EP3379040B1 - Power plant for generating electric power and a method for operating a power plant - Google Patents

Power plant for generating electric power and a method for operating a power plant Download PDF

Info

Publication number
EP3379040B1
EP3379040B1 EP17161768.1A EP17161768A EP3379040B1 EP 3379040 B1 EP3379040 B1 EP 3379040B1 EP 17161768 A EP17161768 A EP 17161768A EP 3379040 B1 EP3379040 B1 EP 3379040B1
Authority
EP
European Patent Office
Prior art keywords
heat storage
fluid circuit
heat
fluid
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17161768.1A
Other languages
German (de)
French (fr)
Other versions
EP3379040A1 (en
Inventor
Andrew Zwinkels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumenion GmbH
Original Assignee
Lumenion GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP17161768.1A priority Critical patent/EP3379040B1/en
Application filed by Lumenion GmbH filed Critical Lumenion GmbH
Priority to DK17161768.1T priority patent/DK3379040T3/en
Priority to SI201730702T priority patent/SI3379040T1/en
Priority to ES17161768T priority patent/ES2861551T3/en
Priority to PL17161768T priority patent/PL3379040T3/en
Priority to PT171617681T priority patent/PT3379040T/en
Priority to JP2019550149A priority patent/JP7126090B2/en
Priority to PCT/EP2018/055990 priority patent/WO2018172107A1/en
Priority to CN201880028319.1A priority patent/CN110573699B/en
Priority to US16/494,560 priority patent/US10858960B2/en
Priority to CA3057239A priority patent/CA3057239A1/en
Priority to AU2018236959A priority patent/AU2018236959B2/en
Publication of EP3379040A1 publication Critical patent/EP3379040A1/en
Priority to ZA2019/06756A priority patent/ZA201906756B/en
Application granted granted Critical
Publication of EP3379040B1 publication Critical patent/EP3379040B1/en
Priority to HRP20210553TT priority patent/HRP20210553T8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/186Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using electric heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/0208Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid using electrical energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2240/00Fluid heaters having electrical generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/04Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid
    • F24H7/0408Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using electrical energy supply
    • F24H7/0433Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using electrical energy supply the transfer medium being water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0078Heat exchanger arrangements

Definitions

  • the disclosure relates to a power plant for generating electrical energy.
  • the disclosure also relates to a method for operating a power plant.
  • the power plant can, for example, be a system that burns an energy carrier in order to generate electrical power from the heat energy released.
  • This includes, for example, gas-fired power plants and coal-fired power plants, which burn natural gas or coal as an energy source.
  • a synthesis gas or hydrogen gas can also be generated and burned with a reformer, for example.
  • the amount of electrical energy generated which is fed into an electrical network by numerous producers, fluctuates greatly over time.
  • the total amount of electrical energy generated fluctuates strongly over time.
  • the available electrical energy can significantly exceed a current requirement.
  • Energy storage devices that store energy in electrical or chemical form can only store relatively small amounts of energy at a reasonable cost.
  • Pumped storage plants are also used to store larger amounts of energy. However, these require a large difference in altitude, which is usually only possible in mountainous regions.
  • the power plant also includes at least one first turbine and a generator, which is coupled to the first turbine, for generating electrical energy from a rotary movement provided by the turbine.
  • electrical energy is taken from an external power grid and converted into thermal energy with the electrical heaters.
  • the electric heater can for example comprise resistance elements that generate heat when an electric current flows through them.
  • the thermal energy is then stored in the heat storage body.
  • This can for example comprise a metal plate.
  • a heat exchanger adjoins the heat storage body, which heat exchanger comprises at least tubes through which the heat storage fluid is passed.
  • the tubes of the heat exchanger can either contact the heat storage body directly or be connected to the heat storage body via a heat-conducting material (for example a metal body) that is part of the heat exchanger.
  • the length and cross-section of its tubes can be designed in such a way that the heat storage fluid evaporates as it flows through the heat exchanger, that is to say, for example, liquid water is converted into water vapor.
  • electrical energy is taken from an external power grid and stored with the heat storage device in the form of thermal energy.
  • the stored thermal energy can be converted back into electrical energy and output to the external power grid.
  • a control unit can be used to set whether more electrical energy is currently consumed from the power grid or transferred to the power grid. In this way, fluctuations in an amount of energy in the power grid can be at least partially compensated for.
  • the heat storage bodies are operated between a minimum temperature and a maximum temperature. The temperature difference between them determines which amount of energy the heat storage body can store during operation and release to the heat storage fluid.
  • a variable temperature of the heat storage body has the consequence that the temperature of the heat storage fluid after flowing through a heat exchanger is also dependent on the current temperature of the associated heat storage body. The temperature of the heat storage fluid can therefore fluctuate considerably during operation.
  • a turbine should be driven with steam, which has a certain temperature that is as constant as possible.
  • the efficiency of a turbine is dependent on the temperature of the steam flowing through it and, on the other hand, undesired material stresses can occur if the temperature of the steam flowing through changes rapidly.
  • Power plants for generating electrical energy are also known from DE 10 2012 103621 A1 and EP 2 101 051 A1 .
  • DE 10 2012 103 621 A1 fluctuating overcapacities of an external power grid are to be used, for which purpose electrical energy is taken from the power grid, converted into heat and stored in a heat store.
  • a heat transfer circuit can transfer heat from the heat accumulator via a heat exchanger to a working fluid circuit; there, water is evaporated and a turbine is driven to generate electricity.
  • Another heat storage unit with a heat exchanger is also in WO 2012/000002 A2 described.
  • a device for storing electrical energy in the form of heat is also in DE 10 2013 016 077 A1 described.
  • An object of the invention can be considered to provide a power plant and a method for operating a power plant with which energy can be temporarily stored particularly efficiently and then output again in electrical form.
  • a heat storage fluid circuit is connected to the heat exchanger or heat exchangers according to the invention.
  • a working fluid circuit different from the heat storage fluid circuit is connected to the first turbine (and in particular to any further turbines that may be present).
  • At least one first fluid circuit heat exchanger is present and connected to the heat storage fluid circuit and the working fluid circuit for transferring heat from the heat storage fluid to a working fluid in the working fluid circuit.
  • the heat storage fluid is not passed through the turbine (s). Rather, only the working fluid is passed through the turbine (s). As a result, a temperature fluctuation of the heat storage fluid has only a minor effect on the temperature of the working fluid.
  • the turbine can thus advantageously be driven with steam at a largely constant temperature.
  • a relatively high pressure of, for example, 100 bar is only required for the turbine (s). Due to the two separate circuits, the pressure of the fluid on the heat storage units does not have to be as high as the fluid pressure on the turbines.
  • a working fluid pump can be operated to increase the pressure of the working fluid in the working fluid circuit
  • a heat storage fluid pump can be operated to increase the pressure of the working fluid in the heat storage fluid circuit.
  • the working fluid pump and the heat storage fluid pump are operated in such a way that the pressure of the working fluid is greater than the pressure of the heat storage fluid.
  • the output of the working fluid pump can be greater than that of the heat storage fluid pump.
  • the higher pressure can, for example, be defined behind the respective pump when comparing pressure.
  • the working fluid circuit and the heat storage fluid circuit can each comprise a pipe system, these two pipe systems being separated from one another.
  • the fluid circuit heat exchanger can be a heat exchanger which has separate lines for heat storage fluid and for working fluid. Thermal energy is transferred from the heat storage fluid to the working fluid via a thermal bridge, for example a metal connection between the separate lines.
  • the heat storage fluid and the working fluid can in principle be any liquid or any gas.
  • the heat storage fluid can in particular be an oil, in particular a thermal oil.
  • the oil can contain salts and can be used at approx. Melting 200 ° C and from this temperature up to approx. 600 ° C can be used. This makes salty thermal oils particularly suitable for absorbing thermal energy from the heat storage units.
  • the heat storage fluid can accordingly be a liquid that is present in liquid form both before and after passing through the heat exchanger.
  • the working fluid can be different from the heat storage fluid and in particular be water or an aqueous solution.
  • the working fluid can be vaporized as it flows through the fluid circuit heat exchanger (s).
  • the boiling temperature of the working fluid at the pressure generated by the working fluid pump can be lower than 200 ° C, so that it is ensured that the working fluid is always evaporated in the fluid circuit heat exchanger, regardless of whether the heat storage fluid is currently at a high temperature (approx . 600 ° C) or a low temperature (approx. 250 ° C).
  • multi-stage turbine systems are used. There are thus a second turbine and a second fluid circuit heat exchanger.
  • the second turbine is also coupled to the generator or to a second generator in order to drive it.
  • the first turbine is arranged downstream of the first fluid circuit heat exchanger.
  • the second fluid circuit heat exchanger is arranged downstream of the first turbine.
  • the second turbine is arranged downstream of the second fluid circuit heat exchanger.
  • Working fluid is thus first heated (and in particular evaporated) in the first fluid circuit heat exchanger and then flows through the first turbine. The working fluid then flows through the second fluid circuit heat exchanger, is heated again in the process and then drives the second turbine.
  • the first and second fluid circuit heat exchangers can be separate from one another and, in particular, be formed identically.
  • the first and second fluid circuit heat exchangers can also be formed by a unit which each comprises separate lines for the heat storage fluid, for the working fluid before flowing through the first turbine and for the working fluid after flowing through the first turbine.
  • the first and second fluid circuit heat exchangers are arranged in the heat storage fluid circuit in two lines parallel to one another.
  • the heat storage fluid circuit accordingly has a branch on two lines through which both heat storage fluid flows.
  • the first fluid circuit heat exchanger is in one of these lines arranged and in the other of these lines the second fluid circuit heat exchanger is arranged.
  • the two lines open into one another downstream to the two fluid circuit heat exchangers.
  • the “parallel” arrangement is therefore not to be viewed as geometrically parallel, but rather as the opposite of a series arrangement one behind the other in which the two fluid circuit heat exchangers would flow through one after the other.
  • a sufficiently high heat transfer in both heat exchangers can thereby advantageously be ensured.
  • a control device is present in the heat storage fluid circuit and is set up to variably set a distribution of heat storage fluid to the first fluid circuit heat exchanger and the second fluid circuit heat exchanger.
  • a heat transfer from the heat storage fluid to the working fluid for the two fluid circuit heat exchangers can be set differently from one another.
  • the working fluid can be cooled down after flowing through the first turbine, but it can still be warmer than it was before flowing through the first fluid circuit heat exchanger.
  • the working fluid in the second fluid circuit heat exchanger would have to absorb less thermal energy than in the first fluid circuit heat exchanger.
  • the control device can, for example, conduct more heat storage fluid to the first fluid circuit heat exchanger than to the second fluid circuit heat exchanger.
  • a first bypass around the first fluid circuit heat exchanger can be present in the working fluid circuit in order to conduct working fluid to the first turbine by bypassing the first fluid circuit heat exchanger.
  • a bypass can therefore be understood as a bypass line.
  • a first bypass control device can be provided and designed to variably set a division of working fluid to the first fluid circuit heat exchanger and to the first bypass. In this way, a heat transfer in the first fluid circuit heat exchanger to the working fluid can be varied. In this way, for example, temperature fluctuations in the heat storage fluid can be partially or completely compensated, so that a heat transfer to the working fluid is only slightly influenced by a temperature fluctuation in the heat storage fluid.
  • the first bypass and the control device can thus form a first quench cooler.
  • This is a mixer in which a fluid is cooled by mixing it with a cooler fluid is mixed.
  • the cooler fluid is the portion of the working fluid which has bypassed the first fluid circuit heat exchanger.
  • a second bypass can be provided with respect to the second fluid circuit heat exchanger.
  • a second bypass around the second fluid circuit heat exchanger can be present in the working fluid circuit in order to direct working fluid to the second turbine by bypassing the second fluid circuit heat exchanger.
  • a second bypass control device can be provided and set up to variably set a division of working fluid to the second fluid circuit heat exchanger and to the second bypass.
  • the two fluid circuit heat exchangers can in turn be operated differently and a desired temperature of the working fluid can be set in each case after flowing through the respective fluid circuit heat exchanger.
  • bypasses it is also possible, as an alternative or in addition to the bypasses described above, to provide one or two corresponding bypasses for heat storage fluid in the heat storage fluid circuit.
  • a variable proportion of the heat storage fluid is passed through the associated fluid circuit heat exchanger in order to vary a heat transfer to the working fluid.
  • the heat storage fluid is always present in liquid form when the power plant is in operation and is not evaporated.
  • the heat storage fluid would suddenly withdraw large amounts of energy from the heat storage as soon as it reached its edge or beginning. Disadvantageously, this would result in a spatially uneven discharge of the heat accumulator. In addition, the sudden evaporation would lead to material stresses. These problems are avoided if the heat storage fluid is not vaporized.
  • the working fluid for driving the turbine (s) should be in the form of steam or gas. This is made possible by the two separate fluid circuits and different fluids:
  • the working fluid can have a lower boiling point / boiling temperature than the heat storage fluid, so that the working fluid evaporates in the first fluid circuit heat exchanger.
  • the working fluid usually enters an optionally present second fluid circuit heat exchanger in vapor form and is further heated / superheated.
  • An electrical energy consumption by the electrical heater makes sense when the electricity price is low, that is, when there is an oversupply of electrical energy in one Power grid, which is referred to here as the external power grid.
  • the turbine and the generator can be operated in a relatively stable manner over time, that is to say they can not exhibit any changes that fluctuate greatly over time.
  • An electrical control unit can be provided and set up to variably set whether more electrical energy is currently being consumed from an external power network by the electric heater (s) or is being output to the external power network by the generator.
  • Preferred variants of the method according to the invention result from the intended use of the power plant according to the invention.
  • the method variants described are also to be viewed as variants of the power plant according to the invention.
  • FIG Fig. 3 An exemplary embodiment of a power plant 110 according to the invention is shown schematically in FIG Fig. 3 shown.
  • the power plant 110 comprises a first turbine 120 and a second turbine 121 or can also comprise further turbines (not shown).
  • the turbines 120, 121 are driven by a working fluid flowing through them.
  • the working fluid can be a steam, for example water vapor.
  • a generator 123 is coupled to the turbines 120, 121 and converts the rotational energy provided by the turbines 120, 121 into electrical energy. The electrical energy is then output to an external power grid.
  • the power plant 110 is used to compensate for fluctuations in the amount of electrical energy in the external power grid.
  • the power plant 110 is intended to take up electrical energy from the external power grid, in particular if there is an oversupply there. In the event of an oversupply, the electricity price can become very low or even negative, which means that the consumption of electrical energy is almost free or in some cases even brings money.
  • the electrical energy consumed is to be stored in the power plant 110 and output again as electrical energy at a different time.
  • the power plant 110 comprises at least one heat storage device 100.
  • a heat storage device 100 is shown in more detail in FIG. 1 as a perspective view and in FIG Figure 2 shown as a sectional view.
  • Each heat storage device 100 comprises at least one, preferably a plurality of heat storage units 1, which are stacked on top of one another.
  • Each heat storage unit 1 comprises an electrical heater 10. This converts electrical energy into thermal energy, preferably essentially completely, that is to say more than 90% of the energy absorbed by the electrical heater 10 is converted into thermal energy. The electrical energy is taken from the external power grid.
  • Each heat storage unit 1 furthermore comprises at least one, in particular exactly two, heat storage bodies 30, 31.
  • each heat storage unit also includes a heat exchanger 50 which has a plurality of heat storage tubes 51.
  • Each heat exchanger 50 is adjacent to at least one of the heat storage bodies 30.
  • Heat storage fluid is distributed to the various heat exchangers 50 via a distributor pipe 45. After flowing through the heat exchanger 50, the heat storage fluid is brought together in a collecting pipe 55.
  • the thermal energy of the heat storage fluid can now be used to generate electrical energy again.
  • the heat storage fluid is not passed through the turbines 120, 121. Rather, the Transfer heat from the heat storage fluid to a different working fluid, which is conducted in a separate circuit, the working fluid circuit 140.
  • the heat storage fluid circulates in its own circuit, the heat storage fluid circuit 130.
  • a heat storage fluid pump 125 which circulates the heat storage fluid in the circuit 130, is arranged in the heat storage fluid circuit 130.
  • a working fluid pump 145 which circulates the working fluid in the circuit 140, is arranged in the working fluid circuit 140.
  • the working fluid pump 145 provides a significantly higher pressure than the heat storage fluid pump 125, for example a pressure which is at least 10 times as high.
  • the heat storage fluid can have a higher boiling point than the working fluid, so that the heat storage fluid is present as a liquid and is not vaporized by the heat from the heat storage units.
  • the working fluid is evaporated by the thermal energy from the heat storage fluid and, after flowing through the turbines 120, 121, is liquefied in a condenser 124.
  • the condenser 124 can, as shown, comprise a heat exchanger, via which heat is removed from the working fluid, for example to a liquid, which can then be used further, for example for heating purposes. Since the heat storage fluid is not evaporated, the disadvantage described above is avoided that large amounts of energy are suddenly withdrawn from part of the heat storage body 30 through evaporation.
  • the heat storage fluid can be an oil, for example, while the working fluid is water or an aqueous solution.
  • At least one first fluid circuit heat exchanger 131 is provided.
  • a second fluid circuit heat exchanger 132 is also provided.
  • Working fluid and separately therefrom also heat storage fluid are passed through each of these heat exchangers 131, 132, the respective tubes being thermally coupled to one another for a high heat transfer.
  • the first fluid circuit heat exchanger 131 is arranged upstream of the turbine 120 with respect to the working fluid circuit 140.
  • the second fluid circuit heat exchanger 132 is arranged between the two turbines 120, 121 with regard to the working fluid circuit 140.
  • the two fluid circuit heat exchangers 131, 132 are arranged parallel to one another with regard to the heat storage fluid circuit 130.
  • a line of the heat storage fluid upstream of the two fluid circuit heat exchangers 131, 132 can be divided into two lines 135, 136 which each run through one of the two fluid circuit heat exchangers 131, 132.
  • the two lines 135, 136 are then brought together again.
  • the heat storage devices 100 can be arranged on lines which are parallel to one another. This has the advantage that the heat storage devices 100 arranged parallel to one another are discharged essentially to the same extent, that is to say, in particular, essentially the same amount of energy is transferred to the heat storage fluid flowing through. This prevents one heat storage device 100 from having reached a maximum temperature and consequently not being able to absorb and store any further energy from the external power grid while another of the heat storage devices 100 is far from the maximum temperature. When as many of the heat storage devices 100 as possible at the same time can absorb electrical energy, a maximum possible electrical energy consumption is advantageously higher.
  • some of the heat storage devices 100 can be arranged one behind the other in the heat storage fluid circuit 130, that is to say the heat storage fluid can flow through them one after the other.
  • the discharge that is to say the heat transfer to the heat storage medium
  • the heat storage fluid should not fall below a minimum temperature, which results in a minimum temperature for a heat storage device 100.
  • it is desirable that a minimum temperature of the heat storage device 100 is low, because this means that a possible temperature difference of the heat storage device 100 and thus its storage capacity is high. If two or more heat storage devices 100 are arranged one behind the other, they can be operated with different minimum temperatures.
  • a front one of these heat storage devices 100 can have a lower minimum temperature than a rear one of these heat storage devices 100.
  • the rear heat storage device 100 guarantees a desired minimum temperature of the heat storage fluid.
  • the front heat storage device 100 can be operated over a very large temperature range (that is to say over a larger temperature range than the rear heat storage device 100) and accordingly has a particularly high storage capacity.
  • the respective maximum temperatures of heat storage devices 100 arranged one behind the other can also be different.
  • a control device can be provided and operated to operate a front heat storage device 100 of the heat storage devices 100 arranged one behind the other over a larger temperature range than a rear heat storage device 100.
  • the entire mass of its heat storage bodies 30 is also relevant. If a rear heat storage device 100 made up of several heat storage devices arranged one behind the other is only used over a smaller temperature range anyway, it is advisable to measure the mass of its Selecting the heat storage body lower than the mass of the heat storage body of the front heat storage device 100. This can be realized, for example, in that the front heat storage device comprises more heat storage units than the rear heat storage device; otherwise, the heat storage units of the front and rear heat storage devices 100 may be the same.
  • the power plant 110 can also have a burner for a (fossil) energy carrier, for example for burning coal, natural gas or synthesis gas.
  • a burner for a (fossil) energy carrier for example for burning coal, natural gas or synthesis gas.
  • the heat released as a result can also be transferred to the working fluid or the heat storage fluid.
  • the output of the burner is controlled as a function of the current consumption of the electric heater 10. Current consumption occurs in particular (or exclusively) when there is an oversupply of electrical energy. At this time, it is desirable if less electrical energy is generated and, accordingly, the output of the burner is reduced.
  • the output of the burner can thus be reduced to a reduced value when the heat storage devices 100 are charged, in particular when their electrical power consumption exceeds a predetermined threshold value. In contrast, the output of the burner is not reduced to the reduced value, but rather kept at a higher value if the power consumption of the electric heater does not exceed the threshold value.
  • the power plant according to the invention enables large amounts of electrical energy to be stored as thermal energy in a simple and inexpensive manner and then converted back into electrical energy.

Description

Die Offenbarung betrifft gemäß Anspruch 1 ein Kraftwerk zum Erzeugen von elektrischer Energie. Außerdem betrifft die Offenbarung gemäß Anspruch 9 ein Verfahren zum Betreiben eines Kraftwerks.According to claim 1, the disclosure relates to a power plant for generating electrical energy. The disclosure also relates to a method for operating a power plant.

Bei dem Kraftwerk kann es sich beispielsweise um eine Anlage handeln, welche einen Energieträger verbrennt, um durch die freiwerdende Wärmeenergie elektrischen Strom zu erzeugen. Umfasst sind beispielsweise Gaskraftwerke und Kohlekraftwerke, welche als Energieträger Erdgas oder Kohle verbrennen. Auch kann mit zum Beispiel einem Reformer ein Synthesegas oder Wasserstoffgas erzeugt und verbrannt werden.The power plant can, for example, be a system that burns an energy carrier in order to generate electrical power from the heat energy released. This includes, for example, gas-fired power plants and coal-fired power plants, which burn natural gas or coal as an energy source. A synthesis gas or hydrogen gas can also be generated and burned with a reformer, for example.

Die Menge an erzeugter elektrischer Energie, die von zahlreichen Erzeugern in ein elektrisches Netz eingespeist wird, schwankt zeitlich stark. Insbesondere durch die verstärkte Nutzung regenerativer Energiequellen schwankt die Gesamtmenge an erzeugter elektrischer Energie zeitlich stark. Dadurch kann die verfügbare elektrische Energie einen momentanen Bedarf erheblich übertreffen. Beispielsweise in solchen Fällen ist es wünschenswert, erzeugte elektrische Energie zu speichern. Energiespeicher, die Energie in elektrischer oder chemischer Form speichern (wie zum Beispiel elektrochemische Batterien oder Kondensatoren) können zu vertretbaren Kosten aber nur verhältnismäßig geringe Energiemengen speichern. Um größere Energiemengen zu speichern, werden auch Pumpspeicherwerke genutzt. Diese erfordern jedoch einen großen Höhenunterschied, was in der Regel nur in Gebirgsregionen umsetzbar ist.The amount of electrical energy generated, which is fed into an electrical network by numerous producers, fluctuates greatly over time. In particular, due to the increased use of renewable energy sources, the total amount of electrical energy generated fluctuates strongly over time. As a result, the available electrical energy can significantly exceed a current requirement. In such cases, for example, it is desirable to store generated electrical energy. Energy storage devices that store energy in electrical or chemical form (such as electrochemical batteries or capacitors) can only store relatively small amounts of energy at a reasonable cost. Pumped storage plants are also used to store larger amounts of energy. However, these require a large difference in altitude, which is usually only possible in mountainous regions.

Die Anmelderin hat in vorausgegangenen Erfindungen Lösungsvorschläge entwickelt (Patentanmeldungen EP 14 187 132 , EP 15 183 855 , EP 15 183 857 ), wobei elektrische Energie vorübergehend in Wärmeenergie gespeichert wird und im Kraftwerk wieder in elektrische Energie gewandelt werden kann. Eine gattungsgemäße Wärmespeichervorrichtung ist beispielsweise von der Anmelderin in der europäischen Patentanmeldung mit der Anmeldenummer 14 187 132 beschrieben.In previous inventions, the applicant has developed proposed solutions (patent applications EP 14 187 132 , EP 15 183 855 , EP 15 183 857 ), whereby electrical energy is temporarily stored in thermal energy and can be converted back into electrical energy in the power plant. A generic heat storage device is described, for example, by the applicant in the European patent application with application number 14 187 132.

Ein solches gattungsgemäßes Kraftwerk zum Erzeugen von elektrischer Energie umfasst mindestens eine Wärmespeichervorrichtung zum Speichern von elektrischer Energie in Wärmeenergie. Jede Wärmespeichervorrichtung weist mindestens eine Wärmespeichereinheit auf, wobei jede Wärmespeichereinheit wiederum umfasst:

  • einen elektrischen Heizer zum Umwandeln von elektrischer Energie in Wärmeenergie,
  • mindestens einen Wärmespeicherkörper zum Aufnehmen und Speichern von Wärmeenergie des elektrischen Heizers,
  • einen Wärmetauscher zum Aufnehmen von Wärmeenergie vom Wärmespeicherkörper, wobei der Wärmetauscher Wärmetauscherrohre zum Leiten eines Wärmespeicherfluids umfasst.
Such a generic power plant for generating electrical energy comprises at least one heat storage device for storing electrical energy in thermal energy. Each heat storage device has at least one heat storage unit, each heat storage unit in turn comprising:
  • an electrical heater for converting electrical energy into thermal energy,
  • at least one heat storage body for receiving and storing thermal energy from the electric heater,
  • a heat exchanger for receiving thermal energy from the heat storage body, wherein the heat exchanger comprises heat exchanger tubes for conducting a heat storage fluid.

Das Kraftwerk umfasst außerdem mindestens eine erste Turbine und einen Generator, der mit der ersten Turbine gekoppelt ist, zum Erzeugen von elektrischer Energie aus einer von der Turbine bereitgestellten Drehbewegung.The power plant also includes at least one first turbine and a generator, which is coupled to the first turbine, for generating electrical energy from a rotary movement provided by the turbine.

Demnach wird elektrische Energie einem externen Stromnetz entnommen und mit den elektrischen Heizern in Wärmeenergie umgewandelt. Der elektrische Heizer kann beispielsweise Widerstandselemente umfassen, die Wärme erzeugen, wenn sie von einem elektrischen Strom durchflossen werden. Die Wärmeenergie wird sodann im Wärmespeicherkörper gespeichert. Dieser kann beispielsweise eine Metallplatte umfassen. An den Wärmespeicherkörper grenzt ein Wärmetauscher an, welcher zumindest Rohre umfasst, durch die das Wärmespeicherfluid durchgeleitet wird. Die Rohre des Wärmetauschers können entweder direkt den Wärmespeicherkörper kontaktieren oder über ein Wärmeleitmaterial (beispielsweise einen Metallkörper), der Teil des Wärmetauschers ist, mit dem Wärmespeicherkörper verbunden sein. Der Wärmetauscher kann in der Länge und dem Querschnitt seiner Rohre so ausgelegt sein, dass das Wärmespeicherfluid beim Durchströmen des Wärmetauschers verdampft, also beispielsweise flüssiges Wasser in Wasserdampf gewandelt wird.According to this, electrical energy is taken from an external power grid and converted into thermal energy with the electrical heaters. The electric heater can for example comprise resistance elements that generate heat when an electric current flows through them. The thermal energy is then stored in the heat storage body. This can for example comprise a metal plate. A heat exchanger adjoins the heat storage body, which heat exchanger comprises at least tubes through which the heat storage fluid is passed. The tubes of the heat exchanger can either contact the heat storage body directly or be connected to the heat storage body via a heat-conducting material (for example a metal body) that is part of the heat exchanger. The length and cross-section of its tubes can be designed in such a way that the heat storage fluid evaporates as it flows through the heat exchanger, that is to say, for example, liquid water is converted into water vapor.

Mit einem solchen Kraftwerk wird elektrische Energie aus einem externen Stromnetz aufgenommen und mit der Wärmespeichervorrichtung in Form von Wärmeenergie gespeichert. Zudem kann die gespeicherte Wärmeenergie wieder in elektrische Energie gewandelt und an das externe Stromnetz ausgegeben werden. Mit einer Steuereinheit kann eingestellt werden, ob momentan mehr elektrische Energie aus dem Stromnetz aufgenommen oder an das Stromnetz abgegeben wird. Dadurch können Schwankungen einer Energiemenge im Stromnetz zumindest teilweise kompensiert werden.With such a power plant, electrical energy is taken from an external power grid and stored with the heat storage device in the form of thermal energy. In addition, the stored thermal energy can be converted back into electrical energy and output to the external power grid. A control unit can be used to set whether more electrical energy is currently consumed from the power grid or transferred to the power grid. In this way, fluctuations in an amount of energy in the power grid can be at least partially compensated for.

In entsprechender Weise umfasst ein gattungsgemäßes Verfahren zum Betreiben eines Kraftwerks zum Erzeugen von elektrischer Energie die folgenden Schritte:

  • Umwandeln von elektrischer Energie in Wärmeenergie mit einem elektrischen Heizer einer Wärmespeichereinheit, welche Teil von mindestens einer Wärmespeichervorrichtung sein kann,
  • Aufnehmen und Speichern von Wärmeenergie des elektrischen Heizers mit mindestens einem Wärmespeicherkörper der Wärmespeichereinheit,
  • Übertragen von Wärmeenergie Wärmespeicherkörper auf ein Wärmespeicherfluid mit Hilfe eines Wärmetauschers , welcher Wärmetauscherrohre zum Leiten eines Wärmespeicherfluids umfasst,
  • Antreiben mindestens einer ersten Turbine und
  • Erzeugen von elektrischer Energie aus einer von der Turbine bereitgestellten Drehbewegung mit Hilfe eines Generators, der mit der ersten Turbine gekoppelt ist.
In a corresponding manner, a generic method for operating a power plant for generating electrical energy comprises the following steps:
  • Converting electrical energy into thermal energy with an electrical heater of a heat storage unit, which can be part of at least one heat storage device,
  • Receiving and storing thermal energy of the electric heater with at least one heat storage body of the heat storage unit,
  • Transferring thermal energy from heat storage bodies to a heat storage fluid with the aid of a heat exchanger which comprises heat exchanger tubes for conducting a heat storage fluid,
  • Driving at least a first turbine and
  • Generating electrical energy from a rotary movement provided by the turbine with the aid of a generator which is coupled to the first turbine.

Die Wärmespeicherkörper werden hierbei zwischen einer Minimaltemperatur und einer Maximaltemperatur betrieben. Die Temperaturdifferenz hierzwischen bestimmt, welche Energiemenge der Wärmespeicherkörper im Betrieb speichern und an das Wärmespeicherfluid freigeben kann. Eine variable Temperatur der Wärmespeicherkörper hat aber zur Folge, dass die Temperatur des Wärmespeicherfluids nach Durchströmen eines Wärmetauschers auch abhängig ist von der momentanen Temperatur des zugehörigen Wärmespeicherkörpers. Die Temperatur des Wärmespeicherfluids kann daher im Betrieb erheblich schwanken.The heat storage bodies are operated between a minimum temperature and a maximum temperature. The temperature difference between them determines which amount of energy the heat storage body can store during operation and release to the heat storage fluid. A variable temperature of the heat storage body, however, has the consequence that the temperature of the heat storage fluid after flowing through a heat exchanger is also dependent on the current temperature of the associated heat storage body. The temperature of the heat storage fluid can therefore fluctuate considerably during operation.

Gleichzeitig sollte eine Turbine mit Dampf, der eine bestimmte und möglichst konstante Temperatur hat, angetrieben werden. So ist einerseits der Wirkungsgrad einer Turbine abhängig von der Temperatur des durchströmenden Dampfes und andererseits können ungewünschte Materialbeanspruchungen auftreten, wenn sich die Temperatur des durchströmenden Dampfes rasch ändert.At the same time, a turbine should be driven with steam, which has a certain temperature that is as constant as possible. On the one hand, the efficiency of a turbine is dependent on the temperature of the steam flowing through it and, on the other hand, undesired material stresses can occur if the temperature of the steam flowing through changes rapidly.

Diese Probleme sind bei bekannten Kraftwerken nicht zufriedenstellend gelöst.These problems have not been satisfactorily solved in known power plants.

Kraftwerke zum Erzeugen elektrischer Energie, welche einen Wärmespeicher nutzen, sind außerdem bekannt aus DE 10 2012 103621 A1 und EP 2 101 051 A1 . Bei DE 10 2012 103 621 A1 sollen fluktuierende Überkapazitäten eines externen Stromnetzes genutzt werden, wozu dem Stromnetz elektrische Energie entnommen, in Wärme umgewandelt und in einem Wärmespeicher gespeichert wird. Ein Wärmeträgerkreislauf kann Wärme vom Wärmespeicher über einen Wärmetauscher auf einen Arbeitsfluidkreislauf übertragen; dort wird Wasser verdampft und so wird eine Turbine zur Stromerzeugung angetrieben. Ein weiterer Wärmespeicher mit Wärmetauscher ist zudem in WO 2012/000002 A2 beschrieben. Eine Vorrichtung zum Speichern von elektrischer Energie in Form von Wärme ist zudem in DE 10 2013 016 077 A1 beschrieben.Power plants for generating electrical energy, which use a heat store, are also known from DE 10 2012 103621 A1 and EP 2 101 051 A1 . At DE 10 2012 103 621 A1 fluctuating overcapacities of an external power grid are to be used, for which purpose electrical energy is taken from the power grid, converted into heat and stored in a heat store. A heat transfer circuit can transfer heat from the heat accumulator via a heat exchanger to a working fluid circuit; there, water is evaporated and a turbine is driven to generate electricity. Another heat storage unit with a heat exchanger is also in WO 2012/000002 A2 described. A device for storing electrical energy in the form of heat is also in DE 10 2013 016 077 A1 described.

Als eine Aufgabe der Erfindung kann angesehen werden, ein Kraftwerk und ein Verfahren zum Betreiben eines Kraftwerks anzugeben, mit dem besonders effizient Energie vorübergehend gespeichert und sodann wieder in elektrischer Form ausgeben werden kann.An object of the invention can be considered to provide a power plant and a method for operating a power plant with which energy can be temporarily stored particularly efficiently and then output again in electrical form.

Diese Aufgabe wird durch das Kraftwerk gemäß Anspruch 1 sowie durch das Verfahren mit den Merkmalen des Anspruchs 9 gelöst.This object is achieved by the power plant according to claim 1 and by the method having the features of claim 9.

Vorteilhafte Ausgestaltungen des erfindungsgemäßen Kraftwerks und des erfindungsgemäßen Verfahrens sind Gegenstand der abhängigen Ansprüche und werden in der folgenden Beschreibung erläutert.Advantageous configurations of the power plant according to the invention and the method according to the invention are the subject matter of the dependent claims and are explained in the following description.

Bei dem oben beschriebenen Kraftwerk ist erfindungsgemäß ein Wärmespeicherfluid-Kreislauf mit dem Wärmetauscher oder den Wärmetauschern verbunden. Ein vom Wärmespeicherfluid-Kreislauf verschiedener Arbeitsfluid-Kreislauf ist mit der ersten Turbine (und insbesondere mit eventuell vorhandenen weiteren Turbinen) verbunden. Mindestens ein erster Fluidkreislauf-Wärmetauscher ist vorhanden und mit dem Wärmespeicherfluid-Kreislauf sowie dem Arbeitsfluid-Kreislauf verbunden, zum Übertragen von Wärme vom Wärmespeicherfluid auf ein Arbeitsfluid im Arbeitsfluid-Kreislauf.In the power plant described above, a heat storage fluid circuit is connected to the heat exchanger or heat exchangers according to the invention. A working fluid circuit different from the heat storage fluid circuit is connected to the first turbine (and in particular to any further turbines that may be present). At least one first fluid circuit heat exchanger is present and connected to the heat storage fluid circuit and the working fluid circuit for transferring heat from the heat storage fluid to a working fluid in the working fluid circuit.

In entsprechender Weise ist das oben beschriebene Verfahren erfindungsgemäß durch zumindest die folgenden Schritte gekennzeichnet:

  • Leiten des Wärmespeicherfluids entlang einem Wärmespeicherfluid-Kreislauf, welcher mindestens einen ersten Fluidkreislauf-Wärmetauscher umfasst,
  • Übertragen von Wärmeenergie mit Hilfe des mindestens ersten Fluidkreislauf-Wärmetauschers vom Wärmespeicherfluid auf ein Arbeitsfluid,
  • Leiten des Arbeitsfluids in einem Arbeitsfluid-Kreislauf zu der ersten Turbine zum Antreiben der ersten Turbine.
In a corresponding manner, the method described above is characterized according to the invention by at least the following steps:
  • Directing the heat storage fluid along a heat storage fluid circuit which comprises at least one first fluid circuit heat exchanger,
  • Transferring thermal energy with the aid of the at least first fluid circuit heat exchanger from the heat storage fluid to a working fluid,
  • Directing the working fluid in a working fluid circuit to the first turbine for driving the first turbine.

Demnach wird das Wärmespeicherfluid nicht durch die Turbine(n) geleitet. Vielmehr wird allein das Arbeitsfluid durch die Turbine(n) geleitet. Dadurch hat eine Temperaturschwankung des Wärmespeicherfluids nur eine geringe Auswirkung auf die Temperatur des Arbeitsfluids. Vorteilhafterweise kann somit die Turbine mit Dampf einer weitgehend konstanten Temperatur angetrieben werden. Außerdem wird ein verhältnismäßig hoher Druck von beispielsweise 100bar nur bei der oder den Turbine(n) benötigt. Durch die beiden getrennten Kreisläufe muss der Druck des Fluids an den Wärmespeichereinheiten nicht so hoch sein wie der Fluiddruck an den Turbinen.Accordingly, the heat storage fluid is not passed through the turbine (s). Rather, only the working fluid is passed through the turbine (s). As a result, a temperature fluctuation of the heat storage fluid has only a minor effect on the temperature of the working fluid. The turbine can thus advantageously be driven with steam at a largely constant temperature. In addition, a relatively high pressure of, for example, 100 bar is only required for the turbine (s). Due to the two separate circuits, the pressure of the fluid on the heat storage units does not have to be as high as the fluid pressure on the turbines.

So kann beispielsweise eine Arbeitsfluid-Pumpe betrieben werden, um den Druck des Arbeitsfluids im Arbeitsfluid-Kreislauf zu erhöhen, und es kann eine Wärmespeicherfluid-Pumpe betrieben werden, um den Druck des Arbeitsfluids im Wärmespeicherfluid-Kreislauf zu erhöhen. Dabei werden die Arbeitsfluid-Pumpe und die Wärmespeicherfluid-Pumpe so betrieben, dass der Druck des Arbeitsfluids größer ist als der Druck des Wärmespeicherfluids. Alternativ oder zusätzlich kann die Leistung der Arbeitsfluid-Pumpe größer sein als die der Wärmespeicherfluid-Pumpe. Der höhere Druck kann beispielsweise bei einem Druckvergleich jeweils hinter der jeweiligen Pumpe definiert sein.For example, a working fluid pump can be operated to increase the pressure of the working fluid in the working fluid circuit, and a heat storage fluid pump can be operated to increase the pressure of the working fluid in the heat storage fluid circuit. The working fluid pump and the heat storage fluid pump are operated in such a way that the pressure of the working fluid is greater than the pressure of the heat storage fluid. Alternatively or additionally, the output of the working fluid pump can be greater than that of the heat storage fluid pump. The higher pressure can, for example, be defined behind the respective pump when comparing pressure.

Der Arbeitsfluid-Kreislauf und der Wärmespeicherfluid-Kreislauf können jeweils ein Rohrsystem umfassen, wobei diese beiden Rohrsysteme voneinander getrennt sind. Der Fluidkreislauf-Wärmetauscher kann ein Wärmetauscher sein, welcher voneinander getrennte Leitungen für Wärmespeicherfluid und für Arbeitsfluid aufweist. Über eine Wärmebrücke, beispielsweise eine Metallverbindung zwischen den getrennten Leitungen, wird Wärmeenergie vom Wärmespeicherfluid auf das Arbeitsfluid übertragen.The working fluid circuit and the heat storage fluid circuit can each comprise a pipe system, these two pipe systems being separated from one another. The fluid circuit heat exchanger can be a heat exchanger which has separate lines for heat storage fluid and for working fluid. Thermal energy is transferred from the heat storage fluid to the working fluid via a thermal bridge, for example a metal connection between the separate lines.

Das Wärmespeicherfluid und das Arbeitsfluid können jeweils eine prinzipiell beliebige Flüssigkeit oder beliebiges Gas sein. Das Wärmespeicherfluid kann insbesondere ein Öl, insbesondere ein Thermoöl, sein. Das Öl kann Salze umfassen und kann so bei ca. 200°C schmelzen und ab dieser Temperatur bis ca. 600°C nutzbar sein. Dadurch eignen sich salzhaltige Thermoöle besonders gut, um Wärmeenergie von den Wärmespeichereinheiten aufzunehmen. Das Wärmespeicherfluid kann demnach eine Flüssigkeit sein, die sowohl vor als auch nach Durchlaufen der Wärmetauscher in flüssiger Form vorliegt. Das Arbeitsfluid kann vom Wärmespeicherfluid verschieden sein und insbesondere Wasser oder eine wässrige Lösung sein. Dabei kann das Arbeitsfluid beim Durchströmen des oder der Fluidkreislauf-Wärmetauscher(s) verdampft werden. Insbesondere kann die Siedetemperatur des Arbeitsfluids bei dem durch die Arbeitsfluid-Pumpe erzeugten Druck niedriger als 200°C sein, so dass gewährleistet ist, dass das Arbeitsfluid stets im Fluidkreislauf-Wärmetauscher verdampft wird, unabhängig davon, ob das Wärmespeicherfluid momentan eine hohe Temperatur (ca. 600°C) oder eine niedrige Temperatur (ca. 250°C) hat.The heat storage fluid and the working fluid can in principle be any liquid or any gas. The heat storage fluid can in particular be an oil, in particular a thermal oil. The oil can contain salts and can be used at approx. Melting 200 ° C and from this temperature up to approx. 600 ° C can be used. This makes salty thermal oils particularly suitable for absorbing thermal energy from the heat storage units. The heat storage fluid can accordingly be a liquid that is present in liquid form both before and after passing through the heat exchanger. The working fluid can be different from the heat storage fluid and in particular be water or an aqueous solution. The working fluid can be vaporized as it flows through the fluid circuit heat exchanger (s). In particular, the boiling temperature of the working fluid at the pressure generated by the working fluid pump can be lower than 200 ° C, so that it is ensured that the working fluid is always evaporated in the fluid circuit heat exchanger, regardless of whether the heat storage fluid is currently at a high temperature (approx . 600 ° C) or a low temperature (approx. 250 ° C).

Erfindungsgemäß werden mehrstufige Turbinensysteme eingesetzt. So sind eine zweite Turbine und ein zweiter Fluidkreislauf-Wärmetauscher vorhanden. Die zweite Turbine ist ebenfalls mit dem Generator oder mit einem zweiten Generator gekoppelt, um diesen anzutreiben. Im Arbeitsfluid-Kreislauf ist die erste Turbine stromabwärts vom ersten Fluidkreislauf-Wärmetauscher angeordnet. Der zweite Fluidkreislauf-Wärmetauscher ist stromabwärts von der ersten Turbine angeordnet. Die zweite Turbine ist stromabwärts vom zweiten Fluidkreislauf-Wärmetauscher angeordnet. Arbeitsfluid wird somit zunächst im ersten Fluidkreislauf-Wärmetauscher erhitzt (und insbesondere verdampft) und durchströmt sodann die erste Turbine. Anschließend durchströmt das Arbeitsfluid den zweiten Fluidkreislauf-Wärmetauscher, wird dabei wieder erhitzt und treibt darauf die zweite Turbine an.According to the invention, multi-stage turbine systems are used. There are thus a second turbine and a second fluid circuit heat exchanger. The second turbine is also coupled to the generator or to a second generator in order to drive it. In the working fluid circuit, the first turbine is arranged downstream of the first fluid circuit heat exchanger. The second fluid circuit heat exchanger is arranged downstream of the first turbine. The second turbine is arranged downstream of the second fluid circuit heat exchanger. Working fluid is thus first heated (and in particular evaporated) in the first fluid circuit heat exchanger and then flows through the first turbine. The working fluid then flows through the second fluid circuit heat exchanger, is heated again in the process and then drives the second turbine.

Der erste und zweite Fluidkreislauf-Wärmetauscher können voneinander getrennt und insbesondere gleich gebildet sein. Alternativ können der erste und zweite Fluidkreislauf-Wärmetauscher aber auch durch eine Einheit gebildet sein, welche jeweils separate Leitungen für das Wärmespeicherfluid, für das Arbeitsfluid vor Durchströmen der ersten Turbine und für das Arbeitsfluid nach Durchströmen der ersten Turbine umfasst.The first and second fluid circuit heat exchangers can be separate from one another and, in particular, be formed identically. Alternatively, the first and second fluid circuit heat exchangers can also be formed by a unit which each comprises separate lines for the heat storage fluid, for the working fluid before flowing through the first turbine and for the working fluid after flowing through the first turbine.

Der erste und der zweite Fluidkreislauf-Wärmetauscher sind im Wärmespeicherfluid-Kreislauf in zwei zueinander parallelen Leitungen angeordnet. Der Wärmespeicherfluid-Kreislauf weist demnach eine Aufzweigung auf zwei Leitungen auf, die beide von Wärmespeicherfluid durchströmt werden. In der einen dieser Leitungen ist der erste Fluidkreislauf-Wärmetauscher angeordnet und in der anderen dieser Leitungen ist der zweite Fluidkreislauf-Wärmetauscher angeordnet. Die beiden Leitungen münden ineinander stromabwärts zu den beiden Fluidkreislauf-Wärmetauschern. Die "parallele" Anordnung ist daher nicht als geometrisch parallel, sondern als Gegensatz zu einer Reihenanordnung hintereinander anzusehen, bei welcher die beiden Fluidkreislauf-Wärmetauscher nacheinander durchströmt würden. Vorteilhafterweise kann hierdurch ein hinreichend hoher Wärmeübertrag in beiden Wärmetauschern gewährleistet werden.The first and second fluid circuit heat exchangers are arranged in the heat storage fluid circuit in two lines parallel to one another. The heat storage fluid circuit accordingly has a branch on two lines through which both heat storage fluid flows. The first fluid circuit heat exchanger is in one of these lines arranged and in the other of these lines the second fluid circuit heat exchanger is arranged. The two lines open into one another downstream to the two fluid circuit heat exchangers. The “parallel” arrangement is therefore not to be viewed as geometrically parallel, but rather as the opposite of a series arrangement one behind the other in which the two fluid circuit heat exchangers would flow through one after the other. A sufficiently high heat transfer in both heat exchangers can thereby advantageously be ensured.

Eine Steuereinrichtung ist im Wärmespeicherfluid-Kreislauf vorhanden und dazu eingerichtet, eine Aufteilung von Wärmespeicherfluid zu dem ersten Fluidkreislauf-Wärmetauscher und dem zweiten Fluidkreislauf-Wärmetauscher variabel einzustellen. Hierdurch können ein Wärmeübertrag vom Wärmespeicherfluid auf das Arbeitsfluid für die beiden Fluidkreislauf-Wärmetauscher voneinander verschieden eingestellt werden. So kann etwa das Arbeitsfluid nach Durchströmen der ersten Turbine abgekühlt sein, aber noch wärmer sein als vor Durchströmen des ersten Fluidkreislauf-Wärmetauschers sein. In diesem Fall müsste das Arbeitsfluid im zweiten Fluidkreislauf-Wärmetauscher weniger Wärmeenergie aufnehmen als im ersten Fluidkreislauf-Wärmetauscher. Dazu kann die Steuereinrichtung beispielsweise mehr Wärmespeicherfluid zu dem ersten Fluidkreislauf-Wärmetauscher als zu dem zweiten Fluidkreislauf-Wärmetauscher leiten.A control device is present in the heat storage fluid circuit and is set up to variably set a distribution of heat storage fluid to the first fluid circuit heat exchanger and the second fluid circuit heat exchanger. As a result, a heat transfer from the heat storage fluid to the working fluid for the two fluid circuit heat exchangers can be set differently from one another. For example, the working fluid can be cooled down after flowing through the first turbine, but it can still be warmer than it was before flowing through the first fluid circuit heat exchanger. In this case, the working fluid in the second fluid circuit heat exchanger would have to absorb less thermal energy than in the first fluid circuit heat exchanger. For this purpose, the control device can, for example, conduct more heat storage fluid to the first fluid circuit heat exchanger than to the second fluid circuit heat exchanger.

Im Arbeitsfluid-Kreislauf kann ein erster Bypass um den ersten Fluidkreislauf-Wärmetauscher vorhanden sein, um Arbeitsfluid unter Umgehung des ersten Fluidkreislauf-Wärmetauschers zur ersten Turbine zu leiten. Unter einem Bypass kann demnach eine Umgehungsleitung verstanden werden. Eine erste Bypass-Steuereinrichtung kann vorgesehen und dazu eingerichtet sein, eine Aufteilung von Arbeitsfluid zum ersten Fluidkreislauf-Wärmetauscher und zum ersten Bypass variabel einzustellen. In dieser Weise kann ein Wärmeübertrag im ersten Fluidkreislauf-Wärmetauscher auf das Arbeitsfluid variiert werden. Hierdurch können beispielsweise Temperaturschwankungen des Wärmespeicherfluids teilweise oder vollständig kompensiert werden, so dass ein Wärmeübertrag auf das Arbeitsfluid nur gering von einer Temperaturschwankung des Wärmespeicherfluids beeinflusst wird.A first bypass around the first fluid circuit heat exchanger can be present in the working fluid circuit in order to conduct working fluid to the first turbine by bypassing the first fluid circuit heat exchanger. A bypass can therefore be understood as a bypass line. A first bypass control device can be provided and designed to variably set a division of working fluid to the first fluid circuit heat exchanger and to the first bypass. In this way, a heat transfer in the first fluid circuit heat exchanger to the working fluid can be varied. In this way, for example, temperature fluctuations in the heat storage fluid can be partially or completely compensated, so that a heat transfer to the working fluid is only slightly influenced by a temperature fluctuation in the heat storage fluid.

Somit können der erste Bypass und die Steuereinrichtung einen ersten Quenchkühler bilden. Dieser ist ein Mischer, bei dem ein Fluid abgekühlt wird, indem es mit einem kühleren Fluid vermischt wird. Im vorliegenden Fall ist das kühlere Fluid der Anteil des Arbeitsfluids, welcher den ersten Fluidkreislauf-Wärmetauscher umgangen hat.The first bypass and the control device can thus form a first quench cooler. This is a mixer in which a fluid is cooled by mixing it with a cooler fluid is mixed. In the present case, the cooler fluid is the portion of the working fluid which has bypassed the first fluid circuit heat exchanger.

In analoger Weise kann ein zweiter Bypass in Bezug auf den zweiten Fluidkreislauf-Wärmetauscher vorgesehen sein. Hierbei kann im Arbeitsfluid-Kreislauf ein zweiter Bypass um den zweiten Fluidkreislauf-Wärmetauscher vorhanden sein, um Arbeitsfluid unter Umgehung des zweiten Fluidkreislauf-Wärmetauschers zur zweiten Turbine zu leiten. Eine zweite Bypass-Steuereinrichtung kann vorgesehen und dazu eingerichtet sein, eine Aufteilung von Arbeitsfluid zum zweiten Fluidkreislauf-Wärmetauscher und zum zweiten Bypass variabel einzustellen. Hierdurch können wiederum die beiden Fluidkreislauf-Wärmetauscher unterschiedlich betrieben werden und es kann jeweils eine gewünschte Temperatur des Arbeitsfluids nach Durchströmen des jeweiligen Fluidkreislauf-Wärmetauschers eingestellt werden.In an analogous manner, a second bypass can be provided with respect to the second fluid circuit heat exchanger. In this case, a second bypass around the second fluid circuit heat exchanger can be present in the working fluid circuit in order to direct working fluid to the second turbine by bypassing the second fluid circuit heat exchanger. A second bypass control device can be provided and set up to variably set a division of working fluid to the second fluid circuit heat exchanger and to the second bypass. As a result, the two fluid circuit heat exchangers can in turn be operated differently and a desired temperature of the working fluid can be set in each case after flowing through the respective fluid circuit heat exchanger.

Prinzipiell ist es auch möglich, alternativ oder zusätzlich zu den oben beschriebenen Bypässen einen oder zwei entsprechende Bypässe für Wärmespeicherfluid im Wärmespeicherfluid-Kreislauf vorzusehen. Bei einem solchen Bypass wird ein variabler Anteil des Wärmespeicherfluids durch den zugehörigen Fluidkreislauf-Wärmetauscher geleitet, um einen Wärmeübertrag auf das Arbeitsfluid zu variieren.In principle, it is also possible, as an alternative or in addition to the bypasses described above, to provide one or two corresponding bypasses for heat storage fluid in the heat storage fluid circuit. With such a bypass, a variable proportion of the heat storage fluid is passed through the associated fluid circuit heat exchanger in order to vary a heat transfer to the working fluid.

Es kann vorteilhaft sein, wenn im Betrieb des Kraftwerks das Wärmespeicherfluid stets in flüssiger Form vorliegt und nicht verdampft wird. Bei einer Verdampfung würde das Wärmespeicherfluid schlagartig große Energiemengen dem Wärmespeicher entziehen, sobald es dessen Rand oder Anfang erreicht. Nachteiligerweise würde dadurch der Wärmespeicher räumlich ungleichmäßig entladen. Zudem würde die schlagartige Verdampfung zu Materialbeanspruchungen führen. Diese Probleme werden vermieden, wenn das Wärmespeicherfluid nicht verdampft wird. Im Gegensatz hierzu sollte das Arbeitsfluid zum Antreiben der Turbine(n) als Dampf oder Gas vorliegen. Dies wird durch die zwei getrennten Fluidkreisläufe und unterschiedliche Fluide möglich: Das Arbeitsfluid kann einen niedrigeren Siedepunkt / Siedetemperatur als das Wärmespeicherfluid haben, so dass das Arbeitsfluid im ersten Fluidkreislauf-Wärmetauscher verdampft. Einen gegebenenfalls vorhandenen zweiten Fluidkreislauf-Wärmetauscher betritt das Arbeitsfluid in der Regel in Dampfform und wird weiter erhitzt / überhitzt.It can be advantageous if the heat storage fluid is always present in liquid form when the power plant is in operation and is not evaporated. In the event of evaporation, the heat storage fluid would suddenly withdraw large amounts of energy from the heat storage as soon as it reached its edge or beginning. Disadvantageously, this would result in a spatially uneven discharge of the heat accumulator. In addition, the sudden evaporation would lead to material stresses. These problems are avoided if the heat storage fluid is not vaporized. In contrast, the working fluid for driving the turbine (s) should be in the form of steam or gas. This is made possible by the two separate fluid circuits and different fluids: The working fluid can have a lower boiling point / boiling temperature than the heat storage fluid, so that the working fluid evaporates in the first fluid circuit heat exchanger. The working fluid usually enters an optionally present second fluid circuit heat exchanger in vapor form and is further heated / superheated.

Eine elektrische Energieaufnahme durch die elektrischen Heizer ist bei einem niedrigen Strompreis sinnvoll, das heißt bei einem Überangebot an elektrischer Energie in einem Stromnetz, welches hier als externes Stromnetz bezeichnet wird. Die Turbine und der Generator können hingegen zeitlich verhältnismäßig stabil betrieben werden, also keine zeitlich stark schwankenden Änderungen aufweisen. Es kann eine elektrische Steuereinheit vorgesehen und dazu eingerichtet sein, variabel einzustellen, ob momentan mehr elektrische Energie aus einem externen Stromnetz durch den oder die elektrische Heizer aufgenommen oder an das externe Stromnetz durch den Generator ausgegeben wird.An electrical energy consumption by the electrical heater makes sense when the electricity price is low, that is, when there is an oversupply of electrical energy in one Power grid, which is referred to here as the external power grid. The turbine and the generator, on the other hand, can be operated in a relatively stable manner over time, that is to say they can not exhibit any changes that fluctuate greatly over time. An electrical control unit can be provided and set up to variably set whether more electrical energy is currently being consumed from an external power network by the electric heater (s) or is being output to the external power network by the generator.

Bevorzugte Varianten des erfindungsgemäßen Verfahrens ergeben sich durch bestimmungsgemäßen Gebrauch des erfindungsgemäßen Kraftwerks. Zudem sind die beschriebenen Verfahrensvarianten auch als Varianten des erfindungsgemäßen Kraftwerks anzusehen.Preferred variants of the method according to the invention result from the intended use of the power plant according to the invention. In addition, the method variants described are also to be viewed as variants of the power plant according to the invention.

Weitere Eigenschaften und Vorteile der Erfindung werden nachstehend mit Bezug auf die beigefügten schematischen Figuren beschrieben.

Fig. 1
zeigt eine Wärmespeichervorrichtung eines erfindungsgemäßen Kraftwerks in einer Perspektivdarstellung.
Fig. 2
zeigt die Wärmespeichervorrichtung aus Fig. 1 in einer Schnittansicht.
Fig. 3
zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Kraftwerks, umfassend die Wärmespeichervorrichtung der Figuren 1 und 2.
Further properties and advantages of the invention are described below with reference to the attached schematic figures.
Fig. 1
shows a heat storage device of a power plant according to the invention in a perspective view.
Fig. 2
shows the heat storage device Fig. 1 in a sectional view.
Fig. 3
shows an embodiment of a power plant according to the invention, comprising the heat storage device of Figures 1 and 2 .

Gleiche und gleichwirkende Komponenten sind in den Figuren in der Regel mit übereinstimmendem Bezugszeichen gekennzeichnet.Identical and identically acting components are generally identified in the figures with the same reference symbols.

Ein Ausführungsbeispiel eines erfindungsgemäßen Kraftwerks 110 ist schematisch in Fig. 3 gezeigt.An exemplary embodiment of a power plant 110 according to the invention is shown schematically in FIG Fig. 3 shown.

Das Kraftwerk 110 umfasst eine erste Turbine 120 und eine zweite Turbine 121 oder kann auch noch weitere Turbinen (nicht dargestellt) umfassen. Die Turbinen 120, 121 werden durch ein durchströmendes Arbeitsfluid angetrieben. Das Arbeitsfluid kann ein Dampf, beispielsweise Wasserdampf, sein. Mit den Turbinen 120, 121 ist ein Generator 123 gekoppelt, welcher die Rotationsenergie, die durch die Turbinen 120, 121 bereitgestellt wird, in elektrische Energie umwandelt. Die elektrische Energie wird sodann an ein externes Stromnetz ausgegeben.The power plant 110 comprises a first turbine 120 and a second turbine 121 or can also comprise further turbines (not shown). The turbines 120, 121 are driven by a working fluid flowing through them. The working fluid can be a steam, for example water vapor. A generator 123 is coupled to the turbines 120, 121 and converts the rotational energy provided by the turbines 120, 121 into electrical energy. The electrical energy is then output to an external power grid.

Das Kraftwerk 110 wird genutzt, um Schwankungen in der Menge an elektrischer Energie in dem externen Stromnetz auszugleichen. Hierzu soll das Kraftwerk 110 elektrische Energie aus dem externen Stromnetz aufnehmen, wenn dort insbesondere ein Überangebot vorhanden ist. Bei einem Überangebot kann ein Strompreis zwischenzeitlich sehr klein oder sogar negativ werden, womit die Aufnahme elektrischer Energie beinahe kostenlos oder in manchen Fällen sogar geldeinbringend ist. Die aufgenommene elektrische Energie soll im Kraftwerk 110 gespeichert werden und zu einer anderen Zeit wieder als elektrische Energie ausgegeben werden.The power plant 110 is used to compensate for fluctuations in the amount of electrical energy in the external power grid. For this purpose, the power plant 110 is intended to take up electrical energy from the external power grid, in particular if there is an oversupply there. In the event of an oversupply, the electricity price can become very low or even negative, which means that the consumption of electrical energy is almost free or in some cases even brings money. The electrical energy consumed is to be stored in the power plant 110 and output again as electrical energy at a different time.

Zu dieser vorübergehenden Energiespeicherung umfasst das Kraftwerk 110 mindestens eine Wärmespeichervorrichtung 100. Im Beispiel von Fig. 3 sind mehrere Wärmespeichervorrichtungen 100 vorhanden. Eine Wärmespeichervorrichtung 100 ist näher in Figur 1 als Perspektivansicht und in Figur 2 als Schnittansicht dargestellt. Jede Wärmespeichervorrichtung 100 umfasst mindestens eine, vorzugsweise mehrere Wärmespeichereinheiten 1, die übereinander gestapelt sind. Jede Wärmespeichereinheit 1 umfasst einen elektrischen Heizer 10. Dieser wandelt elektrische Energie in Wärmeenergie um, vorzugsweise im Wesentlichen vollständig, das heißt mehr als 90% der vom elektrischen Heizer 10 aufgenommenen Energie wird in Wärmeenergie umgewandelt. Die elektrische Energie wird aus dem externen Stromnetz aufgenommen. Jede Wärmespeichereinheit 1 umfasst weiterhin mindestens einen, insbesondere genau zwei, Wärmespeicherkörper 30, 31. Diese können Metallkörper oder -platten sein, welche der Speicherung von Wärmeenergie dienen. Die Wärmespeicherkörper 30, 31 sind benachbart zum elektrischen Heizer 10, um Wärmeenergie vom elektrischen Heizer 10 aufzunehmen. Jede Wärmespeichereinheit umfasst schließlich auch einen Wärmetauscher 50, welcher mehrere Wärmespeicherrohre 51 aufweist. Jeder Wärmetauscher 50 ist benachbart zu mindestens einem der Wärmespeicherkörper 30. Dadurch wird Wärmeenergie vom Wärmespeicherkörper 30 auf die Wärmetauscherrohre und ein darin befördertes Wärmespeicherfluid übertragen. Über ein Verteilerrohr 45 wird Wärmespeicherfluid auf die verschiedenen Wärmetauscher 50 aufgeteilt. Nach Durchströmen der Wärmetauscher 50 wird das Wärmespeicherfluid in einem Sammelrohr 55 zusammengeführt.For this temporary energy storage, the power plant 110 comprises at least one heat storage device 100. In the example of FIG Fig. 3 there are multiple heat storage devices 100. A heat storage device 100 is shown in more detail in FIG. 1 as a perspective view and in FIG Figure 2 shown as a sectional view. Each heat storage device 100 comprises at least one, preferably a plurality of heat storage units 1, which are stacked on top of one another. Each heat storage unit 1 comprises an electrical heater 10. This converts electrical energy into thermal energy, preferably essentially completely, that is to say more than 90% of the energy absorbed by the electrical heater 10 is converted into thermal energy. The electrical energy is taken from the external power grid. Each heat storage unit 1 furthermore comprises at least one, in particular exactly two, heat storage bodies 30, 31. These can be metal bodies or plates which are used to store thermal energy. The heat storage bodies 30, 31 are adjacent to the electrical heater 10 in order to absorb thermal energy from the electrical heater 10. Finally, each heat storage unit also includes a heat exchanger 50 which has a plurality of heat storage tubes 51. Each heat exchanger 50 is adjacent to at least one of the heat storage bodies 30. As a result, thermal energy is transferred from the heat storage body 30 to the heat exchanger tubes and a heat storage fluid conveyed therein. Heat storage fluid is distributed to the various heat exchangers 50 via a distributor pipe 45. After flowing through the heat exchanger 50, the heat storage fluid is brought together in a collecting pipe 55.

Die Wärmeenergie des Wärmespeicherfluids kann nun genutzt werden, um wieder elektrische Energie zu erzeugen. Als ein wesentlicher Gedanke der Erfindung wird das Wärmespeicherfluid aber nicht durch die Turbinen 120, 121 geleitet. Vielmehr wird die Wärme vom Wärmespeicherfluid auf ein hiervon verschiedenes Arbeitsfluid übertragen, das in einem separatem Kreislauf, dem Arbeitsfluid-Kreislauf 140, geleitet wird. Das Wärmespeicherfluid zirkuliert in einem eigenen Kreislauf, dem Wärmespeicherfluid-Kreislauf 130.The thermal energy of the heat storage fluid can now be used to generate electrical energy again. As an essential concept of the invention, however, the heat storage fluid is not passed through the turbines 120, 121. Rather, the Transfer heat from the heat storage fluid to a different working fluid, which is conducted in a separate circuit, the working fluid circuit 140. The heat storage fluid circulates in its own circuit, the heat storage fluid circuit 130.

Hierdurch werden verschiedene Nachteile überwunden, die bei einem einzigen Kreislauf auftreten würden: Zum Antreiben von Turbinen wird häufig Wasserdampf verwendet; Wird als Wärmespeicherfluid Wasser verwendet, würde es daher von den Wärmespeichereinheiten verdampft werden. Bei solch einem Phasenübergang wird an der Kante der Wärmespeichereinheit (das heißt am Eingangsbereich, in dem Wärmespeicherfluid zur Wärmespeichereinheit gelangt) äußerst viel Wärmeenergie der Wärmespeichereinheit entnommen. Dadurch würde der Wärmespeicher ungleichmäßig entladen und Materialbelastungen können hoch sein. Außerdem muss der Druck des Fluids an der Turbine verhältnismäßig hoch sein. Bei einem einzigen Kreislauf hätte dies zur Folge, dass sämtliche Leitungen an den Wärmespeichereinheiten ebenfalls für höhere Drücke ausgelegt werden müssten. Die Temperatur des Wärmespeicherfluids hängt zudem von der momentanen Temperatur der Wärmespeichereinheiten ab und schwankt daher. Turbinen haben hingegen einen maximalen Wirkungsgrad nur für bestimmte Temperatur/Druck-Eigenschaften des auftreffenden Fluids.This overcomes various disadvantages that would occur with a single circuit: Steam is often used to drive turbines; If water is used as the heat storage fluid, it would therefore be evaporated by the heat storage units. With such a phase transition, an extremely large amount of heat energy is extracted from the heat storage unit at the edge of the heat storage unit (that is to say at the entrance area in which the heat storage fluid reaches the heat storage unit). This would result in an uneven discharge of the heat accumulator and material stresses could be high. In addition, the pressure of the fluid at the turbine must be relatively high. In the case of a single circuit, this would mean that all the lines on the heat storage units would also have to be designed for higher pressures. The temperature of the heat storage fluid also depends on the current temperature of the heat storage units and therefore fluctuates. Turbines, on the other hand, have maximum efficiency only for certain temperature / pressure properties of the impinging fluid.

Diese Nachteile werden vollständig oder zumindest teilweise überwunden, indem zwei voneinander getrennte Kreisläufe, der Arbeitsfluid-Kreislauf 140 und der Wärmespeicherfluid-Kreislauf 130, verwendet werden.These disadvantages are completely or at least partially overcome by using two separate circuits, the working fluid circuit 140 and the heat storage fluid circuit 130.

Im Wärmespeicherfluid-Kreislauf 130 ist eine Wärmespeicherfluid-Pumpe 125 angeordnet, welche das Wärmespeicherfluid im Kreislauf 130 zirkuliert. Zudem ist im Arbeitsfluid-Kreislauf 140 eine Arbeitsfluid-Pumpe 145 angeordnet, welche das Arbeitsfluid im Kreislauf 140 zirkuliert. Durch die Arbeitsfluid-Pumpe 145 wird ein wesentlich höherer Druck bereitgestellt als durch die Wärmespeicherfluid-Pumpe 125, beispielsweise ein mindestens 10mal so hoher Druck.A heat storage fluid pump 125, which circulates the heat storage fluid in the circuit 130, is arranged in the heat storage fluid circuit 130. In addition, a working fluid pump 145, which circulates the working fluid in the circuit 140, is arranged in the working fluid circuit 140. The working fluid pump 145 provides a significantly higher pressure than the heat storage fluid pump 125, for example a pressure which is at least 10 times as high.

Das Wärmespeicherfluid kann einen höheren Siedepunkt haben als das Arbeitsfluid, so dass das Wärmespeicherfluid als Flüssigkeit vorliegt und nicht durch Wärme von den Wärmespeichereinheiten verdampft wird. Hingegen wird das Arbeitsfluid durch die Wärmeenergie vom Wärmespeicherfluid verdampft und nach Durchströmen der Turbinen 120, 121 in einem Kondensor 124 verflüssigt. Der Kondensor 124 kann, wie dargestellt, einen Wärmetauscher umfassen, über den Wärme vom Arbeitsfluid abgeführt wird, beispielsweise auf eine Flüssigkeit, die sodann weiter verwendet werden kann, zum Beispiel zu Heizzwecken. Indem Wärmespeicherfluid nicht verdampft wird, wird der oben geschilderte Nachteil vermieden, dass durch eine Verdampfung schlagartig große Energiemengen einem Teil des Wärmespeicherkörpers 30 entzogen wird. Das Wärmespeicherfluid kann beispielsweise ein Öl sein, während das Arbeitsfluid Wasser oder eine wässrige Lösung ist.The heat storage fluid can have a higher boiling point than the working fluid, so that the heat storage fluid is present as a liquid and is not vaporized by the heat from the heat storage units. In contrast, the working fluid is evaporated by the thermal energy from the heat storage fluid and, after flowing through the turbines 120, 121, is liquefied in a condenser 124. The condenser 124 can, as shown, comprise a heat exchanger, via which heat is removed from the working fluid, for example to a liquid, which can then be used further, for example for heating purposes. Since the heat storage fluid is not evaporated, the disadvantage described above is avoided that large amounts of energy are suddenly withdrawn from part of the heat storage body 30 through evaporation. The heat storage fluid can be an oil, for example, while the working fluid is water or an aqueous solution.

Um Wärmeenergie vom Wärmespeicherfluid auf das Arbeitsfluid zu übertragen, ist mindestens ein erster Fluidkreislauf-Wärmetauscher 131 vorhanden. Im dargestellten Beispiel ist auch ein zweiter Fluidkreislauf-Wärmetauscher 132 vorgesehen. Durch jeden dieser Wärmetauscher 131, 132 hindurch wird Arbeitsfluid und getrennt hiervon auch Wärmespeicherfluid geleitet, wobei die jeweiligen Rohre für einen hohen Wärmetransfer thermisch miteinander gekoppelt sind.In order to transfer thermal energy from the heat storage fluid to the working fluid, at least one first fluid circuit heat exchanger 131 is provided. In the example shown, a second fluid circuit heat exchanger 132 is also provided. Working fluid and separately therefrom also heat storage fluid are passed through each of these heat exchangers 131, 132, the respective tubes being thermally coupled to one another for a high heat transfer.

Der erste Fluidkreislauf-Wärmetauscher 131 ist hinsichtlich des Arbeitsfluid-Kreislaufs 140 vor der Turbine 120 angeordnet. Der zweite Fluidkreislauf-Wärmetauscher 132 ist hingegen hinsichtlich des Arbeitsfluid-Kreislaufs 140 zwischen den beiden Turbinen 120, 121 angeordnet.The first fluid circuit heat exchanger 131 is arranged upstream of the turbine 120 with respect to the working fluid circuit 140. The second fluid circuit heat exchanger 132, however, is arranged between the two turbines 120, 121 with regard to the working fluid circuit 140.

Die beiden Fluidkreislauf-Wärmetauscher 131, 132 sind hinsichtlich des Wärmespeicherfluid-Kreislaufs 130 parallel zueinander angeordnet. Hierbei kann eine Leitung des Wärmespeicherfluids vor den beiden Fluidkreislauf-Wärmetauschern 131, 132 sich auf zwei Leitungen 135, 136 aufteilen, welche durch jeweils einen der beiden Fluidkreislauf-Wärmetauscher 131, 132 verlaufen. Danach werden die beiden Leitungen 135, 136 wieder zusammengeführt.The two fluid circuit heat exchangers 131, 132 are arranged parallel to one another with regard to the heat storage fluid circuit 130. Here, a line of the heat storage fluid upstream of the two fluid circuit heat exchangers 131, 132 can be divided into two lines 135, 136 which each run through one of the two fluid circuit heat exchangers 131, 132. The two lines 135, 136 are then brought together again.

Wie dargestellt, können zumindest einige der Wärmespeichervorrichtungen 100 auf zueinander parallelen Leitungen angeordnet sein. Dies hat den Vorteil, dass die parallel zueinander angeordneten Wärmespeichervorrichtungen 100 im Wesentlichen gleich stark entladen werden, das heißt insbesondere im Wesentlichen gleich viel Energie auf das durchströmende Wärmespeicherfluid übergeht. So wird vermieden, dass eine Wärmespeichervorrichtung 100 eine Maximaltemperatur erreicht hat und demnach keine weitere Energie aus dem externen Stromnetz aufnehmen und speichern kann, während eine andere der Wärmespeichervorrichtungen 100 weit von der Maximaltemperatur entfernt ist. Wenn möglichst viele der Wärmespeichervorrichtungen 100 gleichzeitig elektrische Energie aufnehmen können, ist eine maximal mögliche Aufnahme elektrischer Energie vorteilhafterweise höher.As shown, at least some of the heat storage devices 100 can be arranged on lines which are parallel to one another. This has the advantage that the heat storage devices 100 arranged parallel to one another are discharged essentially to the same extent, that is to say, in particular, essentially the same amount of energy is transferred to the heat storage fluid flowing through. This prevents one heat storage device 100 from having reached a maximum temperature and consequently not being able to absorb and store any further energy from the external power grid while another of the heat storage devices 100 is far from the maximum temperature. When as many of the heat storage devices 100 as possible at the same time can absorb electrical energy, a maximum possible electrical energy consumption is advantageously higher.

Zudem können einige der Wärmespeichervorrichtungen 100 im Wärmespeicherfluid-Kreislauf 130 hintereinander angeordnet sein, also nacheinander vom Wärmespeicherfluid durchströmt werden. Hierbei ist zwar die Entladung (also der Wärmetransfer auf das Wärmespeichermedium) aus den hintereinander angeordneten Wärmespeichervorrichtungen 100 unterschiedlich. Allerdings resultieren aus dieser Anordnung ebenfalls Vorteile: Das Wärmespeicherfluid sollte eine Minimaltemperatur nicht unterschreiten, woraus eine Minimaltemperatur für eine Wärmespeichervorrichtung 100 resultiert. Es ist aber wünschenswert, dass eine Minimaltemperatur der Wärmespeichervorrichtung 100 gering ist, denn dadurch ist eine mögliche Temperaturdifferenz der Wärmespeichervorrichtung 100 und somit ihre Speicherkapazität hoch. Sind zwei oder mehr Wärmespeichervorrichtungen 100 hintereinander angeordnet, können diese mit unterschiedlichen Minimaltemperaturen betrieben werden. Eine vordere dieser Wärmespeichervorrichtungen 100 kann eine niedrigere Minimaltemperatur haben als eine hintere dieser Wärmespeichervorrichtungen 100. Die hintere Wärmespeichervorrichtung 100 garantiert eine gewünschte Mindesttemperatur des Wärmespeicherfluids. Die vordere Wärmespeichervorrichtung 100 kann hingegen über einen sehr großen Temperaturbereich betrieben werden (das heißt über einen größeren Temperaturbereich als die hintere Wärmespeichervorrichtung 100) und hat demnach eine besonders hohe Speicherkapazität. Alternativ oder zusätzlich können auch die jeweiligen Maximaltemperaturen von hintereinander angeordneten Wärmespeichervorrichtungen 100 unterschiedlich sein.In addition, some of the heat storage devices 100 can be arranged one behind the other in the heat storage fluid circuit 130, that is to say the heat storage fluid can flow through them one after the other. In this case, the discharge (that is to say the heat transfer to the heat storage medium) from the heat storage devices 100 arranged one behind the other is different. However, this arrangement also results in advantages: the heat storage fluid should not fall below a minimum temperature, which results in a minimum temperature for a heat storage device 100. However, it is desirable that a minimum temperature of the heat storage device 100 is low, because this means that a possible temperature difference of the heat storage device 100 and thus its storage capacity is high. If two or more heat storage devices 100 are arranged one behind the other, they can be operated with different minimum temperatures. A front one of these heat storage devices 100 can have a lower minimum temperature than a rear one of these heat storage devices 100. The rear heat storage device 100 guarantees a desired minimum temperature of the heat storage fluid. The front heat storage device 100, on the other hand, can be operated over a very large temperature range (that is to say over a larger temperature range than the rear heat storage device 100) and accordingly has a particularly high storage capacity. As an alternative or in addition, the respective maximum temperatures of heat storage devices 100 arranged one behind the other can also be different.

In anderen Worten kann eine Steuereinrichtung vorgesehen sein und dazu betrieben werden, von den hintereinander angeordneten Wärmespeichervorrichtungen 100 eine vordere Wärmespeichervorrichtung 100 über einen größeren Temperaturbereich zu betreiben als eine hintere Wärmespeichervorrichtung 100.In other words, a control device can be provided and operated to operate a front heat storage device 100 of the heat storage devices 100 arranged one behind the other over a larger temperature range than a rear heat storage device 100.

Für die gesamte Speicherkapazität einer Wärmespeichervorrichtung 100 ist außer ihres Temperaturbereichs, das heißt des Bereichs zwischen der im Betrieb genutzten Minimal- und Maximaltemperatur der Wärmespeicherkörper 30, auch die gesamte Masse ihrer Wärmespeicherkörper 30 relevant. Wird eine hintere Wärmespeichervorrichtung 100 aus mehreren hintereinander angeordneten Wärmespeichervorrichtungen ohnehin nur über einen kleineren Temperaturbereich genutzt, bietet es sich an, die Masse ihrer Wärmespeicherkörper geringer zu wählen als die Masse der Wärmespeicherkörper der vorderen Wärmespeichervorrichtung 100. Dies kann beispielsweise realisiert werden, indem die vordere Wärmespeichervorrichtung mehr Wärmespeichereinheiten umfasst als die hintere Wärmespeichervorrichtung; im Übrigen können die Wärmespeichereinheiten der vorderen und hinteren Wärmespeichervorrichtung 100 gleich sein.For the total storage capacity of a heat storage device 100, apart from its temperature range, that is to say the range between the minimum and maximum temperatures of the heat storage bodies 30 used during operation, the entire mass of its heat storage bodies 30 is also relevant. If a rear heat storage device 100 made up of several heat storage devices arranged one behind the other is only used over a smaller temperature range anyway, it is advisable to measure the mass of its Selecting the heat storage body lower than the mass of the heat storage body of the front heat storage device 100. This can be realized, for example, in that the front heat storage device comprises more heat storage units than the rear heat storage device; otherwise, the heat storage units of the front and rear heat storage devices 100 may be the same.

Das Kraftwerk 110 kann zusätzlich zu den dargestellten Komponenten auch einen Brenner für einen (fossilen) Energieträger aufweisen, beispielsweise zum Verbrennen von Kohle, Erdgas oder Synthesegas. Die dadurch freiwerdende Wärme kann ebenfalls auf das Arbeitsfluid oder auch das Wärmespeicherfluid übertragen werden. Es kann vorgesehen sein, eine Leistung des Brenners abhängig von einer Stromaufnahme der elektrischen Heizer 10 zu steuern. Eine Stromaufnahme erfolgt insbesondere (oder ausschließlich) dann, wenn ein Überangebot an elektrischer Energie vorliegt. Zu dieser Zeit ist es also wünschenswert, wenn weniger elektrische Energie erzeugt wird und demnach die Leistung des Brenners verringert wird. So kann die Leistung des Brenners auf einen reduzierten Wert erniedrigt werden, wenn die Wärmespeichervorrichtungen 100 geladen werden, insbesondere wenn ihre elektrische Leistungsaufnahme einen vorgegebenen Schwellwert übersteigt. Hingegen wird die Leistung des Brenners nicht auf den reduzierten Wert erniedrigt, sondern auf einem höheren Wert gehalten, wenn die Leistungsaufnahme der elektrischen Heizer nicht den Schwellwert übersteigt.In addition to the components shown, the power plant 110 can also have a burner for a (fossil) energy carrier, for example for burning coal, natural gas or synthesis gas. The heat released as a result can also be transferred to the working fluid or the heat storage fluid. It can be provided that the output of the burner is controlled as a function of the current consumption of the electric heater 10. Current consumption occurs in particular (or exclusively) when there is an oversupply of electrical energy. At this time, it is desirable if less electrical energy is generated and, accordingly, the output of the burner is reduced. The output of the burner can thus be reduced to a reduced value when the heat storage devices 100 are charged, in particular when their electrical power consumption exceeds a predetermined threshold value. In contrast, the output of the burner is not reduced to the reduced value, but rather kept at a higher value if the power consumption of the electric heater does not exceed the threshold value.

Durch das erfindungsgemäße Kraftwerk können in einfacher und kostengünstiger Weise große Mengen elektrischer Energie als Wärmeenergie gespeichert und sodann wieder in elektrische Energie umgewandelt werden.The power plant according to the invention enables large amounts of electrical energy to be stored as thermal energy in a simple and inexpensive manner and then converted back into electrical energy.

Claims (11)

  1. A power plant for generating electrical energy, comprising:
    - at least one heat storage device (100) for storing electrical energy as heat energy, including at least one heat storage unit (1), wherein each heat storage unit (1) comprises:
    - an electrical heater (10) for converting electrical energy into heat energy;
    - at least one heat storage body (30, 31) for receiving and storing heat energy from the electrical heater (10);
    - a heat exchanger (50) for receiving heat energy from the heat storage body (30, 31), wherein the heat exchanger (50) comprises heat exchanger tubes (51) for guiding a heat storage fluid;
    - at least a first turbine (120);
    - a generator (123) coupled with the first turbine (120) for generating electrical energy from a rotational movement provided by the turbine;
    - a heat storage fluid circuit (130) which is connected with the heat exchanger (50) or the heat exchangers (50);
    - a working fluid circuit (140) which is connected with the first turbine (120);
    - at least one first fluid circuit heat exchanger (131) for transferring heat from the heat storage fluid to a working fluid in the working fluid circuit (140);
    characterized in that
    a second turbine (121) and a second fluid circuit heat exchanger (132) are provided;
    the second turbine (121) is also coupled with the generator (123) or a second generator to drive the generator (123) or the second generator;
    the first turbine (120) is arranged downstream of the first fluid circuit heat exchanger (131) in the working fluid circuit (140);
    the second fluid circuit heat exchanger (132) is arranged downstream of the first turbine (120);
    the second turbine (121) is arranged downstream of the second fluid circuit heat exchanger (132);
    the first and the second fluid circuit heat exchangers (131, 132) are arranged in the heat storage fluid circuit (130) in two lines (135, 136) which are parallel to each other;
    a control device is provided in the heat storage fluid circuit (130) and configured to variably set distribution of the heat storage fluid to the first fluid circuit heat exchanger (131) and the second fluid circuit heat exchanger (132).
  2. Power plant according to claim 1,
    characterized in that
    a first bypass along the first fluid circuit heat exchanger (131) is provided in the working fluid circuit (140) to guide working fluid to the first turbine (120), bypassing the first fluid circuit heat exchanger (131), and
    a first bypass control device is provided and configured to variably set distribution of the working fluid to the first fluid circuit heat exchanger (131) and to the first bypass.
  3. Power plant according to claim 1 or 2,
    characterized in that
    a second bypass along the second fluid circuit heat exchanger (132) is provided in the working fluid circuit (140) to guide working fluid to the second turbine (121), bypassing the second fluid circuit heat exchanger (132), and
    a second bypass control device is provided and configured to variably set distribution of the working fluid to the second fluid circuit heat exchanger (131) and to the second bypass.
  4. Power plant according to one of the claims 1 to 3,
    characterized in that
    an electrical control unit is provided and configured to variably set whether momentarily more electrical energy is taken from an external power grid through the electrical heater (10) or the electrical heaters or whether more electrical energy is output to the external power grid by the generator (123).
  5. Power plant according to one of the claims 1 to 4,
    characterized in that
    a plurality of heat storage devices (100) are provided of which at least some are arranged parallel to each other in the heat storage fluid circuit (130).
  6. Power plant according to one of the claims 1 to 5,
    characterized in that
    a plurality of heat storage devices (100) are provided of which at least some are serially arranged in the heat storage fluid circuit (130).
  7. Power plant according to claim 6,
    characterized in that
    a control device is provided and controlled to operate an anterior heat storage device (100) over a larger temperature range than a posterior heat storage device (100) of the serially arranged heat storage devices (100).
  8. Power plant according to claim 6 or 7,
    characterized in that
    an anterior heat storage device (100) of the serially arranged heat storage devices (100) comprises more heat storage units (1) than a posterior heat storage device (100) of the serially arranged heat storage devices (100).
  9. Method for operating a power plant to generate electrical energy, the method comprising the following steps:
    - converting electrical energy into heat energy with an electrical heater (10) of a heat storage unit (1) of at least one heat storage device (100);
    - receiving and storing heat energy of the electrical heater (10) with at least one heat storage body (30, 31) of the heat storage unit (1);
    - transferring heat energy of the at least one heat storage body (30, 31) to a heat storage fluid by a heat exchanger (50) which comprises heat exchanger tubes (51) for guiding a heat storage fluid;
    - driving at least a first turbine (120);
    - generating electrical energy from a rotational movement provided by the turbine (120) by means of a generator (123) coupled with the first turbine (120);
    - guiding the heat storage fluid along a heat storage fluid circuit (130) which comprises at least a first fluid circuit heat exchanger (131);
    - transferring heat energy from the heat storage fluid to a working fluid, by the at least first fluid circuit heat exchanger (131);
    - guiding the working fluid in a working fluid circuit (140) to the first turbine (120) for driving the first turbine (120);
    characterized in that
    a second turbine (121) and a second fluid circuit heat exchanger (132) are provided;
    the second turbine (121) also drives the generator (123) or a second generator; in the working fluid circuit (140), the first turbine (120) is arranged downstream of the first fluid circuit heat exchanger (131);
    the second fluid circuit heat exchanger (132) is arranged downstream of the first turbine (120);
    the second turbine (121) is arranged downstream of the second fluid circuit heat exchanger (132);
    the first and the second fluid circuit heat exchangers (131, 132) are arranged in the heat storage fluid circuit (130) in two lines (135, 136) which are parallel to each other;
    a control device is provided in the heat storage fluid circuit (130), wherein the control device variably sets in which parts heat storage fluid is distributed to the first fluid circuit heat exchanger (131) and the second fluid circuit heat exchanger (132).
  10. Method according to claim 9,
    characterized by at least the following steps:
    - operating a working fluid pump (145) to pressurize the working fluid in the working fluid circuit (140);
    - operating a heat storage fluid pump (125) to pressurize the working fluid in the heat storage fluid circuit (130);
    - wherein the working fluid pump (145) and the heat storage fluid pump (125) are operated such that the pressure of the working fluid is higher than the pressure of the heat storage fluid.
  11. Method according to claim 9 or 10,
    characterized by at least the following steps:
    - guiding the heat storage fluid in liquid form to and through the at least one heat storage device (100), wherein the heat storage fluid is not vaporized;
    - guiding the working fluid through the first fluid circuit heat exchanger (131), wherein the working fluid is vaporized.
EP17161768.1A 2017-03-20 2017-03-20 Power plant for generating electric power and a method for operating a power plant Active EP3379040B1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
DK17161768.1T DK3379040T3 (en) 2017-03-20 2017-03-20 POWER PLANT FOR GENERATION OF ELECTRIC ENERGY AND METHOD OF OPERATING A POWER PLANT
SI201730702T SI3379040T1 (en) 2017-03-20 2017-03-20 Power plant for generating electric power and a method for operating a power plant
ES17161768T ES2861551T3 (en) 2017-03-20 2017-03-20 Power plant to generate electrical energy and procedure to operate a power plant
PL17161768T PL3379040T3 (en) 2017-03-20 2017-03-20 Power plant for generating electric power and a method for operating a power plant
PT171617681T PT3379040T (en) 2017-03-20 2017-03-20 Power plant for generating electric power and a method for operating a power plant
EP17161768.1A EP3379040B1 (en) 2017-03-20 2017-03-20 Power plant for generating electric power and a method for operating a power plant
PCT/EP2018/055990 WO2018172107A1 (en) 2017-03-20 2018-03-11 Power plant for generating electrical energy and method for operating a power plant
CN201880028319.1A CN110573699B (en) 2017-03-20 2018-03-11 Power station for generating electrical energy and method for operating a power station
JP2019550149A JP7126090B2 (en) 2017-03-20 2018-03-11 Power plants for generating electrical energy and methods of operating power plants
US16/494,560 US10858960B2 (en) 2017-03-20 2018-03-11 Power plant for generating electrical energy and method for operating a power plant
CA3057239A CA3057239A1 (en) 2017-03-20 2018-03-11 Power plant for generating electrical energy and method for operating a power plant
AU2018236959A AU2018236959B2 (en) 2017-03-20 2018-03-11 Power plant for generating electrical energy and method for operating a power plant
ZA2019/06756A ZA201906756B (en) 2017-03-20 2019-10-14 Power plant for generating electrical energy and method for operating a power plant
HRP20210553TT HRP20210553T8 (en) 2017-03-20 2021-04-07 Power plant for generating electric power and a method for operating a power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17161768.1A EP3379040B1 (en) 2017-03-20 2017-03-20 Power plant for generating electric power and a method for operating a power plant

Publications (2)

Publication Number Publication Date
EP3379040A1 EP3379040A1 (en) 2018-09-26
EP3379040B1 true EP3379040B1 (en) 2021-01-13

Family

ID=58401394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17161768.1A Active EP3379040B1 (en) 2017-03-20 2017-03-20 Power plant for generating electric power and a method for operating a power plant

Country Status (14)

Country Link
US (1) US10858960B2 (en)
EP (1) EP3379040B1 (en)
JP (1) JP7126090B2 (en)
CN (1) CN110573699B (en)
AU (1) AU2018236959B2 (en)
CA (1) CA3057239A1 (en)
DK (1) DK3379040T3 (en)
ES (1) ES2861551T3 (en)
HR (1) HRP20210553T8 (en)
PL (1) PL3379040T3 (en)
PT (1) PT3379040T (en)
SI (1) SI3379040T1 (en)
WO (1) WO2018172107A1 (en)
ZA (1) ZA201906756B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4033191A1 (en) 2021-01-22 2022-07-27 Lumenion GmbH Heat accumulator with rails as heat storage bodies

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2026046B1 (en) * 2020-07-10 2022-03-15 Heatwacht Holding B V DEVICE FOR STORING ELECTRIC ENERGY, SYSTEM AND WORKING METHOD
TW202238061A (en) * 2021-01-29 2022-10-01 澳大利亞商葛瑞夫艾特能源資產公司 An energy storage device
WO2023115098A1 (en) * 2021-12-21 2023-06-29 MGA Thermal Pty Ltd Energy storage

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19938614A1 (en) 1999-08-14 2001-02-22 Bosch Gmbh Robert Cooling circuit for an internal combustion engine
US7172886B2 (en) * 2001-12-06 2007-02-06 The Regents Of The University Of California Biosynthesis of isopentenyl pyrophosphate
US6701711B1 (en) * 2002-11-11 2004-03-09 The Boeing Company Molten salt receiver cooling system
JP2004340093A (en) 2003-05-19 2004-12-02 Hideo Tamai Solar heat power generator
EP2101051A1 (en) * 2008-03-12 2009-09-16 Siemens Aktiengesellschaft Storage of electrical energy in a heat accumulator and reverse electrical energy production by means of a thermodynamic cycle
DK2182179T3 (en) * 2008-07-16 2011-07-11 Abb Research Ltd Thermoelectric energy storage system and method of storing thermoelectric energy
EP2329144A2 (en) * 2008-09-17 2011-06-08 Siemens Concentrated Solar Power Ltd. Solar thermal power plant
EP2312129A1 (en) * 2009-10-13 2011-04-20 ABB Research Ltd. Thermoelectric energy storage system having an internal heat exchanger and method for storing thermoelectric energy
US8327641B2 (en) * 2009-12-01 2012-12-11 General Electric Company System for generation of power using solar energy
DE102010023416A1 (en) * 2010-02-15 2011-09-08 Beba Energie Gmbh Method, heat storage and heat storage system for heating and cooling of a working fluid
WO2012000002A2 (en) * 2010-07-01 2012-01-05 Psw Systems Ag Arrangement for converting thermal energy and apparatus for heating and cooling a medium
JP5707546B2 (en) * 2011-04-11 2015-04-30 三菱日立パワーシステムズ株式会社 Solar thermal boiler system
EP2587005A1 (en) * 2011-10-31 2013-05-01 ABB Research Ltd. Thermoelectric energy storage system with regenerative heat exchange and method for storing thermoelectric energy
DE102011088380A1 (en) * 2011-12-13 2013-06-13 Siemens Aktiengesellschaft Energy storage device with open charging circuit for storing seasonal excess electrical energy
EP2653670A1 (en) * 2012-04-17 2013-10-23 Siemens Aktiengesellschaft Assembly for storing and emitting thermal energy with a heat storage device and a cold air reservoir and method for its operation
DE102012103621A1 (en) * 2012-04-25 2013-10-31 Hitachi Power Europe Gmbh Solar-thermal power plant e.g. paraboloid power plant, for electricity generation, has heat accumulators comprising electrical heater attached to public, external electricity main and/or power plant-self electricity generator
WO2014161065A1 (en) * 2013-04-03 2014-10-09 Sigma Energy Storage Inc. Compressed air energy storage and recovery
DE102013016077A1 (en) * 2013-09-27 2015-04-16 Rolf Schumacher Electrical energy storage by means of high-temperature thermal storage
WO2016014139A1 (en) * 2014-07-24 2016-01-28 Hall David R Angled degradation pick
US10323543B2 (en) * 2014-07-28 2019-06-18 Third Power, LLC Conversion of power plants to energy storage resources
EP3002528B1 (en) 2014-09-30 2018-01-31 Lumenion GmbH Heat accumulator and method for operating a heat accumulator
TN2016000008A1 (en) 2015-02-04 2017-07-05 General Electric Technology Gmbh Electrical energy storage and discharge system
US10401093B2 (en) * 2015-03-20 2019-09-03 Siemens Gamesa Renewable Energy A/S Thermal energy storage plant
EP3139108B1 (en) * 2015-09-04 2018-03-28 Lumenion GmbH Storage device and method of temporarily storing electrical energy into heat energy
CN107605547A (en) 2017-09-27 2018-01-19 葛洲坝中科储能技术有限公司 A kind of electricity generation system for coupling heat-storing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4033191A1 (en) 2021-01-22 2022-07-27 Lumenion GmbH Heat accumulator with rails as heat storage bodies
WO2022157006A1 (en) 2021-01-22 2022-07-28 Lumenion Gmbh Heat store with rails as heat-storage bodies
US11686533B2 (en) 2021-01-22 2023-06-27 Lumenion Gmbh Heat store with rails as heat-storage bodies

Also Published As

Publication number Publication date
US20200011207A1 (en) 2020-01-09
EP3379040A1 (en) 2018-09-26
WO2018172107A1 (en) 2018-09-27
SI3379040T1 (en) 2021-07-30
US10858960B2 (en) 2020-12-08
DK3379040T3 (en) 2021-04-12
CN110573699B (en) 2021-10-22
CN110573699A (en) 2019-12-13
JP7126090B2 (en) 2022-08-26
AU2018236959B2 (en) 2023-01-05
HRP20210553T8 (en) 2022-01-21
ZA201906756B (en) 2021-02-24
ES2861551T3 (en) 2021-10-06
AU2018236959A1 (en) 2019-10-03
CA3057239A1 (en) 2018-09-27
HRP20210553T1 (en) 2021-09-03
PL3379040T3 (en) 2021-07-05
JP2020513081A (en) 2020-04-30
PT3379040T (en) 2021-04-15

Similar Documents

Publication Publication Date Title
EP2812542B1 (en) Energy storage power plant and method for operating such a power plant
EP3379040B1 (en) Power plant for generating electric power and a method for operating a power plant
DE10329623B3 (en) Solar-thermal extraction of electrical energy involves heating medium by solar heating to above temperature working point of steam turbine, using to charge heat store connected before steam turbine.
EP2488752B1 (en) Solar thermal power plant and method for operating a solar thermal power plant
EP2705224B1 (en) Control system for matching the output of a steam turbine to a changed load
EP2900943B1 (en) Cogeneration power plant and method for operating a cogeneration power plant
DE102007013430B4 (en) Solar thermal power plant and method for operating a solar thermal power plant
DE102009038446B4 (en) Solar thermal power plant with heat exchanger in the feedwater preheating section
DE102009056707A1 (en) Steam power plant with solar collectors
DE202008002599U1 (en) Solar thermal hybrid power plant
EP2224104B1 (en) Method for operating a power plant
DE2555897A1 (en) METHOD OF EXPLOITING THE EXCESS HEAT OF AN ELECTRICITY PLANT
EP3139108B1 (en) Storage device and method of temporarily storing electrical energy into heat energy
EP0099501A2 (en) Method of changing the electric energy release of a heating power plant without influencing the heat release to the heat consumers
EP2287547B1 (en) Heat pump and method for regulating the source entry temperature of the heat pump
DE102013101648A1 (en) Method for storing and transferring of thermal energy within solar thermal power plant of solar field arrangement to turbine arrangement, involves flowing heat transfer medium in solar field circuit
EP2638286B1 (en) Solar thermal power plant
DE102011053322A1 (en) Method and device for storing and recovering thermal energy
DE102018100712A1 (en) Steam power plant and method for operating a steam power plant
WO2022112063A1 (en) System and method for storing and releasing electrical energy, the energy being stored as thermal energy
DE102013222677B4 (en) Heat transfer device, heat storage device and method for transferring and / or storing heat
EP2600058A1 (en) Device for converting a liquid work medium into a gas or vapor state, in particular for generating water steam
DE102010010614B4 (en) Method and device for generating energy in an ORC system
EP2312130A1 (en) Adjustment of the preheat end temperature of a power plant secondary circuit with selective activation of different bleed connections of a steam turbine
DE102010040204A1 (en) Solar thermal continuous evaporator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180813

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200807

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017009027

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1354708

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20210553T

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210408

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LUMENION GMBH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3379040

Country of ref document: PT

Date of ref document: 20210415

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210407

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210113

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 37019

Country of ref document: SK

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210413

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210553T

Country of ref document: HR

Payment date: 20210720

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20210553

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2861551

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211006

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017009027

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

26N No opposition filed

Effective date: 20211014

REG Reference to a national code

Ref country code: HR

Ref legal event code: T8IS

Ref document number: P20210553

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210320

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210553

Country of ref document: HR

Payment date: 20220311

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210553

Country of ref document: HR

Payment date: 20230313

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230215

Year of fee payment: 7

Ref country code: FR

Payment date: 20230308

Year of fee payment: 7

Ref country code: CZ

Payment date: 20230309

Year of fee payment: 7

Ref country code: DK

Payment date: 20230323

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1354708

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230316

Year of fee payment: 7

Ref country code: SK

Payment date: 20230313

Year of fee payment: 7

Ref country code: SI

Payment date: 20230309

Year of fee payment: 7

Ref country code: SE

Payment date: 20230216

Year of fee payment: 7

Ref country code: PT

Payment date: 20230317

Year of fee payment: 7

Ref country code: PL

Payment date: 20230309

Year of fee payment: 7

Ref country code: IT

Payment date: 20230130

Year of fee payment: 7

Ref country code: HR

Payment date: 20230313

Year of fee payment: 7

Ref country code: GB

Payment date: 20230307

Year of fee payment: 7

Ref country code: DE

Payment date: 20230316

Year of fee payment: 7

Ref country code: BE

Payment date: 20230218

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230322

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170320

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230414

Year of fee payment: 7

Ref country code: CH

Payment date: 20230402

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20231223

Year of fee payment: 8

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210553

Country of ref document: HR

Payment date: 20240311

Year of fee payment: 8