EP3371439A1 - Moteur à combustion interne à commande de la quantité d'injection - Google Patents

Moteur à combustion interne à commande de la quantité d'injection

Info

Publication number
EP3371439A1
EP3371439A1 EP16798617.3A EP16798617A EP3371439A1 EP 3371439 A1 EP3371439 A1 EP 3371439A1 EP 16798617 A EP16798617 A EP 16798617A EP 3371439 A1 EP3371439 A1 EP 3371439A1
Authority
EP
European Patent Office
Prior art keywords
injector
liquid fuel
internal combustion
combustion engine
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16798617.3A
Other languages
German (de)
English (en)
Inventor
Raphael Burgmair
Medy Satria
Dino Imhof
Stephan Laiminger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innio Jenbacher GmbH and Co OG
Original Assignee
GE Jenbacher GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Jenbacher GmbH and Co OHG filed Critical GE Jenbacher GmbH and Co OHG
Publication of EP3371439A1 publication Critical patent/EP3371439A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1416Observer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/143Controller structures or design the control loop including a non-linear model or compensator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • F02D2041/1434Inverse model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/063Lift of the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an internal combustion engine having the features of the preamble of claim 1 and a method having the features of the preamble of claim 13 or 14.
  • a generic internal combustion engine and a generic method are apparent from DE 100 55 192 A1.
  • a method for concentricity control of diesel engines is disclosed, wherein the injection quantity of the injectors associated with the cylinders is corrected by means of a correction factor.
  • the injectors are connected via lines with a collection volume for liquid fuel (which may be formed, for example, as a tank or manifold). Fuel can flow from the injectors to the collecting volume via these lines. A leakage from the injectors can be dissipated via these lines.
  • the problem with the prior art is that the internal combustion engine is not operated at the actually permitted limit for the pollutant emissions to cushion aging or wear phenomena of the injector, but leaves a larger distance to the allowable limit taking into account a deterioration factor.
  • the object of the invention is to provide an internal combustion engine and a method in which over the life of the injector, an operation of the internal combustion engine is closer to the limit for the pollutant emissions possible.
  • the liquid fuel is called diesel. It could also be heavy fuel oil or another auto-ignitable fuel.
  • an adjustable by the control device by means of a control signal actuator is provided, via which for adjusting the ejected via the discharge opening of the injector mass of liquid fuel, the back pressure in the line is adjustable.
  • a plurality of combustion chambers are provided, which are each provided with an injector for liquid fuel.
  • the invention has the advantage that a correction of the applied mass of liquid fuel can be carried out without changing a duration of the actuation of an actuator (eg, a supply duration of a solenoid valve) of a single injector.
  • the invention may be particularly preferably used to compensate injector drift over the life of the injector (resulting from aging, wear and the like) without having to make an individual change in duration of actuation of an actuator of the injector.
  • the control device controls or regulates the injector by means of a Aktuatoran Kunststoffsignals and
  • That a sensor is provided, through which a measured variable of the at least one injector is measurable and wherein the sensor is in signal communication with the control device or can be brought, and
  • an algorithm is stored, which receives as input variables at least the control signal for the actuator and / or the Aktuatoran Kunststoffsignal and the measured values of the sensor and calculates the ejected via the discharge opening of the injector mass of liquid fuel via an injector model and the means of Injector model compares calculated mass of liquid fuel with a desired setpoint of the mass of liquid fuel and adjusts the setting of the back pressure and / or the Aktatoratoran Kunststoffsignals depending on the result of the comparison.
  • the mass of fuel injected instead of the mass of fuel injected, the volume or other quantities characteristic of a particular mass of fuel injected could also be calculated. All of these possibilities are included in the present disclosure using the term "mass”.
  • the algorithm has a feedforward control which calculates from the desired desired value of the mass of liquid fuel a pilot control signal for the actuator for setting the backpressure and / or a pilot control signal for the actuator drive signal for the injection duration.
  • the pilot control for the actuator drive signal ensures a fast system response because it drives the injector with such an injection duration as if there were no injector variability.
  • the feedforward used z. B. an injector map (which, for example, in an actuator designed as a solenoid valve indicates the energization time on the injection mass or volume) or an inverted injector model to convert the setpoint of the injected mass of liquid fuel in the pilot command for the injection duration.
  • About the pilot control of the actuator for the adjustment of the back pressure can be made independent of the actuator adjustment, as z. B. may be necessary for the correction of injector drift.
  • the algorithm may be particularly preferred for the algorithm to have a feedback loop (FB) which, taking into account
  • the injector model calculates the mass of liquid fuel discharged via the discharge opening of the injector and, if necessary, corrects the pilot control command for the actuator and / or the actuator calculated by the precontrol.
  • the feedback loop is used to correct for any inaccuracies in feedforward (due to manufacturing variability, wear, etc.) that cause injector drift.
  • the algorithm comprises an observer using the injector model and taking into account
  • the estimated mass of liquid fuel estimated by the observer may be used in the feedforward control to enhance the actuator drive signal or the control signal to the actuator.
  • the observer can also serve to take into account, with the aid of the injector model, the state of the injector that changes over the life of the injector (eg due to aging or wear) for an improvement of the pilot signal and / or of the actuator drive signal.
  • the injector model at least includes:
  • the injector may have at least:
  • the needle is usually biased against the opening direction by a spring.
  • an injector which manages without control chamber, for example an injector, in which the needle is driven by a piezoelectric element.
  • the at least one measured variable can, for. B. selected from the following sizes or a combination thereof: - Pressure in a common rail of the internal combustion engine
  • the controller may be configured to execute the algorithm during each combustion cycle or selected combustion cycles of the internal combustion engine and to correct, in case of deviations, the actuator drive signal and / or the pilot signal for the actuator during that combustion cycle.
  • control device may be designed to execute the algorithm during each combustion cycle or selected combustion cycles of the internal combustion engine and to correct for deviations the Aktoratoran tenusignal and / or the pilot control signal in one of the subsequent combustion cycles, preferably in the immediately following combustion cycle.
  • control device may be designed to execute the algorithm during each combustion cycle or selected combustion cycles of the internal combustion engine and to statically evaluate the deviations that have occurred and to carry out a correction for this or one of the subsequent combustion cycles as a function of the static evaluation.
  • the invention can preferably be used in a stationary internal combustion engine, for marine applications or mobile applications, such as so-called “non-road mobile machinery” (NRMM), preferably in each case as a reciprocating piston engine Operating compressor systems or with a generator to a gensets for Be coupled generation of electrical energy.
  • the internal combustion engine preferably has a plurality of combustion chambers with corresponding gas supply devices and injectors. The regulation can be done individually for each combustion chamber. Embodiments of the invention will be explained with reference to FIGS. Show it:
  • Fig. 1 shows an embodiment of the control scheme according to the invention
  • FIG. 1 shows an example of a schematically illustrated injector
  • the aim of the injector control is in this embodiment, the regulation of the actually injected mass of liquid fuel to a desired value m d ef out by the injection duration At and / or a back pressure p (which is applied to that line, the injector with a collection volume for liquid fuel connects) is controlled.
  • the rule strategy is done by
  • FF feedforward control
  • FB feedback loop
  • estimate an observer 7
  • the control command At calculated for the injection duration and / or the precontrol calculated control signal ⁇ for the actuator and at least one measured variable y (z B. one of the occurring in the injector pressure curves p IA , p cc , p JC , p AC , p SA or the beginning of lifting the needle from the needle seat) estimated by means of an injector model via the discharge opening of the injector applied mass flow in d of liquid fuel and optionally the one calculated by the feedforward control target value At ff for the injection duration or the counter-pressure Aq> ff by means of correction factors At fb and Aq> fb (which both may be negative) corrected.
  • y z B. one of the occurring in the injector pressure curves p IA , p cc , p JC , p AC , p SA or the beginning of lifting the needle from the needle seat
  • the pilot control ensures a fast system response by means of the actuator drive signal, since it actuates the injector with an injection duration At, as if no injector variability would exist.
  • the feedforward control uses a calibrated injector map (which indicates the duration of the ignition via the injection mass or volume) or the inverted injector model to convert the desired value of the mass m r d ef of liquid fuel into the injection duration for the injection duration command t ff .
  • the feedback loop is used to correct the inaccuracies of feedforward (due to manufacturing variability, wear, etc.) causing injector drift.
  • the feedback loop compares the setpoint value for the injection duration t and / or the backpressure p with the estimated injected mass of liquid fuel in d and gives as feedback a correction control command for the injection duration At fb and / or the backpressure ⁇ 0 , if there is a discrepancy between m d ef and in d there.
  • the addition of At ff and At fb and ⁇ 0 gives the final injection duration At or the final backpressure p.
  • the observer estimates the injected mass in d of liquid fuel as a function of at least one measured variable y and the final injection duration ⁇ t and / or the final counter-pressure p.
  • the at least one measured variable y can refer to: common rail pressure p CR , pressure in the input storage chamber p IA , pressure in the control chamber p cc and start of lifting the needle from the needle seat.
  • the observer uses a reduced injector model to estimate the injected mass of liquid fuel.
  • FIG. 2 shows a block diagram of a reduced injector model.
  • the injector model consists of a structural model of the injector and a system of equations describing the dynamic behavior of the structural model.
  • the structural model consists of five modeled volumes: input storage chamber 1, storage chamber 3, control chamber 2, volume via needle seat and connection volume 5.
  • the input storage chamber 1 represents the summary of all volumes between the inlet throttle and the check valve.
  • the storage chamber 3 provides the summary of all volumes from the check valve to the volume 4 above
  • the volume 4 over the needle seat represents the summary of all volumes between the needle seat to the discharge opening of the injector.
  • the connection volume 5 represents the summary of all volumes, which connects the volumes of the storage chamber 3 and the control chamber 2 with the solenoid valve.
  • the time evolution of the pressure within each of the volumes is calculated based on a combination of the mass conservation rate and the pressure-density characteristic of the liquid fuel.
  • the temporal evolution of the pressure results from:
  • the needle position is calculated using the following equation of motion:
  • a AC effective hydraulic area in the storage chamber 3 in m 2
  • a SA Hydraulic effective area in the small storage chamber 4
  • a cc effective hydraulic area in the control chamber 2 in m 2 Dynamics of the solenoid valve
  • the solenoid valve is modeled by a first order transfer function that converts the valve opening command to a valve position. This is given by:
  • Control chamber 2 in kg / s
  • the so-called observer equations preferably using a per se known observer of the "sliding mode observer" type, by adding to the equations of the injector model the so-called observer law
  • a "sliding mode" observer one obtains the observer law by calculating a hypersurface from the at least one measurement signal and the value resulting from the observer equations by squaring the hypersurface equation to obtain a generalized Ljapunov equation (generalized The observer law is that function which minimizes the functional equation, which can be determined by the well-known variation techniques or numerically, which is done within a combustion cycle for each time step (depending on the time resolution of the regulation).
  • the result is the estimated injected mass of liquid fuel, the position of the needle 6, or one of the pressures in a volume of the injector.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

L'invention concerne un moteur à combustion interne comprenant : - un dispositif de régulation, - au moins un injecteur de combustible liquide, ledit au moins un injecteur comportant une ouverture de distribution pour le combustible liquide, - ledit au moins un injecteur étant relié à un volume collecteur par le biais d'une conduite de combustible liquide, conduite par le biais de laquelle le combustible liquide peut s'écouler dudit au moins un injecteur jusqu'au volume collecteur, un organe de régulation (8) pouvant être réglé par le dispositif de régulation au moyen d'un signal de commande étant prévu, organe de régulation par le biais duquel la contre-pression (p) dans la conduite peut être réglée pour le réglage de la masse de combustible liquide distribuée par le biais de l'ouverture de distribution de l'injecteur. L'invention concerne également un procédé de fonctionnement d'un tel moteur à combustion interne et d'un injecteur d'un tel moteur à combustion interne.
EP16798617.3A 2015-11-04 2016-11-03 Moteur à combustion interne à commande de la quantité d'injection Withdrawn EP3371439A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15192915.5A EP3165745A1 (fr) 2015-11-04 2015-11-04 Moteur à combustion interne avec pilotage de quantité d'injection
PCT/AT2016/060098 WO2017075641A1 (fr) 2015-11-04 2016-11-03 Moteur à combustion interne à commande de la quantité d'injection

Publications (1)

Publication Number Publication Date
EP3371439A1 true EP3371439A1 (fr) 2018-09-12

Family

ID=54366116

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15192915.5A Withdrawn EP3165745A1 (fr) 2015-11-04 2015-11-04 Moteur à combustion interne avec pilotage de quantité d'injection
EP16798617.3A Withdrawn EP3371439A1 (fr) 2015-11-04 2016-11-03 Moteur à combustion interne à commande de la quantité d'injection

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15192915.5A Withdrawn EP3165745A1 (fr) 2015-11-04 2015-11-04 Moteur à combustion interne avec pilotage de quantité d'injection

Country Status (3)

Country Link
US (1) US10648416B2 (fr)
EP (2) EP3165745A1 (fr)
WO (1) WO2017075641A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018115305B3 (de) * 2018-06-26 2019-10-24 Mtu Friedrichshafen Gmbh Verfahren zum Angleichen eines Einspritzverhaltens von Injektoren eines Verbrennungsmotors, Motorsteuergerät und Verbrennungsmotor
GB2583383B (en) * 2019-04-26 2021-06-09 Perkins Engines Co Ltd Internal combustion engine controller

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6076504A (en) * 1998-03-02 2000-06-20 Cummins Engine Company, Inc. Apparatus for diagnosing failures and fault conditions in a fuel system of an internal combustion engine
US6557530B1 (en) * 2000-05-04 2003-05-06 Cummins, Inc. Fuel control system including adaptive injected fuel quantity estimation
US6497223B1 (en) * 2000-05-04 2002-12-24 Cummins, Inc. Fuel injection pressure control system for an internal combustion engine
DE10055192C2 (de) 2000-11-07 2002-11-21 Mtu Friedrichshafen Gmbh Rundlaufregelung für Dieselmotoren
DE10215610B4 (de) 2001-04-10 2018-12-13 Robert Bosch Gmbh System und Verfahren zum Korrigieren des Einspritzverhaltens von mindestens einem Injektor
JP4277677B2 (ja) 2003-06-27 2009-06-10 株式会社デンソー ディーゼル機関の噴射量制御装置
JP4042058B2 (ja) * 2003-11-17 2008-02-06 株式会社デンソー 内燃機関用燃料噴射装置
DE102004053266A1 (de) 2004-11-04 2006-05-11 Robert Bosch Gmbh Vorrichtung und Verfahren zum Korrigieren des Einspritzverhaltens eines Injektors
JP4682935B2 (ja) 2006-07-03 2011-05-11 株式会社デンソー 噴射特性の学習方法及び燃料噴射制御装置
DE102006034514B4 (de) 2006-07-26 2014-01-16 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung einer Brennkraftmaschine
JP4428405B2 (ja) 2007-06-12 2010-03-10 株式会社デンソー 燃料噴射制御装置及びエンジン制御システム
JP4501974B2 (ja) 2007-08-31 2010-07-14 株式会社デンソー 内燃機関の燃料噴射制御装置
DE102008040626A1 (de) 2008-07-23 2010-03-11 Robert Bosch Gmbh Verfahren zur Bestimmung der eingespritzten Kraftstoffmasse einer Einzeleinspritzung und Vorrichtung zur Durchführung des Verfahrens
DE102009050468B4 (de) 2009-10-23 2017-03-16 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
JP5045773B2 (ja) * 2010-03-12 2012-10-10 トヨタ自動車株式会社 燃料噴射制御装置
DE102011086150B4 (de) 2011-11-11 2024-03-07 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und entsprechendes Computerprogramm, Steuergerät und Speichermedium
DE102012203097B3 (de) * 2012-02-29 2013-04-11 Continental Automotive Gmbh Verfahren und Vorrichtung zum Bestimmen eines Fehlers einer Druckmessung in einem Druckbehälter
FR2996600B1 (fr) * 2012-10-05 2014-11-21 Continental Automotive France Procede de gestion de la masse de combustible injectee dans un moteur
DE102012109655B4 (de) * 2012-10-10 2019-12-12 Denso Corporation Verfahren zur Bestimmung einer Kraftstoff-Injektionsrate
DE102012020489B4 (de) 2012-10-10 2014-04-30 Mtu Friedrichshafen Gmbh Verfahren zur Angleichung eines Einspritzverhaltens von Injektoren in einem Verbrennungsmotor, Motorsteuergerät und System zur Angleichung eines Einspritzverhaltens
DE102012021076B4 (de) 2012-10-19 2023-03-30 Rolls-Royce Solutions GmbH Verfahren zur Ermittlung von mindestens einem tatsächlichen Einspritzparameter mindestens eines Injektors in einem Verbrennungsmotor und Motorsteuergerät
DE102013210984B3 (de) 2013-06-12 2014-09-11 Mtu Friedrichshafen Gmbh Verfahren zur Bestimmung eines Spritzbeginns eines Injektors einer Brennkraftmaschine, Steuergerät für eine Brennkraftmaschine und Brennkraftmaschine
DE102013211731A1 (de) * 2013-06-20 2014-12-24 Mtu Friedrichshafen Gmbh Verfahren zur Korrektur der Einspritzdauer von Injektoren einer Brennkraftmaschine und Steuerungseinrichtung

Also Published As

Publication number Publication date
WO2017075641A1 (fr) 2017-05-11
US20180355812A1 (en) 2018-12-13
US10648416B2 (en) 2020-05-12
EP3165745A1 (fr) 2017-05-10

Similar Documents

Publication Publication Date Title
EP2449242B1 (fr) Méthode de contrôle et de régulation de la pression du carburant d'un rail commun d'un moteur à combustion
DE102008042714B4 (de) Erfassungsvorrichtung für einen Kraftstoffeinspritzzustand
DE102007037037B3 (de) Verfahren zur Regelung einer Brennkraftmaschine
EP3169887B1 (fr) Procédé permettant de faire fonctionner un moteur à combustion interne, système d'injection pour moteur à combustion interne et moteur à combustion interne
WO2017102039A1 (fr) Procédé et dispositif de commande et/ou de régulation prédictives d'un moteur à combustion interne, et moteur à combustion interne comprenant le dispositif pour la mise en œuvre du procédé
DE102015209377B4 (de) Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem
EP2449240B1 (fr) Procédé de réglage de la pression du rail dans un système d'injection à rail commun d'un moteur à combustion
DE102010043897B4 (de) Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors
DE102018110898A1 (de) Verfahren zur Steuerung der Kraftstoffeinspritzung in Dieselmotoren
DE102008043127A1 (de) Verfahren, Computerprogramm, Steuer- und Regelgerät zum Betreiben eines Kraftstoffversorgungssystems einer Brennkraftmaschine
WO2017075642A1 (fr) Moteur à combustion interne avec commande de la quantité d'injection
DE102014217582A1 (de) Verfahren zur Steuerung der Kraftstoffeinspritzung und Common-Rail-Einspritz- und Steuerungssysteme
DE102008035985B4 (de) Verfahren und Vorrichtung zur Regelung des Kraftstoffdruckes im Druckspeicher eines Common-Rail-Einspritzsystems
WO2017075645A1 (fr) Moteur à combustion interne à diagnostic d'injecteur de carburant
EP3371438A1 (fr) Moteur à combustion interne avec commande de quantité d'injection
EP3371439A1 (fr) Moteur à combustion interne à commande de la quantité d'injection
EP3165747A1 (fr) Moteur à combustion interne avec pilotage de quantité d'injection
WO2014202202A1 (fr) Procédé et dispositif de commande permettant de corriger la durée d'injection des injecteurs d'un moteur à combustion interne
DE10303573B4 (de) Verfahren, Computerprogramm, Speichermedium und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
WO2017075644A1 (fr) Moteur à combustion interne à commande de la quantité d'injection
EP3665377B1 (fr) Procédé permettant de faire fonctionner un moteur à combustion interne comprenant un système d'injection, système d'injection conçu pour la mise en uvre d'un tel procédé et moteur à combustion interne comprenant un tel système d'injection
WO2014202201A1 (fr) Procédé et système de commande de correction du début d'injection des injecteurs d'un moteur à combustion interne
EP3763933B1 (fr) Procédé de réglage de la pression de rampe basé sur le débit volumique synchronique de pompe, en particulier sélective par cylindre pour un système d'alimentation en carburant d'une machine à combustion interne avec mesure de courant et régulation de courant des organes de réglage de la pression de rampe
EP1672206A2 (fr) Procédé et dispositif de commande d'un moteur à combustion interne dans un véhicule
DE102007013772B4 (de) Verfahren zur Regelung eines Einspritzsystems einer Brennkraftmaschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INNIO JENBACHER GMBH & CO OG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210531

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20211012