EP3374085B1 - Rotor eines zentrifugalabscheiders - Google Patents

Rotor eines zentrifugalabscheiders Download PDF

Info

Publication number
EP3374085B1
EP3374085B1 EP16805978.0A EP16805978A EP3374085B1 EP 3374085 B1 EP3374085 B1 EP 3374085B1 EP 16805978 A EP16805978 A EP 16805978A EP 3374085 B1 EP3374085 B1 EP 3374085B1
Authority
EP
European Patent Office
Prior art keywords
shaft
rotor according
plates
rotor
engagement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16805978.0A
Other languages
English (en)
French (fr)
Other versions
EP3374085A1 (de
Inventor
Markus LÜERSMANN
Mustafa KUZGUNOGLU-HENNECKE
Sergej KONKOV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hengst SE and Co KG
Original Assignee
Hengst SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hengst SE and Co KG filed Critical Hengst SE and Co KG
Publication of EP3374085A1 publication Critical patent/EP3374085A1/de
Application granted granted Critical
Publication of EP3374085B1 publication Critical patent/EP3374085B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/08Rotary bowls
    • B04B7/12Inserts, e.g. armouring plates
    • B04B7/14Inserts, e.g. armouring plates for separating walls of conical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/04Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with inserted separating walls
    • B04B1/08Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with inserted separating walls of conical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/12Centrifuges in which rotors other than bowls generate centrifugal effects in stationary containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/12Centrifuges in which rotors other than bowls generate centrifugal effects in stationary containers
    • B04B2005/125Centrifuges in which rotors other than bowls generate centrifugal effects in stationary containers the rotors comprising separating walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B9/00Drives specially designed for centrifuges; Arrangement or disposition of transmission gearing; Suspending or balancing rotary bowls
    • B04B9/08Arrangement or disposition of transmission gearing ; Couplings; Brakes
    • B04B2009/085Locking means between drive shaft and rotor

Definitions

  • the invention relates to a rotor of a centrifugal separator, the rotor having a central shaft, on which a stack of plates consisting of a plurality of plates is arranged to be axially displaceable, a stacking base being arranged on the shaft under the stack of plates, a stacking attachment being axially displaceable on the stack of plates Shaft is arranged and the rotor has a compression spring surrounding the shaft, the first end of which is supported on the stack and compressing the stack of plates on the stacking attachment.
  • a rotor of the type mentioned is from WO 2009/010248 A2 known.
  • the second end of the compression spring presses on the top of the stacking attachment. So that the compression spring can be arranged on the shaft, the shaft must protrude beyond the stacking attachment by at least the tensioned length of the compression spring. Disadvantageously, this part of the shaft is not available for receiving plates from the stack of plates.
  • the object of the present invention is therefore to create a rotor of the type mentioned at the outset which, with the same external size, has a larger number of plates in the stack of plates without the plates having to be changed for this purpose.
  • a sleeve-shaped extension which projects into the stack of plates and surrounds the shaft at a distance is arranged on the stack attachment, such that the compression spring at least over the greater part of its axial length within the Extension is located and that a support surface for the second, stack-side end of the compression spring is arranged on a bottom of the extension.
  • the stacking attachment and the sleeve-shaped extension are preferably formed in one piece with one another.
  • the stacking attachment and the sleeve-shaped extension can also be designed as two interconnected individual parts.
  • the shaft consists of metal and is surrounded by a torsion-resistant jacket made of plastic, the jacket on its outer circumference an engagement contour for a torsion-proof, axially displaceable engagement with a counter-engagement contour on the inner circumference of the plates of the stack of plates.
  • the metallic shaft provides the necessary stability for the rotor.
  • the contours necessary for the interaction of the different parts of the rotor can advantageously be formed simply on the jacket, since this is made of easily moldable plastic, for. B. thermoplastic or thermosetting plastic.
  • the outer circumference of the casing be formed with teeth made of teeth running in the axial direction of the shaft, and that the plates of the stack of plates be designed with suitable counter-toothing on their inner circumference. These contours can be easily manufactured and reliably provide the desired torsion-proof but axially movable engagement between the casing and the stack of plates.
  • the jacket has an engagement contour for a torsion-proof, axially displaceable engagement with a counter-engagement contour on the sleeve-shaped extension of the stack attachment at its end region facing the stack attachment. This achieves an arrangement of the stacking attachment of the rotor which is non-rotatable relative to the casing but is axially displaceable.
  • the jacket in its end region facing the stacking attachment is formed with teeth made of teeth running in the axial direction of the shaft, and that the sleeve-shaped extension of the stacking attachment is designed with suitable counter-teeth.
  • the sleeve-shaped extension of the stacking attachment has an engagement contour on its outer circumference for a torsion-proof, axially displaceable engagement with a counter-engagement contour on Has inner circumference of the plate of the plate stack.
  • the engagement contours provided for the plates on the extension of the stacking attachment and on the jacket are expediently carried out identically and continuously next to one another.
  • the invention further proposes that the jacket is molded onto the shaft. This also ensures in a safe manner that the jacket sits on the shaft in a torsion-proof manner.
  • the stacking base and the casing are expediently made in one piece.
  • the stacking base is thus arranged in a simple and secure manner relative to the shaft in a manner fixed against rotation and axially fixed.
  • the compression spring is supported with its first end on the shaft, which support can be direct or indirect. Is preferred the compression spring with its first end facing away from the stacking attachment is supported on a radially projecting collar of the shaft or on an axially fixed ring, such as a snap ring, which is used to achieve a very compact design.
  • a further development of the rotor according to the invention is characterized in that an intermediate body is arranged between the first end of the compression spring on the one hand and the collar or ring on the other hand, and that the stacking attachment has an axially outer collar which surrounds the intermediate body radially on the outside and which can be moved axially relative to the intermediate body in a sealing manner is. This prevents undesirable incorrect flows of the fluid medium to be cleaned flowing through the rotor through the sleeve-shaped extension and the stacking attachment out of the rotor.
  • the shaft viewed in its axial direction, consists of two shaft parts, a first shaft part serving to rotate the rotor being made of metal, a second shaft part carrying the plate stack consisting of plastic and with the first shaft part is non-rotatably and axially fixed and the second shaft part has on its outer circumference an engagement contour for a torsion-proof, axially displaceable engagement with a counter-engagement contour on the inner circumference of the plate of the plate stack.
  • the second shaft part be formed on its outer circumference with teeth made in the axial direction of the second shaft part and that the plates of the plate stack should be formed on their inner circumference are designed with a suitable counter-toothing.
  • the second shaft part has an engagement contour for a torsion-proof, axially displaceable engagement with a counter-engagement contour on the sleeve-shaped at its end region facing the stacking attachment Has extension of the stacking attachment.
  • the plate stack can thus be pressed together in the desired manner via the sleeve-shaped extension of the stacking attachment, undesired twisting of the stacking attachment with the extension relative to the second shaft part being avoided.
  • a further embodiment in this regard provides that the second shaft part in its end region facing the stacking attachment is formed with teeth made of teeth running in the axial direction of the shaft and that the sleeve-shaped extension of the stacking attachment is designed with suitable counter-teeth.
  • the sleeve-shaped extension of the stacking attachment can also be used for the arrangement of plates of the stack of plates, it is proposed that the sleeve-shaped extension of the stacking attachment have an engagement contour on its outer circumference for a torsion-proof, axially displaceable engagement with a counter-engagement contour on the inside circumference of the plate of the plate stack having.
  • the engagement contours on the extension and on the second shaft part for the plates are preferably identical to one another and continuously adjoining one another. This means that the same plates can be used for the plate stack within the rotor, regardless of whether a plate is arranged on the extension or on the second shaft part.
  • the second shaft part is expediently injection molded onto the first shaft part.
  • the stacking base and the second shaft part are preferably made in one piece with one another.
  • the second shaft part is made of plastic, it can, as mentioned above, be designed more freely in its shape.
  • An embodiment which is advantageous in this regard provides that the compression spring, with its first end pointing away from the stacking attachment, has radially projecting support lugs from part of the second shaft part forming, axially extending, radially resilient spring support arms is supported.
  • a separate, axially fixed ring to be connected to the shaft, such as a snap ring, is not required to support the first end of the compression spring pointing away from the stacking attachment.
  • the plates, the stacking base and the stacking attachment are injection molded parts made of plastic.
  • the parts of the rotor mentioned can be produced simply and inexpensively as mass parts, with an advantageously low weight of the rotor being achieved at the same time.
  • Figure 1 shows a rotor 1 of a centrifugal separator in the assembled state, in longitudinal section.
  • the rotor 1 has a central shaft 11, which is made of metal, such as steel, and which is rotatably supported in the operating state of a centrifugal separator and can be set in rotation about an axis of rotation 10 by means of a rotary drive, not shown here.
  • a stacking base 3 is formed in one piece with the jacket 6 and has an upwardly facing contact surface 32.
  • a stack of plates 2 which is composed of a plurality of plates, not shown individually here, is placed on the jacket 6 from above and rests with its underside on the contact surface 32 of the stacking base 3.
  • the stack of plates 2 is covered on the upper side by a stacking attachment 4 which bears on the underside of the contact surface 40 on the upper side of the stack of plates 2.
  • the stacking attachment 4 has a sleeve-shaped extension 41 protruding radially on the inside, which protrudes into the plate stack 2 and surrounds the shaft 11 at a distance.
  • a bottom of the extension 41 has an opening through which the shaft 11 is passed.
  • a compression spring 5 in the form of a helical spring. With its first, upper end, the compression spring 5 is supported on an intermediate body 7, which in turn is axially supported by means of a ring 15 near the upper, free end 12 of the shaft 11. The second, lower end 52 of the compression spring 5 is supported on a support surface 45, which is formed by the top of the bottom of the extension 41.
  • the force of the compression spring 5 axially loads the stacking attachment 4 in the direction of the stacking base 3, so that the stacking base 3 and the stacking attachment 4 clamp the plate stack 2 between them and stabilize their shape.
  • the adjacent plates of the plate stack 2 form, in a known manner, flat gap spaces between them, through which the gas to be freed of entrained particles flows during operation of the rotor 1.
  • the plates of the plate stack 2 each have the shape of a truncated cone shell, with an inclined, radially outer part and a flat, radially inner part, as further below with the Figures 4 and 5 is explained in more detail.
  • the compression spring 5 lies here over its entire length inside the sleeve-shaped extension 41, approximately the entire axial height of the shaft 11 above the stacking base 3 can be used for the arrangement of the plate stack 2.
  • a relatively large protrusion of an upper part of the shaft 11 beyond the stacking attachment 4 for the arrangement of the spring 5 advantageously does not occur here.
  • a stack of plates 2 with a noticeably larger number of plates can be accommodated with the same axial overall height of the rotor 1.
  • a radially inner sleeve-shaped extension 33 and a radially outer sleeve-shaped extension 34 are formed concentrically on the underside of the stacking base 3.
  • inlet openings 31 are arranged over its circumference, distributed between the extensions 33, 34, through which, during operation of the rotor 1, a gas to be freed of liquid or solid particles, for example crankcase ventilation gas of an internal combustion engine, is placed in the plate stack 2 can occur. The gas is then deflected radially outward into the gap spaces of the plate stack 2 and leaves the plate stack 2 on its outer circumference.
  • the particles carried in the gas hit the inner surfaces of the plate stack 2 are thus separated from the gas stream and as a result of the rotation of the rotor 1 on the inner circumference of a separator housing (not shown here) which surrounds the rotor 1 in a manner known per se during operation.
  • the intermediate body 7 is sealed in a hollow cylindrical collar 47 formed on the top of the stacking attachment 4 by means of a sealing ring 70, the stacking attachment 4 extending in the axial direction of the
  • the rotor 1 can move relative to the intermediate body 7, which is supported on the shaft 11, to a limited, sufficient extent in order to accommodate tolerances or changes in the height of the plate stack 2 that occur as a function of temperature.
  • the shaft 11 has a bearing surface 13, which is used to arrange a plain bearing or roller bearing, which is not specifically shown here.
  • a rotary drive of a suitable, also known design is arranged in a part of the shaft 11 which is still further below and is not shown here.
  • Figure 2 shows the rotor 1 Figure 1 in an exploded view of individual parts in longitudinal section.
  • the central shaft 11 is visible, to which the jacket 6 is integrally molded with the stacking base 3.
  • the bearing surface 13 of the shaft 11 lies at the level of the stacking base 3.
  • the upper end 12 of the shaft 11 with a groove 14 for the ring 15 lies above the upper end of the casing 6.
  • the casing 6 has an engagement contour 62 on its outer circumference, which with a counter-engagement contour 22 on the inner circumference of the individual plates of the plate stack 2 can be brought into a non-rotatable but axially displaceable engagement.
  • the stacking attachment 4 which has the sleeve-shaped extension 41 projecting centrally in the interior toward the stack of plates 2.
  • the extension 41 has, on the one hand, an engagement contour 42 which is identical to the engagement contour 62 on the casing 6 and which interacts with the counter-engagement contour 22 of the plates of the plate stack 2 when the rotor 1 is assembled.
  • the extension 41 has on his Outer circumference a counter-engagement contour 44, which in the assembled state interacts with an engagement contour 64 in the upper region of the casing 6, the contours 44, 64 bringing the stacking attachment 4 non-rotatably but axially displaceably into engagement with the stacking base 3.
  • the stacking attachment 4 On its downward-facing side, the stacking attachment 4 has a contact surface 40 for the top of the plate stack 2.
  • spacer webs 43 are formed on the contact surface 40 in the radial direction, so that there is still between the top of the plate stack 2 and the underside of the stacking attachment 4 an effective gap for the separation is formed.
  • the hollow cylindrical collar 47 for receiving the intermediate body 7 is formed on the top of the stacking attachment 4.
  • the compression spring 5 in the form of the coil spring with its first, upper end 51 and its second, lower end 52 is visible above the stacking attachment 4.
  • the upper end 51 of the compression spring 5 is supported on the underside of the intermediate body 7 shown here above the compression spring 5.
  • the second, lower end 52 of the compression spring 5 is supported in the assembled state on the support surface 45, which is formed by the top of a bottom of the sleeve-shaped extension 41 of the stacking attachment 4.
  • the intermediate body 7 has essentially the shape of a flat circular disk with a central opening, through which the upper end 12 of the central shaft 11 projects in the assembled state.
  • the circumferential sealing ring 70 for example an O-ring, is arranged radially on the outside of the intermediate body 7.
  • Figure 3 shows the rotor 1 Figure 1 in an exploded view of individual parts in a view obliquely from below.
  • the central shaft 11 with the jacket 6 molded thereon and the stacking base 3 in one piece with it is visible.
  • the radially inner sleeve-shaped extension 33 and the radially outer sleeve-shaped extension 34 are visible on the underside of the stacking base 3 together form a flow guide for a gas to be cleaned, which enters the plate stack 2 through the inlet openings 31 in the stacking base 3.
  • the casing 6 with its engagement contours 62, 64 for the plate stack 2 and for the stacking attachment 4 can be seen.
  • the upper end 12 of the shaft 11 with the groove 14 for the ring 15 protrudes from the jacket 6 at the top.
  • the plate stack 2 is shown as a further component above the upper end 12 of the shaft 11, the individual plates of the plate stack 2, which are very thin in practice, also not being shown here for reasons of clarity.
  • the stacking attachment 4 is shown, in the interior of which the sleeve-shaped extension 41 lies.
  • the engagement contour 42 for the plate stack 2 and the counter-engagement contour 44 for the interaction with the engagement contour 64 on the jacket 6 are visible.
  • the radial spacing webs 43 run over the contact surface 40 of the stacking attachment 4 pointing downward in the direction of the plate stack 2.
  • the compression spring 5 is visible above the stacking attachment 4 with its first, upper end 51 and its second, lower end 52. This is followed by the intermediate body 7 with its outer circumferential sealing ring 70 Figure 3 Finally, the ring 15, which is designed here as a snap ring, is visible, which can be inserted into the groove 14 at the upper end 12 of the central shaft 11 and which holds the parts of the rotor 1 together in the assembled state.
  • FIG 4 shows a plate 20 of the plate stack 2 of the rotor from the Figure 1 to 3 in an oblique view from above.
  • each plate 20 has the shape of a truncated cone.
  • the inclined, radially outer part of the plate 20 is designed as a closed surface.
  • the radially inner, flat region of the plate 20 is provided with the counter-engagement contour 22 on its inner circumference.
  • the flow openings are distributed radially outside of it over the circumference 23, through which the gas to be cleaned during operation flows axially and from where the gas is then deflected radially outward into the gap spaces between the adjacent plates 20.
  • Figure 5 shows the plate 20 Figure 4 in an oblique view from below.
  • the arrangement of the spacer webs 21 running over the respective lower side of the obliquely aligned region of the plates 20 is particularly clear here.
  • the counter-engagement contour 22 can be seen in the center of the plate 20 in Figure 5 .
  • the flow openings 23 are distributed radially outside of it over the circumference.
  • the stacking base 3, the stacking attachment 4 and the individual plates 20 of the plate stack 2 can advantageously be produced as injection molded parts made of plastic.
  • the intermediate body 7 can also be an injection molded part made of plastic. Only the shaft 11, the compression spring 5 and the ring 15 are parts made of metal, usually steel.
  • Figure 6 shows the rotor 1 Figure 1 in cross section according to section line VI-VI in Figure 1 ,
  • the central shaft 11 In the center of the Figure 6 runs perpendicular to the plane of the drawing, the central shaft 11, the central axis of which also forms the axis of rotation 10 of the rotor 1.
  • the compression spring 5 Arranged around the shaft 11 is the compression spring 5, which is designed as a helical spring and is itself surrounded by the sleeve-shaped extension 41 of the stacking attachment 4.
  • the jacket 6, which surrounds an upper part of the central shaft 11, extends around the extension 41.
  • the plate stack 2 which is composed of a plurality of plates 20, follows even further radially outwards. In their radially inner area, the plates 20 each have a plurality of flow openings 23 arranged distributed in the circumferential direction.
  • the extension 41 has on its outer circumference the engagement contour 42, which is formed by a toothing which extends in the longitudinal direction of the extension 41 and which engages with the counter-engagement contour 22 on the inner circumference of upper plates 20 of the plate stack 2.
  • the jacket 6 also has on its outer circumference an identical and congruent engagement contour 62 with the engagement contour 42 of the extension 41, which engages with the counter-engagement contour 22 on the inner circumference of plates 20 of the plate stack 2 arranged further down.
  • the jacket 6 has an engagement contour 64 which engages with an engagement contour 44 of the extension 41.
  • All of the aforementioned engagement contours 42, 62, 64 and counter-engagement contours 22, 44 are designed such that the associated parts of the rotor 1 are secured against rotation relative to one another, but are axially displaceable.
  • Figure 7 shows the rotor 1 in the assembled state, in a second embodiment, partly in longitudinal section, partly in view.
  • the central shaft 11 has a first, lower, metallic shaft part 11.1 and a second, upper, second shaft part 11.2 made of plastic.
  • the second shaft part 11.2 made of plastic is preferably injection molded onto the first, metallic shaft part 11.1.
  • the metallic first shaft part 11.1 has two axially spaced apart bearing surfaces 13, on which the rotor 1 can be rotatably supported within a centrifugal separator by means of slide or roller bearings.
  • the stacking attachment 4 also has an integrally molded sleeve-shaped extension 41, which is immersed in the plate stack 2 and in which the compression spring 5 for compressing the plate stack 2 is arranged between the stacking base 3 and the stacking attachment 4.
  • the compression spring 5 is supported with its lower end 52 on a support surface 45 formed by a bottom of the extension 41.
  • the upper end 51 of the compression spring 5 is axially supported on a plurality of support lugs 17 ', the free, upper end of a plurality of spring support arms 17 arranged in a ring, which are made in one piece with the second shaft part 11.2 and are part of the second Shaft part 11.2 are formed.
  • the compression spring 5 surrounds the arrangement of the spring support arms 17 and the support lugs 17 'point radially outwards.
  • the shaft 11 in its second shaft part 11.2 has the engagement contour 16 on the outer circumference and the extension 41 on its outer circumference has the engagement contour 42 which are in engagement with the counter-engagement contour 22 on the plates 20.
  • the engagement contour 16 'on the second shaft part 11.2 and the counter-engagement contour 44 on the sleeve-shaped extension 41 are in engagement with one another.
  • Figure 8 shows the rotor Figure 7 in an exploded view of individual parts, in a view slightly obliquely from above.
  • the central shaft 11 is visible with its lower, first shaft part 11.1 made of metal, such as steel, and its upper, second shaft part 11.2 made of plastic.
  • the stacking base 3 is designed here in one piece with the upper, second shaft part 11.2 and is molded as a unit onto the first, metallic shaft part 11.1.
  • the top of the stacking base 3 has a conical contact surface 32 which is adapted to the shape of the plates 20 of the plate stack 2.
  • the inlet openings 31 for supplying a fluid to be cleaned such as, for example, crankcase ventilation gas from an internal combustion engine, are arranged in the interior of the plate stack 2.
  • the plate stack 2 is pushed onto the upper, second shaft part 11.2 in the axial direction to produce the non-rotatable but axially movable engagement.
  • the stacking attachment 4 is then also placed on the second shaft part 11.2, producing the non-rotatable but axially displaceable engagement.
  • the compression spring 5 is fitted from above onto the spring support arms 17 forming part of the second shaft part 11.2 with their supporting lugs 17 ′ and locked under tension, whereby the stacking attachment 4 is subjected to a force in the direction of the stacking base 3 and thus the plate stack 2 in is axially compressed as desired.
  • Figure 9 finally shows the rotor 1 Figure 7 in an exploded view of individual parts, in an oblique view from below. Down in Figure 9 the central shaft 11 is again visible with its metallic first shaft part 11.1 and its second shaft part 11.2 made of plastic in one piece with the stacking base 3.
  • the second shaft part 11.2 has the engagement contours 16, 16 ', the spring support arms 17 and the support lugs 17'.
  • the stacking base 3 has a radially inner sleeve-shaped extension 33 and a radially outer sleeve-shaped extension 34 on its underside.
  • the inlet openings 31 of the stacking base 3 are visible from below.
  • the plate stack 2 is visible, which consists of a plurality of plates 20, each of which has the shape of a truncated cone.
  • the plates 20 On the underside of their conical, radially outer part, the plates 20 have spacing webs 21, which ensure that a desired space is kept clear between two adjacent plates 20 in the plate stack 2.
  • the counter-engagement contour 22 In the center of the plates 20 is their counter-engagement contour 22, which is surrounded by the flow openings 23.
  • the stack attachment 4 is visible, the shape of which is adapted to the top of the plate stack 2 and on its underside a contact surface 40 for the plate stack 2 and spacer webs 43.
  • its sleeve-shaped extension 41 is partially visible, which has the engagement contour 42 on its outer circumference, which in the assembled state of the rotor 1 interacts with the counter-engagement contour 22 of the upper plates 20 in the plate stack 2.

Landscapes

  • Centrifugal Separators (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

  • Die Erfindung betrifft einen Rotor eines Zentrifugalabscheiders, wobei der Rotor eine zentrale Welle aufweist, auf der ein Tellerstapel aus mehreren Tellern axial verschieblich angeordnet ist, wobei unter dem Tellerstapel ein Stapeluntersatz auf der Welle angeordnet ist, wobei über dem Tellerstapel ein Stapelaufsatz axial verschieblich auf der Welle angeordnet ist und wobei der Rotor eine die Welle umgebende Druckfeder aufweist, deren erstes Ende an der Welle und deren zweites Ende den Tellerstapel zusammendrückend am Stapelaufsatz abgestützt ist.
  • Ein Rotor der eingangs genannten Art ist aus der WO 2009/010248 A2 bekannt. Bei diesem bekannten Rotor drückt das zweite Ende der Druckfeder auf die Oberseite des Stapelaufsatzes. Damit die Druckfeder auf der Welle angeordnet werden kann, muss die Welle um zumindest die gespannte Länge der Druckfeder über den Stapelaufsatz hinausragen. Nachteilig steht dabei dieser Teil der Welle nicht für die Aufnahme von Tellern des Tellerstapels zur Verfügung.
  • Für die vorliegende Erfindung stellt sich daher die Aufgabe, einen Rotor der eingangs genannten Art zu schaffen, der bei gleicher äußerer Baugröße eine größere Anzahl von Tellern im Tellerstapel aufweist, ohne dass dafür die Teller geändert werden müssen.
  • Die Lösung dieser Aufgabe gelingt erfindungsgemäß mit einem Rotor gemäß dem Anspruch 1. Bei dem Rotor ist am Stapelaufsatz ein hülsenförmiger, in den Tellerstapel hineinragender, die Welle mit Abstand umgebender Fortsatz angeordnet ist, dass die Druckfeder zumindest über den größeren Teil ihrer axialen Länge innerhalb des Fortsatzes liegt und dass eine Abstützfläche für das zweite, stapelaufsatzseitige Ende der Druckfeder an einem Boden des Fortsatzes angeordnet ist.
  • Mit der Erfindung wird vorteilhaft erreicht, dass für die Anordnung der Druckfeder kein zusätzlicher axialer Bauraum mehr benötigt wird, weil erfindungsgemäß die Druckfeder über den größten Teil ihrer axialen Länge oder sogar über ihre gesamte axiale Länge innerhalb des Tellerstapels zu liegen kommt. Daher kann vorteilhaft der Bauraum, der zuvor für den über den Stapelaufsatz hinausragenden, die Druckfeder tragenden Abschnitt der Welle benötigt wurde, nun auch zur Anordnung von Tellern des Tellerstapels genutzt werden. Durch kann die Zahl der Teller im Tellerstapel ohne Vergrößerung des Bauraumes und ohne Veränderung der einzelnen Teller merklich erhöht werden, was eine entsprechende Vergrößerung der Abscheideleistung des Rotors beziehungsweise eines mit dem Rotor ausgestatteten Zentrifugalabscheiders bewirkt.
  • Aus Gründen einer guten Haltbarkeit und wirtschaftlichen Massenfertigung sind der Stapelaufsatz und der hülsenförmige Fortsatz vorzugsweise miteinander einstückig ausgebildet. Alternativ können der Stapelaufsatz und der hülsenförmige Fortsatz auch als zwei miteinander verbundene Einzelteile ausgeführt sein.
  • In weiterer Ausgestaltung des erfindungsgemäßen Rotors ist bevorzugt vorgesehen, dass die Welle aus Metall besteht und mit einem verdrehfesten Mantel aus Kunststoff umgeben ist, wobei der Mantel an seinem Außenumfang eine Eingriffskontur für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegen-Eingriffskontur am Innenumfang der Teller des Tellerstapels aufweist. Die metallische Welle liefert die nötige Stabilität für den Rotor. Die für das Zusammenwirken der verschiedenen Teile des Rotors nötigen Konturen können am Mantel vorteilhaft einfach ausgebildet werden, da dieser aus leicht formbarem Kunststoff, z. B. thermoplastischem oder duroplastischem Kunststoff, besteht.
  • Weiter wird vorgeschlagen, dass der Mantel an seinem Außenumfang mit einer Verzahnung aus in Axialrichtung der Welle verlaufenden Zähnen ausgebildet ist und dass die Teller des Tellerstapels an ihrem Innenumfang mit einer passenden Gegen-Verzahnung ausgebildet sind. Diese Konturen können einfach gefertigt werden und bieten zuverlässig den gewünschten verdrehfesten, aber axial beweglichen Eingriff zwischen Mantel und Tellerstapel.
  • Eine Weiterbildung des Rotors schlägt vor, dass der Mantel an seinem dem Stapelaufsatz zugewandten Endbereich eine Eingriffskontur für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegen-Eingriffskontur am hülsenförmigen Fortsatz des Stapelaufsatzes aufweist. Hiermit wird eine relativ zum Mantel verdrehfeste, jedoch axial verschiebliche Anordnung des Stapelaufsatzes des Rotors erreicht.
  • In weiterer Ausgestaltung ist bevorzugt vorgesehen, dass der Mantel in seinem dem Stapelaufsatz zugewandten Endbereich mit einer Verzahnung aus in Axialrichtung der Welle verlaufenden Zähnen ausgebildet ist und dass der hülsenförmige Fortsatz des Stapelaufsatzes mit einer passenden Gegen-Verzahnung ausgebildet ist.
  • Um innerhalb des Rotors auch in dessen nahe dem Stapelaufsatz liegenden Bereich die Teller verdrehfest und axial verschiebbar anordnen zu können, ist bevorzugt vorgesehen, dass der hülsenförmige Fortsatz des Stapelaufsatzes an seinem Außenumfang eine Eingriffskontur für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegen-Eingriffskontur am Innenumfang der Teller des Tellerstapels aufweist.
  • Damit innerhalb des Rotors gleiche Teller für den Tellerstapel verwendet werden können und damit die Teller problemlos montiert werden können, sind zweckmäßig die für die Teller vorgesehenen Eingriffskonturen am Fortsatz des Stapelaufsatzes und am Mantel untereinander gleich und stetig aneinander anschließend ausgeführt.
  • Insbesondere zwecks einer einfachen, kostengünstigen und zuverlässigen Herstellung schlägt die Erfindung weiter vor, dass der Mantel an die Welle angespritzt ist. Hiermit wird auch auf sichere Art und Weise gewährleistet, dass der Mantel verdrehfest auf der Welle sitzt.
  • Ebenfalls aus Gründen einer einfachen und kostengünstigen Fertigung und einfachen Montage des Rotors sind zweckmäßig der Stapeluntersatz und der Mantel miteinander einstückig ausgeführt. Damit wird auf einfache und sichere Weise auch der Stapeluntersatz relativ zur Welle verdrehfest und axial fest angeordnet.
  • Wie weiter oben erwähnt, ist die Druckfeder mit ihrem ersten Ende an der Welle abgestützt, wobei diese Abstützung unmittelbar oder mittelbar sein kann. Bevorzugt ist dabei die Druckfeder mit ihrem ersten, vom Stapelaufsatz weg weisenden Ende an einem radial vorragenden Kragen der Welle oder an einem axial fest mit der Welle verbundenen Ring, wie Sprengring, abgestützt, womit eine sehr kompakte Bauweise erzielt wird.
  • Eine Weiterbildung des erfindungsgemäßen Rotors ist dadurch gekennzeichnet, dass zwischen dem ersten Ende der Druckfeder einerseits und dem Kragen oder Ring andererseits ein Zwischenkörper angeordnet ist und dass der Stapelaufsatz einen axial äußeren, den Zwischenkörper radial außen umgebenden Kragen aufweist, der relativ zum Zwischenkörper dichtend axial verschieblich ist. Hiermit werden unerwünschte Fehlströmungen des den Rotor durchströmenden zu reinigenden fluiden Mediums durch den hülsenförmigen Fortsatz und den Stapelaufsatz hindurch aus dem Rotor heraus verhindert.
  • In einer weiteren Ausgestaltung des erfindungsgemäßen Rotors ist vorgesehen, dass die Welle in ihrer Axialrichtung gesehen aus zwei Wellenteilen besteht, wobei ein erster, einer drehbaren Lagerung des Rotors dienender Wellenteil aus Metall besteht, wobei ein zweiter, den Tellerstapel tragender Wellenteil aus Kunststoff besteht und mit dem ersten Wellenteil verdrehfest und axial fest verbunden ist und wobei der zweite Wellenteil an seinem Außenumfang eine Eingriffskontur für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegen-Eingriffskontur am Innenumfang der Teller des Tellerstapels aufweist. Vorteilhaft werden hiermit der metallische Anteil der Welle und damit das Gewicht der Welle vermindert und es wird eine größere Gestaltungsfreiheit hinsichtlich der Formgebung des zweiten Wellenteils ermöglicht.
  • Um die Teller des Tellerstapels bei einfacher Formgebung sicher verdrehfest auf dem zweiten Wellenteil anordnen zu können, wird vorgeschlagen, dass der zweite Wellenteil an seinem Außenumfang mit einer Verzahnung aus in Axialrichtung des zweiten Wellenteils verlaufenden Zähnen ausgebildet ist und dass die Teller des Tellerstapels an ihrem Innenumfang mit einer passenden Gegen-Verzahnung ausgebildet sind.
  • In weiterer Ausgestaltung ist vorgesehen, dass der zweite Wellenteil an seinem dem Stapelaufsatz zugewandten Endbereich eine Eingriffskontur für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegen-Eingriffskontur am hülsenförmigen Fortsatz des Stapelaufsatzes aufweist. Über den hülsenförmigen Fortsatz des Stapelaufsatzes kann so der Tellerstapel in gewünschter Weise zusammengedrückt werden, wobei ein unerwünschtes Verdrehen des Stapelaufsatzes mit dem Fortsatz relativ zum zweiten Wellenteil vermieden wird.
  • Eine diesbezügliche weitere Ausgestaltung sieht vor, dass der zweite Wellenteil in seinem dem Stapelaufsatz zugewandten Endbereich mit einer Verzahnung aus in Axialrichtung der Welle verlaufenden Zähnen ausgebildet ist und dass der hülsenförmige Fortsatz des Stapelaufsatzes mit einer passenden Gegen-Verzahnung ausgebildet ist. Hiermit wird bei einfacher Formgebung von Eingriffskontur und Gegen-Eingriffskontur eine sichere Funktion erzielt.
  • Damit auch der hülsenförmige Fortsatz des Stapelaufsatzes für die Anordnung von Tellern des Tellerstapels genutzt werden kann, wird vorgeschlagen, dass der hülsenförmige Fortsatz des Stapelaufsatzes an seinem Außenumfang eine Eingriffskontur für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegen-Eingriffskontur am Innenumfang der Teller des Tellerstapels aufweist.
  • Bevorzugt sind dabei die Eingriffskonturen am Fortsatz und am zweiten Wellenteil für die Teller untereinander gleich und stetig aneinander anschließend ausgeführt. Damit können innerhalb des Rotors gleiche Teller für den Tellerstapel verwendet werden, unabhängig davon, ob ein Teller am Fortsatz oder am zweiten Wellenteil angeordnet ist.
  • Zur Gewährleistung einer guten und dauerhaften Verbindung zwischen den zwei Wellenteilen ist zweckmäßig der zweite Wellenteil an den ersten Wellenteil angespritzt.
  • Ebenfalls aus Gründen einer dauerhaft sicheren Verbindung sowie einer wirtschaftlichen Fertigung sind vorzugsweise der Stapeluntersatz und der zweite Wellenteil miteinander einstückig ausgeführt.
  • Dadurch, dass der zweite Wellenteil aus Kunststoff besteht, kann dieser, wie oben erwähnt, in seiner Form freier gestaltet werden. Eine diesbezüglich vorteilhafte Ausgestaltung sieht vor, dass die Druckfeder mit ihrem ersten, vom Stapelaufsatz weg weisenden Ende an radial vorragenden Stütznasen von einen Teil des zweiten Wellenteils bildenden, axial verlaufenden, radial federnden Federtragarmen abgestützt ist. Ein separater, axial fest mit der Welle zu verbindender Ring, wie Sprengring, ist hier zum Abstützen des ersten, vom Stapelaufsatz weg weisenden Endes der Druckfeder nicht erforderlich. Es genügt, bei der Montage des Rotors die Druckfeder über die radial vorragenden Stütznasen der axial verlaufenden, radial federnden Federtragarme unter Einfedern der Federtragarme in Richtung zum Boden des Fortsatzes des Stapelaufsatzes hinwegzuschieben, bis die Federtragarme wieder ausfedern und dann die Druckfeder mit ihrem ersten, vom Stapelaufsatz weg weisenden Ende an den radial vorragenden Stütznasen der federnden Federtragarme abgestützt ist.
  • Schließlich ist für den Rotor gemäß Erfindung vorgesehen, dass die Teller, der Stapeluntersatz und der Stapelaufsatz Spritzgussteile aus Kunststoff sind. Auf diese Weise lassen sich die genannten Teile des Rotors einfach und kostengünstig als Massenteile herstellen, wobei gleichzeitig ein vorteilhaft geringes Gewicht des Rotors erzielt wird.
  • Im Folgenden wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung erläutert. Die Figuren der Zeichnung zeigen:
  • Figur 1
    einen Rotor in zusammengebautem Zustand, in einer ersten Ausführung, teils im Längsschnitt, teils in Ansicht,
    Figur 2
    den Rotor aus Figur 1 in einer auseinandergezogenen Einzelteil-Darstellung, teils im Längsschnitt, teils in Ansicht,
    Figur 3
    den Rotor aus Figur 1 in einer auseinandergezogenen Einzelteil-Darstellung, in einer Ansicht schräg von unten,
    Figur 4
    einen Teller eines Tellerstapels des Rotors aus Figur 1, in einer Ansicht schräg von oben,
    Figur 5
    den Teller aus Figur 4 in einer Ansicht schräg von unten,
    Figur 6
    den Rotor aus Figur 1 im Querschnitt gemäß der Schnittlinie VI-VI in Figur 1,
    Figur 7
    den Rotor in zusammengebautem Zustand, in einer zweiten Ausführung, teils im Längsschnitt, teils in Ansicht,
    Figur 8
    den Rotor aus Figur 7 in einer auseinandergezogenen Einzelteil-Darstellung, in einer Ansicht leicht schräg von oben, und
    Figur 9
    den Rotor aus Figur 7 in einer auseinandergezogenen Einzelteil-Darstellung, in einer Ansicht schräg von unten.
  • In der folgenden Figurenbeschreibung sind gleiche Teile in den verschiedenen Zeichnungsfiguren stets mit den gleichen Bezugszeichen versehen, sodass nicht zu jeder Zeichnungsfigur alle Bezugszeichen erneut erläutert werden müssen.
  • Figur 1 zeigt einen Rotor 1 eines Zentrifugalabscheiders in zusammengebautem Zustand, im Längsschnitt. Der Rotor 1 besitzt eine zentrale Welle 11, die aus Metall, wie Stahl, besteht und die im Betriebszustand eines Zentrifugalabscheiders in diesem drehbar gelagert sowie mittels eines hier nicht dargestellten Drehantriebes in Drehung um eine Drehachse 10 versetzbar ist.
  • In dem in Figur 1 axial mittleren Bereich der Welle 11 ist an dieser ein die Welle 11 radial außen umgebender Mantel 6 aus Kunststoff verdrehfest und axial fest angebracht, wie angespritzt. Mit dem Mantel 6 ist ein Stapeluntersatz 3 einstückig ausgebildet, der eine nach oben weisende Anlagefläche 32 aufweist.
  • Ein Tellerstapel 2, der aus einer Vielzahl von hier nicht einzeln dargestellten Tellern zusammengesetzt ist, ist auf den Mantel 6 von oben her aufgesetzt und liegt mit seiner Unterseite an der Anlagefläche 32 des Stapeluntersatzes 3 an.
  • Oberseitig ist der Tellerstapel 2 durch einen Stapelaufsatz 4 abgedeckt, der mit einer unterseitigen Anlagefläche 40 an der Oberseite des Tellerstapels 2 anliegt. Der Stapelaufsatz 4 besitzt radial innen einen hülsenförmigen, in den Tellerstapel 2 hineinragenden Fortsatz 41, der die Welle 11 mit Abstand umgibt. Ein Boden des Fortsatzes 41 weist eine Öffnung auf, durch die die Welle 11 hindurchgeführt ist.
  • Im Inneren des Fortsatzes 41 liegt eine Druckfeder 5 in Form einer Schraubenfeder. Mit ihrem ersten, oberen Ende ist die Druckfeder 5 an einem Zwischenkörper 7 abgestützt, der seinerseits mittels eines Rings 15 nahe dem oberen, freien Ende 12 der Welle 11 axial abgestützt ist. Das zweite, untere Ende 52 der Druckfeder 5 ist an einer Abstützfläche 45 abgestützt, die durch die Oberseite des Bodens des Fortsatzes 41 gebildet ist.
  • Durch die Kraft der Druckfeder 5 wird der Stapelaufsatz 4 axial in Richtung zum Stapeluntersatz 3 belastet, so dass der Stapeluntersatz 3 und der Stapelaufsatz 4 den Tellerstapel 2 zwischen sich einspannen und in seiner Form stabilisieren. Die einander benachbarten Teller des Tellerstapels 2 bilden in bekannter Art und Weise zwischen sich flache Spalträume aus, durch die im Betrieb des Rotors 1 das von mitgeführten Partikeln zu befreiende Gas strömt. In ebenfalls an sich bekannter Art und Weise besitzen die Teller des Tellerstapels 2 jeweils die Form eines Kegelstumpfmantels, mit einem geneigt verlaufenden radial äußeren Teil und einem eben verlaufenden radial inneren Teil, wie weiter unten anhand der Figuren 4 und 5 noch näher erläutert wird.
  • Dadurch, dass die Druckfeder 5 hier über ihre gesamte Länge in Inneren des hülsenförmigen Fortsatzes 41 liegt, kann annähernd die gesamte axiale Höhe der Welle 11 oberhalb des Stapeluntersatzes 3 für die Anordnung des Tellerstapels 2 genutzt werden. Ein relativ weites Herausragen eines oberen Teils der Welle 11 über den Stapelaufsatz 4 hinaus zur Anordnung der Feder 5 tritt hier vorteilhaft nicht auf. Dadurch kann bei gleicher axialer Bauhöhe des Rotors 1 ein Tellerstapel 2 mit einer merklich größeren Anzahl von Tellern untergebracht werden.
  • An der Unterseite des Stapeluntersatzes 3 sind konzentrisch zueinander ein radial innerer hülsenförmige Fortsatz 33 und ein radial äußerer hülsenförmigen Fortsatz 34 angeformt. In einem radial inneren Bereich des Stapeluntersatz 3 sind über dessen Umfang verteilt zwischen den Fortsätzen 33, 34 Einlassöffnungen 31 angeordnet, durch welche im Betrieb des Rotors 1 ein von flüssigen oder festen Partikeln zu befreien des Gas, beispielsweise Kurbelgehäuseentlüftungsgas einer Brennkraftmaschine, in den Tellerstapel 2 eintreten kann. Das Gas wird dann in Radialrichtung nach außen hin in die Spalträume des Tellerstapels 2 umgelenkt und verlässt den Tellerstapel 2 an dessen Außenumfang. Die im Gas mitgeführten Partikel treffen auf die inneren Oberflächen des Tellerstapels 2 werden so aus dem Gasstrom abgeschieden und infolge der Rotation des Rotors 1 am Innenumfang eines hier nicht dargestellten, den Rotor 1 in an sich bekannter Weise im Betrieb umgebenden Abscheidergehäuses niedergeschlagen.
  • Zur Vermeidung von Fehlströmungen des Gases aus dem Tellerstapel 2 durch das Innere des hülsenförmigen Fortsatzes 41 aus dem Rotor 1 heraus ist der Zwischenkörper 7 in einem oberseitig am Stapelaufsatz 4 angeformten hohlzylindrischen Kragen 47 mittels eines Dichtrings 70 abgedichtet, wobei der Stapelaufsatz 4 sich in Axialrichtung des Rotors 1 relativ zu dem Zwischenkörper 7, der an der Welle 11 abgestützt ist, in einem begrenzten, ausreichenden Maß bewegen kann, um Toleranzen oder temperaturabhängig auftretende Änderungen der Höhe des Tellerstapels 2 aufzunehmen.
  • In einem Bereich unmittelbar unterhalb des Stapeluntersatzes 3 besitzt die Welle 11 eine Lagerfläche 13, die zur Anordnung eines hier nicht eigens dargestellten Gleitlagers oder Wälzlagers dient. In einem noch weiter unten liegenden, hier nicht gezeigten Teil der Welle 11 ist ein Drehantrieb geeigneter, ebenfalls an sich bekannter Ausführung angeordnet.
  • Figur 2 zeigt den Rotor 1 aus Figur 1 in einer auseinandergezogenen Einzelteil-Darstellung im Längsschnitt.
  • Unten in Figur 2 ist die zentrale Welle 11 sichtbar, an die der Mantel 6 einstückig mit dem Stapeluntersatz 3 angespritzt ist. In Höhe des Stapeluntersatzes 3 liegt die Lagerfläche 13 der Welle 11. Das obere Ende 12 der Welle 11 mit einer Nut 14 für den Ring 15 liegt oberhalb des oberen Endes des Mantels 6. Der Mantel 6 besitzt an seinem Außenumfang eine Eingriffskontur 62, die mit einer Gegen-Eingriffskontur 22 am Innenumfang der einzelnen Teller des Tellerstapels 2 in einen verdrehfesten, aber axial verschieblichen Eingriff bringbar ist.
  • Über dem Tellerstapel 2 ist der Stapelaufsatz 4 dargestellt, der zentral in seinem Inneren den in Richtung zum Tellerstapel 2 vorragenden, hülsenförmigen Fortsatz 41 aufweist. An seinem Außenumfang besitzt der Fortsatz 41 zum einen eine Eingriffskontur 42, die identisch ist mit der Eingriffskontur 62 am Mantel 6 und die mit der Gegen-Eingriffskontur 22 der Teller des Tellerstapels 2 zusammenwirkt, wenn der Rotor 1 zusammengebaut ist. Zum anderen besitzt der Fortsatz 41 an seinem Außenumfang eine Gegen-Eingriffskontur 44, die in zusammengebautem Zustand mit einer Eingriffskontur 64 im oberen Bereich des Mantels 6 zusammenwirkt, wobei die Konturen 44, 64 den Stapelaufsatz 4 verdrehfest, aber axial verschieblich in Eingriff mit dem Stapeluntersatz 3 bringen.
  • An seiner nach unten weisenden Seite besitzt der Stapelaufsatz 4 eine Anlagefläche 40 für die Oberseite des Tellerstapels 2. Dabei sind hier auf der Anlagefläche 40 in Radialrichtung verlaufende Abstandshaltestege 43 angeformt, so dass auch zwischen der Oberseite des Tellerstapels 2 und der Unterseite des Stapelaufsatzes 4 noch ein für die Abscheidung wirksamer Spaltraum ausgebildet wird.
  • Oberseitig ist an den Stapelaufsatz 4 der hohlzylindrische Kragen 47 zur Aufnahme des Zwischenkörpers 7 angeformt.
  • Über dem Stapelaufsatz 4 ist die Druckfeder 5 in Form der Schraubenfeder mit ihrem ersten, oberen Ende 51 und ihrem zweiten, unteren Ende 52 sichtbar. Das obere Ende 51 der Druckfeder 5 stützt sich in zusammengebautem Zustand an der Unterseite des hier über der Druckfeder 5 gezeigten Zwischenkörpers 7 ab. Das zweite, untere Ende 52 der Druckfeder 5 stützt sich im zusammengebauten Zustand an der Abstützfläche 45 ab, die durch die Oberseite eines Bodens des hülsenförmigen Fortsatzes 41 des Stapelaufsatzes 4 gebildet ist.
  • Der Zwischenkörper 7 besitzt im Wesentlichen die Form einer flachen Kreisringscheibe mit einer zentralen Öffnung, durch die in zusammengebautem Zustand das obere Ende 12 der zentralen Welle 11 hindurch ragt. Radial außen ist am Zwischenkörper 7 der umlaufende Dichtring 70, zum Beispiel ein O-Ring, angeordnet.
  • Ganz oben in Figur 2 ist schließlich der Ring 15 dargestellt, der in zusammengebautem Zustand in die Nut 14 nahe dem oberen Ende 12 der Welle 11 eingesetzt ist.
  • Figur 3 zeigt den Rotor 1 aus Figur 1 in einer auseinandergezogenen Einzelteil-Darstellung in einer Ansicht schräg von unten. Unten in Figur 3 ist die zentrale Welle 11 mit dem daran angespritzten Mantel 6 und dem damit einstückigen Stapeluntersatz 3 sichtbar. An der Unterseite des Stapeluntersatzes 3 sind der radial innere hülsenförmige Fortsatz 33 und der radial äußere hülsenförmige Fortsatz 34 sichtbar, die zusammen eine Strömungsführung für ein zu reinigendes Gas bilden, welches durch die Einlassöffnungen 31 im Stapeluntersatz 3 in den Tellerstapel 2 eintritt.
  • Oberhalb des Stapeluntersatzes 3 ist der Mantel 6 mit seinen Eingriffskonturen 62, 64 für den Tellerstapel 2 und für den Stapelaufsatz 4 erkennbar. Aus dem Mantel 6 ragt oben das obere Ende 12 der Welle 11 mit der Nut 14 für den Ring 15 hervor.
  • Über dem oberen Ende 12 der Welle 11 ist der Tellerstapel 2 als weiteres Bauteil dargestellt, wobei auch hier aus Übersichtlichkeitsgründen die einzelnen, in der Praxis sehr dünnen Teller des Tellerstapels 2 nicht dargestellt sind. Am Innenumfang des Tellerstapels 2 ist dessen Gegen-Eingriffskontur 22 erkennbar, die im zusammengebauten Zustand mit der Eingriffskontur 62 des Mantels 6 und der Eingriffskontur 42 des Fortsatzes 41 des Stapelaufsatzes 4 zusammenwirkt, um den Tellerstapel 2 axial verschieblich und verdrehfest zu halten.
  • Über dem Tellerstapel 2 ist der Stapelaufsatz 4 dargestellt, in dessen Innerem der hülsenförmige Fortsatz 41 liegt. Auf dem Außenumfang des Fortsatzes 41 sind die Eingriffskontur 42 für den Tellerstapel 2 und die Gegen-Eingriffskontur 44 für das Zusammenwirken mit der Eingriffskontur 64 am Mantel 6 sichtbar. Über die nach unten in Richtung zum Tellerstapel 2 weisende Anlagefläche 40 des Stapelaufsatzes 4 verlaufen in Umfangsrichtung gesehen in regelmäßigen Abständen die radialen Abstandshaltestege 43.
  • Über dem Stapelaufsatz 4 ist die Druckfeder 5 mit ihrem ersten, oberen Ende 51 und ihrem zweiten, unteren Ende 52 sichtbar. Darüber folgt der Zwischenkörper 7 mit seinem außen umlaufenden Dichtring 70. Ganz oben in Figur 3 schließlich ist der Ring 15, der hier als Sprengring ausgeführt ist, sichtbar, der in die Nut 14 am oberen Ende 12 der zentralen Welle 11 einsetzbar ist und der die Teile des Rotors 1 im zusammengebauten Zustand zusammenhält.
  • Figur 4 zeigt einen Teller 20 des Tellerstapels 2 des Rotors aus den Figur 1 bis 3 in einer Ansicht schräg von oben. Hier wird besonders deutlich erkennbar, dass jeder Teller 20 die Form eines Kegelstumpfmantels hat. Der geneigt verlaufende radial äußere Teil des Tellers 20 ist als geschlossene Fläche ausgeführt. Der radial innere, ebene Bereich des Tellers 20 ist an seinem Innenumfang mit der Gegen-Eingriffskontur 22 versehen. Radial außen davon liegen über den Umfang verteilt die Strömungsdurchbrechungen 23, durch welche das im Betrieb zu reinigende Gas axial einströmt und von wo aus dann das Gas in Radialrichtung nach außen in die Spalträume zwischen den einander benachbarten Tellern 20 umgelenkt wird.
  • Figur 5 zeigt den Teller 20 aus Figur 4 in einer Ansicht schräg von unten. Hier wird die Anordnung der über die jeweils untere Seite des schräg ausgerichteten Bereichs der Teller 20 verlaufenden Abstandshaltestege 21 besonders deutlich. Im Zentrum des Tellers 20 ist auch in Figur 5 die Gegen-Eingriffskontur 22 erkennbar. Radial außen davon liegen über den Umfang verteilt die Strömungsdurchbrechungen 23.
  • Wie die Figuren 1 bis 5 der Zeichnung veranschaulichen, können der Stapeluntersatz 3, der Stapelaufsatz 4 und die einzelnen Teller 20 des Tellerstapels 2 vorteilhaft als Spritzgussteile aus Kunststoff hergestellt werden. Auch der Zwischenkörper 7 kann ein Spritzgussteil aus Kunststoff sein. Lediglich die Welle 11, die Druckfeder 5 und der Ring 15 sind Teile aus Metall, üblicherweise Stahl.
  • Figur 6 zeigt den Rotor 1 aus Figur 1 im Querschnitt gemäß der Schnittlinie VI-VI in Figur 1. Im Zentrum der Figur 6 verläuft senkrecht zur Zeichnungsebene die zentrale Welle 11, deren Mittelachse zugleich die Drehachse 10 des Rotors 1 bildet. Um die Welle 11 herum ist die als Schraubenfeder ausgeführte Druckfeder 5 angeordnet, die ihrerseits von dem hülsenförmigen Fortsatz 41 des Stapelaufsatzes 4 umgeben ist. Um den Fortsatz 41 herum verläuft der Mantel 6, der einen oberen Teil der zentralen Welle 11 umgibt. Noch weiter radial nach außen folgt schließlich der Tellerstapel 2, der aus einer Vielzahl von Tellern 20 zusammengesetzt ist. In ihrem radial inneren Bereich weisen die Teller 20 jeweils mehrere in Umfangsrichtung verteilt angeordnete Strömungsdurchbrechungen 23 auf.
  • Der Fortsatz 41 weist an seinem Außenumfang die Eingriffskontur 42 auf, die durch eine in Längsrichtung des Fortsatzes 41 verlaufende Verzahnung gebildet ist, die mit der Gegen-Eingriffskontur 22 am Innenumfang von oberen Tellern 20 des Tellerstapels 2 in Eingriff steht.
  • Weiterhin weist auch der Mantel 6 an seinem Außenumfang eine mit der Eingriffskontur 42 des Fortsatzes 41 identische und deckungsgleiche Eingriffskontur 62 auf, die mit der Gegen-Eingriffskontur 22 am Innenumfang von weiter unten angeordneten Tellern 20 des Tellerstapels 2 in Eingriff steht.
  • Damit eine relative Verdrehung zwischen dem Fortsatz 41 und dem Mantel 6 nicht auftreten kann, besitzt der Mantel 6 eine Eingriffskontur 64, die mit einer Eingriffskontur 44 des Fortsatzes 41 in Eingriff steht.
  • Dabei sind alle vorgenannten Eingriffskonturen 42, 62, 64 und Gegen-Eingriffskonturen 22, 44 so ausgebildet, dass die zugehörigen Teile des Rotors 1 relativ zueinander gegen Verdrehen gesichert, aber axial verschiebbar sind.
  • Figur 7 zeigt den Rotor 1 in zusammengebautem Zustand, in einer zweiten Ausführung, teils im Längsschnitt, teils in Ansicht. Im Zentrum des Rotors 1 verläuft die zentrale Welle 11, deren Mittelachse die Drehachse 10 des Rotors 1 bildet.
  • Unterschiedlich zu dem zuvor beschriebenen Ausführungsbeispiel ist hier insbesondere, dass die zentrale Welle 11 einen ersten, unteren, metallischen Wellenteil 11.1 und einen zweiten, oberen, aus Kunststoff bestehenden zweiten Wellenteil 11.2 aufweist. Der aus Kunststoff bestehende zweite Wellenteil 11.2 ist dabei vorzugsweise an den ersten, metallischen Wellenteil 11.1 angespritzt. Der metallische erste Wellenteil 11.1 weist zwei voneinander axial beabstandete Lagerflächen 13 auf, an welchen der Rotor 1 innerhalb eines Zentrifugalabscheiders mittels Gleit- oder Wälzlagern drehbar gelagert werden kann.
  • Der Stapelaufsatz 4 weist auch hier einen einstückig angeformten hülsenförmigen Fortsatz 41 auf, der in den Tellerstapel 2 eintaucht und in welchem die Druckfeder 5 zum Zusammendrücken des Tellerstapels 2 zwischen dem Stapeluntersatz 3 und dem Stapelaufsatz 4 angeordnet ist. Auch hier stützt sich die Druckfeder 5 mit ihrem unteren Ende 52 an einer durch einen Boden des Fortsatzes 41 gebildeten Abstützfläche 45 ab. Das obere Ende 51 der Druckfeder 5 ist hier, anders als bei dem ersten Ausführungsbeispiel, an mehreren Stütznasen 17' axial abgestützt, die am freien, oberen Ende mehrerer kranzförmig angeordneter Federtragarme 17, die mit dem zweiten Wellenteil 11.2 einstückig ausgeführt sind und Teil des zweiten Wellenteils 11.2 sind, angeformt sind. Die Druckfeder 5 umgibt dabei die Anordnung aus den Federtragarmen 17 und die Stütznasen 17' weisen radial nach außen.
  • Bei der Montage des Rotors 1 genügt es hier also, die Druckfeder 5 nach dem Aufsetzen von Stapeluntersatz 3, Tellerstapel 2 und Stapelaufsatz 4 auf die Welle 11 von oben her auf die Anordnung der Federtragarme 17 aufzuschieben, wobei die Federtragarme 17 flexibel in Radialrichtung nach innen einfedern, bis die Druckfeder 5 ihre in Figur 7 gezeigte Stellung erreicht hat, in der das obere Federende 51 unterhalb der Stütznasen 17' liegt, so dass dann die Federtragarme 17 in Radialrichtung nach außen zurückfedern können und mit ihren Stütznasen 17' die Druckfeder 5 abstützen. Das Anbringen eines ein gesondertes Bauteil darstellenden Sicherungsrings oder Sprengrings an der Welle 11 zur Bildung einer oberen Abstützung der Druckfeder 5 ist hier also nicht erforderlich.
  • Um die Teller 20 des Tellerstapels 2 verdrehfest, aber axial verschiebbar auf der Welle 11 und auf dem Fortsatz 41 anordnen zu können, weisen die Welle 11 in ihrem zweiten Wellenteil 11.2 am Außenumfang die Eingriffskontur 16 und der Fortsatz 41 an seinem Außenumfang die Eingriffskontur 42 auf, die mit der Gegen-Eingriffskontur 22 an den Tellern 20 in Eingriff stehen. Außerdem stehen die Eingriffskontur 16' am zweiten Wellenteil 11.2 und die Gegen-Eingriffskontur 44 am hülsenförmigen Fortsatz 41 in Eingriff miteinander.
  • Hinsichtlich der weiteren in Figur 7 dargestellten Einzelteile des Rotors 1 wird auf die vorhergehende Beschreibung, insbesondere der Figur 1, verwiesen.
  • Figur 8 zeigt den Rotor aus Figur 7 in einer auseinandergezogenen Einzelteil-Darstellung, in einer Ansicht leicht schräg von oben. Unten in Figur 8 ist die zentrale Welle 11 mit ihrem unteren, ersten Wellenteil 11.1 aus Metall, wie Stahl, und ihrem oberen, zweiten Wellenteil 11.2 aus Kunststoff sichtbar. Der Stapeluntersatz 3 ist hier einstückig mit dem oberen, zweiten Wellenteil 11.2 ausgeführt und als Einheit an den ersten, metallischen Wellenteil 11.1 angespritzt. Oberseitig weist der Stapeluntersatz 3 eine an die Form der Teller 20 des Tellerstapels 2 angepasste, konische Anlagefläche 32 auf. In einem radial inneren, oberen Bereich des Stapeluntersatzes 3 sind die Einlassöffnungen 31 zur Zuführung eines zu reinigenden Fluids, wie beispielsweise Kurbelgehäuseentlüftungsgas einer Brennkraftmaschine, in das Innere des Tellerstapels 2 angeordnet.
  • Am zweiten Wellenteil 11.2 sind die Eingriffskonturen 16,16', die Federtragarme 17 und deren Stütznasen 17' sichtbar.
  • Darüber zeigt die Figur 8 schematisch den Tellerstapel 2 und über diesem wiederum den Stapelaufsatz 4. Ganz oben in Figur 8 ist schließlich die Druckfeder 5 sichtbar.
  • Zur Montage des Rotors 1 wird der Tellerstapel 2 in Axialrichtung auf den oberen, zweiten Wellenteil 11.2 unter Herstellung des verdrehfesten, aber axial beweglichen Eingriffs aufgeschoben. Anschließend wird der Stapelaufsatz 4 ebenfalls auf den zweiten Wellenteil 11.2 unter Herstellung des verdrehfesten, aber axial verschieblichen Eingriffs aufgesetzt. Als letztes wird die Druckfeder 5 von oben her auf die einen Teil des zweiten Wellenteils 11.2 bildenden Federtragarme 17 mit ihren Stütznasen 17' aufgesteckt und unter Spannung verrastet, wodurch der Stapelaufsatz 4 in Richtung zum Stapeluntersatz 3 mit einer Kraft beaufschlagt und so der Tellerstapel 2 in gewünschter Weise axial zusammengedrückt wird.
  • Figur 9 schließlich zeigt den Rotor 1 aus Figur 7 in einer auseinandergezogenen Einzelteil-Darstellung, in einer Ansicht schräg von unten. Unten in Figur 9 ist wieder die zentrale Welle 11 mit ihrem metallischen ersten Wellenteil 11.1 und ihrem einstückig mit dem Stapeluntersatz 3 aus Kunststoff bestehenden zweiten Wellenteil 11.2 sichtbar.
  • Der zweite Wellenteil 11.2 weist die Eingriffskonturen 16,16', die Federtragarme 17 und die Stütznasen 17' auf.
  • Wie bei dem zuvor beschriebenen ersten Ausführungsbeispiel besitzt auch hier der Stapeluntersatz 3 an seiner Unterseite einen radial inneren hülsenförmigen Fortsatz 33 und einen radial äußeren hülsenförmigen Fortsatz 34. Außerdem sind hier von unten her die Einlassöffnungen 31 des Stapeluntersatzes 3 sichtbar.
  • Weiter oben in Figur 9 ist der Tellerstapel 2 sichtbar, der aus einer Vielzahl von Tellern 20 besteht, die jeweils die Form eines Kegelstumpfes haben. An der Unterseite ihres konischen, radial äußeren Teils haben die Teller 20 Abstandshaltestege 21, die für die Freihaltung eines gewünschten Zwischenraumes zwischen je zwei einander benachbarten Tellern 20 im Tellerstapel 2 sorgen. Im Zentrum der Teller 20 liegt deren Gegen-Eingriffskontur 22, die von den Strömungsdurchbrechungen 23 umgeben ist.
  • Noch weiter oben in Figur 9 ist der Stapelaufsatz 4 sichtbar, der in seiner Form an die Oberseite des Tellerstapels 2 angepasst ist und an seiner Unterseite eine Anlagefläche 40 für den Tellerstapel 2 sowie Abstandshaltestege 43 aufweist. Im Zentrum der Unterseite des Stapelaufsatzes 4 ist dessen hülsenförmiger Fortsatz 41 teilweise sichtbar, der an seinem Außenumfang die Eingriffskontur 42 aufweist, die im zusammengebauten Zustand des Rotors 1 mit der Gegen-Eingriffskontur 22 der oberen Teller 20 im Tellerstapel 2 zusammenwirkt. Bezugszeichenliste:
    Zeichen Bezeichnung
    1 Rotor
    10 Drehachse
    11 zentrale Welle
    11.1, 11.2 erster, zweiter Wellenteil
    12 freies (oberes) Ende von 11
    13 Lagerfläche
    14 Nut an 11 für 15
    15 Ring an 11
    16, 16' Eingriffskonturen für 2, 4 an 11.2
    17 Federtragarme
    17' Stütznasen an 17
    2 Tellerstapel
    20 Teller
    21 Abstandshaltestege an 20
    22 Gegen-Eingriffskontur an 20 für 62, 16
    23 Strömungsdurchbrechungen
    3 Stapeluntersatz
    31 Einlassöffnungen an 3
    32 Anlagefläche für 2
    33 radial innerer hülsenförmiger Fortsatz an 3
    34 radial äußerer hülsenförmiger Fortsatz an 3
    4 Stapelaufsatz
    40 Anlagefläche für 2
    41 hülsenförmiger Fortsatz an 4
    42 Eingriffskontur an 4 für 22
    43 Abstandshaltestege an 4
    44 Gegen-Eingriffskontur an 4 für 64, 16'
    45 Abstützfläche für 5 in 41
    47 Kragen an 4 für 7
    5 Druckfeder
    51 erstes, oberes Ende von 5
    52 zweites, unteres Ende von 5
    6 Mantel an 11
    62 Eingriffskontur für 2
    64 Eingriffskontur für 4
    7 Zwischenkörper
    70 Dichtring

Claims (21)

  1. Rotor (1) eines Zentrifugalabscheiders, wobei der Rotor (1) eine zentrale Welle (11) aufweist, auf der ein Tellerstapel (2) aus mehreren Tellern (20) axial verschieblich angeordnet ist, wobei unter dem Tellerstapel (2) ein Stapeluntersatz (3) auf der Welle (11) angeordnet ist, wobei über dem Tellerstapel (2) ein Stapelaufsatz (4) axial verschieblich auf der Welle (11) angeordnet ist und wobei der Rotor (1) eine die Welle (11) umgebende Druckfeder (5) aufweist, deren erstes Ende (51) an der Welle (11) und deren zweites Ende (52) den Tellerstapel (2) zusammendrückend am Stapelaufsatz (4) abgestützt ist,
    dadurch gekennzeichnet,
    dass am Stapelaufsatz (4) ein hülsenförmiger, in den Tellerstapel (20) hineinragender, die Welle (11) mit Abstand umgebender Fortsatz (41) angeordnet ist, dass die Druckfeder (5) zumindest über den größeren Teil ihrer axialen Länge innerhalb des Fortsatzes (41) liegt und dass eine Abstützfläche (45) für das zweite, stapelaufsatzseitige Ende (52) der Druckfeder (5) an einem Boden des Fortsatzes (41) angeordnet ist.
  2. Rotor nach Anspruch 1, dadurch gekennzeichnet, dass die Welle (11) aus Metall besteht und mit einem verdrehfesten Mantel (6) aus Kunststoff umgeben ist, wobei der Mantel (6) an seinem Außenumfang eine Eingriffskontur (62) für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegen-Eingriffskontur (22) am Innenumfang der Teller (20) des Tellerstapels (2) aufweist.
  3. Rotor nach Anspruch 2 , dadurch gekennzeichnet, dass der Mantel (6) an seinem Außenumfang mit einer Verzahnung aus in Axialrichtung der Welle (11) verlaufenden Zähnen ausgebildet ist und dass die Teller (20) des Tellerstapels (2) an ihrem Innenumfang mit einer passenden Gegen-Verzahnung ausgebildet sind.
  4. Rotor nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Mantel (6) an seinem dem Stapelaufsatz (4) zugewandten Endbereich eine Eingriffskontur (64) für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegen-Eingriffskontur (44) am hülsenförmigen Fortsatz (41) des Stapelaufsatzes (4) aufweist.
  5. Rotor nach Anspruch 4 , dadurch gekennzeichnet, dass der Mantel (6) in seinem dem Stapelaufsatz (4) zugewandten Endbereich mit einer Verzahnung aus in Axialrichtung der Welle (11) verlaufenden Zähnen ausgebildet ist und dass der hülsenförmige Fortsatz (41) des Stapelaufsatzes (4) mit einer passenden Gegen-Verzahnung ausgebildet ist.
  6. Rotor nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass der hülsenförmige Fortsatz (41) des Stapelaufsatzes (4) an seinem Außenumfang eine Eingriffskontur (42) für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegen-Eingriffskontur (22) am Innenumfang der Teller (20) des Tellerstapels (2) aufweist.
  7. Rotor nach Anspruch 6, dadurch gekennzeichnet, dass die Eingriffskonturen (42, 62) am Fortsatz (41) und am Mantel (6) für die Teller (20) untereinander gleich und stetig aneinander anschließend ausgeführt sind.
  8. Rotor nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass der Mantel (6) an die Welle (11) angespritzt ist.
  9. Rotor nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass der Stapeluntersatz (3) und der Mantel (6) miteinander einstückig ausgeführt sind.
  10. Rotor nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Druckfeder (5) mit ihrem ersten, vom Stapelaufsatz (4) weg weisenden Ende (51) an einem radial vorragenden Kragen der Welle (11) oder an einem axial fest mit der Welle (11) verbundenen Ring (15) abgestützt ist.
  11. Rotor nach Anspruch 10, dadurch gekennzeichnet, dass zwischen dem ersten Ende (51) der Druckfeder (5) einerseits und dem Kragen oder Ring (15) andererseits ein Zwischenkörper (7) angeordnet ist und dass der Stapelaufsatz (4) einen axial äußeren, den Zwischenkörper (7) radial außen umgebenden Kragen (47) aufweist, der relativ zum Zwischenkörper (7) dichtend axial verschieblich ist.
  12. Rotor nach Anspruch 1, dadurch gekennzeichnet, dass die Welle (11) in ihrer Axialrichtung gesehen aus zwei Wellenteilen (11.1, 11.2) besteht, wobei ein erster, einer drehbaren Lagerung des Rotors (1) dienender Wellenteil (11.1) aus Metall besteht, wobei ein zweiter, den Tellerstapel (2) tragender Wellenteil (11.2) aus Kunststoff besteht und mit dem ersten Wellenteil (11.1) verdrehfest und axial fest verbunden ist und wobei der zweite Wellenteil (11.2) an seinem Außenumfang eine Eingriffskontur (16) für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegen-Eingriffskontur (22) am Innenumfang der Teller (20) des Tellerstapels (2) aufweist.
  13. Rotor nach Anspruch 12, dadurch gekennzeichnet, dass der zweite Wellenteil (11.2) an seinem Außenumfang mit einer Verzahnung aus in Axialrichtung des zweiten Wellenteils (11.2) verlaufenden Zähnen ausgebildet ist und dass die Teller (20) des Tellerstapels (2) an ihrem Innenumfang mit einer passenden Gegen-Verzahnung ausgebildet sind.
  14. Rotor nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass der zweite Wellenteil (11.2) an seinem dem Stapelaufsatz (4) zugewandten Endbereich eine Eingriffskontur (16') für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegen-Eingriffskontur (44) am hülsenförmigen Fortsatz (41) des Stapelaufsatzes (4) aufweist.
  15. Rotor nach Anspruch 14 , dadurch gekennzeichnet, dass der zweite Wellenteil (11.2) in seinem dem Stapelaufsatz (4) zugewandten Endbereich mit einer Verzahnung aus in Axialrichtung der Welle (11) verlaufenden Zähnen ausgebildet ist und dass der hülsenförmige Fortsatz (41) des Stapelaufsatzes (4) mit einer passenden Gegen-Verzahnung ausgebildet ist.
  16. Rotor nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass der hülsenförmige Fortsatz (41) des Stapelaufsatzes (4) an seinem Außenumfang eine Eingriffskontur (42) für einen verdrehfesten, axial verschieblichen Eingriff mit einer Gegen-Eingriffskontur (22) am Innenumfang der Teller (20) des Tellerstapels (2) aufweist.
  17. Rotor nach Anspruch 16, dadurch gekennzeichnet, dass die Eingriffskonturen (42, 62) am Fortsatz (41) und am zweite Wellenteil (11.2) für die Teller (20) untereinander gleich und stetig aneinander anschließend ausgeführt sind.
  18. Rotor nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass der zweite Wellenteil (11.2) an den ersten Wellenteil (11.1) angespritzt ist.
  19. Rotor nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, dass der Stapeluntersatz (3) und der zweite Wellenteil (11.2) miteinander einstückig ausgeführt sind.
  20. Rotor nach einem der Ansprüche 12 bis 19, dadurch gekennzeichnet, dass die Druckfeder (5) mit ihrem ersten, vom Stapelaufsatz (4) weg weisenden Ende (51) an radial vorragenden Stütznasen (17') von einen Teil des zweiten Wellenteils (11.2) bildenden, axial verlaufenden, radial federnden Federtragarmen (17) abgestützt ist.
  21. Rotor nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Teller (20), der Stapeluntersatz (3) und der Stapelaufsatz (4) Spritzgussteile aus Kunststoff sind.
EP16805978.0A 2015-11-13 2016-11-10 Rotor eines zentrifugalabscheiders Active EP3374085B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015119616.6A DE102015119616A1 (de) 2015-11-13 2015-11-13 Rotor eines Zentrifugalabscheiders
PCT/EP2016/077213 WO2017081124A1 (de) 2015-11-13 2016-11-10 Rotor eines zentrifugalabscheiders

Publications (2)

Publication Number Publication Date
EP3374085A1 EP3374085A1 (de) 2018-09-19
EP3374085B1 true EP3374085B1 (de) 2019-12-25

Family

ID=57485436

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16805978.0A Active EP3374085B1 (de) 2015-11-13 2016-11-10 Rotor eines zentrifugalabscheiders

Country Status (5)

Country Link
US (1) US10427170B2 (de)
EP (1) EP3374085B1 (de)
CN (1) CN108430644B (de)
DE (1) DE102015119616A1 (de)
WO (1) WO2017081124A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022123250A1 (de) 2022-09-13 2024-03-14 Hengst Se Abscheiderotor für einen Zentrifugalabscheider

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013107681B4 (de) * 2013-07-18 2018-02-08 Andreas Hettich Gmbh & Co. Kg Zentrifuge
DE102014112501B4 (de) * 2014-08-29 2017-07-27 Andreas Hettich Gmbh & Co. Kg Zentrifuge
DE102015113854A1 (de) * 2015-08-20 2017-02-23 Andreas Hettich Gmbh & Co. Kg Rotor einer Zentrifuge
DE102015113855A1 (de) * 2015-08-20 2017-02-23 Andreas Hettich Gmbh & Co. Kg Rotor einer Zentrifuge
DE102015119616A1 (de) * 2015-11-13 2017-05-18 Hengst Se & Co. Kg Rotor eines Zentrifugalabscheiders
USD879170S1 (en) * 2017-06-30 2020-03-24 Gea Mechanical Equipment Gmbh Centrifugal separator
DE102017130787A1 (de) * 2017-12-20 2019-06-27 Eppendorf Ag Zentrifugenrotor
JP1619045S (de) * 2018-03-09 2018-11-26
DE102018105586A1 (de) 2018-03-12 2019-09-12 Hengst Se Rotor eines Zentrifugalabscheiders und Zentrifugalabscheider
DE202018103721U1 (de) * 2018-06-29 2019-10-09 Reinz-Dichtungs-Gmbh Abscheider, Entlüftungssystem und Verbrennungsmotor
CN109107779A (zh) * 2018-09-30 2019-01-01 合肥恒信汽车发动机部件制造有限公司 一种主动式碟片离心分离器的分离碟片固定机构
DE202018107273U1 (de) 2018-12-19 2020-03-23 Reinz-Dichtungs-Gmbh Federvorrichtung für einen Rotor eines Zentrifugalabscheiders in einem Kraftfahrzeug

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US920481A (en) * 1909-01-05 1909-05-04 Vermont Farm Machine Company Centrifugal cream-separator.
GB157336A (en) * 1917-12-06 1922-04-10 Eric Gustaf Nicolaus Salenius Improvement in centrifugal separators
US1928080A (en) * 1932-11-14 1933-09-26 Charles F Uebelacker Centrifugal separator
US3410481A (en) * 1966-12-01 1968-11-12 Alfa Laval Ab Centrifuge
US4069969A (en) * 1976-09-28 1978-01-24 Mitsubishi Kakoki Kaisha, Ltd. Automatic three stage centrifugal sludge separator
DE2909716A1 (de) * 1979-03-13 1980-09-18 Krauss Maffei Ag Schubzentrifuge
SE8803686D0 (sv) * 1988-10-17 1988-10-17 Alfa-Laval Separation Ab Centrifugalseparator
SE510541C2 (sv) * 1997-09-29 1999-05-31 Alfa Laval Ab Regleranordning för centrifugalseparator
US6572523B2 (en) * 2001-04-05 2003-06-03 Fleetguard, Inc. Centrifuge rotation indicator
SE523672C2 (sv) * 2002-09-02 2004-05-11 3Nine Ab Anordning för stapling av skivelement
SE527719C2 (sv) * 2004-06-16 2006-05-23 3Nine Ab Rotorenhet till en centrifugalseparator
US7674376B1 (en) * 2005-05-27 2010-03-09 Cummins Filtration Ip Inc. Centrifuge with integral depth filter
CN100528368C (zh) * 2006-12-05 2009-08-19 上海安亭科学仪器厂 超速冷冻离心机
DE202007009913U1 (de) 2007-07-13 2008-11-20 Hengst Gmbh & Co.Kg Abscheider zum Abscheiden von Ölnebel aus dem Kurbelgehäuseentlüftungsgas einer Brennkraftmaschine und Brennkraftmaschine mit einem Abscheider
SE533089C2 (sv) * 2008-05-13 2010-06-22 Alfa Laval Corp Ab Centrifugalseparator
DE202008014734U1 (de) 2008-11-06 2010-03-25 Hengst Gmbh & Co.Kg Zentrifugalabscheider
US8764869B2 (en) * 2009-07-10 2014-07-01 Alfa Laval Corporate Ab Gas cleaning separator
US8657908B2 (en) * 2009-07-10 2014-02-25 Alfa Laval Corporate Ab Gas cleaning separator
DE102010002784A1 (de) * 2010-03-11 2011-09-15 Hengst Gmbh & Co. Kg Ölnebelabscheider und Brennkraftmaschine mit einem Ölnebelabscheider
DE102011076465B4 (de) * 2011-05-25 2021-04-29 Hengst Se Zentrifugalabscheider zum Abscheiden von Ölnebel aus dem Kurbelgehäuseentlüftungsgas einer Brennkraftmaschine
DE102015119616A1 (de) * 2015-11-13 2017-05-18 Hengst Se & Co. Kg Rotor eines Zentrifugalabscheiders

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022123250A1 (de) 2022-09-13 2024-03-14 Hengst Se Abscheiderotor für einen Zentrifugalabscheider
WO2024056310A1 (de) 2022-09-13 2024-03-21 Hengst Se Abscheiderotor für einen zentrifugalabscheider, zentrifugalabscheider und dessen herstellungsverfahren

Also Published As

Publication number Publication date
DE102015119616A1 (de) 2017-05-18
WO2017081124A1 (de) 2017-05-18
US10427170B2 (en) 2019-10-01
CN108430644A (zh) 2018-08-21
CN108430644B (zh) 2020-05-05
EP3374085A1 (de) 2018-09-19
US20180318847A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
EP3374085B1 (de) Rotor eines zentrifugalabscheiders
EP2508768B1 (de) Federscheibe sowie Lagervorrichtung mit einer Federscheibe
DE102005052781B3 (de) Neigungsverstellbeschlag für die Rückenlehne eines Kraftfahrzeugsitzes
DE3841629C2 (de) Rollenlagerung
EP2129925B1 (de) Mehrteiliger axialkäfig für ein grosswälzlager
EP2932117B1 (de) Wälzlager
EP2242936B1 (de) Lagerkäfig mit rollenförmigen wälzkörpern
WO2016066599A1 (de) Kühlkanalabdeckung sowie mit einer kühlkanalabdeckung versehener kolben
EP1861630A1 (de) Kegelrollenlager mit am innenring geführten käfigsegmenten
WO1999067543A1 (de) Mehrreihiges radiallager
EP2222974A2 (de) Wälzlagerkäfig
EP0050213A1 (de) Selbstausrichtende Lagerung
WO2007079815A2 (de) Zentrifuge zum reinigen einer flüssigkeit
WO2010145890A1 (de) Wellendichtungsanordnung
DE3123590C2 (de)
DE4206861A1 (de) Kegelrollenkaefig fuer kegelrollenlager
DE19612307A1 (de) Radialwälzlager
DE3431990C2 (de)
WO2016066600A1 (de) Kühlkanalabdeckung sowie mit einer kühlkanalabdeckung versehener kolben
DE102011016995A1 (de) Freilauf, insbesondere für ein Kurbel-CVT-Getriebe
EP3129599B1 (de) Radscheibenanordnung
DD151209A5 (de) Vorrichtung zur kompensation des radialen spiels eines waelzlagers in einer lagerbohrung
EP1598574A1 (de) Abstützelement
DE19641791B4 (de) Rollenantrieb, insbesondere für Brennstoffeinspritzpumpen
DE102013215501A1 (de) Federrückzugvorrichtung für eine Axialkolbenmaschine in Schrägscheibenbauweise zum elastischen Vorspannen von Gleitschuhen gegen die Schrägscheibe und Axialkolbenmaschine mit einer derartigen Federrückzugvorrichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B04B 5/12 20060101ALI20190614BHEP

Ipc: B04B 7/00 20060101ALI20190614BHEP

Ipc: B04B 7/14 20060101ALI20190614BHEP

Ipc: B04B 1/08 20060101AFI20190614BHEP

Ipc: B04B 9/08 20060101ALI20190614BHEP

INTG Intention to grant announced

Effective date: 20190712

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1216582

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016008183

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200326

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016008183

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

26N No opposition filed

Effective date: 20200928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201110

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1216582

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231110

Year of fee payment: 8

Ref country code: IT

Payment date: 20231110

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016008183

Country of ref document: DE

Representative=s name: SCHULZE HORN, KATHRIN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 8