EP3384340B1 - Extended field of view in near-eye display using wide-spectrum imager - Google Patents

Extended field of view in near-eye display using wide-spectrum imager Download PDF

Info

Publication number
EP3384340B1
EP3384340B1 EP16809251.8A EP16809251A EP3384340B1 EP 3384340 B1 EP3384340 B1 EP 3384340B1 EP 16809251 A EP16809251 A EP 16809251A EP 3384340 B1 EP3384340 B1 EP 3384340B1
Authority
EP
European Patent Office
Prior art keywords
spectrum
optical element
view
diffractive optical
imaging light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16809251.8A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3384340A1 (en
Inventor
Tuomas Vallius
Pasi Petteri Pietilae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Technology Licensing LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Technology Licensing LLC filed Critical Microsoft Technology Licensing LLC
Publication of EP3384340A1 publication Critical patent/EP3384340A1/en
Application granted granted Critical
Publication of EP3384340B1 publication Critical patent/EP3384340B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • DOEs Diffractive optical elements
  • US 2003/202247 discloses a diffractive optical element for guiding a light having a color spectrum characterized by a plurality of wavelengths longer than a shortest wavelength, lambdaB, and shorter than a longest wavelength, lambdaR, the light striking the diffractive optical element at an angle greater than a first field-of-view angle, alpha ⁇ ->FOV, and smaller than a second field-of-view angle, alpha ⁇ +>FOV.
  • the diffractive optical element comprising a linear grating being formed in a light-transmissive substrate.
  • the linear grating is characterized by a pitch, d, selected so as to allow total internal reflection of a light having wavelength of lambdaB and a striking angle of alpha ⁇ ->FOV.
  • the light-transmissive substrate is characterized by an index of refraction, ns, larger than a minimal index of refraction, nMIN, which is selected so as to allow total internal reflection of a light having wavelength of lambdaR and a striking angle of alpha ⁇ +>FOV.
  • US 2004/109234 discloses an invention relates to an optical device (50) for manipulating a light wave (lambda) using a diffractive grating structure (G).
  • a prior art type diffractive grating structure having a permanently shaped surface relief is substituted with an electrically deformable diffractive grating structure (G), where a preformed, basic surface relief of the grating is composed of dielectric and deformable viscoelastic material, which can be electrically and sequentially fine tuned in shape to adjust the diffraction properties of said grating individually for different wavelengths.
  • the invention permits manufacture of virtual display devices with a significantly larger exit pupil diameter than prior art solutions without degrading the color uniformity of the display device.
  • a wide-spectrum imager In a near-eye optical display system comprising a waveguide and diffractive optical elements (DOEs) configured for in-coupling, exit pupil expansion, and out-coupling, a wide-spectrum imager generates imaging light that is in-coupled to the system with an input pupil having an extended field of view (FOV). Wide-spectrum imaging light impinges on the in-coupling DOE over a range of incidence angles. As chromatic dispersion in the in-coupling DOE causes different wavelengths to propagate with different angles, for a given input pupil incidence angle, at least a portion of the imaging light spectrum meets a critical angle condition that enables propagation with total internal reflection (TIR) in the waveguide without leakage to the outside.
  • TIR total internal reflection
  • Compensation for the chromatic dispersion caused at the in-coupling DOE is performed at the out-coupling DOE.
  • different parts of the imaging light spectrum can be used for different regions of the FOV.
  • the long part of the imaging light spectrum may be coupled into the waveguide for some angles of the FOV while the short part of the spectrum may be used to fill in the rest of the FOV and the overall FOV can be significantly increased as compared to narrow-spectrum imaging.
  • FIG 1 shows a block diagram of an illustrative near-eye display system 100 which may incorporate a wide-spectrum imager.
  • the near-eye display system uses a combination of diffractive optical elements (DOEs) that provide in-coupling of incident light into a waveguide, exit pupil expansion in two directions, and out-coupling of light out of the waveguide.
  • DOEs diffractive optical elements
  • Near-eye display systems are frequently used, for example, in head mounted display (HMD) devices in industrial, commercial, and consumer applications. Other devices and systems may also use near-eye systems with wide-spectrum imagers, as described below.
  • the near-eye display system 100 is an example that is used to illustrate various features and aspects, and the wide-spectrum imager is not necessarily limited to near-eye display systems using DOEs.
  • the System 100 includes a wide-spectrum imager 105 that works with an optical system 110 to deliver images as a virtual display to a user's eye 115.
  • the wide-spectrum imager 105 may include, for example, RGB (red, green, blue) light emitting diodes (LEDs), LCOS (liquid crystal on silicon) devices, OLED (organic light emitting diode) arrays, MEMS (micro-electro mechanical system) devices, or any other suitable displays or micro-displays operating in transmission, reflection, or emission.
  • the imager 105 may also include mirrors and other components that enable a virtual display to be composed and provide one or more input optical beams to the optical system.
  • the optical system 110 can typically include magnifying optics 120, pupil forming optics 125, and one or more waveguides 130.
  • the wide-spectrum imager is configured to utilize an optical spectrum of approximately 40 nm in width.
  • the imager 105 may include or incorporate an illumination unit (not shown) that may be configured to provide illumination in a range of wavelengths and intensities in some implementations.
  • the imager does not actually shine the images on a surface such as a glass lens to create the visual display for the user. This is not feasible because the human eye cannot focus on something that is that close.
  • the near-eye optical system 100 uses the pupil forming optics 125 to form a pupil and the eye 115 acts as the last element in the optical chain and converts the light from the pupil into an image on the eye's retina as a virtual display.
  • the waveguide 130 facilitates light transmission between the imager and the eye.
  • One or more waveguides can be utilized in the near-eye display system because they are transparent and because they are generally small and lightweight (which is desirable in applications such as HMD devices where size and weight is generally sought to be minimized for reasons of performance and user comfort).
  • the waveguide 130 can enable the imager 105 to be located out of the way, for example, on the side of the head, leaving only a relatively small, light, and transparent waveguide optical element in front of the eyes.
  • the waveguide 130 operates using a principle of total internal reflection (TIR), as shown in FIG 2 , so that light can be coupled among the various optical elements in the system 100.
  • TIR total internal reflection
  • a light ray 310 can propagate in TIR within the waveguide 130 when the angle of incidence exceeds a critical angle ⁇ c relative to the normal at the boundary 305 between the waveguide 130 and the less optically dense medium (e.g., air).
  • ⁇ c critical angle
  • some of the light is refracted out of the waveguide (rays 325 and 330) and some light is reflected at the boundary 305 (rays 335 and 340). Accordingly, the propagation angles may be limited within waveguides in conventional near-eye display systems because light at angles outside of the TIR limits will leak out of the waveguide.
  • FIG 4 shows a view of an illustrative exit pupil expander (EPE) 405.
  • EPE 405 receives an input optical beam from the wide-spectrum imager 105 through magnifying optics 120 to produce one or more output optical beams with expanded exit pupil in one or two directions relative to the exit pupil of the imager (in which the exit pupil of the imager corresponds to the input pupil of the EPE).
  • the input may include more than one optical beam which may be produced by separate sources.
  • the expanded exit pupil typically facilitates a virtual display to be sufficiently sized to meet the various design requirements of a given optical system, such as image resolution, field of view, and the like, while enabling the imager and associated components to be relatively light and compact.
  • the EPE 405 is configured, in this illustrative example, to support binocular operation for both the left and right eyes. Components that may be utilized for stereoscopic operation such as scanning mirrors, lenses, filters, beam splitters, MEMS devices, or the like are not shown in FIG 4 for sake of clarity in exposition.
  • the EPE 405 utilizes two out-coupling gratings, 410 L and 410 R that are supported on a waveguide 130 and a central in-coupling grating 440.
  • the in-coupling and out-coupling gratings may be configured using multiple DOEs, as described in the illustrative example below. While the EPE 405 is depicted as having a planar configuration, other shapes may also be utilized including, for example, curved or partially spherical shapes, in which case the gratings disposed thereon are non-co-planar.
  • the EPE 405 is configured, in one main embodiment, to provide an expanded exit pupil in two directions (i.e., along each of a first and second coordinate axis). As shown, the exit pupil is expanded in both the vertical and horizontal directions.
  • direction i.e., along each of a first and second coordinate axis
  • vertical primarily to establish relative orientations in the illustrative examples shown and described herein for ease of description. These terms may be intuitive for a usage scenario in which the user of the near-eye display device is upright and forward facing, but less intuitive for other usage scenarios. The listed terms are not to be construed to limit the scope of the configurations (and usage scenarios therein) of the near-eye display system with wide-spectrum imager.
  • the input pupil to the EPE 405 at the in-coupling grating is generally described in terms of FOV, for example, using horizontal FOV and vertical FOV as shown in FIG 6 .
  • FOV field-of-view
  • the horizontal and vertical FOV can respectively be, for example, 30x17 degrees.
  • the present near-eye optical system using wide-spectrum imaging can extend the FOV by an additional 30-50% in some applications without increasing the system cost as may occur using conventional solutions that involve material changes and/or additional components such as waveguide plates.
  • chromatic dispersion is a phenomenon in which the phase velocity of a wave in a given medium is dependent on its wavelength.
  • a ray P (indicated by reference numeral 705) traveling from a less optically dense medium to a more optically dense medium at an incidence angle of ⁇ i with respect to the normal will have a different angle of refraction depending on its wavelength.
  • a refracted ray Q (710) will have a more acute refraction angle ⁇ r for shorter wavelengths and less for longer wavelengths. That is, shorter wavelengths are bent more towards the normal and the effective refractive index of the medium/material increases for those wavelengths.
  • chromatic dispersion may also result from structural features and geometries including, for example, those in the in-coupling grating and/or other DOEs (referred to as waveguide dispersion).
  • FIG 8 shows imaging light from the wide-spectrum imager 105 ( FIG 1 ) at a wavelength ⁇ L that is from the longer part of the imaging light spectrum.
  • the imaging light impinges on the in-coupling grating 440 at various angles, each depicted in the drawing using different lines (solid and dashed).
  • the in-coupling grating couples the incident rays into the waveguide 130 at different angles.
  • the angle of incidence relative to the plane of the in-coupling grating is too steep to enable the light to propagate within the waveguide in TIR and thus leaks out of the waveguide, as indicated by reference numerals 812 and 814.
  • the angle of incidence for ray 815 is sufficiently shallow with respect to the in-coupling plane so that when it enters the waveguide, its angle of propagation meets the TIR condition so that it can be output from the optical system at the out-coupling grating 410.
  • the exit angles of the output rays 820 are parallel to the angle of the input ray 815.
  • FIG 9 shows imaging light from the wide-spectrum imager 105 ( FIG 1 ) at a wavelength ⁇ S that is from the shorter part of the imaging light spectrum.
  • the imaging light in this case impinges on the in-coupling grating 440 at various angles, each depicted in the drawing using different lines (solid and dashed).
  • the shorter wavelengths are in-coupled and propagated at different angles compared to the longer wavelengths as a result of chromatic dispersion.
  • Rays 905 and 910 (which are at the same angle of incidence to the in-coupling grating as rays 805 and 810 in FIG 8 ) are thus able to propagate in TIR in the waveguide 130 and be out-coupled by the out-coupling grating 410, as indicated by reference numerals 920 and 925.
  • the in-coupled and out-coupled rays are parallel, as in the example in FIG 8 .
  • the FOV of the input pupil includes the entire range of incidence angles at the in-coupling grating.
  • the FOV angles that are not coupled into the waveguide at the long part of the imaging spectrum are coupled in the short part the spectrum thus filling the whole FOV.
  • FIG 10 which combines the illustrations in FIGs 8 and 9 into a single drawing.
  • the chromatic dispersion occurring at the in-coupling grating is compensated for at the out-coupling grating.
  • the out-coupling grating is configured to cause chromatic dispersion in the opposite direction to that occurring at the in-coupling grating and the incidence angles of the rays at the input are maintained by the parallel rays at the output of the out-coupling grating. While a portion of the imager power is lost due to leakage from the waveguide (i.e., at some FOV angles of ⁇ L in the example discussed above), the illumination unit of the imager is configured to compensate so that the spectrum shifts slightly over the entire FOV and only the part of the spectrum that can propagate within the waveguide at each angle of the FOV, is used for that part of the FOV.
  • FIG 11 shows an illustrative arrangement 1100 of three DOEs that may be used with, or as a part of, a waveguide to provide in-coupling, expansion of the exit pupil in two directions, and out-coupling in an EPE.
  • Each DOE is an optical element comprising a periodic structure that can modulate various properties of light in a periodic pattern such as the direction of optical axis, optical path length, and the like.
  • the first DOE, DOE 1 (indicated by reference numeral 1105), is configured to couple an imaging beam 1102 from the wide-spectrum imager 105 into the waveguide.
  • the angle p is a rotation angle between the periodic lines of DOE 2 and DOE 3 as shown.
  • DOE 1 thus functions as an in-coupling grating and DOE 3 functions as an out-coupling grating while expanding the pupil in one direction.
  • DOE 2 may be considered as an intermediate grating that functions to couple light between the in-coupling and out-coupling gratings while performing exit pupil expansion in another direction. Using such intermediate grating may eliminate a need for conventional functionalities for exit pupil expansion in an EPE such as collimating lenses.
  • FIG 12 is a flowchart of an illustrative method 1200. Unless specifically stated, the methods or steps shown in the flowchart and described in the accompanying text are not constrained to a particular order or sequence. In addition, some of the methods or steps thereof can occur or be performed concurrently and not all the methods or steps have to be performed in a given implementation depending on the requirements of such implementation and some methods or steps may be optionally utilized.
  • a wide-spectrum imager is operated in which the imager is configured to produce imaging light cover a predetermined range of wavelengths.
  • light is received at an in-coupling DOE.
  • the in-coupling grating is disposed in an EPE and interfaces with the downstream intermediate DOE that is disposed in the EPE.
  • the exit pupil of the received light is expanded along a first coordinate axis in the intermediate DOE.
  • the intermediate DOE may be configured with gratings having an asymmetric profile such as slanted gratings or blazed gratings.
  • the exit pupil is expanded in an out-coupling DOE which outputs light with an expanded exit pupil relative to the received light at the in-coupling DOE along the first and second coordinate axes in step 1225.
  • the intermediate DOE is configured to interface with a downstream out-coupling DOE.
  • the out-coupling DOE may be apodized with shallow gratings that are configured to be either straight or slanted.
  • Wide-spectrum imagers may be incorporated into a display system that is utilized in a virtual or mixed reality display device.
  • a display system that is utilized in a virtual or mixed reality display device.
  • Such device may take any suitable form, including but not limited to near-eye devices such as an HMD device.
  • a see-through display may be used in some implementations while an opaque (i.e., non-see-through) display using a camera-based pass-through or outward facing sensor, for example, may be used in other implementations.
  • FIG 13 shows one particular illustrative example of a see-through, mixed reality or virtual reality display system 1300
  • FIG 14 shows a functional block diagram of the system 1300
  • Display system 1300 comprises one or more lenses 1302 that form a part of a see-through display subsystem 1304, such that images may be displayed using lenses 1302 (e.g. using projection onto lenses 1302, one or more waveguide systems incorporated into the lenses 1302, and/or in any other suitable manner).
  • Display system 1300 further comprises one or more outward-facing image sensors 1306 configured to acquire images of a background scene and/or physical environment being viewed by a user, and may include one or more microphones 1308 configured to detect sounds, such as voice commands from a user.
  • Outward-facing image sensors 1306 may include one or more depth sensors and/or one or more two-dimensional image sensors.
  • a mixed reality or virtual reality display system instead of incorporating a see-through display subsystem, may display mixed reality or virtual reality images through a viewfinder mode for an outward-facing image sensor.
  • the display system 1300 may further include a gaze detection subsystem 1310 configured for detecting a direction of gaze of each eye of a user or a direction or location of focus, as described above. Gaze detection subsystem 1310 may be configured to determine gaze directions of each of a user's eyes in any suitable manner.
  • a gaze detection subsystem 1310 includes one or more glint sources 1312, such as infrared light sources, that are configured to cause a glint of light to reflect from each eyeball of a user, and one or more image sensors 1314, such as inward-facing sensors, that are configured to capture an image of each eyeball of the user. Changes in the glints from the user's eyeballs and/or a location of a user's pupil, as determined from image data gathered using the image sensor(s) 1314, may be used to determine a direction of gaze.
  • glint sources 1312 such as infrared light sources
  • image sensors 1314 such as inward-facing sensors
  • Gaze detection subsystem 1310 may have any suitable number and arrangement of light sources and image sensors. In some implementations, the gaze detection subsystem 1310 may be omitted.
  • the display system 1300 may also include additional sensors.
  • display system 1300 may comprise a global positioning system (GPS) subsystem 1316 to allow a location of the display system 1300 to be determined. This may help to identify real-world objects, such as buildings, etc. that may be located in the user's adjoining physical environment.
  • GPS global positioning system
  • the display system 1300 may further include one or more motion sensors 1318 (e.g., inertial, multi-axis gyroscopic, or acceleration sensors) to detect movement and position/orientation/pose of a user's head when the user is wearing the system as part of a mixed reality or virtual reality HMD device.
  • Motion data may be used, potentially along with eye-tracking glint data and outward-facing image data, for gaze detection, as well as for image stabilization to help correct for blur in images from the outward-facing image sensor(s) 1306.
  • the use of motion data may allow changes in gaze location to be tracked even if image data from outward-facing image sensor(s) 1306 cannot be resolved.
  • motion sensors 1318 as well as microphone(s) 1308 and gaze detection subsystem 1310, also may be employed as user input devices, such that a user may interact with the display system 1300 via gestures of the eye, neck and/or head, as well as via verbal commands in some cases. It may be understood that sensors illustrated in FIGs 13 and 14 and described in the accompanying text are included for the purpose of example and are not intended to be limiting in any manner, as any other suitable sensors and/or combination of sensors may be utilized to meet the needs of a particular implementation.
  • biometric sensors e.g., for detecting heart and respiration rates, blood pressure, brain activity, body temperature, etc.
  • environmental sensors e.g., for detecting temperature, humidity, elevation, UV (ultraviolet) light levels, etc.
  • biometric sensors e.g., for detecting heart and respiration rates, blood pressure, brain activity, body temperature, etc.
  • environmental sensors e.g., for detecting temperature, humidity, elevation, UV (ultraviolet) light levels, etc.
  • the display system 1300 can further include a controller 1320 having a logic subsystem 1322 and a data storage subsystem 1324 in communication with the sensors, gaze detection subsystem 1310, display subsystem 1304, and/or other components through a communications subsystem 1326.
  • the communications subsystem 1326 can also facilitate the display system being operated in conjunction with remotely located resources, such as processing, storage, power, data, and services. That is, in some implementations, an HMD device can be operated as part of a system that can distribute resources and capabilities among different components and subsystems.
  • the storage subsystem 1324 may include instructions stored thereon that are executable by logic subsystem 1322, for example, to receive and interpret inputs from the sensors, to identify location and movements of a user, to identify real objects using surface reconstruction and other techniques, and dim/fade the display based on distance to objects so as to enable the objects to be seen by the user, among other tasks.
  • the display system 1300 is configured with one or more audio transducers 1328 (e.g., speakers, earphones, etc.) so that audio can be utilized as part of a mixed reality or virtual reality experience.
  • a power management subsystem 1330 may include one or more batteries 1332 and/or protection circuit modules (PCMs) and an associated charger interface 1334 and/or remote power interface for supplying power to components in the display system 1300.
  • PCMs protection circuit modules
  • the display system 1300 is described for the purpose of example, and thus is not meant to be limiting. It may be further understood that the display device may include additional and/or alternative sensors, cameras, microphones, input devices, output devices, etc. than those shown without departing from the scope of the present arrangement. Additionally, the physical configuration of a display device and its various sensors and subcomponents may take a variety of different forms without departing from the scope of the present arrangement.
  • optical display systems using wide-spectrum imaging can be used in a mobile or portable electronic device 1500, such as a mobile phone, smartphone, personal digital assistant (PDA), communicator, portable Internet appliance, hand-held computer, digital video or still camera, wearable computer, computer game device, specialized bring-to-the-eye product for viewing, or other portable electronic device.
  • the portable device 1500 includes a housing 1505 to house a communication module 1510 for receiving and transmitting information from and to an external device, or a remote system or service (not shown).
  • the portable device 1500 may also include an image processing module 1515 for handling the received and transmitted information, and a virtual display system 1520 to support viewing of images.
  • the virtual display system 1520 can include a micro-display or an imager 1525 (such as the wide-spectrum imager 105, described above) and an optical engine 1530.
  • the image processing module 1515 may be operatively connected to the optical engine 1530 to provide image data, such as video data, to the imager 1525 to display an image thereon.
  • An EPE 1535 can be optically linked to an optical engine 1530.
  • the EPE may incorporate or be part of a system that includes the wide-spectrum imager.
  • Optical display systems using wide-spectrum imaging may also be utilized in non-portable devices, such as gaming devices, multimedia consoles, personal computers, vending machines, smart appliances, Internet-connected devices, and home appliances, such as an oven, microwave oven and other appliances, and other non-portable devices.
  • non-portable devices such as gaming devices, multimedia consoles, personal computers, vending machines, smart appliances, Internet-connected devices, and home appliances, such as an oven, microwave oven and other appliances, and other non-portable devices.
  • An example includes a display system, comprising: an imager configured to generate imaging light using a variable spectrum across a field of view (FOV) of an input pupil; a substrate of optical material that includes a waveguide; an in-coupling diffractive optical element (DOE) disposed on the substrate, the in-coupling DOE having an input surface configured to receive incident imaging light over the input pupil; and an out-coupling DOE disposed on the substrate, the out-coupling DOE having an output surface and configured for pupil expansion of the imaging light in one direction, and further configured to out-couple, as an output display from the output surface, the imaging light with expanded exit pupil relative to the input pupil, wherein the in-coupling DOE is configured to spread the spectrum of imaging light over the input pupil FOV so that at least a part of the spectrum propagates in total internal reflection in the waveguide for each portion of the FOV.
  • FOV field of view
  • the display system further comprises an intermediate DOE disposed on the substrate and located downstream from the in-coupling DOE and upstream from the out-coupling DOE, the intermediate DOE configured for pupil expansion in a different direction from the out-coupling DOE.
  • a short portion of the spectrum fills a first portion of the input pupil FOV and a long portion of the spectrum fills a second portion of the input pupil FOV.
  • chromatic dispersion in the in-coupling DOE causes spectral propagation angles of the imaging light in the waveguide to vary with wavelength
  • chromatic dispersion in the out-coupling DOE causes the out-coupled imaging light to have parallel angles with respect to the incident imaging light.
  • the imager comprises a wide-spectrum imager configured to provide illumination over a wavelength bandwidth of about 40 nm.
  • a further example includes an electronic device supporting a mixed reality experience including elements from a virtual world and elements from a real world, comprising: a data processing unit; an optical engine operatively connected to the data processing unit and configured to receive image data from the data processing unit; a wide-spectrum imager operatively connected to the optical engine to form images using a predetermined optical spectrum based on the image data and to generate imaging light that incorporates the images; and an exit pupil expander, responsive to the imaging light received over an input pupil having a field of view (FOV), comprising a structure on which multiple diffractive optical elements (DOEs) are disposed, wherein the exit pupil expander is configured to provide one or more out-coupled optical beams, using one or more of the DOEs, as a near-eye display with an expanded exit pupil relative to the input pupil, and wherein different parts of the spectrum of the imaging light are utilized for different regions of the FOV of the input pupil.
  • FOV field of view
  • the wide-spectrum imager is configured so that a particular wavelength of the imaging light that is capable of propagation within the exit pupil expander in total internal reflection at a given angle of the FOV is utilized for the region of the FOV that includes the given angle.
  • the exit pupil expander provides pupil expansion in two directions.
  • the wide-spectrum imager includes one of light emitting diode, liquid crystal on silicon device, organic light emitting diode array, or micro-electro mechanical system device.
  • the wide-spectrum imager comprises a micro-display operating in one of transmission, reflection, or emission.
  • the electronic device is implemented in a head mounted display device or portable electronic device.
  • the wide-spectrum imager includes or incorporates an illumination unit.
  • the wide-spectrum imager provides varies the optical spectrum over the FOV.
  • the wide-spectrum imager is configured so that at least a portion of the spectrum is propagated in total internal reflection for each portion of the FOV.
  • a further example includes a method, comprising: operating a wide-spectrum imager configured to produce imaging light over a predetermined range of wavelengths; receiving the imaging light over an input pupil having a field of view (FOV) at an in-coupling diffractive optical element (DOE) disposed in an exit pupil expander; expanding an exit pupil of the received imaging light along a first coordinate axis in an intermediate DOE disposed in the exit pupil expander; expanding the exit pupil along a second coordinate axis in an out-coupling DOE disposed in the exit pupil expander; and outputting imaging light in a display with an expanded exit pupil relative to the input pupil along the first and second coordinate axes using the out-coupling DOE, wherein the in-coupling DOE is configured to cause chromatic dispersion in the received imaging light and the out-coupling DOE is configured to cause chromatic dispersion in the output imaging light in an opposite direction to that caused in the in-coupling DOE.
  • FOV field of view
  • DOE diffractive optical element
  • the predetermined range of wavelengths covers at least 40 nm. In another example, the predetermined range of wavelengths has sufficient width so that at least a portion of spectrum is capable of propagation in the exit pupil expander in total internal reflection over the entirety of the FOV of the input pupil.
  • the imager is further configured so that the imaging light spectrum is varied over the FOV of the input pupil so that only a portion of the spectrum that is capable of propagation within the exit pupil expander in total internal reflection at each angle of the FOV is utilized for a region of the FOV that includes that angle.
  • the method is performed in a near-eye display system.
  • the output imaging light provides a virtual display to a user of the near-eye display system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
EP16809251.8A 2015-12-01 2016-11-18 Extended field of view in near-eye display using wide-spectrum imager Active EP3384340B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/955,273 US9671615B1 (en) 2015-12-01 2015-12-01 Extended field of view in near-eye display using wide-spectrum imager
PCT/US2016/062627 WO2017095641A1 (en) 2015-12-01 2016-11-18 Extended field of view in near-eye display using wide-spectrum imager

Publications (2)

Publication Number Publication Date
EP3384340A1 EP3384340A1 (en) 2018-10-10
EP3384340B1 true EP3384340B1 (en) 2022-08-24

Family

ID=57530832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16809251.8A Active EP3384340B1 (en) 2015-12-01 2016-11-18 Extended field of view in near-eye display using wide-spectrum imager

Country Status (4)

Country Link
US (1) US9671615B1 (zh)
EP (1) EP3384340B1 (zh)
CN (1) CN108292048B (zh)
WO (1) WO2017095641A1 (zh)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3062142B1 (en) 2015-02-26 2018-10-03 Nokia Technologies OY Apparatus for a near-eye display
US9910276B2 (en) 2015-06-30 2018-03-06 Microsoft Technology Licensing, Llc Diffractive optical elements with graded edges
US10670862B2 (en) 2015-07-02 2020-06-02 Microsoft Technology Licensing, Llc Diffractive optical elements with asymmetric profiles
US9864208B2 (en) 2015-07-30 2018-01-09 Microsoft Technology Licensing, Llc Diffractive optical elements with varying direction for depth modulation
US10038840B2 (en) 2015-07-30 2018-07-31 Microsoft Technology Licensing, Llc Diffractive optical element using crossed grating for pupil expansion
US10073278B2 (en) * 2015-08-27 2018-09-11 Microsoft Technology Licensing, Llc Diffractive optical element using polarization rotation grating for in-coupling
US10429645B2 (en) 2015-10-07 2019-10-01 Microsoft Technology Licensing, Llc Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
US10241332B2 (en) 2015-10-08 2019-03-26 Microsoft Technology Licensing, Llc Reducing stray light transmission in near eye display using resonant grating filter
US9946072B2 (en) 2015-10-29 2018-04-17 Microsoft Technology Licensing, Llc Diffractive optical element with uncoupled grating structures
US10234686B2 (en) 2015-11-16 2019-03-19 Microsoft Technology Licensing, Llc Rainbow removal in near-eye display using polarization-sensitive grating
US9939647B2 (en) * 2016-06-20 2018-04-10 Microsoft Technology Licensing, Llc Extended field of view in near-eye display using optically stitched imaging
WO2018039277A1 (en) 2016-08-22 2018-03-01 Magic Leap, Inc. Diffractive eyepiece
EP3542213A4 (en) * 2016-11-18 2020-10-07 Magic Leap, Inc. WAVE GUIDE LIGHT MULTIPLEXER USING CROSSED GRIDS
US10650552B2 (en) 2016-12-29 2020-05-12 Magic Leap, Inc. Systems and methods for augmented reality
EP3343267B1 (en) 2016-12-30 2024-01-24 Magic Leap, Inc. Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light
US10108014B2 (en) * 2017-01-10 2018-10-23 Microsoft Technology Licensing, Llc Waveguide display with multiple focal depths
CN115586652A (zh) 2017-01-23 2023-01-10 奇跃公司 用于虚拟、增强或混合现实系统的目镜
US10690919B1 (en) 2017-02-17 2020-06-23 Facebook Technologies, Llc Superluminous LED array for waveguide display
CA3056247C (en) 2017-03-21 2024-01-30 Magic Leap, Inc. Method and system for waveguide projector with wide field of view
US10185393B2 (en) * 2017-04-03 2019-01-22 Facebook Technologies, Llc Waveguide display with spatially switchable grating
US10859834B2 (en) 2017-07-03 2020-12-08 Holovisions Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear
US10338400B2 (en) 2017-07-03 2019-07-02 Holovisions LLC Augmented reality eyewear with VAPE or wear technology
US10578870B2 (en) 2017-07-26 2020-03-03 Magic Leap, Inc. Exit pupil expander
CN111448497B (zh) 2017-12-10 2023-08-04 奇跃公司 光波导上的抗反射涂层
CA3084011C (en) * 2017-12-15 2024-06-11 Magic Leap, Inc. Eyepieces for augmented reality display system
CN115826240A (zh) 2017-12-20 2023-03-21 奇跃公司 用于增强现实观看设备的插入件
FI129586B (en) * 2017-12-22 2022-05-13 Dispelix Oy Waveguide display element with many pupils and display device
EP3765892A4 (en) * 2018-03-12 2021-12-15 Magic Leap, Inc. AD BASED ON KIPPARRAY
CN112136152A (zh) 2018-03-15 2020-12-25 奇跃公司 由观看设备的部件变形导致的图像校正
FI128573B (en) * 2018-03-28 2020-08-14 Dispelix Oy Waveguide display element
US10761256B2 (en) 2018-04-16 2020-09-01 Samsung Electronics Co., Ltd. Backlight unit providing uniform light and display apparatus including the same
US11204491B2 (en) 2018-05-30 2021-12-21 Magic Leap, Inc. Compact variable focus configurations
US11885871B2 (en) 2018-05-31 2024-01-30 Magic Leap, Inc. Radar head pose localization
EP3804306B1 (en) 2018-06-05 2023-12-27 Magic Leap, Inc. Homography transformation matrices based temperature calibration of a viewing system
JP7421505B2 (ja) 2018-06-08 2024-01-24 マジック リープ, インコーポレイテッド 自動化された表面選択設置およびコンテンツ配向設置を用いた拡張現実ビューア
US11579441B2 (en) 2018-07-02 2023-02-14 Magic Leap, Inc. Pixel intensity modulation using modifying gain values
US11856479B2 (en) 2018-07-03 2023-12-26 Magic Leap, Inc. Systems and methods for virtual and augmented reality along a route with markers
US11510027B2 (en) 2018-07-03 2022-11-22 Magic Leap, Inc. Systems and methods for virtual and augmented reality
WO2020023543A1 (en) 2018-07-24 2020-01-30 Magic Leap, Inc. Viewing device with dust seal integration
EP3827224B1 (en) 2018-07-24 2023-09-06 Magic Leap, Inc. Temperature dependent calibration of movement detection devices
WO2020028834A1 (en) 2018-08-02 2020-02-06 Magic Leap, Inc. A viewing system with interpupillary distance compensation based on head motion
US10795458B2 (en) 2018-08-03 2020-10-06 Magic Leap, Inc. Unfused pose-based drift correction of a fused pose of a totem in a user interaction system
US12016719B2 (en) 2018-08-22 2024-06-25 Magic Leap, Inc. Patient viewing system
EP3857274B1 (en) * 2018-09-28 2023-11-08 Magic Leap, Inc. Projector integrated with a scanning mirror
WO2020069371A1 (en) * 2018-09-28 2020-04-02 Magic Leap, Inc. Method and system for fiber scanning projector with angled eyepiece
US10598938B1 (en) * 2018-11-09 2020-03-24 Facebook Technologies, Llc Angular selective grating coupler for waveguide display
CN117111304A (zh) 2018-11-16 2023-11-24 奇跃公司 用于保持图像清晰度的图像尺寸触发的澄清
JP2022509083A (ja) 2018-11-20 2022-01-20 マジック リープ, インコーポレイテッド 拡張現実ディスプレイシステムのための接眼レンズ
WO2020132484A1 (en) 2018-12-21 2020-06-25 Magic Leap, Inc. Air pocket structures for promoting total internal reflection in a waveguide
DE102019102614A1 (de) * 2019-02-01 2020-08-06 Carl Zeiss Jena Gmbh Bildschirm mit einem transparenten Basiskörper
DE102019102608A1 (de) * 2019-02-01 2020-08-06 Carl Zeiss Jena Gmbh Funktionalisierter Wellenleiter für ein Detektorsystem
DE102019102605A1 (de) * 2019-02-01 2020-08-06 Carl Zeiss Jena Gmbh Funktionalisierter Wellenleiter für ein Detektorsystem
DE102019102606A1 (de) * 2019-02-01 2020-08-06 Carl Zeiss Jena Gmbh Funktionalisierter Wellenleiter für ein Detektorsystem
WO2020163603A1 (en) 2019-02-06 2020-08-13 Magic Leap, Inc. Target intent-based clock speed determination and adjustment to limit total heat generated by multiple processors
CN113544766A (zh) 2019-03-12 2021-10-22 奇跃公司 在第一和第二增强现实观看器之间配准本地内容
JP2022530900A (ja) 2019-05-01 2022-07-04 マジック リープ, インコーポレイテッド コンテンツプロビジョニングシステムおよび方法
WO2020257469A1 (en) 2019-06-20 2020-12-24 Magic Leap, Inc. Eyepieces for augmented reality display system
JP2022542363A (ja) 2019-07-26 2022-10-03 マジック リープ, インコーポレイテッド 拡張現実のためのシステムおよび方法
EP4058936A4 (en) 2019-11-14 2023-05-03 Magic Leap, Inc. SYSTEMS AND METHODS FOR VIRTUAL AND AUGMENTED REALITY
WO2021097323A1 (en) 2019-11-15 2021-05-20 Magic Leap, Inc. A viewing system for use in a surgical environment
CN114527864B (zh) * 2020-11-19 2024-03-15 京东方科技集团股份有限公司 增强现实文字显示系统、方法、设备及介质
US20230161217A1 (en) * 2021-11-24 2023-05-25 Meta Platforms Technologies, Llc Light guide display system for providing increased pixel density

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993018428A2 (en) 1992-03-13 1993-09-16 Kopin Corporation Head-mounted display system
WO1995004294A2 (en) 1993-07-21 1995-02-09 Imedge Technology, Inc. Holograms and light panels
US5751388A (en) 1995-04-07 1998-05-12 Honeywell Inc. High efficiency polarized display
ATE254291T1 (de) * 1998-04-02 2003-11-15 Elop Electrooptics Ind Ltd Optische holographische vorrichtungen
JP4727034B2 (ja) * 2000-11-28 2011-07-20 オリンパス株式会社 観察光学系および撮像光学系
US6474816B2 (en) * 2000-12-29 2002-11-05 Intel Corporation Integrated retinal display
US6757105B2 (en) * 2002-04-25 2004-06-29 Planop Planar Optics Ltd. Optical device having a wide field-of-view for multicolor images
FI114945B (fi) 2002-09-19 2005-01-31 Nokia Corp Sähköisesti säädettävä diffraktiivinen hilaelementti
US6805490B2 (en) * 2002-09-30 2004-10-19 Nokia Corporation Method and system for beam expansion in a display device
EP1731943B1 (en) * 2004-03-29 2019-02-13 Sony Corporation Optical device and virtual image display device
JP4655771B2 (ja) * 2005-06-17 2011-03-23 ソニー株式会社 光学装置及び虚像表示装置
JP4810949B2 (ja) * 2005-09-29 2011-11-09 ソニー株式会社 光学装置及び画像表示装置
EP1943556B1 (en) * 2005-11-03 2009-02-11 Mirage Innovations Ltd. Binocular optical relay device
DE102007021036A1 (de) 2007-05-04 2008-11-06 Carl Zeiss Ag Anzeigevorrichtung und Anzeigeverfahren zur binokularen Darstellung eines mehrfarbigen Bildes
US20140300695A1 (en) 2007-08-11 2014-10-09 Massachusetts Institute Of Technology Full-Parallax Acousto-Optic/Electro-Optic Holographic Video Display
US7777960B2 (en) * 2007-09-10 2010-08-17 Microvision, Inc. Wide field of view head-up display system
US8508848B2 (en) 2007-12-18 2013-08-13 Nokia Corporation Exit pupil expanders with wide field-of-view
FR2948775B1 (fr) * 2009-07-31 2011-12-02 Horiba Jobin Yvon Sas Systeme optique planaire d'imagerie polychromatique a large champ de vision
US8233204B1 (en) * 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
US8482859B2 (en) 2010-02-28 2013-07-09 Osterhout Group, Inc. See-through near-eye display glasses wherein image light is transmitted to and reflected from an optically flat film
US9753297B2 (en) * 2010-03-04 2017-09-05 Nokia Corporation Optical apparatus and method for expanding an exit pupil
WO2012062681A1 (de) 2010-11-08 2012-05-18 Seereal Technologies S.A. Anzeigegerät, insbesondere ein head-mounted display, basierend auf zeitlichen und räumlichen multiplexing von hologrammkacheln
CN106125308B (zh) 2012-04-25 2019-10-25 罗克韦尔柯林斯公司 用于显示图像的装置和方法
WO2013167864A1 (en) 2012-05-11 2013-11-14 Milan Momcilo Popovich Apparatus for eye tracking
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US10908417B2 (en) * 2013-09-19 2021-02-02 Magna Electronics Inc. Vehicle vision system with virtual retinal display
US9244280B1 (en) * 2014-03-25 2016-01-26 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
CN103995354B (zh) 2014-05-16 2016-05-04 北京理工大学 基于全息衍射光学元件的消色差的波导显示系统
CN104678555B (zh) * 2015-01-24 2017-12-08 上海理湃光晶技术有限公司 屈光度矫正的齿形镶嵌平面波导光学器件

Also Published As

Publication number Publication date
US9671615B1 (en) 2017-06-06
EP3384340A1 (en) 2018-10-10
WO2017095641A1 (en) 2017-06-08
US20170153460A1 (en) 2017-06-01
CN108292048A (zh) 2018-07-17
CN108292048B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
EP3384340B1 (en) Extended field of view in near-eye display using wide-spectrum imager
US10241332B2 (en) Reducing stray light transmission in near eye display using resonant grating filter
US11782277B2 (en) Waveguide display with increased uniformity and reduced cross-coupling between colors
EP3377932B1 (en) Rainbow removal in near-eye display using polarization-sensitive grating
US9927614B2 (en) Augmented reality display system with variable focus
US9939647B2 (en) Extended field of view in near-eye display using optically stitched imaging
US10429645B2 (en) Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
US10670862B2 (en) Diffractive optical elements with asymmetric profiles
US10038840B2 (en) Diffractive optical element using crossed grating for pupil expansion
US10108013B2 (en) Indirect-view augmented reality display system
US20180196263A1 (en) Waveguide display with multiple focal depths
US11531202B2 (en) Waveguide assembly with virtual image focus
WO2022093391A1 (en) Broadband reflector for waveguide assembly in a head-mounted display
US11747621B2 (en) Dichroic coatings to improve display uniformity and light security in an optical combiner

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220125

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PIETILAE, PASI PETTERI

Inventor name: VALLIUS, TUOMAS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20220622

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016074515

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1514052

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1514052

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016074515

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

26N No opposition filed

Effective date: 20230525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231020

Year of fee payment: 8

Ref country code: DE

Payment date: 20231019

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824