EP3379040B1 - Centrale de production d'électricité et son procédé de fonctionnement - Google Patents

Centrale de production d'électricité et son procédé de fonctionnement Download PDF

Info

Publication number
EP3379040B1
EP3379040B1 EP17161768.1A EP17161768A EP3379040B1 EP 3379040 B1 EP3379040 B1 EP 3379040B1 EP 17161768 A EP17161768 A EP 17161768A EP 3379040 B1 EP3379040 B1 EP 3379040B1
Authority
EP
European Patent Office
Prior art keywords
heat storage
fluid circuit
heat
fluid
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17161768.1A
Other languages
German (de)
English (en)
Other versions
EP3379040A1 (fr
Inventor
Andrew Zwinkels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumenion GmbH
Original Assignee
Lumenion GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES17161768T priority Critical patent/ES2861551T3/es
Application filed by Lumenion GmbH filed Critical Lumenion GmbH
Priority to PL17161768T priority patent/PL3379040T3/pl
Priority to DK17161768.1T priority patent/DK3379040T3/da
Priority to SI201730702T priority patent/SI3379040T1/sl
Priority to EP17161768.1A priority patent/EP3379040B1/fr
Priority to PT171617681T priority patent/PT3379040T/pt
Priority to CN201880028319.1A priority patent/CN110573699B/zh
Priority to PCT/EP2018/055990 priority patent/WO2018172107A1/fr
Priority to US16/494,560 priority patent/US10858960B2/en
Priority to AU2018236959A priority patent/AU2018236959B2/en
Priority to JP2019550149A priority patent/JP7126090B2/ja
Priority to CA3057239A priority patent/CA3057239A1/fr
Publication of EP3379040A1 publication Critical patent/EP3379040A1/fr
Priority to ZA2019/06756A priority patent/ZA201906756B/en
Application granted granted Critical
Publication of EP3379040B1 publication Critical patent/EP3379040B1/fr
Priority to HRP20210553TT priority patent/HRP20210553T8/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/186Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using electric heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/0208Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid using electrical energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2240/00Fluid heaters having electrical generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/04Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid
    • F24H7/0408Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using electrical energy supply
    • F24H7/0433Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using electrical energy supply the transfer medium being water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0078Heat exchanger arrangements

Definitions

  • the disclosure relates to a power plant for generating electrical energy.
  • the disclosure also relates to a method for operating a power plant.
  • the power plant can, for example, be a system that burns an energy carrier in order to generate electrical power from the heat energy released.
  • This includes, for example, gas-fired power plants and coal-fired power plants, which burn natural gas or coal as an energy source.
  • a synthesis gas or hydrogen gas can also be generated and burned with a reformer, for example.
  • the amount of electrical energy generated which is fed into an electrical network by numerous producers, fluctuates greatly over time.
  • the total amount of electrical energy generated fluctuates strongly over time.
  • the available electrical energy can significantly exceed a current requirement.
  • Energy storage devices that store energy in electrical or chemical form can only store relatively small amounts of energy at a reasonable cost.
  • Pumped storage plants are also used to store larger amounts of energy. However, these require a large difference in altitude, which is usually only possible in mountainous regions.
  • the power plant also includes at least one first turbine and a generator, which is coupled to the first turbine, for generating electrical energy from a rotary movement provided by the turbine.
  • electrical energy is taken from an external power grid and converted into thermal energy with the electrical heaters.
  • the electric heater can for example comprise resistance elements that generate heat when an electric current flows through them.
  • the thermal energy is then stored in the heat storage body.
  • This can for example comprise a metal plate.
  • a heat exchanger adjoins the heat storage body, which heat exchanger comprises at least tubes through which the heat storage fluid is passed.
  • the tubes of the heat exchanger can either contact the heat storage body directly or be connected to the heat storage body via a heat-conducting material (for example a metal body) that is part of the heat exchanger.
  • the length and cross-section of its tubes can be designed in such a way that the heat storage fluid evaporates as it flows through the heat exchanger, that is to say, for example, liquid water is converted into water vapor.
  • electrical energy is taken from an external power grid and stored with the heat storage device in the form of thermal energy.
  • the stored thermal energy can be converted back into electrical energy and output to the external power grid.
  • a control unit can be used to set whether more electrical energy is currently consumed from the power grid or transferred to the power grid. In this way, fluctuations in an amount of energy in the power grid can be at least partially compensated for.
  • the heat storage bodies are operated between a minimum temperature and a maximum temperature. The temperature difference between them determines which amount of energy the heat storage body can store during operation and release to the heat storage fluid.
  • a variable temperature of the heat storage body has the consequence that the temperature of the heat storage fluid after flowing through a heat exchanger is also dependent on the current temperature of the associated heat storage body. The temperature of the heat storage fluid can therefore fluctuate considerably during operation.
  • a turbine should be driven with steam, which has a certain temperature that is as constant as possible.
  • the efficiency of a turbine is dependent on the temperature of the steam flowing through it and, on the other hand, undesired material stresses can occur if the temperature of the steam flowing through changes rapidly.
  • Power plants for generating electrical energy are also known from DE 10 2012 103621 A1 and EP 2 101 051 A1 .
  • DE 10 2012 103 621 A1 fluctuating overcapacities of an external power grid are to be used, for which purpose electrical energy is taken from the power grid, converted into heat and stored in a heat store.
  • a heat transfer circuit can transfer heat from the heat accumulator via a heat exchanger to a working fluid circuit; there, water is evaporated and a turbine is driven to generate electricity.
  • Another heat storage unit with a heat exchanger is also in WO 2012/000002 A2 described.
  • a device for storing electrical energy in the form of heat is also in DE 10 2013 016 077 A1 described.
  • An object of the invention can be considered to provide a power plant and a method for operating a power plant with which energy can be temporarily stored particularly efficiently and then output again in electrical form.
  • a heat storage fluid circuit is connected to the heat exchanger or heat exchangers according to the invention.
  • a working fluid circuit different from the heat storage fluid circuit is connected to the first turbine (and in particular to any further turbines that may be present).
  • At least one first fluid circuit heat exchanger is present and connected to the heat storage fluid circuit and the working fluid circuit for transferring heat from the heat storage fluid to a working fluid in the working fluid circuit.
  • the heat storage fluid is not passed through the turbine (s). Rather, only the working fluid is passed through the turbine (s). As a result, a temperature fluctuation of the heat storage fluid has only a minor effect on the temperature of the working fluid.
  • the turbine can thus advantageously be driven with steam at a largely constant temperature.
  • a relatively high pressure of, for example, 100 bar is only required for the turbine (s). Due to the two separate circuits, the pressure of the fluid on the heat storage units does not have to be as high as the fluid pressure on the turbines.
  • a working fluid pump can be operated to increase the pressure of the working fluid in the working fluid circuit
  • a heat storage fluid pump can be operated to increase the pressure of the working fluid in the heat storage fluid circuit.
  • the working fluid pump and the heat storage fluid pump are operated in such a way that the pressure of the working fluid is greater than the pressure of the heat storage fluid.
  • the output of the working fluid pump can be greater than that of the heat storage fluid pump.
  • the higher pressure can, for example, be defined behind the respective pump when comparing pressure.
  • the working fluid circuit and the heat storage fluid circuit can each comprise a pipe system, these two pipe systems being separated from one another.
  • the fluid circuit heat exchanger can be a heat exchanger which has separate lines for heat storage fluid and for working fluid. Thermal energy is transferred from the heat storage fluid to the working fluid via a thermal bridge, for example a metal connection between the separate lines.
  • the heat storage fluid and the working fluid can in principle be any liquid or any gas.
  • the heat storage fluid can in particular be an oil, in particular a thermal oil.
  • the oil can contain salts and can be used at approx. Melting 200 ° C and from this temperature up to approx. 600 ° C can be used. This makes salty thermal oils particularly suitable for absorbing thermal energy from the heat storage units.
  • the heat storage fluid can accordingly be a liquid that is present in liquid form both before and after passing through the heat exchanger.
  • the working fluid can be different from the heat storage fluid and in particular be water or an aqueous solution.
  • the working fluid can be vaporized as it flows through the fluid circuit heat exchanger (s).
  • the boiling temperature of the working fluid at the pressure generated by the working fluid pump can be lower than 200 ° C, so that it is ensured that the working fluid is always evaporated in the fluid circuit heat exchanger, regardless of whether the heat storage fluid is currently at a high temperature (approx . 600 ° C) or a low temperature (approx. 250 ° C).
  • multi-stage turbine systems are used. There are thus a second turbine and a second fluid circuit heat exchanger.
  • the second turbine is also coupled to the generator or to a second generator in order to drive it.
  • the first turbine is arranged downstream of the first fluid circuit heat exchanger.
  • the second fluid circuit heat exchanger is arranged downstream of the first turbine.
  • the second turbine is arranged downstream of the second fluid circuit heat exchanger.
  • Working fluid is thus first heated (and in particular evaporated) in the first fluid circuit heat exchanger and then flows through the first turbine. The working fluid then flows through the second fluid circuit heat exchanger, is heated again in the process and then drives the second turbine.
  • the first and second fluid circuit heat exchangers can be separate from one another and, in particular, be formed identically.
  • the first and second fluid circuit heat exchangers can also be formed by a unit which each comprises separate lines for the heat storage fluid, for the working fluid before flowing through the first turbine and for the working fluid after flowing through the first turbine.
  • the first and second fluid circuit heat exchangers are arranged in the heat storage fluid circuit in two lines parallel to one another.
  • the heat storage fluid circuit accordingly has a branch on two lines through which both heat storage fluid flows.
  • the first fluid circuit heat exchanger is in one of these lines arranged and in the other of these lines the second fluid circuit heat exchanger is arranged.
  • the two lines open into one another downstream to the two fluid circuit heat exchangers.
  • the “parallel” arrangement is therefore not to be viewed as geometrically parallel, but rather as the opposite of a series arrangement one behind the other in which the two fluid circuit heat exchangers would flow through one after the other.
  • a sufficiently high heat transfer in both heat exchangers can thereby advantageously be ensured.
  • a control device is present in the heat storage fluid circuit and is set up to variably set a distribution of heat storage fluid to the first fluid circuit heat exchanger and the second fluid circuit heat exchanger.
  • a heat transfer from the heat storage fluid to the working fluid for the two fluid circuit heat exchangers can be set differently from one another.
  • the working fluid can be cooled down after flowing through the first turbine, but it can still be warmer than it was before flowing through the first fluid circuit heat exchanger.
  • the working fluid in the second fluid circuit heat exchanger would have to absorb less thermal energy than in the first fluid circuit heat exchanger.
  • the control device can, for example, conduct more heat storage fluid to the first fluid circuit heat exchanger than to the second fluid circuit heat exchanger.
  • a first bypass around the first fluid circuit heat exchanger can be present in the working fluid circuit in order to conduct working fluid to the first turbine by bypassing the first fluid circuit heat exchanger.
  • a bypass can therefore be understood as a bypass line.
  • a first bypass control device can be provided and designed to variably set a division of working fluid to the first fluid circuit heat exchanger and to the first bypass. In this way, a heat transfer in the first fluid circuit heat exchanger to the working fluid can be varied. In this way, for example, temperature fluctuations in the heat storage fluid can be partially or completely compensated, so that a heat transfer to the working fluid is only slightly influenced by a temperature fluctuation in the heat storage fluid.
  • the first bypass and the control device can thus form a first quench cooler.
  • This is a mixer in which a fluid is cooled by mixing it with a cooler fluid is mixed.
  • the cooler fluid is the portion of the working fluid which has bypassed the first fluid circuit heat exchanger.
  • a second bypass can be provided with respect to the second fluid circuit heat exchanger.
  • a second bypass around the second fluid circuit heat exchanger can be present in the working fluid circuit in order to direct working fluid to the second turbine by bypassing the second fluid circuit heat exchanger.
  • a second bypass control device can be provided and set up to variably set a division of working fluid to the second fluid circuit heat exchanger and to the second bypass.
  • the two fluid circuit heat exchangers can in turn be operated differently and a desired temperature of the working fluid can be set in each case after flowing through the respective fluid circuit heat exchanger.
  • bypasses it is also possible, as an alternative or in addition to the bypasses described above, to provide one or two corresponding bypasses for heat storage fluid in the heat storage fluid circuit.
  • a variable proportion of the heat storage fluid is passed through the associated fluid circuit heat exchanger in order to vary a heat transfer to the working fluid.
  • the heat storage fluid is always present in liquid form when the power plant is in operation and is not evaporated.
  • the heat storage fluid would suddenly withdraw large amounts of energy from the heat storage as soon as it reached its edge or beginning. Disadvantageously, this would result in a spatially uneven discharge of the heat accumulator. In addition, the sudden evaporation would lead to material stresses. These problems are avoided if the heat storage fluid is not vaporized.
  • the working fluid for driving the turbine (s) should be in the form of steam or gas. This is made possible by the two separate fluid circuits and different fluids:
  • the working fluid can have a lower boiling point / boiling temperature than the heat storage fluid, so that the working fluid evaporates in the first fluid circuit heat exchanger.
  • the working fluid usually enters an optionally present second fluid circuit heat exchanger in vapor form and is further heated / superheated.
  • An electrical energy consumption by the electrical heater makes sense when the electricity price is low, that is, when there is an oversupply of electrical energy in one Power grid, which is referred to here as the external power grid.
  • the turbine and the generator can be operated in a relatively stable manner over time, that is to say they can not exhibit any changes that fluctuate greatly over time.
  • An electrical control unit can be provided and set up to variably set whether more electrical energy is currently being consumed from an external power network by the electric heater (s) or is being output to the external power network by the generator.
  • Preferred variants of the method according to the invention result from the intended use of the power plant according to the invention.
  • the method variants described are also to be viewed as variants of the power plant according to the invention.
  • FIG Fig. 3 An exemplary embodiment of a power plant 110 according to the invention is shown schematically in FIG Fig. 3 shown.
  • the power plant 110 comprises a first turbine 120 and a second turbine 121 or can also comprise further turbines (not shown).
  • the turbines 120, 121 are driven by a working fluid flowing through them.
  • the working fluid can be a steam, for example water vapor.
  • a generator 123 is coupled to the turbines 120, 121 and converts the rotational energy provided by the turbines 120, 121 into electrical energy. The electrical energy is then output to an external power grid.
  • the power plant 110 is used to compensate for fluctuations in the amount of electrical energy in the external power grid.
  • the power plant 110 is intended to take up electrical energy from the external power grid, in particular if there is an oversupply there. In the event of an oversupply, the electricity price can become very low or even negative, which means that the consumption of electrical energy is almost free or in some cases even brings money.
  • the electrical energy consumed is to be stored in the power plant 110 and output again as electrical energy at a different time.
  • the power plant 110 comprises at least one heat storage device 100.
  • a heat storage device 100 is shown in more detail in FIG. 1 as a perspective view and in FIG Figure 2 shown as a sectional view.
  • Each heat storage device 100 comprises at least one, preferably a plurality of heat storage units 1, which are stacked on top of one another.
  • Each heat storage unit 1 comprises an electrical heater 10. This converts electrical energy into thermal energy, preferably essentially completely, that is to say more than 90% of the energy absorbed by the electrical heater 10 is converted into thermal energy. The electrical energy is taken from the external power grid.
  • Each heat storage unit 1 furthermore comprises at least one, in particular exactly two, heat storage bodies 30, 31.
  • each heat storage unit also includes a heat exchanger 50 which has a plurality of heat storage tubes 51.
  • Each heat exchanger 50 is adjacent to at least one of the heat storage bodies 30.
  • Heat storage fluid is distributed to the various heat exchangers 50 via a distributor pipe 45. After flowing through the heat exchanger 50, the heat storage fluid is brought together in a collecting pipe 55.
  • the thermal energy of the heat storage fluid can now be used to generate electrical energy again.
  • the heat storage fluid is not passed through the turbines 120, 121. Rather, the Transfer heat from the heat storage fluid to a different working fluid, which is conducted in a separate circuit, the working fluid circuit 140.
  • the heat storage fluid circulates in its own circuit, the heat storage fluid circuit 130.
  • a heat storage fluid pump 125 which circulates the heat storage fluid in the circuit 130, is arranged in the heat storage fluid circuit 130.
  • a working fluid pump 145 which circulates the working fluid in the circuit 140, is arranged in the working fluid circuit 140.
  • the working fluid pump 145 provides a significantly higher pressure than the heat storage fluid pump 125, for example a pressure which is at least 10 times as high.
  • the heat storage fluid can have a higher boiling point than the working fluid, so that the heat storage fluid is present as a liquid and is not vaporized by the heat from the heat storage units.
  • the working fluid is evaporated by the thermal energy from the heat storage fluid and, after flowing through the turbines 120, 121, is liquefied in a condenser 124.
  • the condenser 124 can, as shown, comprise a heat exchanger, via which heat is removed from the working fluid, for example to a liquid, which can then be used further, for example for heating purposes. Since the heat storage fluid is not evaporated, the disadvantage described above is avoided that large amounts of energy are suddenly withdrawn from part of the heat storage body 30 through evaporation.
  • the heat storage fluid can be an oil, for example, while the working fluid is water or an aqueous solution.
  • At least one first fluid circuit heat exchanger 131 is provided.
  • a second fluid circuit heat exchanger 132 is also provided.
  • Working fluid and separately therefrom also heat storage fluid are passed through each of these heat exchangers 131, 132, the respective tubes being thermally coupled to one another for a high heat transfer.
  • the first fluid circuit heat exchanger 131 is arranged upstream of the turbine 120 with respect to the working fluid circuit 140.
  • the second fluid circuit heat exchanger 132 is arranged between the two turbines 120, 121 with regard to the working fluid circuit 140.
  • the two fluid circuit heat exchangers 131, 132 are arranged parallel to one another with regard to the heat storage fluid circuit 130.
  • a line of the heat storage fluid upstream of the two fluid circuit heat exchangers 131, 132 can be divided into two lines 135, 136 which each run through one of the two fluid circuit heat exchangers 131, 132.
  • the two lines 135, 136 are then brought together again.
  • the heat storage devices 100 can be arranged on lines which are parallel to one another. This has the advantage that the heat storage devices 100 arranged parallel to one another are discharged essentially to the same extent, that is to say, in particular, essentially the same amount of energy is transferred to the heat storage fluid flowing through. This prevents one heat storage device 100 from having reached a maximum temperature and consequently not being able to absorb and store any further energy from the external power grid while another of the heat storage devices 100 is far from the maximum temperature. When as many of the heat storage devices 100 as possible at the same time can absorb electrical energy, a maximum possible electrical energy consumption is advantageously higher.
  • some of the heat storage devices 100 can be arranged one behind the other in the heat storage fluid circuit 130, that is to say the heat storage fluid can flow through them one after the other.
  • the discharge that is to say the heat transfer to the heat storage medium
  • the heat storage fluid should not fall below a minimum temperature, which results in a minimum temperature for a heat storage device 100.
  • it is desirable that a minimum temperature of the heat storage device 100 is low, because this means that a possible temperature difference of the heat storage device 100 and thus its storage capacity is high. If two or more heat storage devices 100 are arranged one behind the other, they can be operated with different minimum temperatures.
  • a front one of these heat storage devices 100 can have a lower minimum temperature than a rear one of these heat storage devices 100.
  • the rear heat storage device 100 guarantees a desired minimum temperature of the heat storage fluid.
  • the front heat storage device 100 can be operated over a very large temperature range (that is to say over a larger temperature range than the rear heat storage device 100) and accordingly has a particularly high storage capacity.
  • the respective maximum temperatures of heat storage devices 100 arranged one behind the other can also be different.
  • a control device can be provided and operated to operate a front heat storage device 100 of the heat storage devices 100 arranged one behind the other over a larger temperature range than a rear heat storage device 100.
  • the entire mass of its heat storage bodies 30 is also relevant. If a rear heat storage device 100 made up of several heat storage devices arranged one behind the other is only used over a smaller temperature range anyway, it is advisable to measure the mass of its Selecting the heat storage body lower than the mass of the heat storage body of the front heat storage device 100. This can be realized, for example, in that the front heat storage device comprises more heat storage units than the rear heat storage device; otherwise, the heat storage units of the front and rear heat storage devices 100 may be the same.
  • the power plant 110 can also have a burner for a (fossil) energy carrier, for example for burning coal, natural gas or synthesis gas.
  • a burner for a (fossil) energy carrier for example for burning coal, natural gas or synthesis gas.
  • the heat released as a result can also be transferred to the working fluid or the heat storage fluid.
  • the output of the burner is controlled as a function of the current consumption of the electric heater 10. Current consumption occurs in particular (or exclusively) when there is an oversupply of electrical energy. At this time, it is desirable if less electrical energy is generated and, accordingly, the output of the burner is reduced.
  • the output of the burner can thus be reduced to a reduced value when the heat storage devices 100 are charged, in particular when their electrical power consumption exceeds a predetermined threshold value. In contrast, the output of the burner is not reduced to the reduced value, but rather kept at a higher value if the power consumption of the electric heater does not exceed the threshold value.
  • the power plant according to the invention enables large amounts of electrical energy to be stored as thermal energy in a simple and inexpensive manner and then converted back into electrical energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Eletrric Generators (AREA)

Claims (11)

  1. Centrale électrique pour générer de l'énergie électrique, comprenant :
    - au moins un dispositif de stockage de chaleur (100) pour stocker de l'énergie électrique en tant qu'énergie thermique, incluant au moins une unité de stockage de chaleur (1), tandis que chaque unité de stockage de chaleur (1) comprend :
    - un chauffage électrique (10) pour convertir de l'énergie électrique en énergie thermique,
    - au moins un corps de stockage de chaleur (30, 31) pour recevoir et stocker de l'énergie thermique du chauffage électrique (10),
    - un échangeur de chaleur (50) pour recevoir de l'énergie thermique du corps de stockage de chaleur (30, 31), tandis que l'échangeur de chaleur (50) comprend des conduites d'échangeur de chaleur (51) pour guider un fluide de stockage de chaleur,
    - au moins une première turbine (120),
    - un générateur (123) couplé à la première turbine (120) pour générer de l'énergie électrique à partir d'un mouvement rotatif fourni par la turbine,
    - un circuit de fluide de stockage de chaleur (130) qui est connecté à l'échangeur de chaleur (50) ou aux échangeurs de chaleur (50),
    - un circuit de fluide de travail (140) qui est connecté à la première turbine (120),
    - au moins un premier échangeur de chaleur de circuit de fluide (131) pour transférer de la chaleur à partir du fluide de stockage de chaleur vers un fluide de travail dans le circuit de fluide de travail (140),
    caractérisée en ce que
    une deuxième turbine (121) et un deuxième échangeur de chaleur de circuit de fluide (132) sont fournis,
    la deuxième turbine (121) est également couplée au générateur (123) ou à un deuxième générateur pour actionner le générateur (123) ou le deuxième générateur,
    la première turbine (120) est agencée en aval du premier échangeur de chaleur de circuit de fluide (131) dans le circuit de fluide de travail (140),
    le deuxième échangeur de chaleur de circuit de fluide (132) est agencé en aval de la première turbine (120),
    la deuxième turbine (121) est agencée en aval du deuxième échangeur de chaleur de circuit de fluide (132),
    les premier et deuxième échangeurs de chaleur de circuit de fluide (131, 132) sont agencés dans le circuit de fluide de stockage de chaleur (130) en deux lignes (135, 136) qui sont parallèles entre elles,
    un appareil de contrôle est fourni dans le circuit de fluide de stockage de chaleur (130) et configuré pour régler de manière variable une distribution du fluide de stockage de chaleur vers le premier échangeur de chaleur de circuit de fluide (131) et le deuxième échangeur de chaleur de circuit de fluide (132).
  2. Centrale électrique selon la revendication 1
    caractérisée en ce que
    une première dérivation le long du premier échangeur de chaleur de circuit de fluide (131) est fournie dans le circuit de fluide de travail (140) pour guider le fluide de travail vers la première turbine (120), en contournant le premier échangeur de chaleur de circuit de fluide (131), et
    un premier appareil de contrôle de dérivation est fourni et configuré pour régler de manière variable une distribution du fluide de travail vers le premier échangeur de chaleur de circuit de fluide (131) et vers la première dérivation.
  3. Centrale électrique selon la revendication 1 ou 2
    caractérisée en ce que
    une deuxième dérivation le long du deuxième échangeur de chaleur de circuit de fluide (132) est fournie dans le circuit de fluide de travail (140) pour guider le fluide de travail vers la deuxième turbine (121), en contournant le deuxième échangeur de chaleur de circuit de fluide (132), et
    un deuxième appareil de contrôle de dérivation est fourni et configuré pour régler de manière variable la distribution du fluide de travail vers le deuxième échangeur de chaleur de circuit de fluide (131) et vers la deuxième dérivation.
  4. Centrale électrique selon une des revendications 1 à 3
    caractérisée en ce que
    une unité de contrôle électrique est fournie et configurée pour régler de manière variable si, momentanément, plus d'énergie électrique est prise d'un réseau électrique externe par le biais du chauffage électrique (10) ou des chauffages électriques ou bien si plus d'énergie électrique est émise vers le réseau électrique externe par le générateur (123).
  5. Centrale électrique selon une des revendications 1 à 4
    caractérisée en ce que
    plusieurs dispositifs de stockage de chaleur (100) sont fournis, parmi lesquels au moins certains sont agencés parallèlement entre eux dans le circuit de fluide de stockage de chaleur (130).
  6. Centrale électrique selon une des revendications 1 à 5
    caractérisée en ce que
    plusieurs dispositifs de stockage de chaleur (100) sont fournis, parmi lesquels au moins certains sont agencés les uns après les autres dans le circuit de fluide de stockage de chaleur (130).
  7. Centrale électrique selon la revendication 6
    caractérisée en ce que
    un dispositif de contrôle est fourni et contrôlé pour faire fonctionner, parmi les dispositifs de stockage de chaleur agencés les uns derrière les autres (100), un dispositif de stockage de chaleur avant (100) sur une fourchette de températures plus grande qu'un dispositif de stockage de chaleur arrière (100).
  8. Centrale électrique selon la revendication 6 ou 7
    caractérisée en ce que
    un appareil de stockage de chaleur avant (100) parmi les dispositifs de stockage de chaleur agencés les uns derrière les autres (100) comprend plus d'unités de stockage de chaleur (1) qu'un dispositif de stockage de chaleur arrière (100) parmi les dispositifs de stockage de chaleur agencés les uns derrière les autres (100).
  9. Procédé pour faire fonctionner une centrale électrique pour générer de l'énergie électrique, le procédé comprenant les étapes suivantes :
    - convertir de l'énergie électrique en énergie thermique au moyen d'un chauffage électrique (10) d'une unité de stockage de chaleur (1) d'au moins un dispositif de stockage de chaleur (100),
    - recevoir et stocker de l'énergie thermique du chauffage électrique (10) avec un moins un corps de stockage de chaleur (30, 31) de l'unité de stockage de chaleur (1),
    - transférer de l'énergie thermique d'au moins un corps de stockage de chaleur (30, 31) à un fluide de stockage de chaleur par le biais d'un échangeur de chaleur (50), lequel comprend des conduites d'échangeur de chaleur (51) pour guider un fluide de stockage de chaleur,
    - entraîner au moins une première turbine (120),
    - générer de l'énergie électrique à partir d'un mouvement rotatif fourni par la turbine (120) au moyen d'un générateur (123) couplé à la première turbine (120),
    - guider le fluide de stockage de chaleur le long d'un circuit de fluide de stockage de chaleur (130) qui comprend au moins un premier échangeur de chaleur de circuit de fluide (131),
    - transférer de l'énergie thermique du fluide de stockage de chaleur à un fluide de travail, par le biais du au moins premier échangeur de chaleur de circuit de fluide (131),
    - guider le fluide de travail dans un circuit de fluide de travail (140) vers la première turbine (120) pour faire fonctionner la première turbine (120),
    caractérisé en ce que
    une deuxième turbine (121) et un deuxième échangeur de chaleur de circuit de fluide (132) sont fournis,
    la deuxième turbine (121) entraîne également le générateur (123) ou un deuxième générateur,
    dans le circuit de fluide de travail (140), la première turbine (120) est agencée en aval du premier échangeur de chaleur de circuit de fluide (131),
    le deuxième échangeur de chaleur de circuit de fluide (132) est agencé en aval de la première turbine (120),
    la deuxième turbine (121) est agencée en aval du deuxième échangeur de chaleur de circuit de fluide (132),
    les premier et deuxième échangeurs de chaleur de circuit de fluide (131, 132) sont agencés dans le circuit de fluide de stockage de chaleur (130) en deux lignes (135, 136) qui sont parallèles entre elles,
    un dispositif de commande est prévu dans le circuit de fluide de stockage de chaleur (130), le dispositif de commande réglant de manière variable une distribution de fluide de stockage de chaleur vers le premier échangeur de chaleur de circuit de fluide (131) et vers le deuxième échangeur de chaleur de circuit de fluide (132).
  10. Procédé selon la revendication 9
    caractérisé par au moins les étapes suivantes :
    - faire fonctionner une pompe de fluide de travail (145) pour augmenter la pression du fluide de travail dans le circuit de fluide de travail (140),
    - faire fonctionner une pompe à fluide de stockage de chaleur (125) pour augmenter la pression du fluide de travail dans le circuit de fluide de stockage de chaleur (130),
    - tandis que la pompe à fluide de travail (145) et la pompe à fluide de stockage de chaleur (125) sont mises en fonctionnement de telle sorte que la pression du fluide de travail est supérieure à la pression du fluide de stockage de chaleur.
  11. Procédé selon la revendication 9 ou 10
    caractérisé par au moins l'une des étapes suivantes :
    - guider le fluide de stockage de chaleur sous forme liquide vers et au travers de l'au moins un dispositif de stockage de chaleur (100), tandis que le fluide de stockage de chaleur n'est pas évaporé,
    - guider le fluide de travail au travers du premier échangeur de chaleur de circuit de fluide (131), tandis que le fluide de travail est évaporé.
EP17161768.1A 2017-03-20 2017-03-20 Centrale de production d'électricité et son procédé de fonctionnement Active EP3379040B1 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
PL17161768T PL3379040T3 (pl) 2017-03-20 2017-03-20 Elektrownia do wytwarzania energii elektrycznej i sposób eksploatacji elektrowni
DK17161768.1T DK3379040T3 (da) 2017-03-20 2017-03-20 Kraftværk til generering af elektrisk energi og fremgangsmåde til drift af et kraftværk
SI201730702T SI3379040T1 (sl) 2017-03-20 2017-03-20 Elektrarna za proizvodnjo električne energije in postopek za upravljanje elektrarne
EP17161768.1A EP3379040B1 (fr) 2017-03-20 2017-03-20 Centrale de production d'électricité et son procédé de fonctionnement
PT171617681T PT3379040T (pt) 2017-03-20 2017-03-20 Central de produção de energia elétrica e método de funcionamento de uma central de produção de energia elétrica
ES17161768T ES2861551T3 (es) 2017-03-20 2017-03-20 Central eléctrica para generar energía eléctrica y procedimiento para operar una central eléctrica
PCT/EP2018/055990 WO2018172107A1 (fr) 2017-03-20 2018-03-11 Centrale électrique servant à produire une énergie électrique et procédé servant à faire fonctionner une centrale électrique
US16/494,560 US10858960B2 (en) 2017-03-20 2018-03-11 Power plant for generating electrical energy and method for operating a power plant
CN201880028319.1A CN110573699B (zh) 2017-03-20 2018-03-11 生成电能的发电所和运行发电所的方法
AU2018236959A AU2018236959B2 (en) 2017-03-20 2018-03-11 Power plant for generating electrical energy and method for operating a power plant
JP2019550149A JP7126090B2 (ja) 2017-03-20 2018-03-11 電気エネルギーを発生させるための発電所および発電所を稼働させる方法
CA3057239A CA3057239A1 (fr) 2017-03-20 2018-03-11 Centrale electrique servant a produire une energie electrique et procede servant a faire fonctionner une centrale electrique
ZA2019/06756A ZA201906756B (en) 2017-03-20 2019-10-14 Power plant for generating electrical energy and method for operating a power plant
HRP20210553TT HRP20210553T8 (hr) 2017-03-20 2021-04-07 Elektrana namijenjena stvaranju električne energije i postupak rada s elektranom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17161768.1A EP3379040B1 (fr) 2017-03-20 2017-03-20 Centrale de production d'électricité et son procédé de fonctionnement

Publications (2)

Publication Number Publication Date
EP3379040A1 EP3379040A1 (fr) 2018-09-26
EP3379040B1 true EP3379040B1 (fr) 2021-01-13

Family

ID=58401394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17161768.1A Active EP3379040B1 (fr) 2017-03-20 2017-03-20 Centrale de production d'électricité et son procédé de fonctionnement

Country Status (14)

Country Link
US (1) US10858960B2 (fr)
EP (1) EP3379040B1 (fr)
JP (1) JP7126090B2 (fr)
CN (1) CN110573699B (fr)
AU (1) AU2018236959B2 (fr)
CA (1) CA3057239A1 (fr)
DK (1) DK3379040T3 (fr)
ES (1) ES2861551T3 (fr)
HR (1) HRP20210553T8 (fr)
PL (1) PL3379040T3 (fr)
PT (1) PT3379040T (fr)
SI (1) SI3379040T1 (fr)
WO (1) WO2018172107A1 (fr)
ZA (1) ZA201906756B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4033191A1 (fr) 2021-01-22 2022-07-27 Lumenion GmbH Accumulateur de chaleur pourvu de rails en tant que corps d'accumulateur de chaleur

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2026046B1 (nl) * 2020-07-10 2022-03-15 Heatwacht Holding B V Inrichting voor het opslaan van elektrische energie, systeem en werkwijze daarvoor
TW202238061A (zh) * 2021-01-29 2022-10-01 澳大利亞商葛瑞夫艾特能源資產公司 能量儲存裝置
WO2023115098A1 (fr) * 2021-12-21 2023-06-29 MGA Thermal Pty Ltd Stockage d'énergie

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19938614A1 (de) 1999-08-14 2001-02-22 Bosch Gmbh Robert Kühlkreislauf für einen Verbrennungsmotor
US7172886B2 (en) * 2001-12-06 2007-02-06 The Regents Of The University Of California Biosynthesis of isopentenyl pyrophosphate
US6701711B1 (en) * 2002-11-11 2004-03-09 The Boeing Company Molten salt receiver cooling system
JP2004340093A (ja) 2003-05-19 2004-12-02 Hideo Tamai 太陽熱利用発電装置
EP2101051A1 (fr) * 2008-03-12 2009-09-16 Siemens Aktiengesellschaft Stockage d'énergie électrique dans un accumulateur thermique et rétro-électrification à l'aide d'un cycle thermodynamique
ES2363455T3 (es) * 2008-07-16 2011-08-04 Abb Research Ltd. Sistema de almacenamiento de nergía termoeléctrica y método de almacenamiento de energía termoeléctrica.
CN102216613B (zh) * 2008-09-17 2014-06-25 西门子聚集太阳能有限公司 太阳热能发电设施
EP2312129A1 (fr) * 2009-10-13 2011-04-20 ABB Research Ltd. Système de stockage d'énergie thermoélectrique avec un échangeur thermique interne et procédé de stockage d'énergie thermoélectrique
US8327641B2 (en) * 2009-12-01 2012-12-11 General Electric Company System for generation of power using solar energy
DE102010023416A1 (de) * 2010-02-15 2011-09-08 Beba Energie Gmbh Verfahren, Wärmespeicher und Wärmespeichersystem zur Erwärmung und Abkühlung eines Arbeitsfluides
WO2012000002A2 (fr) * 2010-07-01 2012-01-05 Psw Systems Ag Système pour transformer de l'énergie thermique et dispositif pour réchauffer et refroidir un milieu
JP5707546B2 (ja) * 2011-04-11 2015-04-30 三菱日立パワーシステムズ株式会社 太陽熱利用ボイラシステム
EP2587005A1 (fr) * 2011-10-31 2013-05-01 ABB Research Ltd. Système de stockage d'énergie thermoélectrique avec échange thermique régénératif et procédé de stockage d'énergie thermoélectrique
DE102011088380A1 (de) * 2011-12-13 2013-06-13 Siemens Aktiengesellschaft Energiespeichervorrichtung mit offenem Ladekreislauf zur Speicherung saisonal anfallender elektrischer Überschussenergie
EP2653670A1 (fr) * 2012-04-17 2013-10-23 Siemens Aktiengesellschaft Installation de stockage et de répartition d'énergie thermique avec un accumulateur thermique et un accumulateur de froid et leur procédé de fonctionnement
DE102012103621A1 (de) * 2012-04-25 2013-10-31 Hitachi Power Europe Gmbh Solarthermisches Kraftwerk mit elektrisch beheiztem Wärmespeicher
WO2014161065A1 (fr) * 2013-04-03 2014-10-09 Sigma Energy Storage Inc. Stockage et récupération d'énergie d'un système d'air comprimé
DE102013016077A1 (de) * 2013-09-27 2015-04-16 Rolf Schumacher Elektrische Energiespeicherung mittels thermischer Hochtemperaturspeicher
US9909417B2 (en) * 2014-07-24 2018-03-06 Novatek Ip, Llc Angled degradation pick
US10323543B2 (en) * 2014-07-28 2019-06-18 Third Power, LLC Conversion of power plants to energy storage resources
EP3002528B1 (fr) 2014-09-30 2018-01-31 Lumenion GmbH Accumulateur thermique et procédé de fonctionnement d'un accumulateur thermique
TN2016000008A1 (en) 2015-02-04 2017-07-05 General Electric Technology Gmbh Electrical energy storage and discharge system
EP3245389B1 (fr) * 2015-03-20 2020-07-15 Siemens Gamesa Renewable Energy A/S Centrale d'accumulation d'énergie thermique
EP3139108B1 (fr) * 2015-09-04 2018-03-28 Lumenion GmbH Dispositif de stockage et procede de stockage temporaire d'energie electrique en energie thermique
CN107605547A (zh) 2017-09-27 2018-01-19 葛洲坝中科储能技术有限公司 一种耦合储热装置的发电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4033191A1 (fr) 2021-01-22 2022-07-27 Lumenion GmbH Accumulateur de chaleur pourvu de rails en tant que corps d'accumulateur de chaleur
WO2022157006A1 (fr) 2021-01-22 2022-07-28 Lumenion Gmbh Accumulateur de chaleur doté de rails en tant que corps de stockage de chaleur
US11686533B2 (en) 2021-01-22 2023-06-27 Lumenion Gmbh Heat store with rails as heat-storage bodies

Also Published As

Publication number Publication date
JP7126090B2 (ja) 2022-08-26
CN110573699A (zh) 2019-12-13
US10858960B2 (en) 2020-12-08
PT3379040T (pt) 2021-04-15
ES2861551T3 (es) 2021-10-06
AU2018236959B2 (en) 2023-01-05
EP3379040A1 (fr) 2018-09-26
CN110573699B (zh) 2021-10-22
ZA201906756B (en) 2021-02-24
HRP20210553T8 (hr) 2022-01-21
WO2018172107A1 (fr) 2018-09-27
SI3379040T1 (sl) 2021-07-30
DK3379040T3 (da) 2021-04-12
PL3379040T3 (pl) 2021-07-05
CA3057239A1 (fr) 2018-09-27
US20200011207A1 (en) 2020-01-09
HRP20210553T1 (hr) 2021-09-03
AU2018236959A1 (en) 2019-10-03
JP2020513081A (ja) 2020-04-30

Similar Documents

Publication Publication Date Title
EP2812542B1 (fr) Centrale d'accumulation d'énergie et procédé de fonctionnement d'une telle centrale
EP3379040B1 (fr) Centrale de production d'électricité et son procédé de fonctionnement
EP2521861B1 (fr) Centrale solaire thermique à évaporation indirecte et procédé permettant de faire fonctionner une telle centrale solaire thermique
DE10329623B3 (de) Verfahren zur solarthermischen Gewinnung elektrischer Energie und solarthermisches Kraftwerk
EP2488752B1 (fr) Centrale héliothermique et procédé pour faire fonctionner une centrale héliothermique
EP2705224B1 (fr) Système de régulation servant à adapter la puissance d'une turbine à vapeur à une variation de charge
EP2900943B1 (fr) Centrale de cogénération et procédé de fonctionnement d'une centrale de cogénération
DE102007013430B9 (de) Solarthermisches Kraftwerk und Verfahren zum Betreiben eines solarthermischen Kraftwerks
DE102009038446B4 (de) Solarthermisches Kraftwerk mit Wärmetauscher in der Speisewasservorwärmstrecke
DE102009056707A1 (de) Dampfkraftwerk mit Solarkollektoren
EP2224104B1 (fr) Procédé destiné au fonctionnement d'une centrale
DE2555897A1 (de) Verfahren zum ausnutzen der ueberschusswaerme eines elektrizitaetswerks
WO2010054911A1 (fr) Procédé et dispositif pour le surchauffage intermédiaire dans une centrale solaire thermique avec vaporisation indirecte.
EP3139108B1 (fr) Dispositif de stockage et procede de stockage temporaire d'energie electrique en energie thermique
DE2907068C2 (de) Dampfkraftanlage für Grundlastbetrieb mit Einrichtung zur Deckung von Lastspitzen
EP0099501A2 (fr) Méthode pour changer la production d'énergie électrique d'une centrale de chauffe sans influencer la livraison de chaleur aux consommateurs de chaleur
EP2287547B1 (fr) Pompe à chaleur et procédé de réglage de la température d'entrée de sources sur une pompe à chaleur
DE102020131706A1 (de) System und Verfahren zur Speicherung und Abgabe von elektrischer Energie mit deren Speicherung als Wärmeenergie
DE102013101648A1 (de) Verfahren und Vorrichtung zur Speicherung und Übertragung von thermischer Energie
EP2638286B1 (fr) Centrale héliothermique
DE102018100712A1 (de) Dampfkraftwerk und Verfahren zum Betreiben eines Dampfkraftwerks
DE102013222677B4 (de) Wärmeübertragervorrichtung, Wärmespeichervorrichtung und Verfahren zum Übertragen und/oder Speichern von Wärme
EP2600058A1 (fr) Dispositif de transfert d'un liquide de travail dans un état gazeux ou vaporeux, notamment pour la production de vapeur d'eau
DE102010010614B4 (de) Verfahren und Vorrichtung zur Energieerzeugung in einer ORC-Anlage
EP2312130A1 (fr) Adaptation de la température terminale de préchauffage d'un circuit secondaire de centrale par activation sélective de plusieurs raccordements de prélèvement d'une turbine à vapeur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180813

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200807

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017009027

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1354708

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20210553T

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210408

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LUMENION GMBH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3379040

Country of ref document: PT

Date of ref document: 20210415

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210407

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210113

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 37019

Country of ref document: SK

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210413

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210553T

Country of ref document: HR

Payment date: 20210720

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20210553

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2861551

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211006

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017009027

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

26N No opposition filed

Effective date: 20211014

REG Reference to a national code

Ref country code: HR

Ref legal event code: T8IS

Ref document number: P20210553

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210320

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210553

Country of ref document: HR

Payment date: 20220311

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210553

Country of ref document: HR

Payment date: 20230313

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1354708

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220320

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170320

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230414

Year of fee payment: 7

Ref country code: CH

Payment date: 20230402

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20231223

Year of fee payment: 8

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210553

Country of ref document: HR

Payment date: 20240311

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240222

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 8

Ref country code: CZ

Payment date: 20240306

Year of fee payment: 8

Ref country code: GB

Payment date: 20240115

Year of fee payment: 8

Ref country code: PT

Payment date: 20240311

Year of fee payment: 8

Ref country code: SK

Payment date: 20240313

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20240308

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240308

Year of fee payment: 8

Ref country code: SE

Payment date: 20240116

Year of fee payment: 8

Ref country code: PL

Payment date: 20240308

Year of fee payment: 8

Ref country code: NO

Payment date: 20240212

Year of fee payment: 8

Ref country code: IT

Payment date: 20240131

Year of fee payment: 8

Ref country code: HR

Payment date: 20240311

Year of fee payment: 8

Ref country code: FR

Payment date: 20240116

Year of fee payment: 8

Ref country code: DK

Payment date: 20240108

Year of fee payment: 8

Ref country code: BE

Payment date: 20240222

Year of fee payment: 8