelten Holzhackschnitzel hergestellten Holzfasern mit mindestens einem Bindemittel; g2) Aufstreuen der beleimten Holzfasern auf ein Transportband unter Ausbildung eines einschichtigen Faserkuchens, h2) Vorpressen des Faserkuchens, und i2) Heißpressen des Faserkuchens zu einer Holzfaserplatte.
Die Verwendung von wärmebehandelten Holzhackschnitzeln zur Herstellung von Holzspanplatten und Holzfaserplatten weist eine Reihe von Vorteilen auf. So ist es besonders vorteilhaft, dass die aus den wärmebehandelten Holzhackschnitzeln hergestellten Holzspäne und Holzfasern besonders leicht zu trocknen sind, was insbesondere in der geringen Hydrophilie des wärmebehandelten Holzes begründet ist. Dies ist auch für die Nutzung der hergestellten Holzfaserplatten von Vorteil, da die aus den wärmebehandelten Holzhackschnitzel hergestellten Holzspäne bzw. Holzfasern bei definierten Temperaturen und Luftfeuchten eine niedrigere Ausgleichsfeuchte besitzen als das nicht- wärmebehandelte Holz.
Ein weiterer positiver Aspekt der Verwendung von wärmebehandelten Holzhackschnitzeln als Ausgangsmaterial ist, dass eine Vergleichmäßigung des Ausgangsrohstoffes Holz erreicht wird. Dies ist von besonderer wirtschaftlicher Bedeutung, da beim Einsatz von Holzhackschnitzeln zur Herstellung von Holzspanplatten, Holzfaserplatten oder anderen Holzwerkstoffen die jahreszeitlichen Schwankungen des Rohstoffes Holz berücksichtigt werden müssen. Ein weiterer Vorteil ist, dass wärmebehandelte Holzhackschnitzel keinem biologischen Abbau oder anderen Änderungen durch Lagerung unterworfen sind, wodurch eine Lagerung der wärmebehandelten Holzhackschnitzeln über einen längeren Zeitraum möglich ist. Des Weiteren werden keine Inhaltsstoffe durch Wasserkontakt ausgewaschen, da diese im Wärmebehandlungsprozess zerstört worden sind.
Entsprechend ermöglicht das vorliegende Verfahren die Herstellung einer Holzspanplatte und Holzfaserplatte mit reduzierter Emission an flüchtigen organischen Verbindungen (VOCs), welche jeweils aus wärmebehandelten Holzhackschnitzelen hergestellte Holzspäne oder Holzfasern umfassen. Die vorliegende Holzspanplatte kann dabei vollständig aus aus wärmebehandelten Holzhackschnitzeln hergestellten Holzspänen bestehen oder aus einem Gemisch von aus unbehandelten (d.h. nicht wärmebehandelten) Holzhackschnitzeln und aus wärmebehandelten Holzhackschnitzeln hergestellten Holzspänen bestehen. Die vorliegende Holzfaserplatte kann entsprechend vollständig aus aus wärmebehandelten Holzhackschnitzeln hergestellten Holzfasern bestehen oder aus einem Gemisch von aus unbehandelten (d.h. nicht wärmebehandelten) Holzhackschnitzelen hergestellten Holzfasern und aus wärmebehandelten Holzhackschnitzeln hergestellten Holzfasern bestehen. Die vorliegende Holzspanplatte oder Holzfaserplatte weist jeweils insbesondere eine reduzierte Emission von während des Holzaufschlusses freigesetzten Aldehyden, insbesondere Pentanal, Hexanal oder Oktanal, und/oder von organischen Säuren, insbesondere Essigsäure, auf.
Die vorliegende Holzwerkstoffplatte in Form eine Holzspanplatte oder Holzfaserplatte kann eine Rohdichte zwischen 400 und 1200 kg/m3, bevorzugt zwischen 500 und 1000 kg/m3, insbesondere bevorzugt zwischen 600 und 800 kg/m3 aufweisen.
Die Dicke der vorliegenden Holzwerkstoffplatte als Holzspanplatte oder Holzfaserplatte kann zwischen 3 und 20 mm, bevorzugt zwischen 5 und 1 5 mm betragen, wobei insbesondere eine Dicke von 1 0 mm bevorzugt ist.
Die vorliegende Holzspanplatte besteht aus 60 bis 90 Gew%, bevorzugt 70 bis 80 Gew% an Holzspänen und 5 bis 20 Gew%, bevorzugt 10 bis 15 Gew% an Bindemitteln. Die vorliegende Holzfaserplatte besteht aus einem Fasergemisch umfassend 60 bis 90 Gew%, bevorzugt 70 bis 80 Gew% an Holzfasern und 5 bis 20 Gew%, bevorzugt 1 0 bis 1 5 Gew% an Bindemitteln. Diesbezüglich wird auf die obigen Ausführungen zur Art der verwendeten Bindemittel verwiesen. Wie oben ausgeführt, kann sowohl die vorliegende Holzspanplatte als auch die vorliegende Holzfaserplatte aus einem Gemisch aus aus nicht- wärmebehandelten Holzhackschnitzeln hergestellten Holzspänen /Holzfasern und aus wärmebehandelten Holzhackschnitzeln hergestellten Holzspänen/Holzfasern bestehen. Das in der Holzspanplatte und in der Holzfaserplatte verwendete Gemisch kann zwischen 10 und 50 Gew%, bevorzugt zwischen 20 und 30 Gew% an aus nicht- wärmebehandelten Holzhackschnitzelen hergestellten Späne/ Fasern und zwischen 50 und 90 Gew%, bevorzugt zwischen 70 und 80 Gew% an aus wärmebehandelten Holzhackschnitzelen hergestellte Späne/Fasern umfassen. Wie oben bereits erläutert, werden im Falle der Spanplatte die aus den wärmebehandelten Holzhackschnitzel gewonnenen Späne bevorzugt in der Mittelschicht eingesetzt.
Sowohl die vorliegende Holzspanplatte als auch die vorliegende Holzfaserplatte können als emissionsarme Holzspan- oder Holzfaserplatte für Möbel sowie Verkleidungen für Boden, Wand oder Decke verwendet werden. Die Aufgabe der vorliegenden Erfindung wird ebenfalls mit der Verwendung von aus wärmebehandelten Holzhackschnitzeln hergestellten Holzspänen oder Holzfasern gemäß Anspruch 15 gelöst. Demnach werden aus wärmebehandelten Holzhackschnitzel hergestellten Holzspäne und Holzfasern zur Reduzierung der Emission von flüchtigen organischen Verbindungen (VOCs) aus Holzspanplatten oder Holzfaserplatten verwendet.
In einer bevorzugten Variante werden die aus wärmebehandelten Holzhackschnitzel hergestellten Holzspäne und Holzfasern zur Reduzierung von während des Holzaufschlusses freigesetzten Aldehyden und/oder organischen Säuren verwendet.
Entsprechend werden die aus wärmebehandelten Holzhackschnitzel hergestellten Holzspäne / Holzfasern vorliegend bevorzugt zur Reduzierung der Emission von organischen Säuren, insbesondere zur Reduzierung der Emission von Essigsäure und Hexansäure verwendet. Organische Säuren fallen insbesondere als Spaltprodukte der Holzbestandteile Zellulose, Hemizellulosen und Lignin an, wobei bevorzugt Alkansäuren, wie Essigsäure, Propionsäure, Hexansäure oder aromatische Säuren gebildet werden. Es ist ebenfalls wünschenswert, die aus wärmebehandelten Holzhackschnitzel hergestellten Holzspäne / Holzfasern zur Reduzierung der Emission von Aldehyden einzusetzen. Hierbei ist es insbesondere bevorzugt, wenn die Holzfasern zur Reduzierung von während des wässrigen Holzaufschlusses freigesetzten Aldehyden eingesetzt werden. Entsprechend werden die aus wärmebehandelten Holzhackschnitzel hergestellten Holzspäne oder Holzfasern zur Reduzierung der Emission von C1 -C10 Aldehyden, insbesondere bevorzugt von Pentanal, Hexanal oder Oktanal eingesetzt.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Figuren der Zeichnung an mehreren Ausführungsbeispielen näher erläutert. Es zeigen :
Figur 1 eine schematische Darstellung einer ersten Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung einer Holzfaserplatte, und
Figur 2 eine schematische Darstellung einer zweiten Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung einer Holzfaserplatte. Die in Figur 1 gezeigte erste Ausführungsform des erfindungsgemäßen Verfahrens beschreibt die einzelnen Verfahrensschritte beginnend mit dem Bereitstellen des Holzausgangsproduktes bis zur fertigen Holzfaserplatte. Entsprechend wird zunächst in Schritt 1 geeignetes Holzausgangsmaterial zur Herstellung der Holzhackschnitzel bereitgestellt. Als Holzausgangsmaterial sind sämtliche Nadelhölzer, Laubhölzer oder auch Mischungen davon geeignet. Das Rundholz wird entrindet und in Scheibenhackern oder Trommelhackern zu Hackschnitzeln zerkleinert (Schritt 2), wobei die Größe der Holzhackschnitzel entsprechend gesteuert werden kann.
Nach Zerkleinerung und Bereitstellung der Holzhackschnitzel werden diese ggf. einem Vortrocknungsprozess unterzogen, wobei eine Feuchte von 5-1 0 % in Bezug auf die Ausgangsfeuchte der Holzhackschnitzel eingestellt wird. Im Falle der in Figur 1 gezeigten ersten Ausführungsform wird zumindest ein Teil der ggf. vorgetrockneten Holzhackschnitzel aus dem üblichen Herstellungsverfahren ausgeschleust und in einen Wärmebehandlungsreaktor eingeführt (Schritt 3). Die Wärmebehandlung der ausgeschleusten Holzhackschnitzel erfolgt in einem Temperaturbereich zwischen 220° und 260°C. Die dabei entstehenden Pyrolysegase werden zur Erzeugung der für die Prozessanlage notwendigen Energie genutzt.
Nach Abschluss der Wärmebehandlung, die im vorliegenden Fall ca. 2 Stunden dauert, werden die wärmebehandelten Holzhackschnitzel in das Verfahren wieder eingeschleust und werden gegebenenfalls zusammen mit den nicht- wärmebehandelten Holzhackschnitzeln in einem Wasch- und Kochschritt 4 wieder auf eine Feuchte von 1 0-20 % gebracht.
Danach werden die Holzfasern dem Zerfaserungsprozess in einem Refiner (Schritt 5) unterworfen, wobei im Verlaufe des Zerfaserungsprozesses den Holzfasern ein geeignetes Benetzungsmittel zugeführt wird.
Die Holzfasern können unmittelbar nach dem Faseraufschluss mit einem flüssigen Bindemittel und gegebenenfalls einem Flammschutzmittel vermischt werden (Schritt 6). Das In- Kontaktbringen der Holzfasern mit dem flüssigen Bindemittel kann in dieser Verfahrensstufe zum Beispiel in einem Blow-Iine- Verfahren erfolgen. Dem Beleimungsschritt 6 schließt sich ein Trocknungsprozess der beleimten Holzfasern (Schritt 7) an, wobei dieser Trocknungsprozess in zwei Stufen I, I I erfolgen kann. Der Trockner ist als 2 Stufen Trockner ausgeführt, wobei die hauptsächliche Trocknung in Stufe 1 mittels heißer Gase (Luft oder überhitzter Dampf) erfolgt und Nachtrocknung in Stufe 2, wobei hier ebenfalls der Einsatz von heißer Luft oder überhitzten Dampf möglich ist. Das Stoffgemisch wird in/nach jeder Stufe mittels Abscheidezyklon und Kapselwerke getrennt.
Die getrockneten Holzfasern werden entsprechend ihrer Größe sortiert bzw. gesichtet (Schritt 8).
Anschließend werden die beleimten Holzfasern auf ein Transportband gestreut (Schritt 9), der gebildete Faserkuchen zunächst einer Vorpresse zugeführt (Schritt 1 0) und abschließend in der Heißpresse (Schritt 1 1 ) zu einer großformatigen Holzfaserplatte verpresst. In der Endbearbeitung wird die erhaltene Holzfaserplatte in geeigneter Weise konfektioniert.
Das in Figur 2 gezeigte zweite Ausführungsbeispiel unterscheidet sich von der in Figur 1 dargestellten ersten Ausführungsform dahingehend, dass der Schritt der Wärmebehandlung der Holzhackschnitzel (Schritt 3) in den Herstellungsprozess der Holzfaserplatten integriert ist, d.h. der Wärmebehandlungsschritt ist in den Gesamtprozess bzw. Prozesslinie eingegliedert und erfolgt online. Ein Ausschleusen der Holzhackschnitzel aus der Prozesslinie zur Wärmebehandlung entfällt somit. Dies ist insbesondere von Vorteil, wenn die Holzfaserplatte vollständig aus aus wärmebehandelten Holzhackschnitzel gewonnenen Holzfasern hergestellt wird.
Ausführunqsbeispiel 1 : Holzfaserplatte, insbesondere MDF
Hackschnitzel werden ungetrocknet (Feuchte: ca. 50%, Format: ca. 5 x 5 cm, Dicke: ca. 1 cm) in einer kontinuierlich arbeitenden Wärmebehandlungsvorrichtung bei 220°C unter Sattdampf ca. 2 h gehalten. Die Vorrichtung besteht aus einer Fördervorrichtung durch die die Hackschnitzel mit Hilfe einer Transportschnecke langsam hindurchtransportiert werden.
Anschließend werden die Hackschnitzel in der Hackschnitzelwäsche abgekühlt und dann der normalen Zerfaserung zu geführt. Dabei befand sich in dem Wasser der Hackschnitzelwäsche 0, 1 % eines handelsüblichen Tensids. Dies wurde zugegeben um die Benetzung der hydrophoben Hackschnitzel zu verbessern. Das Wasser der Wäsche zeigte eine deutlich geringere Färbung und die Belastung mit organischen Bestandteilen war um ca. 90 % reduziert.
Die nach der Zerfaserung anfallenden Hackschnitzel, wurden in der Blowline mit einem handelsüblichen Harnstoff-Formaldehyd-Leim beleimt und getrocknet. Anschließend wurden die Fasern gestreut und zu einer MDF mit einer Dichte von 650 kg/m3 und einer Stärke von 10 mm verarbeitet.
Die resultierende MDF wird anschließend zusammen mit einer Nullprobe (aus nicht wärmebehandelten Hackschnitzeln) auf die VOC-Emission gemäß dem AgBB-Schema untersucht. Dabei wurde aus Zeitgründen der 3 Tagewert bestimmt.
Kammerparameter: Temperatur 23C°C; Luftfeuchte 50% +- 5%; Luftwechsel 0,5/h +- 0,1/h; Beladung 1 m2/m3; Kammervolumen 225 m3
Wie aus der Tabelle sind die Emissionen der mengenmäßig wichtigsten Parameter aus der Versuchsplatte auf einem deutlich niedrigeren Niveau. Ausführunqsbeispiel 2: Holzspanplatte
Die Herstellung von Holzspanplatten ist generell bekannt. Die analog zu Ausführungsbeispiel 1 wärmebehandelten Holzhackschnitzel werden einem Zerspaner zugeführt. Nach der Zerspanung werden die Holzspäne auf eine Restfeuchte von ca. 2% in einem Trommeltrockner getrocknet. Nach der Trocknung erfolgt die Sichtung und Trennung der Holzspäne in gröbere Späne für die Mittelschicht und feinere Späne für die Deckschicht.
Nach dem Beieimen mit Harnstoff-Formaldehyd-Leim werden die Späne zu mehrschichtigen Spankuchen gestreut, wobei die in der Mittelschicht verwendeten Späne aus wärmebehandelten Holzhackschnitzel gewonnen wurde, und bei Temperaturen von ca. 200°C zu Platten verpresst.
Die in Analogie zu Ausführungsbeispiel 1 durchgeführte Emissionsuntersuchung ergab ähnlich reduzierte VOC-Emissionswerte für Essigsäure und die höheren Aldehyde.

Claims

Verfahren zur Herstellung von Holzwerkstoffplatten, insbesondere Holzspanplatten und Holzfaserplatten, mit reduzierter Emission an flüchtigen organischen Verbindungen (VOCs) umfassend die Schritte: a) Herstellen von Holzhackschnitzeln aus geeigneten Hölzern, b) Wärmebehandlung von zumindest einem Teil der Holzhackschnitzel bei einer Temperatur zwischen 150°C und 300°C über einen Zeitraum von 1 h bis 5h; c) Zerkleinern der nicht- wärmebehandelten Holzhackschnitzel und zumindest eines Teiles der wärmebehandelten Holzhackschnitzel durch Zerspanen zur Gewinnung von Holzspänen oder durch Aufschließen zur Gewinnung von Holzfasern; d) Beieimen der Holzspäne oder Holzfasern mit mindestens einem Bindemittel; e) Aufbringen der beleimten Holzspäne auf ein Transportband unter Ausbildung eines mehrschichtigen Spankuchens oder der beleimten Holzfasern auf ein Transportband unter Ausbildung eines einschichtigen Faserkuchens; und f) Verpressen des Spankuchens oder des Faserkuchens zu einer Holzwerkstoffplatte.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, das der Schritt der Wärmebehandlung der Holzhackschnitzel in den Herstellungsprozess der Holzwerkstoffplatte integriert ist.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Schritt der Wärmebehandlung der Holzhackschnitzel separat von dem Herstellungsprozess der Holzwerkstoffplatte durchgeführt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Holzhackschnitzel bei Temperaturen zwischen 200°C und 280°C, insbesondere bevorzugt zwischen 220°C und 260°C wärmebehandelt werden.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Holzhackschnitzel über einen Zeitraum zwischen 2 h und 3 h wärmebehandelt werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Holzhackschnitzel durch Erhitzen in sauerstoffarmer oder sauerstofffreier Atmosphäre, insbesondere in einer Sattdampfatmosphäre wärmebehandelt werden. 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil der Holzhackschnitzel mit einer Feuchte von 20-50 Gew% wärmebehandelt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die wärmebehandelten Holzhackschnitzel in einem Wasserbad abgekühlt werden, wobei dem Wasser mindestens ein Benetzungsmittel zugegeben wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Feuchte der wärmebehandelten Hackschnitzel auf 5 bis 20%, bevorzugt 1 0 bis 1 5% eingestellt wird.
10. Holzspanplatte mit reduzierter Emission an flüchtigen organischen Verbindungen (VOCs) herstellbar in einem Verfahren nach einem der vorhergehenden Ansprüche umfassend aus wärmebehandelten Hackschnitzeln hergestellte Holzspäne.
1 1 . Holzspanplatte nach Anspruch 10, dadurch gekennzeichnet, dass diese vollständig aus den aus wärmebehandelten Holzhackschnitzeln hergestellten Holzspänen oder aus einem Gemisch von aus nicht- wärmebehandelten Holzhackschnitzeln hergestellten Holzspänen und aus wärmebehandelten Holzhackschnitzeln hergestellten Holzspänen besteht.
12. Holzfaserplatte mit reduzierter Emission an flüchtigen organischen Verbindungen (VOCs) herstellbar in einem Verfahren nach einem der Ansprüche 1 bis 9 umfassend aus wärmebehandelten Hackschnitzeln hergestellte Holzfasern.
13. Holzfaserplatte nach Anspruch 12, dadurch gekennzeichnet, dass diese vollständig aus den aus wärmebehandelten Holzhackschnitzeln hergestellten Holzfasern oder aus einem Gemisch von aus nicht- wärmebehandelten Holzhackschnitzeln hergestellten Holzfasern und aus wärmebehandelten Holzhackschnitzeln hergestellten Holzfasern besteht.
14. Verwendung einer Holzspanplatte nach Anspruch 10 oder 1 1 oder einer Holzfaserplatte nach Anspruch 12 oder 13 für Möbel, Wand-, Boden- und Deckenbeläge.
15. Verwendung von aus wärmebehandelten Hackschnitzeln gewonnenen Holzspäne und Holzfasern zur Reduzierung der Emission von flüchtigen organischen Verbindungen (VOCs) aus Holzspanplatten und Holzfaserplatten.
EP16794249.9A 2015-12-07 2016-11-03 Holzwerkstoffplatte mit reduzierter emission an flüchtigen organischen verbindungen (vocs) und verfahren zu deren herstellung Ceased EP3386699A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15198210.5A EP3178622B1 (de) 2015-12-07 2015-12-07 Verfahren zur herstellung einer holzwerkstoffplatte mit reduzierter emission an flüchtigen organischen verbindungen (vocs)
PCT/EP2016/076568 WO2017097506A1 (de) 2015-12-07 2016-11-03 Holzwerkstoffplatte mit reduzierter emission an flüchtigen organischen verbindungen (vocs) und verfahren zu deren herstellung

Publications (1)

Publication Number Publication Date
EP3386699A1 true EP3386699A1 (de) 2018-10-17

Family

ID=54834693

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15198210.5A Active EP3178622B1 (de) 2015-12-07 2015-12-07 Verfahren zur herstellung einer holzwerkstoffplatte mit reduzierter emission an flüchtigen organischen verbindungen (vocs)
EP16794249.9A Ceased EP3386699A1 (de) 2015-12-07 2016-11-03 Holzwerkstoffplatte mit reduzierter emission an flüchtigen organischen verbindungen (vocs) und verfahren zu deren herstellung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15198210.5A Active EP3178622B1 (de) 2015-12-07 2015-12-07 Verfahren zur herstellung einer holzwerkstoffplatte mit reduzierter emission an flüchtigen organischen verbindungen (vocs)

Country Status (9)

Country Link
US (2) US10399245B2 (de)
EP (2) EP3178622B1 (de)
JP (2) JP6622423B2 (de)
CA (1) CA3007578A1 (de)
ES (1) ES2687495T3 (de)
PL (1) PL3178622T3 (de)
PT (1) PT3178622T (de)
RU (2) RU2689571C1 (de)
WO (1) WO2017097506A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2660426T3 (es) * 2015-11-18 2018-03-22 SWISS KRONO Tec AG Tablero de material derivado de la madera OSB (oriented strand board) con propiedades mejoradas y procedimiento para su producción
CN109746991B (zh) * 2018-12-29 2023-08-01 湖北宝源木业有限公司 设置有阻燃剂喷洒装置的湿刨片输送装置及阻燃剂喷洒方法
KR102114579B1 (ko) * 2019-03-18 2020-05-22 장직수 친환경 섬유판과 그의 제조 방법
DE102019122059A1 (de) * 2019-08-16 2021-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Holz-Formteils
CN110815485A (zh) * 2019-10-09 2020-02-21 寿光市鲁丽木业股份有限公司 一种防水抗菌定向刨花板及其制备方法
CN110948630A (zh) * 2019-12-21 2020-04-03 寿光市鲁丽木业股份有限公司 一种表层为超薄大片刨花的定向刨花板及其制备工艺
JP7064552B1 (ja) 2020-10-30 2022-05-10 大建工業株式会社 木質ボード
JP2022118559A (ja) * 2021-02-02 2022-08-15 大建工業株式会社 木質ボードの製造方法
JP2022118558A (ja) * 2021-02-02 2022-08-15 大建工業株式会社 木質ボード用の木質小薄片及びその製造方法
JP7064630B1 (ja) 2021-02-19 2022-05-10 大建工業株式会社 木質積層ボード
JP7064638B1 (ja) 2021-05-28 2022-05-10 大建工業株式会社 木質複合材、内装材、床材及び防音床材
JP7072781B1 (ja) 2021-09-09 2022-05-23 大建工業株式会社 木質複合材及び床材
EP4241950A1 (de) * 2022-03-10 2023-09-13 SWISS KRONO Tec AG Verfahren zur herstellung einer spanplatte sowie spanplatte
JP7174185B1 (ja) 2022-04-28 2022-11-17 大建工業株式会社 木質ボード
JP7174186B1 (ja) 2022-04-28 2022-11-17 大建工業株式会社 木質ボード
CN115401762A (zh) * 2022-07-11 2022-11-29 大亚人造板集团有限公司 一种enf级难燃空心刨花板的制造工艺
WO2024163662A1 (en) * 2023-01-31 2024-08-08 Louisiana-Pacific Corporation Method for cleaning press platens using thermosetting resin
JP7536976B1 (ja) 2023-09-12 2024-08-20 大建工業株式会社 パーティクルボード及びパーティクルボードの製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU551190A1 (ru) * 1975-12-03 1977-03-25 Всесоюзный Научно-Исследовательский Институт Деревообрабатывающей Промышленности Способ получени древесноволокнистых плит
FR2512053B1 (fr) * 1981-08-28 1985-08-02 Armines Procede de transformation de matiere ligneuse d'origine vegetale et matiere d'origine vegetale ligneuse transformee par torrefaction
US5641819A (en) * 1992-03-06 1997-06-24 Campbell; Craig C. Method and novel composition board products
DE4327774A1 (de) 1993-08-18 1995-02-23 Fraunhofer Ges Forschung Verfahren zur Herstellung von mitteldichten Holzfaserplatten (MDF)
JP2000280208A (ja) 1999-03-29 2000-10-10 Yamaha Corp 木質繊維板及びその製造法
DE102004010796A1 (de) * 2004-03-05 2005-09-22 Roffael, Edmone, Prof. Dr.-Ing. Verfahren zur Verminderung der Formaldehydabgabe von Lignocellulose haltigen Holzwerkstoffen, insbesondere von mitteldichten Faserplatten (MDF)
CA2580851A1 (en) * 2004-09-30 2006-04-13 Jeld-Wen, Inc. Treatment of wood for the production of building structures and other wood products
FR2883788B1 (fr) * 2005-04-04 2011-08-19 Edmond Pierre Picard Procede de traitement thermique de bois, installation pour la mise en oeuvre du procede, et du bois traite thermiquement
NZ563262A (en) 2005-07-06 2011-03-31 Ipposha Oil Ind Co Ltd A scavenger for aldehyde(s) and a manufacturing method of a woody panel using the same
RU2437755C2 (ru) * 2006-01-17 2011-12-27 Басф Се Способ сокращения выделения формальдегида в древесных материалах
DE102007038041A1 (de) * 2007-08-10 2009-02-12 Kronotec Ag Verfahren zur Vermeidung der Emission von Aldehyden und flüchtigen organischen Verbindungen aus Holzwerkstoffen
RU74099U1 (ru) * 2008-02-12 2008-06-20 Анатолий Васильевич Бычков Устройство производства древесноволокнистых плит
DE102009023643B4 (de) 2009-05-28 2016-08-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Holzwerkstoffprodukt und Verfahren zu dessen Herstellung
SG183181A1 (en) * 2010-02-04 2012-09-27 Titan Wood Ltd Process for the acetylation of wood elements
PL2447332T3 (pl) 2010-10-27 2014-06-30 SWISS KRONO Tec AG Klej hybrydowy i jego zastosowanie w płytach drewnopochodnych
US20120202041A1 (en) * 2010-12-17 2012-08-09 Basf Se Multilayer lignocellulose-containing moldings having low formaldehyde emission
FI20115570L (fi) * 2011-06-09 2012-12-10 Ekolite Oy Menetelmä luonnonkuitukomposiittimateriaalin valmistamiseksi, aikaan saadut tuotteet ja niiden sovellusmenetelmät
PL2567798T3 (pl) 2011-09-12 2013-12-31 SWISS KRONO Tec AG Zastosowanie poliaminy w tworzywach drzewnych w celu zmniejszenia emisji aldehydów i/lub kwasów
JP5965670B2 (ja) * 2012-03-01 2016-08-10 国立研究開発法人森林総合研究所 熱処理木材の製造方法
FR2989016A1 (fr) * 2012-04-06 2013-10-11 Dumoulin Bois Procede d'obtention de panneaux fibreux a partir de bois modifie thermiquement comportant un motif en relief sur au moins l'une des faces
EP2765178A1 (de) * 2013-02-07 2014-08-13 Arbaflame Technology AS Verfahren zur Herstellung von kohlenstoffangereichertem Biomassematerial
EP2889112A1 (de) * 2013-12-27 2015-07-01 "Latvian State Institute of Wood Chemistry" Derived public person Verfahren zur hydrothermalen Behandlung von Holz
CN104690803B (zh) 2015-02-14 2017-05-24 广西丰林木业集团股份有限公司 一种非甲醛豆粕纤维板的制造方法
ES2660426T3 (es) 2015-11-18 2018-03-22 SWISS KRONO Tec AG Tablero de material derivado de la madera OSB (oriented strand board) con propiedades mejoradas y procedimiento para su producción

Also Published As

Publication number Publication date
CA3007578A1 (en) 2017-06-15
EP3178622A1 (de) 2017-06-14
RU2766678C2 (ru) 2022-03-15
US11148317B2 (en) 2021-10-19
PT3178622T (pt) 2018-10-30
JP6832411B2 (ja) 2021-02-24
US20190329445A1 (en) 2019-10-31
US10399245B2 (en) 2019-09-03
US20180345529A1 (en) 2018-12-06
RU2019112232A3 (de) 2021-11-18
ES2687495T8 (es) 2019-09-18
EP3178622B1 (de) 2018-07-04
JP2020023195A (ja) 2020-02-13
WO2017097506A1 (de) 2017-06-15
JP2018536568A (ja) 2018-12-13
PL3178622T3 (pl) 2018-12-31
JP6622423B2 (ja) 2019-12-18
RU2689571C1 (ru) 2019-05-28
ES2687495T3 (es) 2018-10-25
RU2019112232A (ru) 2019-07-15

Similar Documents

Publication Publication Date Title
EP3178622B1 (de) Verfahren zur herstellung einer holzwerkstoffplatte mit reduzierter emission an flüchtigen organischen verbindungen (vocs)
DE60009165T2 (de) Herstellung von hochwertigen produkten aus abfällen
EP3377283B1 (de) Osb (oriented strand board)-holzwerkstoffplatte mit verbesserten eigenschaften und verfahren zu deren herstellung
DE102006006655A1 (de) Cellulose- bzw. lignocellulosehaltige Verbundwerkstoffe auf der Basis eines auf Silan basierenden Komposits als Bindemittel
EP3615288B1 (de) Verfahren zur herstellung von osb-holzwerkstoffplatten mit reduzierter emission an flüchtigen organischen verbindungen (vocs)
EP3453504B1 (de) Verfahren zur herstellung von osb-holzwerkstoffplatten mit reduzierter emission an flüchtigen organischen verbindungen (vocs)
DE69730412T2 (de) Verfahren zur Herstellung von Celluloseverbundwerkstoffen
DE102006062285B4 (de) Faserplatte und Verfahren zu deren Herstellung
EP3268190B1 (de) Verfahren zur herstellung eines holzspanwerkstoffs und darin verwendete härter für aminoplaste
DE102010001719B4 (de) Verfahren zur Herstellung von Verbundwerkstoffen
EP2974841B1 (de) Verfahren zur herstellung einer faserplatte
DE102007054123B4 (de) Verfahren zur Herstellung von Holzfaserplatten mit verringerter Formaldehydemission, hoher Feuchtebeständigkeit und Hydrolyseresistenz der Verleimung
EP3150345B1 (de) Holzfaserdämmstoffe mit reduzierter emission an flüchtigen organischen verbindungen (vocs) und verfahren zu deren herstellung
DE102008050428A1 (de) Verfahren zur Herstellung von mitteldichten Faserplatten (MDF) mit alkalisch härtenden Phenolformaldehydharzen
EP2853648B1 (de) Verwendung von Lederpartikeln in Holzwerkstoffplatten zur Reduzierung der Emission von flüchtigen organischen Verbindungen (VOCs)
DE102011118009A1 (de) Verfahren zur Herstellung von OSB-Platten und Wafer-Platten aus Palmen
DE2744425C2 (de) Trockenverfahren zur Herstellung von Faserformkörpern aus gegenüber Stammholzmaterial unterschiedlichem pflanzlichem lignocellulosehaltigem Material, sowie Einrichtung zur Durchführung dieses Verfahren
EP2765166B1 (de) Verwendung einer phosphathaltigen Zusammensetzung in Holzwerkstoffen zur Reduzierung der Emission von Aldehyden und/oder Säuren
WO2023001978A1 (de) VERFAHREN ZUM HERSTELLEN VON FASERPLATTEN UNTER VERRINGERTEM VOC-AUSSTOß
DE102008023007A1 (de) Verfahren zur Herstellung von Holzfaserplatten mit verringerter Formaldehydemission, hoher Feuchtebeständigkeit und Hydrolyseresistenz der Verleimung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: DR. KALWA, NORBERT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201118

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20230820