EP3375980B1 - Dichtungsträger für eine strömungsmaschine - Google Patents

Dichtungsträger für eine strömungsmaschine Download PDF

Info

Publication number
EP3375980B1
EP3375980B1 EP17160464.8A EP17160464A EP3375980B1 EP 3375980 B1 EP3375980 B1 EP 3375980B1 EP 17160464 A EP17160464 A EP 17160464A EP 3375980 B1 EP3375980 B1 EP 3375980B1
Authority
EP
European Patent Office
Prior art keywords
sealing structure
seal support
cavity
turbomachine
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17160464.8A
Other languages
English (en)
French (fr)
Other versions
EP3375980A1 (de
Inventor
Steffen Schlothauer
Frank Stiehler
Alexander Ladewig
Christian Liebl
Johannes Casper
Jürgen Kraus
Andreas Jakimov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to EP17160464.8A priority Critical patent/EP3375980B1/de
Priority to US15/911,380 priority patent/US20180258784A1/en
Publication of EP3375980A1 publication Critical patent/EP3375980A1/de
Application granted granted Critical
Publication of EP3375980B1 publication Critical patent/EP3375980B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/127Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with a deformable or crushable structure, e.g. honeycomb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • F01D11/125Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material with a reinforcing structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/28Three-dimensional patterned
    • F05D2250/283Three-dimensional patterned honeycomb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position

Definitions

  • the present invention relates to a seal carrier for a turbomachine.
  • the turbomachine may preferably be a jet engine.
  • One component of this is a so-called seal carrier, which encloses the hot gas duct radially outward in the region of a rotor blade ring.
  • Such a seal carrier has a first and a second seal carrier segment, which are assembled successively relative to a circulation about a longitudinal axis of the turbomachine. Radially inside, the first seal carrier segment has a first sealing structure and the second seal carrier segment has a second sealing structure.
  • EP0716218 and EP2617949 discloses various sealing devices for turbomachines.
  • the present invention is based on the technical problem of specifying a particularly advantageous seal carrier for a turbomachine.
  • this object solves, on the one hand, a seal carrier according to claim 1, in which the first and the second sealing structure are entangled with respect to the circulation about the longitudinal axis of the turbomachine in such a way that a sectional plane which includes the longitudinal axis of the turbomachine both the first and also the second sealing structure intersects, as well as to the other a seal carrier according to claim 9, wherein the first and the second sealing structure abut each other.
  • the two solution variants ie the "entanglement" of the sealing structures according to claim 1 or their “contact” to each other according to claim 9, is based on the same inventive idea, namely to extend or block the flow path between the sealing structures.
  • the sealing effect can be improved and thus achieve a higher efficiency.
  • a parting line between the sealing structures is generally located between the sealing structures with a size of between 0.3 mm and 0.4 mm (taken in the direction of rotation) and continuous axially in an axial direction extends. This causes leaks and loss of efficiency result.
  • sealing structures are entangled with each other or abut each other, the latter at least in the hot state, preferably also already in the cold state.
  • the flow path is thus at least extended.
  • cutting plane which includes the longitudinal axis of the turbomachine (hereinafter also “turbomachine longitudinal axis”), that extends axially and radially, intersects both the first and the second sealing structure due to the entanglement.
  • the first and the second seal carrier segment may preferably each be a half-shell, see below.
  • the second transition between the sealing structures of the half-shells is optimized, preferably analogous to the first (ie the two transitions are then optimized either by the entanglement or the system) , Quite generally, in the seal carrier, preferably all transitions between circumferentially successive sealing structures, which are respectively assigned to different seal carrier segments, are flow-optimized in the manner according to the invention.
  • the seal carrier is "composed" of the seal carrier segments, the latter are thus previously made separately for each separately and then assembled.
  • the assembly can generally be made cohesively, for example by welding or soldering, such as inductive soldering.
  • a seal carrier which is composed of two seal carrier half-shells, which are assembled together only form-fitting and / or non-positively.
  • the seal carrier half-shells can, however, for example, in turn be constructed in each case from a plurality of seal carrier segments which are materially connected to each seal carrier half-shell, in particular soldered, preferably each of three seal carrier segments. Both transitions are preferred between the seal carrier half-shells as well as those within a respective half-shell in accordance with the invention flow-optimized.
  • the production of the seal carrier segments is preferably generative, that is to say by selective solidification of a shapeless or shape-neutral material, see below in detail. With the generative structure, the interlacing or investment structures can be generated particularly well.
  • the parting line has a parting line between the first and the second sealing structure seen in the radial direction, looking approximately radially from the turbomachine longitudinal axis thereon, at least in sections an angled to the axial direction course.
  • the parting line should not extend axially straight through, but for example.
  • the flow path between the sealing structures is lengthened by the course, which is angled at least in sections, that is to say in any case in an axial section, to the axial direction.
  • Angled may mean, for example, an angle of 90 °, for example in the case of a pure step shape, also in conjunction with an otherwise axis-parallel extent;
  • any angle smaller than 90 ° are possible (considered always the smallest included with the axial direction angle), wherein the angle over the axial extent of the parting line can also change.
  • the parting line can extend at least in sections angled to the radial direction; However, preferred is a parting line with a straight line in the radial direction, only radial extent.
  • turbomachine longitudinal axis As far as generally referred to in the context of this disclosure to an arrangement “axial” or an “axial direction”, this refers to the turbomachine longitudinal axis.
  • the “turbomachine longitudinal axis” is then, for example, an axis of rotation about which the rotor blade ring arranged in the seal carrier is rotatably mounted.
  • radial or the “radial direction” refer to the turbomachine longitudinal axis, namely, are perpendicular to it.
  • circulation and “circulation direction” refer to it, namely to a circulation around the turbomachine longitudinal axis as a rotation axis.
  • the sealing structures preferably form a cavity structure with a plurality of cavities axially and circumferentially separated from one another via cavity walls.
  • the cavities are enclosed axially and circumferentially by the cavity walls and are preferably closed radially outward, to the turbomachine longitudinal axis, ie radially inward, they are open.
  • a honeycomb structure may be preferable.
  • the cavities delimited by the cavity walls then each have a hexagonal shape when viewed in the radial direction. However, this is generally not mandatory.
  • the parting line passes through at least one of the cavities.
  • This at least one cavity is then formed jointly by the first and the second sealing structure, the sealing structures are at the parting line to each other so at least partially open (relative to the direction of rotation).
  • the sealing structures are closed at the parting line to each other, so the parting line is circumferentially enclosed on both sides of separating gap side cavity walls of the two sealing structures over its entire extent.
  • the parting line is at least in sections angled extending parting line inserted into the cavity structure such that it extends between the cavities of the sealing structures and thereby passes through any of the cavities.
  • the parting line is thus laid exclusively along cavity walls through the structure.
  • the cavities are arranged regularly at least in the direction of rotation, even beyond the parting line.
  • a specific sequence of differently shaped and / or arranged cavities may occur periodically, ie repeatedly, over the course of time, in general, for example.
  • exactly one type cavity (a shape) is repeated over the revolution, and more preferably circumferentially in equidistant arrangement and alignment (the arrangement is rotationally symmetric with a certain number of counts).
  • the cavities are also regularly arranged in the axial direction, that is to say that the same type of cavity is particularly preferably repeated in the axial direction in an equidistant arrangement.
  • the cavities as seen in the radial direction, each have a polygonal outer shape, particularly preferably a hexagonal shape (honeycomb shape).
  • the parting line can then extend along two side edges for each adjacent honeycomb, ie, describe a zig-zag line.
  • the sealing structures are entangled with one another such that a cavity wall of the first sealing structure extends in the circumferential direction into the second sealing structure. This cavity wall of the first sealing structure is then arranged axially between cavity walls of the second sealing structure, but preferably also axially spaced therefrom.
  • a cavity wall of the second sealing structure preferably also extends in the direction of rotation into the first sealing structure (and is arranged axially between cavity walls of the first sealing structure). More preferably, each sealing structure has a respective plurality of cavity walls extending in the direction of rotation into the respective other sealing structure.
  • a cavity wall of the first sealing structure merges into a cavity wall of the second sealing structure at the sectional plane, namely the two cavity walls together form a positive connection with one another.
  • This positive engagement is intended to block relative displacement with respect to the axial direction, generally only with respect to one of the axial directions, but preferably with respect to both opposite axial directions.
  • the intermeshing cavity walls are nut and spring-like composite, thus forming one of the cavity walls at its circumferential end a groove into which the other cavity wall is inserted with its circumferential end.
  • Their longitudinal extent, the groove base and the spring in this case each have substantially in the radial direction.
  • the first sealing structure has a spring element and rests with this spring element on the second sealing structure.
  • the spring element forms a contact surface, which is mounted elastically displaceable as a result of the spring property in the direction of rotation.
  • This "elastic-displaceable-bearing-being" goes beyond a material inherent, beyond the E-modulus detected elasticity, namely, for example, supported by an at least partially or partially cantilever designed spring element geometry.
  • the spring element can, for example, have a clasp or bridge shape.
  • the second sealing structure on a spring element which forms an elastically displaceably mounted bearing surface, wherein the two sealing structures then abut each other with their spring elements.
  • an elastically mounted contact surface may be of interest with a view to a certain offset compensation, cf. also the comments above.
  • a seal carrier can be realized in which the sealing structures lie against one another in both the cold and the hot state, without material-critical strains.
  • the spring element is slidably mounted with a storage area in the remaining sealing structure, wherein the offset of the contact surface in the direction of rotation is proportionately converted into a displacement of the storage area.
  • the spring element can also be formed monolithically with the rest of the sealing structure at its opposite end, but preferably it has a further storage area, which is likewise displaceably mounted in the remaining sealing structure.
  • a relative mobility (of the storage point with respect to the remaining sealing structure) with at least one directional component in the axial direction results as a result of the "displaceably stored" being, preferably a total axially aligned displacement distance.
  • a corresponding sealing structure with a spring element can be generated generatively in a particularly advantageous manner produce, where the bearing is then, for example, partially constructed with a sacrificial material and the relative mobility is then given after its release.
  • the seal carrier segments each have a support structure radially outside the respective sealing structure.
  • the seal carrier segments are connected to each other via their support structures, in particular positive and / or non-positive, but apart from that, in their sealing structures movable relative to each other.
  • the first seal carrier segment is a first seal carrier half-shell and the second seal carrier segment is a second seal carrier half-shell, see. also the comments at the beginning.
  • each of the seal carrier half shells circumferentially extends over 180 °.
  • the seal carrier is then, based on the direction of rotation, composed exclusively of the two seal carrier half shells, these are positively and / or non-positively connected to each other, preferably exclusively positive and / or non-positive. In other words, form the two half-shells over the entire circulation the seal carrier, so there are in the seal carrier apart from the half-shells no further seal carrier segments.
  • the seal carrier segments are each in a preferred embodiment for themselves generatively manufactured parts.
  • the parts are constructed on the basis of a data model from an informal or shape-neutral material which, for example, is converted selectively into regions in a dimensionally stable state by means of physical and / or chemical processes, for example by selective local melting.
  • a wide range of different geometries can be produced, that is, for example, in the sealing structure, a spring element can be molded or can be realized in the circumferential direction protruding cavity walls, which then protrude into the other sealing structure after assembly.
  • a support structure which is then ideally constructed with the sealing structure in the same process, can be made to special structural mechanical requirements are optimized.
  • a construction of a powder bed may be preferred for the seal carrier segments, that is to say by layerwise selective solidification of a powder bed by appropriately selective irradiation, preferably by a laser beam.
  • the invention also relates to a turbomachine with a presently disclosed seal carrier, in particular a jet engine.
  • FIGS. 1a-c each illustrate a first sealing structure 1a and a second sealing structure 1b, looking radially to a turbomachine longitudinal axis 2 thereon.
  • the sealing structures 1a, b are each part of a respective seal carrier half-shell (not shown in detail), the seal carrier half-shells are assembled into a seal carrier.
  • the seal carrier half shells radially outside the respective sealing structure 1a, b each have a support structure, via which the half shells are connected to one another.
  • the sealing structures 1a, b shown in the figures form the radially inner part of the seal carrier.
  • the seal carrier has an overall ring shape and limits the hot gas channel of a jet engine radially outward. In the jet engine, the seal carrier accommodates a blade ring, with its radially outer ends, the blades then strip along the sealing structure 1 shown in the figures, this is also referred to as inlet lining.
  • the first sealing structure 1a and the second sealing structure 1a form a cavity structure with a plurality of radially inwardly open, honeycomb-shaped cavities 3. Axially and in the direction of rotation 4, the cavities 3 via cavity walls 5 are separated from each other.
  • a parting line 6 runs between the first 1a and the second sealing structure.
  • the first 1a and the second sealing structure 1b are open at the parting line 6 towards each other.
  • the parting line 6 thus passes through some of the cavities 3, the cavities 3 arranged on the parting line 6 are delimited both by cavities 5 of the first 1a and by the second sealing structure 1b.
  • the figures la-c then differed in the course of the parting line. 6
  • FIG. 1a a parting line 6 with a step, but apart from axis-parallel extension.
  • the parting line 6 according to FIG. 1b over its entire axial extent a curved course, the included with the axial direction angle changes over the axial extent.
  • the parting line 6 of the embodiment according to Figure 1c Although considered by itself a straight line extension, but is tilted overall to the axial direction.
  • Each of these embodiments is advantageous insofar as the parting line 6 is lengthened compared to a rectilinear and exclusively axially parallel extension, which lengthens the flow path accordingly and thus increases the flow resistance. This can improve the efficiency, cf. also the description introduction.
  • FIG. 2 An improved efficiency also gives the embodiment according to FIG. 2 in which the parting line 6 describes a zig-zag line.
  • the first 1a and the second sealing structure 1b in this case are closed to each other at the parting line 6.
  • the parting line 6 does not penetrate any of the cavities 3. It is encircled on both sides by separating-cavity-side cavity walls 5aa, 5ba of the respective sealing structure 1a, b.
  • An extension of the flow path between the sealing structures 1a, b is achieved by extending cavity walls 5ab of the first sealing structure 1a into the second sealing structure 1b and extending cavity walls 5bb of the second sealing structure 1b into the first sealing structure 1a.
  • the flow path is thus extended labyrinth-like.
  • the first 1a and the second sealing structure 1b were entangled with each other, so there is a sectional plane containing the turbomachine longitudinal axis 2 (the sectional plane extends axially and radially), which intersects both the first la and the second sealing structure 1b , In the illustrated embodiments, this cutting plane would be horizontal in the plane of the drawing and perpendicular thereto.
  • an extension or blockage of the flow paths between the sealing structures 1a, b is achieved.
  • the sealing structures abut one another, for which purpose they each have a spring element 50a, b.
  • the spring elements 50a, b each form a contact surface 51a, b, so they rest against each other. Due to the resilient properties of the contact surfaces 51a, b mounted in the direction of rotation a bit far elastically displaceable, which allows an offset compensation, such as in the case of temperature fluctuations.
  • the spring elements 50a, b are each axially end connected to the rest of the respective sealing structure 1a, b, between them they are designed to support the spring function cantilevered.
  • the spring element 50a is mounted so as to be displaceable in the remaining sealing structure, with two bearing regions 50aa arranged at the axially opposite ends. If the abutment surface 51 is thus offset in the direction of rotation 4, a part of this offset is converted into a displacement of the bearing regions 50aa, ab.
  • FIG. 6 shows a turbomachine 60, namely a jet engine, in a schematic section, wherein the cutting plane includes the longitudinal axis 2 of the turbomachine 60.
  • the turbomachine is functionally divided into compressor 60a, combustion chamber 60b and turbine 60c.
  • the compressor 60a is constructed of a plurality of stages 61a, b, in each of which a blade ring follows a vane ring (not shown in detail).
  • the turbine is also constructed in several stages, with only one blade ring 62 being shown for the sake of clarity. After radially outward, the blade ring 62 is bordered by a seal carrier 63, which is constructed in a manner described above. The blades therefore graze along the in FIG.
  • sealing structure of the seal carrier 63 not shown in detail sealing structure of the seal carrier 63.
  • the blade rings of the compressor 60a can each be enclosed by a seal carrier according to the invention, which is also not shown in detail.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Gasket Seals (AREA)

Description

    Technisches Gebiet
  • Die vorliegende Erfindung betrifft einen Dichtungsträger für eine Strömungsmaschine.
  • Stand der Technik
  • Wie nachstehend im Einzelnen erläutert, kann es sich bei der Strömungsmaschine bevorzugt um ein Strahltriebwerk handeln. Ein Bestandteil davon ist ein sogenannter Dichtungsträger, der im Bereich eines Laufschaufelkranzes den Heißgaskanal nach radial außen hin einfasst. Ein solcher Dichtungsträger weist ein erstes und ein zweites Dichtungsträgersegment auf, die bezogen auf einen Umlauf um eine Längsachse der Strömungsmaschine aufeinander folgend zusammengesetzt sind. Radial innen weist das erste Dichtungsträgersegment eine erste Dichtstruktur auf und das zweite Dichtungsträgersegment eine zweite Dichtstruktur. DE102005002270 , EP0716218 und EP2617949 offenbart verschiedene Dichtungseinrichtungen für Strömungsmaschinen.
  • Darstellung der Erfindung
  • Der vorliegenden Erfindung liegt das technische Problem zugrunde, einen besonders vorteilhaften Dichtungsträger für eine Strömungsmaschine anzugeben.
  • Erfindungsgemäß löst diese Aufgabe zum einen ein Dichtungsträger gemäß Anspruch 1, bei dem die erste und die zweite Dichtstruktur bezogen auf den Umlauf um die Längsachse der Strömungsmaschine derart miteinander verschränkt sind, dass eine Schnittebene, welche die Längsachse der Strömungsmaschine beinhaltet, sowohl die erste also auch die zweite Dichtstruktur schneidet,
    sowie zum anderen
    ein Dichtungsträger gemäß Anspruch 9, bei dem die erste und die zweite Dichtstruktur aneinander anliegen.
  • Bevorzugte Ausführungsformen finden sich in der vorliegenden Beschreibung und den abhängigen Ansprüchen, wobei in der Darstellung der Merkmale nicht immer im Einzelnen zwischen Verfahrens- und Vorrichtungs- bzw. Verwendungsaspekten unterschieden wird; jedenfalls implizit ist die Offenbarung hinsichtlich sämtlicher Anspruchskategorien zu lesen. Es sind insbesondere auch sämtliche zu einem Dichtungsträger getroffenen Angaben zugleich auf eine Strömungsmaschine, insbesondere ein Strahltriebwerk, mit einem solchen Dichtungsträger zu lesen.
  • Den beiden Lösungsvarianten, also der "Verschränkung" der Dichtstrukturen gemäß Anspruch 1 bzw. deren "Anlage" aneinander gemäß Anspruch 9, liegt dieselbe erfinderische Idee zugrunde, nämlich den Strömungspfad zwischen den Dichtstrukturen zu verlängern bzw. zu blockieren. Durch Erhöhung des Strömungswiderstands lässt sich die Dichtwirkung verbessern und damit ein höherer Wirkungsgrad erzielen. Werden hingegeben im Unterschied zum erfindungsgemäßen Gegenstand Dichtungsträgersegmente gemäß dem Stand der Technik zusammengesetzt, liegt umlaufend zwischen den Dichtstrukturen in der Regel eine Trennfuge mit einer Größe zwischen 0,3 mm und 0,4 mm vor (in Umlaufrichtung genommen), die sich axial geradlinig durchgehend erstreckt. Dies bedingt Leckagen und hat Wirkungsgradeinbußen zur Folge.
  • Erfindungsgemäß wird dies vermieden, indem die Dichtstrukturen miteinander verschränkt sind oder aneinander anliegen, letzteres jedenfalls im Heißzustand, bevorzugt auch bereits im Kaltzustand. Gegenüber dem Vergleichsfall einer sich axial geradlinig durchgehend erstreckenden Trennfuge wird der Strömungspfad somit zumindest verlängert. Die in Anspruch 1 konkretisierte "Schnittebene", welche die Längsachse der Strömungsmaschine (nachstehend auch "Strömungsmaschinen-Längsachse") beinhaltet, sich also axial und radial erstreckt, schneidet aufgrund der Verschränkung sowohl die erste als auch die zweite Dichtstruktur. Dies gilt dann üblicherweise für sämtliche jeweils die Strömungsmaschinen-Längsachse beinhaltenden Schnittebenen, die innerhalb eines gewissen Umlaufwinkelintervalls liegen, das sich bspw. über mindestens 0,01°, 0,03° bzw. 0,05° und (davon unabhängig) z. B. nicht mehr als 1°, 0,8° bzw. 0,5° erstrecken kann (jeweils in der Reihenfolge der Nennung zunehmend bevorzugt). Im Vergleichsfall der axial geradlinigen Trennfuge gibt es hingegen keine einzige solche Schnittebene, die beide Dichtstrukturen zugleich schneidet (sondern schneiden entsprechende Ebenen entweder die eine oder die andere Dichtstruktur bzw. liegen sie dazwischen).
  • Das erste und das zweite Dichtungsträgersegment können bevorzugt jeweils eine Halbschale sein, siehe unten. Bevorzugt gibt es dann nicht nur einen durch die Verschränkung bzw. die Anlage strömungsoptimierten Übergang, sondern ist auch der zweite Übergang zwischen den Dichtstrukturen der Halbschalen optimiert, bevorzugt analog dem ersten (sind also die beiden Übergänge dann entweder durch die Verschränkung oder die Anlage optimiert). Ganz allgemein sind in dem Dichtungsträger bevorzugt sämtliche Übergänge zwischen umlaufend aufeinander folgenden Dichtstrukturen, die jeweils unterschiedlichen Dichtungsträgersegmenten zugeordnet sind, in erfindungsgemäßer Weise strömungsoptimiert.
  • Generell sind im Rahmen dieser Offenbarungen "ein" und "eine" als unbestimmte Artikel zu lesen, also ohne ausdrücklich gegenteilige Angabe jeweils auch als "mindestens ein" bzw. "mindestens eine". Es können also bspw., wie vorstehend erläutert, auch mehrere Schnittebenen das hauptanspruchsgemäße Kriterium erfüllen bzw. können auch mehrere Übergänge des Dichtungsträgers entsprechend strömungsoptimiert sein. Die Strömungsmaschine kann dann bspw. eine Mehrzahl entsprechend gestalteter Dichtungsträger aufweisen.
  • Der Dichtungsträger ist aus den Dichtungsträgersegmenten "zusammengesetzt", letztere werden also zuvor jeweils für sich gesondert hergestellt und dann zusammengebaut. Der Zusammenbau kann im Allgemeinen auch stoffschlüssig erfolgen, bspw. durch Schweißen oder Verlöten, etwa induktives Löten. Bevorzugt kann ein Dichtungsträger sein, der aus zwei Dichtungsträgerhalbschalen zusammengesetzt ist, die miteinander ausschließlich form- und/oder kraftschlüssig zusammengebaut sind. Die Dichtungsträgerhalbschalen können dabei aber bspw. auch ihrerseits jeweils aus mehreren Dichtungsträgersegmenten aufgebaut sein, die je Dichtungsträgerhalbschale miteinander stoffschlüssig verbunden, insbesondere verlötet sind, bevorzugt jeweils aus drei Dichtungsträgersegmenten. Bevorzugt sind dann sowohl die Übergänge zwischen den Dichtungsträgerhalbschalen als auch jene innerhalb einer jeweiligen Halbschale in erfindungsgemäßer Weise strömungsoptimiert. Die Herstellung der Dichtungsträgersegmente erfolgt bevorzugt generativ, also durch selektives Verfestigen eines formlosen oder formneutralen Materials, siehe unten im Detail. Mit dem generativen Aufbau lassen sich die Verschränkungs- bzw. Anlagestrukturen besonders gut erzeugen.
  • Nachstehend wird nun zunächst die Variante "Verschränkung" weiter im Detail erläutert.
  • Bei einer bevorzugten Ausführungsform hat eine Trennfuge zwischen der ersten und der zweiten Dichtstruktur in radialer Richtung gesehen, etwa von der Strömungsmaschinen-Längsachse aus nach radial außen darauf blickend, zumindest abschnittsweise einen zur axialen Richtung gewinkelten Verlauf. In anderen Worten soll sich die Trennfuge nicht axial geradlinig durchgehend erstrecken, sondern bspw. eine Stufenform, mit einer bzw. auch mehreren Stufen, bzw. auch einen gekrümmten Verlauf haben, also eine Kurvenform beschreiben (im Sinne einer stetig differenzierbaren Kurve).
  • Unabhängig davon im Einzelnen wird durch den zumindest abschnittsweise, also jedenfalls in einem axialen Abschnitt, zur axialen Richtung gewinkelten Verlauf der Strömungspfad zwischen den Dichtstrukturen verlängert. "Gewinkelt" kann bspw. einen Winkel von 90° meinen, etwa im Falle einer reinen Stufenform auch in Verbindung mit einer ansonsten achsparallelen Erstreckung; andererseits sind auch beliebige Winkel kleiner 90° möglich (betrachtet wird immer der kleinste mit der axialen Richtung eingeschlossene Winkel), wobei sich der Winkel über die axiale Erstreckung der Trennfuge auch ändern kann. Radial kann sich die Trennfuge zumindest abschnittsweise gewinkelt zur radialen Richtung erstrecken; bevorzugt ist jedoch eine Trennfuge mit in radialer Richtung geradliniger, ausschließlich radialer Erstreckung.
  • Soweit generell im Rahmen dieser Offenbarung auf eine Anordnung "axial" bzw. eine "axiale Richtung" Bezug genommen wird, bezieht sich dies auf die Strömungsmaschinen-Längsachse. In der Strömungsmaschine ist die "Strömungsmaschinen-Längsachse" dann bspw. eine Rotationsachse, um welche der in dem Dichtungsträger angeordnete Laufschaufelkranz drehbar gelagert ist. Auch "radial" bzw. die "Radialrichtung" beziehen sich auf die Strömungsmaschinen-Längsachse, liegen nämlich senkrecht dazu. Gleichermaßen beziehen sich "Umlauf" und die "Umlaufrichtung" darauf, nämlich auf einen Umlauf um die Strömungsmaschinen-Längsachse als Rotationsachse.
  • Generell bilden die Dichtstrukturen bevorzugt eine Hohlraumstruktur mit mehreren axial und umlaufend über Hohlraumwände voneinander getrennten Hohlräumen. Die Hohlräume werden zwar axial und umlaufend von den Hohlraumwänden eingefasst und sind auch nach radial außen bevorzugt geschlossen, zur Strömungsmaschinen-Längsachse hin, also nach radial innen, sind sie jedoch offen. Als Hohlraumstruktur kann eine Wabenstruktur bevorzugt sein. Die von den Hohlraumwänden begrenzten Hohlräume haben dann, in radialer Richtung gesehen, jeweils eine sechseckige Form. Dies ist aber im Allgemeinen nicht zwingend. Soweit generell auf "axial und umlaufend" über die Hohlraumwände voneinander getrennte und damit aufeinander folgende Hohlräume Bezug genommen wird, meint dies, dass ein Teil der Hohlräume axial und ein anderer Teil umlaufend aufeinander folgt, wobei je nach Form und Anordnung einige Hohlräume auch tatsächlich zugleich axial und umlaufend aufeinander folgen können.
  • Bei einer bevorzugten Ausführungsform, welche die Trennfuge mit zumindest abschnittsweise gewinkelter Erstreckung betrifft, durchsetzt die Trennfuge zumindest einen der Hohlräume. Dieser zumindest eine Hohlraum wird dann von der ersten und der zweiten Dichtstruktur gemeinsam gebildet, die Dichtstrukturen sind an der Trennfuge zueinander hin also zumindest teilweise geöffnet (bezogen auf die Umlaufrichtung).
  • Bei einer anderen bevorzugten Ausführungsform sind die Dichtstrukturen an der Trennfuge zueinander hin geschlossen, wird die Trennfuge also über ihre gesamte Erstreckung umlaufend beidseitig von trennfugenseitigen Hohlraumwänden der beiden Dichtstrukturen eingefasst. In anderen Worten ist die sich zumindest abschnittsweise gewinkelt erstreckende Trennfuge derart in die Hohlraumstruktur hineingelegt, dass sie sich zwischen den Hohlräumen der Dichtstrukturen erstreckt und dabei keinen der Hohlräume durchsetzt. Von einer zwischen den Dichtstrukturen gedacht ununterbrochenen Hohlraumstruktur ausgehend wird die Trennfuge also ausschließlich entlang von Hohlraumwänden durch die Struktur gelegt.
  • In bevorzugter Ausgestaltung sind die Hohlräume zumindest in Umlaufrichtung regelmäßig angeordnet, auch über die Trennfuge hinweg. Infolge der "regelmäßigen" Anordnung kann über den Umlauf hinweg im Allgemeinen bspw. eine bestimmte Abfolge unterschiedlich geformter und/oder angeordneter Hohlräume periodisch, also wiederholt auftreten. Bevorzugt wiederholt sich über den Umlauf hinweg genau ein Typ Hohlraum (eine Form), und zwar weiter bevorzugt umlaufend in äquidistanter Anordnung und gleiche Ausrichtung (die Anordnung ist mit einer bestimmten Zähligkeit drehsymmetrisch). Vorzugsweise sind die Hohlräume auch in axialer Richtung regelmäßig angeordnet, wiederholt sich also besonders bevorzugt derselbe Typ Hohlraum in axialer Richtung in äquidistanter Anordnung.
  • Bevorzugt haben die Hohlräume in radialer Richtung gesehen jeweils eine polygonförmige Außenform, besonders bevorzugt eine Sechseckform (Wabenform). Im Falle der an der Trennfuge zueinander hin geschlossenen Dichtstrukturen kann sich die Trennfuge dann bei jeder darangrenzenden Wabe entlang zwei Seitenkanten erstrecken, also eine Zick-Zack-Linie beschreiben.
  • Bei einer bevorzugten Ausführungsform sind die Dichtstrukturen dahingehend miteinander verschränkt, dass eine Hohlraumwand der ersten Dichtstruktur in Umlaufrichtung in die zweite Dichtstruktur hineinreicht. Diese Hohlraumwand der ersten Dichtstruktur ist dann axial zwischen Hohlraumwänden der zweiten Dichtstruktur angeordnet, dabei aber vorzugsweise auch axial dazu beabstandet. Bevorzugt reicht auch eine Hohlraumwand der zweiten Dichtstruktur in Umlaufrichtung in die erste Dichtstruktur hinein (und ist sie axial zwischen Hohlraumwänden der ersten Dichtstruktur angeordnet). Weiter bevorzugt gibt es je Dichtstruktur jeweils eine Mehrzahl entsprechend in Umlaufrichtung in die jeweilig andere Dichtstruktur hineinreichender Hohlraumwände. Besonders bevorzugt folgen die entsprechenden Hohlraumwände der beiden Dichtstrukturen in axialer Richtung abwechselnd aufeinander, wird die Schnittebene also abwechselnd von jeweils einer Hohlraumwand der ersten und der zweiten Dichtstruktur durchsetzt. Auch unabhängig davon im Einzelnen muss das "in Umlaufrichtung hineinreichen" der jeweiligen Hohlraumwand nicht notwendigerweise eine Erstreckung ausschließlich in Umlaufrichtung implizieren, wenngleich dies bevorzugt ist (in einer Ansicht radial darauf blickend).
  • In bevorzugter Ausgestaltung endet bzw. enden die in die jeweilig andere Dichtstruktur hineinreichende(n) Hohlraumwand bzw. -wände in der jeweilig anderen Dichtstruktur jeweils zu deren Hohlraumwänden beabstandet. Trotz der Verschränkung verbleibt also zwischen den Hohlraumwänden der ersten und der zweiten Dichtstruktur gleichwohl ein gewisses Spiel. Dies kann bspw. hinsichtlich mitunter großer Temperaturdifferenzen, die zwischen Aus- und Betriebs-Zustand auftreten können, vorteilhaft sein. Trotz eines möglichen, infolge der Temperaturdifferenzen auftretenden Relativversatzes kann somit Verspannungen vorgebeugt werden.
  • Bei einer bevorzugten Ausführungsform geht an der Schnittebene eine Hohlraumwand der ersten Dichtstruktur in eine Hohlraumwand der zweiten Dichtstruktur über, bilden die beiden Hohlraumwände miteinander nämlich einen Formschluss. Dieser Formschluss soll ein Relativversetzen in Bezug auf die axiale Richtung blockieren, im Allgemeinen auch nur im Bezug auf eine der axialen Richtungen, bevorzugt jedoch in Bezug auf beide einander entgegengesetzten axialen Richtungen.
  • In bevorzugter Ausgestaltung sind die ineinander übergehenden Hohlraumwände nut und feder-artig zusammengesetzt, bildet also eine der Hohlraumwände an ihrem umlaufseitigen Ende eine Nut, in welche die andere Hohlraumwand mit ihrem umlaufseitigen Ende eingesetzt ist. Ihre Längenerstreckung können der Nutgrund und die Feder hierbei jeweils im Wesentlichen in radialer Richtung haben. Wenngleich der Formschluss einen axialen Relativversatz blockiert, kann in Umlaufrichtung aus den einige Absätze zuvor geschilderten Gründen noch ein gewisses Spiel bestehen, muss die Feder also nicht zwingend bis zum Nutgrund reichen, jedenfalls im Kaltzustand.
  • Nachstehend werden die aneinander anliegenden Dichtstrukturen weiter im Detail erläutert.
  • In bevorzugter Ausgestaltung weist die erste Dichtstruktur ein Federelement auf und liegt sie mit diesem Federelement an der zweiten Dichtstruktur an. Das Federelement bildet eine Anlagefläche, die infolge der Federeigenschaft in Umlaufrichtung elastisch versetzbar gelagert ist. Dieses "elastisch-versetzbar-gelagert-Sein" geht über eine materialinhärente, über den E-Modul erfasste Elastizität hinaus, wird nämlich bspw. durch eine zumindest abschnitts- bzw. bereichsweise freitragend ausgeführte Federelement-Geometrie unterstützt. In radialer Richtung gesehen kann das Federelement bspw. eine Spangen- bzw. Brückenform haben. Bevorzugt weist auch die zweite Dichtstruktur ein Federelement auf, welches eine elastisch versetzbar gelagerte Anlagefläche bildet, wobei die beiden Dichtstrukturen dann mit ihren Federelementen aneinander anliegen.
  • Das Vorsehen einer elastisch gelagerten Anlagefläche kann mit Blick auf einen gewissen Versatzausgleich von Interesse sein, vgl. auch die vorstehenden Anmerkungen. Idealerweise lässt sich ein Dichtungsträger realisieren, bei dem die Dichtstrukturen sowohl im Kalt- als auch im Heißzustand aneinander anliegen, und zwar ohne materialkritische Verspannungen.
  • Bei einer bevorzugten Ausführungsform ist das Federelement mit einem Lagerungsbereich in der übrigen Dichtstruktur verschiebbar gelagert, wobei der Versatz der Anlagefläche in Umlaufrichtung anteilig in eine Verschiebung des Lagerungsbereichs umgesetzt wird. Im Allgemeinen kann das Federelement dabei an seinem entgegengesetzten Ende auch monolithisch mit der übrigen Dichtstruktur ausgebildet sein, bevorzugt weist es jedoch einen weiteren Lagerungsbereich auf, der ebenfalls in der übrigen Dichtstruktur verschiebbar gelagert ist. Je Lagerungspunkt ergibt sich infolge des "verschiebbar-gelagert-Seins" eine Relativbeweglichkeit (des Lagerungspunktes gegenüber der übrigen Dichtstruktur) mit zumindest einer Richtungskomponente in axialer Richtung, bevorzugt kann eine insgesamt axial ausgerichtete Verschiebestrecke sein. Auch unabhängig davon im Einzelnen lässt sich eine entsprechende Dichtstruktur mit Federelement in besonders vorteilhafter Weise generativ herstellen, wobei das Lager dann bspw. bereichsweise mit einem Opfermaterial aufgebaut wird und die Relativbeweglichkeit dann nach dessen Auslösen gegeben ist.
  • Bei einer bevorzugten Ausführungsform, die sowohl im Falle der "Anlage" als auch bei der "Verschränkung" von Interesse sein kann, weisen die Dichtungsträgersegmente radial außerhalb der jeweiligen Dichtstruktur jeweils eine Trägerstruktur auf. Die Dichtungsträgersegmente sind über ihre Trägerstrukturen miteinander verbunden, insbesondere form- und/oder kraftschlüssig, abgesehen davon jedoch in ihren Dichtstrukturen relativ zueinander beweglich. Es wird auf die vorstehenden Angaben zum Versatzausgleich und zu dessen Vorteilen verwiesen.
  • In bevorzugter Ausgestaltung ist das erste Dichtungsträgersegment eine erste Dichtungsträgerhalbschale ist und ist das zweite Dichtungsträgersegment eine zweite Dichtungsträgerhalbschale, vgl. auch die Anmerkungen eingangs. Bevorzugt erstreckt sich jede der Dichtungsträgerhalbschalen umlaufend über 180°. Der Dichtungsträger ist dann, bezogen auf die Umlaufrichtung, ausschließlich aus den beiden Dichtungsträgerhalbschalen zusammengesetzt, diese sind miteinander form- und/oder kraftschlüssig verbunden, bevorzugt ausschließlich form- und/oder kraftschlüssig. In anderen Worten bilden die beiden Halbschalen über den gesamten Umlauf den Dichtungsträger, gibt es also in dem Dichtungsträger von den Halbschalen abgesehen keine weiteren Dichtungsträgersegmente.
  • Wie bereits erwähnt, sind die Dichtungsträgersegmente in bevorzugter Ausgestaltung jeweils für sich generativ gefertigte Teile. Ganz allgemein ausgedrückt werden die Teile also anhand eines Datenmodells aus einem formlosen oder formneutralen Material aufgebaut, das bspw. mittels physikalischer und/oder chemischer Prozesse, etwa durch ein selektiv lokales Aufschmelzen, selektiv bereichsweise in einen formfesten Zustand übergeführt wird. Dementsprechend ist eine große Bandbreite unterschiedlicher Geometrien herstellbar, kann also bspw. in die Dichtstruktur ein Federelement eingeformt werden oder lassen sich in Umlaufrichtung überstehende Hohlraumwände realisieren, die dann nach dem Zusammenbau in die andere Dichtstruktur hineinragen. Eine Trägerstruktur, die dann idealerweise mit der Dichtstruktur im selben Prozess aufgebaut wird, kann andererseits auf spezielle strukturmechanische Anforderungen hin optimiert werden. Auch unabhängig davon im Einzelnen kann für die Dichtungsträgersegmente jeweils ein Aufbau aus einem Pulverbett bevorzugt sein, also durch schichtweise selektives Verfestigen eines Pulverbetts durch entsprechend selektive Bestrahlung, bevorzugt durch einen Laserstrahl.
  • Wie bereits erwähnt, betrifft die Erfindung auch eine Strömungsmaschine mit einem vorliegend offenbarten Dichtungsträger, insbesondere ein Strahltriebwerk.
  • Kurze Beschreibung der Zeichnungen
  • Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erläutert, wobei die einzelnen Merkmale im Rahmen der nebengeordneten Ansprüche auch in anderer Kombination erfindungswesentlich sein können und auch weiterhin nicht im Einzelnen zwischen den unterschiedlichen Anspruchskategorien unterschieden wird.
  • Im Einzelnen zeigen
  • Figur la-b
    jeweils zwei Dichtstrukturen eines Dichtungsträgers, die in einer sich zumindest abschnittsweise gewinkelt erstreckenden Trennfuge aneinander grenzen und dabei zueinander hin geöffnet sind;
    Figur 2
    zwei Dichtstrukturen eines Dichtungsträgers, die in einer sich gewinkelt zur axialen Richtung erstreckenden Trennfuge aneinander grenzen und dabei zueinander hin geschlossen sind;
    Figur 3
    zwei Dichtstrukturen eines Dichtungsträgers mit einer Hohlraumstruktur, deren Hohlraumwände wechselseitig in die jeweilig andere Dichtstruktur hineinreichen;
    Figur 4
    zwei Dichtstrukturen eines Dichtungsträgers mit einer Hohlraumstruktur, deren Hohlraumwände an einer Trennfuge zwischen den Dichtstrukturen formschlüssig ineinander übergehen;
    Figur 5a, b
    zwei Dichtstrukturen eines Dichtungsträgers, die mit Federelementen aneinander anliegen;
    Figur 6
    ein Strahltriebwerk mit einem Dichtungsträger in schematischer Ansicht.
    Bevorzugte Ausführung der Erfindung
  • Die Figuren 1a-c illustrieren jeweils eine erste Dichtstruktur 1a und eine zweite Dichtstruktur 1b, und zwar radial zu einer Strömungsmaschinen-Längsachse 2 darauf blickend. Die Dichtstrukturen 1a, b sind jeweils Teil einer jeweiligen Dichtungsträgerhalbschale (nicht im Einzelnen dargestellt), die Dichtungsträgerhalbschalen sind zu einem Dichtungsträger zusammengesetzt. Dazu weisen die Dichtungsträgerhalbschalen radial außerhalb der jeweiligen Dichtstruktur 1a, b jeweils eine Trägerstruktur auf, über welche die Halbschalen miteinander verbunden sind. Die in den Figuren gezeigten Dichtstrukturen 1a, b bilden den radial inneren Teil des Dichtungsträgers. Vereinfacht ausgedrückt hat der Dichtungsträger insgesamt eine Ringform und begrenzt er den Heißgaskanal eines Strahltriebwerks nach radial außen. In dem Strahltriebwerk beherbergt der Dichtungsträger einen Laufschaufelkranz, mit ihren radial äußeren Enden streifen die Laufschaufeln dann also entlang der in den Figuren dargestellten Dichtstruktur 1, diese wird auch als Einlaufbelag bezeichnet.
  • Die erste Dichtstruktur 1a und die zweite Dichtstruktur 1a bilden einen Hohlraumstruktur mit mehreren nach radial innen offenen, wabenförmigen Hohlräumen 3. Axial und in Umlaufrichtung 4 sind die Hohlräume 3 über Hohlraumwände 5 voneinander getrennt.
  • Zwischen der ersten 1a und der zweiten Dichtstruktur verläuft eine Trennfuge 6. Im Falle der Figuren la-c sind die erste 1a und die zweite Dichtstruktur 1b an der Trennfuge 6 zueinander hin geöffnet. Die Trennfuge 6 durchsetzt also einige der Hohlräume 3, die an der Trennfuge 6 angeordneten Hohlräume 3 werden sowohl von Hohlräumwänden 5 der ersten 1a als auch der zweiten Dichtstruktur 1b begrenzt. Im Übrigen unterschieden sich die Figuren la-c dann im Verlauf der Trennfuge 6.
  • So zeigt Figur 1a eine Trennfuge 6 mit einer Stufe, davon abgesehen aber achsparalleler Erstreckung. Im Unterschied dazu hat die Trennfuge 6 gemäß Figur 1b über ihre gesamte axiale Erstreckung einen gekrümmten Verlauf, der mit der axialen Richtung eingeschlossene Winkel ändert sich über die axiale Erstreckung. Die Trennfuge 6 der Ausführungsform gemäß Figur 1c hat zwar für sich betrachtet eine geradlinige Erstreckung, liegt aber insgesamt zur axialen Richtung verkippt. Jede dieser Ausführungsformen ist insoweit vorteilhaft, als die Trennfuge 6 im Vergleich zu einer geradlinigen und ausschließlich achsparalleln Erstreckung verlängert ist, was entsprechend den Strömungspfad verlängert und damit den Strömungswiderstand erhöht. Damit lässt sich der Wirkungsgrad verbessern, vgl. auch die Beschreibungseinleitung.
  • Einen verbesserten Wirkungsgrad ergibt auch die Ausführungsform gemäß Figur 2, bei welcher die Trennfuge 6 eine Zick-Zack-Linie beschreibt. Im Unterschied zu den Ausführungsformen gemäß den Figuren la-c sind die erste 1a und die zweite Dichtstruktur 1b in diesem Fall jedoch an der Trennfuge 6 zueinander hin geschlossen. Die Trennfuge 6 durchsetzt also keinen der Hohlräume 3. Sie wird umlaufend beidseits von trennfugenseitigen Hohlraumwänden 5aa, 5ba der jeweiligen Dichtstruktur 1a, b eingefasst.
  • Bei der Ausführungsform gemäß Figur 3 wird eine Verlängerung des Strömungspfades zwischen den Dichtstrukturen 1a, b erreicht, indem Hohlraumwände 5ab der ersten Dichtstruktur 1a in die zweite Dichtstruktur 1b hineinreichen und Hohlraumwände 5bb der zweiten Dichtstruktur 1b in die erste Dichtstruktur 1a hineinreichen. Der Strömungspfad wird also labyrinthartig verlängert.
  • Bei der Ausführungsform gemäß Figur 4 gehen Hohlraumwände 5ac der ersten Dichtstruktur 1a formschlüssig in Hohlraumwände 5bc der zweiten Dichtstruktur 1b über. Dazu greifen die Hohlraumwände 5ac, 5bc nut- und federartig ineinander, womit im Idealfall ein Strömungspfad zwischen den Dichtstrukturen la,b auch vollständig blockiert werden kann.
  • Bei sämtlichen bislang geschilderten Ausführungsformen waren die erste 1a und die zweite Dichtstruktur 1b miteinander verschränkt, gibt es also eine die Strömungsmaschinen-Längsachse 2 beinhaltende Schnittebene (die Schnittebene erstreckt sich axial und radial), die sowohl die erste la also auch die zweite Dichtstruktur 1b schneidet. Bei den dargestellten Ausführungsformen würde diese Schnittebene horizontal in der Zeichenebene und senkrecht dazu liegen.
  • Auch mit der Ausführungsform bzw. den Ausführungsformen gemäß den Figuren 5a, b wird eine Verlängerung bzw. Blockade der Strömungspfade zwischen den Dichtstrukturen 1a, b erreicht. In diesem Fall liegen die Dichtstrukturen jedoch aneinander an, wozu sie jeweils ein Federelement 50a, b aufweisen. Die Federelemente 50a, b bilden jeweils eine Anlagefläche 51a, b, damit liegen sie aneinander an. Aufgrund der federnden Eigenschaften sind die Anlageflächen 51a, b in Umlaufrichtung ein Stück weit elastisch versetzbar gelagert, was einen Versatzausgleich erlaubt, etwa im Falle von Temperaturschwankungen.
  • Bei dem Ausführungsbeispiel gemäß Figur 5a sind die Federelemente 50a, b jeweils axial endseitig mit der übrigen jeweiligen Dichtstruktur 1a, b verbunden, dazwischen sind sie zur Unterstützung der Federfunktion freitragend ausgeführt. Bei der Ausführungsform gemäß 5b ist das Federelement 50a mit zwei an den axial entgegengesetzten Enden angeordneten Lagerungsbereichen 50aa, ab jeweils verschiebbar in der übrigen Dichtstruktur gelagert. Wird die Anlagefläche 51 also in Umlaufrichtung 4 versetzt, wird ein Teil dieses Versatzes in eine Verschiebung der Lagerungsbereiche 50aa, ab umgesetzt.
  • Figur 6 zeigt eine Strömungsmaschine 60, nämlich ein Strahltriebwerk, in einem schematischen Schnitt, wobei die Schnittebene die Längsachse 2 der Strömungsmaschine 60 beinhaltet. Die Strömungsmaschine gliedert sich funktional in Verdichter 60a, Brennkammer 60b und Turbine 60c. Der Verdichter 60a ist aus mehreren Stufen 61a, b aufgebaut, in denen jeweils ein Laufschaufelkranz auf einen Leitschaufelkranz folgt (nicht im Einzelnen dargestellt). Auch die Turbine ist mehrstufig aufgebaut, wobei der Übersichtlichkeit halber nur ein Laufschaufelkranz 62 gezeigt ist. Nach radial außen wird der Laufschaufelkranz 62 von einem Dichtungsträger 63 eingefasst, der in einer vorstehend beschriebenen Weise aufgebaut ist. Die Laufschaufeln streifen also entlang der in Figur 6 nicht im Einzelnen gezeigten Dichtstruktur des Dichtungsträgers 63. Auch die Laufschaufelkränze des Verdichters 60a können jeweils von einem erfindungsgemäßen Dichtungsträger eingefasst werden, was ebenfalls nicht im Einzelnen gezeigt ist. BEZUGSZEICHENLISTE
    Dichtstrukturen 1a, b
    Längsachse 2
    Hohlräume 3
    Umlaufrichtung 4
    Hohlraumwände 5
      trennfugenseitige 5aa, ba,
      in andere Dichtstrukturen hineinreichende 5ab, bb
      ineinander übergehende 5ac, bc
    Trennfuge 6
    Federelemente 50a, b
    Lagerungsbereiche 50aa, ab
    Anlageflächen 51a, b
    Strömungsmaschine 60
      Verdichter 60a
      Brennkammer 60b
      Turbine 60c
    Verdichterstufen 61a, b
    Laufschaufelkranz Turbine 62
    Dichtungsträger 63

Claims (15)

  1. Dichtungsträger (63) bevorzugt für ein Strahltriebwerk als eine Strömungsmaschine (60),
    der ein erstes und ein zweites Dichtungsträgersegment aufweist, welche Dichtungsträgersegmente bezogen auf einen Umlauf um eine Längsachse (2) der Strömungsmaschine (60) aufeinander folgend zusammengesetzt sind, wobei, bezogen auf die Längsachse (2) der Strömungsmaschine (60), das erste Dichtungsträgersegment radial innen eine erste Dichtstruktur (1a) aufweist und das zweite Dichtungsträgersegment radial innen eine zweite Dichtstruktur (1b) aufweist,
    dadurch gekennzeichnet, dass
    die erste (1a) und die zweite Dichtstruktur (1b) des Dichtungsträgers (63) bezogen auf den Umlauf derart miteinander verschränkt sind, dass eine Schnittebene, welche die Längsachse (2) der Strömungsmaschine (60) beinhaltet, sowohl die erste (1a) als auch die zweite Dichtstruktur (1b) schneidet.
  2. Dichtungsträger (63) gemäß Anspruch 1, bei welchem in Umlaufrichtung (4) zwischen der ersten (1a) und der zweiten Dichtstruktur (1b) eine Trennfuge (6) verläuft, die sich, in radialer Richtung gesehen, über ihre axiale Erstreckung zumindest abschnittsweise gewinkelt zur axialen Richtung erstreckt.
  3. Dichtungsträger (63) gemäß Anspruch 2, bei welchem die erste (1a) und die zweite Dichtstruktur (1b) eine Hohlraumstruktur mit mehreren Hohlräumen (3) bilden, die axial und umlaufend über Hohlraumwände (5) der jeweiligen Dichtstruktur (1a, b) voneinander getrennt sind, wobei die Trennfuge (6) zumindest einen der Hohlräume (3) durchsetzt, also der zumindest eine Hohlraum von der ersten (1a) und der zweiten Dichtstruktur (1b) gemeinsam gebildet wird, die Dichtstrukturen (1a, b) an der Trennfuge (6) zueinander hin also zumindest teilweise geöffnet sind.
  4. Dichtungsträger (63) gemäß Anspruch 2, bei welchem die erste (1a) und die zweite Dichtstruktur (1b) eine Hohlraumstruktur mit mehreren Hohlräumen (3) bilden, die axial und umlaufend über Hohlraumwände (5) der jeweiligen Dichtstruktur (1a, b) voneinander getrennt sind, wobei die Trennfuge (6) vollständig von trennfugenseitigen Hohlraumwänden (5aa, ba) begrenzt wird, die Dichtstrukturen (1a, b) an der Trennfuge (6) zueinander hin also geschlossen sind.
  5. Dichtungsträger (63) gemäß Anspruch 3 oder 4, bei welchem die Hohlräume (3) der Hohlraumstruktur zumindest in Umlaufrichtung (4) regelmäßig angeordnet sind, und zwar auch über die Trennfuge (6) hinweg.
  6. Dichtungsträger (63) gemäß einem der vorstehenden Ansprüche, bei welchem die erste (1a) und die zweite Dichtstruktur (1b) eine Hohlraumstruktur mit mehreren Hohlräumen (3) bilden, die axial und umlaufend über Hohlraumwände (5) der jeweiligen Dichtstruktur (1a, b) voneinander getrennt sind, wobei an der Schnittebene eine Hohlraumwand (5ab) der ersten Dichtstruktur (1a) in Umlaufrichtung (4) in die zweite Dichtstruktur (1b) hineinreicht, also axial zwischen Hohlraumwänden (3) der zweiten Dichtstruktur (16) angeordnet ist.
  7. Dichtungsträger (63) gemäß Anspruch 6, bei welchem die in die zweite Dichtstruktur (1b) hineinreichende Hohlraumwand (5ab) der ersten Dichtstruktur (1a) in der zweiten Dichtstruktur (1b) zu deren Hohlraumwänden (5) beabstandet endet.
  8. Dichtungsträger (63) gemäß einem der vorstehenden Ansprüche, bei welchem die erste (1a) und die zweite Dichtstruktur (1b) eine Hohlraumstruktur mit mehreren Hohlräumen (3) bilden, die axial und umlaufend über Hohlraumwände (5) der jeweiligen Dichtstruktur (1a, b) voneinander getrennt sind, wobei an der Schnittebene eine Hohlraumwand (5ac) der ersten Dichtstruktur (1a) in eine Hohlraumwand (5bc) der zweiten Dichtstruktur (1b) übergeht, die beiden Hohlraumwände (5ac, bc) miteinander nämlich einen Formschluss bilden, vorzugsweise Nut-und-Feder-artig ineinander greifen.
  9. Dichtungsträger (63) bevorzugt für ein Strahltriebwerk als eine Strömungsmaschine (60),
    der ein erstes und ein zweites Dichtungsträgersegment aufweist, welche Dichtungsträgersegmente bezogen auf einen Umlauf um eine Längsachse (2) der Strömungsmaschine (60) aufeinander folgend zusammengesetzt sind, wobei, bezogen auf die Längsachse (2) der Strömungsmaschine (60), das erste Dichtungsträgersegment radial innen eine erste Dichtstruktur (1a) aufweist und das zweite Dichtungsträgersegment radial innen eine zweite Dichtstruktur (1b) aufweist,
    dadurch gekennzeichnet, dass
    die erste (1a) und die zweite Dichtstruktur (1b) aneinander anliegen.
  10. Dichtungsträger (63) nach Anspruch 9, bei welchem die erste Dichtstruktur (1a) ein Federelement (50a) aufweist und mit diesem Federelement (50a) an der zweiten Dichtstruktur (1b) anliegt, welches Federelement (50a) also eine Anlagefläche (51a) bildet, die in Umlaufrichtung (4) elastisch versetzbar gelagert ist.
  11. Dichtungsträger (63) nach Anspruch 10, bei welchem ein Lagerungsbereich (50aa, ab) des Federelements (50a) in der übrigen ersten Dichtstruktur (1a) derart verschiebbar gelagert ist, dass der in Umlaufrichtung (4) elastisch gelagerte Versatz der Anlagefläche (5a) zum Teil in eine Verschiebung des Lagerungsbereichs (50aa, ab) umgesetzt wird.
  12. Dichtungsträger (63) nach einem der vorstehenden Ansprüche, bei welchem, bezogen auf die Längsachse (2) der Strömungsmaschine (60), das erste Dichtungsträgersegment radial außerhalb der ersten Dichtstruktur (1a) eine erste Trägerstruktur aufweist und das zweite Dichtungsträgersegment radial außerhalb der zweiten Dichtstruktur (1b) eine zweite Trägerstruktur aufweist, wobei die Dichtungsträgerschalen über die Trägerstrukturen aneinander befestigt sind, davon abgesehen in ihren Dichtstrukturen (1a, b) jedoch relativ zueinander beweglich sind.
  13. Dichtungsträger (63) nach einem der vorstehenden Ansprüche, bei welchem das erste Dichtungsträgersegment eine erste Dichtungsträgerhalbschale ist und das zweite Dichtungsträgersegment eine zweite Dichtungsträgerhalbschale ist, wobei die beiden Dichtungsträgerhalbschalen gemeinsam den Dichtungsträger (63) bilden und form- und/oder kraftschlüssig zusammengesetzt sind.
  14. Dichtungsträger (63) nach einem der vorstehenden Ansprüche, bei welchem die Dichtungsträgersegmente jeweils generativ gefertigte Teile sind.
  15. Strömungsmaschine (60), insbesondere Strahltriebwerk, mit einem Dichtungsträger (63) nach einem der vorstehenden Ansprüche.
EP17160464.8A 2017-03-13 2017-03-13 Dichtungsträger für eine strömungsmaschine Active EP3375980B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17160464.8A EP3375980B1 (de) 2017-03-13 2017-03-13 Dichtungsträger für eine strömungsmaschine
US15/911,380 US20180258784A1 (en) 2017-03-13 2018-03-05 Seal carrier for a turbomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17160464.8A EP3375980B1 (de) 2017-03-13 2017-03-13 Dichtungsträger für eine strömungsmaschine

Publications (2)

Publication Number Publication Date
EP3375980A1 EP3375980A1 (de) 2018-09-19
EP3375980B1 true EP3375980B1 (de) 2019-12-11

Family

ID=58277194

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17160464.8A Active EP3375980B1 (de) 2017-03-13 2017-03-13 Dichtungsträger für eine strömungsmaschine

Country Status (2)

Country Link
US (1) US20180258784A1 (de)
EP (1) EP3375980B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3081499B1 (fr) * 2018-05-23 2021-05-28 Safran Aircraft Engines Secteur angulaire d'aubage de turbomachine a etancheite perfectionnee
DE102019211524A1 (de) * 2019-08-01 2021-02-04 MTU Aero Engines AG Modul für eine strömungsmaschine
DE102019219090A1 (de) * 2019-12-06 2021-06-10 MTU Aero Engines AG Dichtungsträger für eine Turbomaschine mit schlitzartigen Öffnungen im Dichtungskörper

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431376A (en) * 1980-10-27 1984-02-14 United Technologies Corporation Airfoil shape for arrays of airfoils
FR2577281B1 (fr) * 1985-02-13 1987-03-20 Snecma Carter de turbomachine associe a un dispositif pour ajuster le jeu entre aubes mobiles et carter
US5520508A (en) * 1994-12-05 1996-05-28 United Technologies Corporation Compressor endwall treatment
US6341938B1 (en) * 2000-03-10 2002-01-29 General Electric Company Methods and apparatus for minimizing thermal gradients within turbine shrouds
DE10259963B4 (de) * 2002-12-20 2010-04-01 Mtu Aero Engines Gmbh Wabendichtung
DE102005002270A1 (de) * 2005-01-18 2006-07-20 Mtu Aero Engines Gmbh Triebwerk
US8534993B2 (en) * 2008-02-13 2013-09-17 United Technologies Corp. Gas turbine engines and related systems involving blade outer air seals
DE102012200883B4 (de) * 2012-01-23 2015-12-03 MTU Aero Engines AG Strömungsmaschinen-Dichtungsanordnung
GB201614070D0 (en) * 2016-08-17 2016-09-28 Rolls Royce Plc A component for a gas turbine engine and method of manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3375980A1 (de) 2018-09-19
US20180258784A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
DE2445705C2 (de) Radialdichtring
EP3375980B1 (de) Dichtungsträger für eine strömungsmaschine
EP2829804B1 (de) Brennkammerschindel einer Gasturbine sowie Verfahren zu deren Herstellung
EP2927594B1 (de) Brennkammer einer Gasturbine
DE60307100T2 (de) Dichtungsanordnung für den rotor einer turbomaschine
DE102014107924A1 (de) Zahnradanordnung
WO2006092238A1 (de) Wabenkörper mit zerklüfteten stirnseiten
DE202013102503U1 (de) Rückspülfilter und Filtereinsatz hierfür
DE102004026503A1 (de) Düsenzwischenstufendichtung für Dampfturbinen
DE102012100775A1 (de) Versteifungssystem für ein Dampfturbinengehäuse
EP2796726B1 (de) Statorelement für eine Holweckpumpstufe, Vakuumpumpe mit einer Holweckpumpstufe und Verfahren zur Herstellung eines Statorelements für eine Holweckpumpstufe
EP2092164B1 (de) Strömungsmaschine, insbesondere gasturbine
EP1995413B1 (de) Spaltdichtung für Schaufeln einer Turbomaschine
DE102014213634A1 (de) Kammkäfig aus Kunststoff und Verfahren zu seiner Herstellung
EP3587739A1 (de) Mantelringanordnung für eine strömungsmaschine
DE102017200643A1 (de) Brennerspitze mit einer Luftkanalstruktur und einer Brennstoffkanalstruktur für einen Brenner und Verfahren zur Herstellung der Brennerspitze
EP2474744A1 (de) Ringförmiger Strömungskanal für einen Axialverdichter
DE102016107315A1 (de) Rotor mit Überhang an Laufschaufeln für ein Sicherungselement
DE102013205880B4 (de) Dichtungsanordnung
DE102009007664A1 (de) Abdichtvorrichtung an dem Schaufelschaft einer Rotorstufe einer axialen Strömungsmaschine
EP3232000A1 (de) Plattform einer laufschaufel mit filmkühlungsöffnungen an der plattform und zugehörige strömugsmaschine
DE112017002810T5 (de) Kühlstruktur für einen Gasturbinenmotor
EP3587741B1 (de) Segmentring zur montage in einer strömungsmaschine
EP3514333B1 (de) Rotorschaufeldeckband für eine strömungsmaschine, rotorschaufel, verfahren zum herstellen eines rotorschaufeldeckbands und einer rotorschaufel
EP3409909B1 (de) Turbinenzwischengehäuse mit zentrierelement und distanzhalteelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190319

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1212391

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017003083

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200324

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200324

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017003083

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017003083

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210313

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1212391

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220313