EP3369112A1 - Anzeigesubstrat, anzeigevorrichtung und vorrichtung damit sowie verfahren zur herstellung davon - Google Patents

Anzeigesubstrat, anzeigevorrichtung und vorrichtung damit sowie verfahren zur herstellung davon

Info

Publication number
EP3369112A1
EP3369112A1 EP16816163.6A EP16816163A EP3369112A1 EP 3369112 A1 EP3369112 A1 EP 3369112A1 EP 16816163 A EP16816163 A EP 16816163A EP 3369112 A1 EP3369112 A1 EP 3369112A1
Authority
EP
European Patent Office
Prior art keywords
wires
wire
semiconductor pattern
cross
sectional width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16816163.6A
Other languages
English (en)
French (fr)
Other versions
EP3369112A4 (de
Inventor
Lin Li
Zhaohui Hao
Weidong Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Beijing BOE Display Technology Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Beijing BOE Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, Beijing BOE Display Technology Co Ltd filed Critical BOE Technology Group Co Ltd
Publication of EP3369112A1 publication Critical patent/EP3369112A1/de
Publication of EP3369112A4 publication Critical patent/EP3369112A4/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/13606Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit having means for reducing parasitic capacitance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/13629Multilayer wirings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Definitions

  • the present invention generally relates to the display technologies and, more particularly, relates to a display substrate, a display device containing the display substrate, and a method for fabricating the display substrate.
  • a top view of a conventional display panel is shown in Figure 1.
  • the conventional display panel often includes a display region 101 and a wiring mounting region 102.
  • the display region 101 includes a plurality of display units defined by intersecting gate lines 11 and data lines 12.
  • Each display unit includes or corresponds to a thin-film transistor (TFT) 13.
  • a TFT 13 includes a gate electrode G, a source electrode S, and a drain electrode D.
  • the gate electrode G is connected to a gate line 11.
  • the source electrode S is connected to a data line 12.
  • the wiring mounting region 102 may use a flexible printed circuit board (PFC) to output control signals to the gate lines 11 and the data lines 12.
  • PFC flexible printed circuit board
  • the wiring mounting region often includes an immense amount of wirings, which can result in an undesirably number of crossings and intersectional regions between wires.
  • a first wire 21 may intersect with three second wires 22.
  • capacitance is formed at the intersectional region of the first wire 21 and a second wire 22. The capacitance can adversely affect signal transmission in these wires.
  • Embodiments of the present disclosure provide a display substrate, a method for fabricating the display substrate, and a semiconductor device incorporating the display substrate.
  • a semiconductor pattern is disposed between a first wire and a number of second wire for reducing the capacitance in between.
  • One aspect of the present disclosure includes a display substrate, including: a wiring mounting region.
  • the wiring mounting region includes first wires and second wires, each of the first wires intersecting with one or more of the second wires, thereby defining one or more intersectional regions; and a semiconductor pattern between the first wire and the one or more second wires, the semiconductor pattern having at least one cross-sectional width covering at least a portion of at least one of the intersectional regions.
  • the semiconductor pattern has a circular shape or an oval shape.
  • the semiconductor pattern is between the first wire and each of the one or more second wires.
  • the semiconductor pattern is between the first wire and a number of second wires.
  • a cross-sectional width of the semiconductor pattern extends beyond a cross-sectional width of the first wire.
  • a cross-sectional width of the semiconductor pattern extends beyond a cross-sectional width of the second wire.
  • the cross-sectional width of the semiconductor pattern is smaller than a cross-sectional width of the first wire.
  • the cross-sectional width of the semiconductor pattern is smaller than a cross-sectional width of the second wire.
  • the display substrate further includes a display region surrounded by the wiring mounting region.
  • the display substrate further includes: a first conductive layer, a second conductive layer, an insulating layer between the first conductive layer and the second conductive layer, and a semiconductor layer between the first conductive layer and the second conductive layer.
  • the first conductive layer includes the first wires in the wiring mounting region
  • the second conductive layer includes the second wires in the wiring mounting region
  • the semiconductor layer includes the semiconductor pattern in the wiring mounting region.
  • the semiconductor pattern is between the insulating layer and the second conductive layer.
  • the first conductive layer further includes gate lines in the display region; the second conductive layer further includes data lines in the display region; and the semiconductor layer further includes active layers in the display region.
  • the method includes forming a first conductive layer on a substrate, the first conductive layer including first wires disposed in a wiring mounting region of the substrate; forming an insulating layer on the substrate, the insulating layer covering the first wires in the wiring mounting region; forming a semiconductor layer on the substrate, the semiconductor layer including semiconductor patterns disposed in the wiring mounting region, and each semiconductor pattern overlapping with at least one first wire in the wiring mounting region; and forming a second conductive layer in the substrate, the second conductive layer including second wires disposed in the wiring mounting region, the second wires intersecting with the first wires, and a semiconductor pattern covering at least one intersectional region formed by a first wire and one or more second wires.
  • the semiconductor pattern has a circular shape or an oval shape.
  • the semiconductor pattern is between the first wire and at least one of the one or more second wires.
  • a cross-sectional width of a semiconductor pattern extends beyond a cross-sectional width of the first wire.
  • a cross-sectional width of a semiconductor pattern extends beyond a cross-sectional width of the second wire.
  • the cross-sectional width of a semiconductor pattern is smaller than a cross-sectional width of the first wire.
  • the cross-sectional width of a semiconductor pattern is smaller than a cross-sectional width of the second wire.
  • Another aspect of the present disclosure provides a display device, including one or more of the disclosed display substrates.
  • Figure 1 illustrates a top view of a conventional display panel
  • Figure 2 illustrates a top view of a portion of a wiring mounting region of a conventional display panel
  • Figure 3 illustrates a top view of a portion of a wiring mounting region of an exemplary display substrate according to various embodiments of the present disclosure
  • Figures 4 illustrates cross-sectional views in (a) and (b) along A-A’ direction and B-B’ direction of the exemplary display substrate shown in Figure 3;
  • Figure 5 illustrates a top view of a portion of a wiring mounting region of another exemplary display substrate according to various embodiments of the present disclosure
  • Figures 6 illustrates cross-sectional views in (a) and (b) along A-A” direction and B-B” direction of the exemplary display substrate shown in Figure 5;
  • Figure 7 illustrates a top view of a portion of a wiring mounting region of another exemplary display substrate according to various embodiments of the present disclosure
  • Figures 8 illustrates cross-sectional views in (a) and (b) along A1-A1’ direction and B1-B1’ direction of the exemplary display substrate shown in Figure 7;
  • Figure 9 illustrates a top view of a portion of a wiring mounting region of another exemplary display substrate according to various embodiments of the present disclosure
  • Figures 10 illustrates cross-sectional views in (a) and (b) along A1-A1” direction and B1-B1” direction of the exemplary display substrate shown in Figure 9;
  • Figure 11 illustrates a top view of a portion of a wiring mounting region of another exemplary display substrate according to various embodiments of the present disclosure.
  • Figure 12 illustrates a process flow of an exemplary method for fabricating a display substrate according to various disclosed embodiments of the present disclosure.
  • a “layer” refers to a film formed by a material using a deposition process or any suitable processes on another object, e.g., a substrate or another film. If a patterning process is performed on the film, the film after the patterning process is referred as a “layer” .
  • the “layer” after a patterning process includes at least a “pattern” .
  • a metal film can be formed by a deposition process.
  • the metal film can then be patterned to form a source/drain metal layer.
  • the source/drain metal layer includes a source and a drain. In this case, the source and the drain are patterns.
  • a patterning process refers to a process for forming a layer with at least one pattern based on a film.
  • a patterning process includes: coating a photoresist layer on a film, exposing the photoresist layer with a mask, stripping away portions of the photoresist layer that need to be removed using a suitable developer, etching away the portions of the film that are not covered by the photoresist layer, and removing the remaining portions of the photoresist layer.
  • “apatterning process” refers to a process to form a desired layer structure after an exposure.
  • the terms “intersect” , “intersecting” , “intersection” , “intersectional region” , and the alike do not indicate any physical or electrical contact/connection.
  • the terms are merely used to describe that the orthogonal projections of two or more objects on the substrate are not parallel.
  • the orthogonal projections of the objects may intersect or overlap at certain locations.
  • the present disclosure provides a disclosed display substrate.
  • the display substrate includes a semiconductor pattern disposed between a first wire and a second wire for reducing the capacitance in between.
  • the semiconductor pattern may at least partially cover the intersectional region formed by the first wire and the second wire.
  • the capacitance between the first wire and the second wire may be reduced, and interference to the signals transmitted in the first wire and the second wire may be reduced accordingly.
  • the second wire, formed on the semiconductor pattern may undergo two elevations to cover the semiconductor pattern. The second wire may thus be easier to form.
  • the semiconductor pattern may have a circular shape or an oval shape, the edges of the semiconductor pattern may be sufficiently smooth that corona discharge may be reduced or eliminated.
  • the term “cover an intersectional region” or the alike may be used to describe that the orthogonal projection of one object on the substrate covering the orthogonal projection of one intersectional region on the substrate.
  • the term “cover” refers to the object partially covering or fully covering the intersectional region, depending on different embodiments and designs.
  • the intersectional region refers to the intersectional region of a first wire and a second wire in description.
  • One aspect of the present disclosure provides a display substrate.
  • the display substrate may include a substrate 20.
  • the display substrate may also include a first conductive layer formed on the substrate 20, an insulating layer 23 formed on the first conductive layer, and a second conductive layer formed on the insulating layer 23.
  • the first wires 21 may locate in the first conductive layer
  • the second wires 22 may locate in the second conductive layer.
  • the display substrate may be divided into a display region and a wiring mounting region, similar to the layout shown in Figure 1.
  • the first conductive layer may include the first wires 21 arranged in the wiring mounting region.
  • the second conductive layer may include the second wires 22 arranged in the wiring mounting region.
  • the first wires 21 and the second wires 22 may intersect with one another.
  • Figure 3 depicts the intersectional region of a first wire 21 and three second wires 22.
  • the display substrate may further include a semiconductor layer disposed between the first conductive layer and the second conductive layer.
  • the semiconductor layer may include at least a semiconductor pattern 24 located at the intersectional region of a first wire 21 and a second wire 22.
  • the present disclosure is illustrated having one first wire 21 intersecting with three second wires 22, as shown in Figures 3, 5, 7, 9, and 11, although any number of the first wires, any number of the second wires, and their combinations can be encompassed in the present disclosure.
  • a semiconductor layer may be located between the first conductive layer and the second conductive layer, as shown in Figures 4, 6, 8, and 10.
  • the semiconductor pattern 24 may be located between the insulating layer 23 and a second wire 22. In some other embodiments, the semiconductor pattern 24 may be located between the insulating layer 23 and a first wire 21.
  • the present disclosure uses the configuration shown in Figures 4, 6, 8, and 10 as examples.
  • the first wire 21 and the second wires 22 may be various kinds of wires, used for different functions. The specific functions of the wires and the connections between wires should not be limited by the embodiments of the present disclosure.
  • a semiconductor pattern may be disposed between a first wire and a second wire.
  • the first wire and the semiconductor pattern may form a first capacitance.
  • the second wire and the semiconductor pattern may form a second capacitance.
  • the first capacitance and the second capacitance may be connected in series.
  • the total capacitance of the connected first capacitance and the second capacitance may be smaller than the total capacitance formed by the first wire and the second wire without having the semiconductor pattern. Thus, signal interference caused by the capacitance formed by the first wire and the second wire may be reduced.
  • the display region of the display substrate may also include display components.
  • the display components may include one or more of an organic light-emitting diode (OLED) display component, a liquid crystal display (LCD) component, a microcapsule display component, and so on.
  • OLED organic light-emitting diode
  • LCD liquid crystal display
  • a microcapsule display component and so on.
  • OLED display component often includes an array substrate and a packaging substrate. OLED arrays and the wiring mounting region are formed on the array substrate, and FPCs are connected with the array substrate.
  • an LCD component often includes an array substrate and a color filter substrate. TFT arrays and the wiring mounting region are formed on the array substrate, and FPCs are connected with the array substrate.
  • the disclosed display substrate may be used as the array substrate of an OLED display device or the array substrate of an LCD display device.
  • the wiring mounting region is often connected to the FPCs to drive the circuits.
  • the wiring mounting region may be formed on the array substrate or other substrates.
  • the display substrate may include the wiring mounting region.
  • the first wires and the second wires intersect in the wiring mounting region.
  • the display substrate may be an array substrate, a packaging substrate, or other suitable substrates.
  • the top view of the semiconductor pattern may have a circular shape or an oval shape.
  • the edges of a semiconductor pattern may be sufficiently smooth so that corona discharge at sharp edges can be reduced or eliminated.
  • the first conductive layer may also include the gate lines formed in the display region
  • the second conductive layer may also include the data lines formed in the display region
  • the semiconductor layer may also include the active layers formed in the display region. That is, the gate lines and the first wires may be formed through a same, single patterning step.
  • the data lines and the second wires may be formed through a same, single patterning step.
  • the semiconductor pattern and the active layers may be formed through a same, single patterning process.
  • a gate insulating layer may be disposed between a gate line and the corresponding active layer.
  • the gate insulating layer and the insulating layer in the wiring mounting region may be formed through a same fabrication step. Accordingly, a semiconductor pattern 24 may be disposed between an insulating layer 23 and a second wire 22. That is, in some embodiments, the semiconductor layer may be disposed between the insulating layer and the second conductive layer.
  • the cross-sectional width of the semiconductor pattern 24 may be smaller than the cross-sectional width of the first wire 21. That is, the semiconductor pattern may only cover a portion of the intersectional region formed by the first wire 21 and the second wire 22, and the remaining portion of the intersectional region may not be disposed or covered with the semiconductor pattern 24.
  • the capacitance formed by the first wire 21 and the second wire 21 may be undesirably high.
  • the first wire 21 can be considerably thick
  • the portion of the second wire 22 formed at the intersectional region, covering the semiconductor pattern 24 may undergo one abrupt elevation to cover the semiconductor pattern 24.
  • the portion of the second wire 22 formed on the semiconductor pattern 24 may be considerably elevated than the portions of the second wire 22 formed on the insulating layer 23. As a result, it may be difficult to form the second wires 22.
  • the cross-sectional width of the semiconductor pattern 24 may be smaller than the cross-sectional width of the second wire 22. That is, the semiconductor pattern 24 may only cover a portion of the intersectional region, and the remaining portion of the intersectional region may not be covered by the semiconductor pattern 24. For the portion of the intersectional region not covered by the semiconductor pattern 24, the capacitance formed by the first wire 21 and the second wire 21 may be undesirably high.
  • the cross-sectional width of the semiconductor pattern 24 may be wider than the cross-sectional width of the first wire 21.
  • the cross-sectional width of the semiconductor pattern 24 may extend beyond the cross-sectional width of the first wire 21. That is, the semiconductor pattern 24 may fully cover the intersectional region of the first wire 21 and a second wire 22. The capacitance formed by the first wire 21 and the second wire 22 may be reduced.
  • the second wire 22 formed in Figure 6(a) may undergo two elevations to be formed on the semiconductor pattern 24. Because each elevation is smaller than the one abrupt elevation described in Figure 4 (a) , the formation of the second wire 22 shown in Figures 3, 4(a) , and 4 (b) may be easier. As shown in Figure 5 and 6 (b) , along the direction the first wire 21 is aligned, i.e., the B-B” direction, the semiconductor pattern 24 may only cover a portion of the intersectional region, and the remaining portion of the intersectional region may not be covered with the semiconductor pattern 24. For the portions of the section not disposed with the semiconductor pattern 24, the capacitance formed by the first wire 21 and the second wire 22 may be undesirably high.
  • the cross-sectional width of the semiconductor pattern 24 may be wider than the cross-sectional width of the second wire 22.
  • the cross-sectional width of the semiconductor pattern 24 may extend beyond the cross-sectional width of the second wire 22. That is, the semiconductor pattern 24 may fully cover the intersectional region formed by the first wire 21 and a second wire 22. The capacitance formed by the first wire 21 and the second wire 22 may be reduced.
  • the semiconductor pattern 24 may only cover a portion of the intersectional region.
  • the semiconductor pattern 24 may only cover a portion of the intersectional region formed by the first wire 21 and a second wire 22.
  • the capacitance formed by the first wire 21 and the second wire 22 may be undesirably high.
  • the first wire 21 can be considerably thick, when the second wire 22 is being formed, the portion of the second wire 22 formed at the intersectional region, covering the semiconductor pattern 24, may undergo one abrupt elevation to be formed on the semiconductor pattern 24.
  • the portion of the second wire 22 formed on the semiconductor pattern 24 may be considerably elevated than the portions of the second wire 22 formed on the insulating layer 23. As a result, it may be difficult to form the second wires 22.
  • the cross-sectional width of the semiconductor pattern 24 may be wider than the cross-sectional width of the first wire 21.
  • the cross-sectional width of the semiconductor pattern 24 may extend beyond the cross-sectional width of the first wire 21. That is, the semiconductor pattern 24 may fully cover the intersectional region formed by the first wire 21 and a second wire 22. The capacitance formed by the first wire 21 and the second wire 22 may be reduced.
  • the second wire 22 formed in Figure 10 (a) may undergo two elevations to be formed on the semiconductor pattern 24. Because each elevation is smaller than the one abrupt elevation illustrated in Figure 10 (a) , the second wire 22 shown in Figures 9, 10 (a) and 10 (b) can be easier to form. As shown in Figure 9 and 10 (b) , along the direction the first wire 21 is aligned, i.e., the B1-B1” direction, the cross-sectional width of the semiconductor pattern 24 may extend beyond the cross-sectional width of the second wire 22. That is, the semiconductor pattern 24 may fully cover the intersectional region formed by the first wire 21 and the second wire 22. The capacitance formed by the first wire 21 and the second wire 22 may be reduced.
  • the semiconductor pattern 24 may have a structure shown in Figures 3 and 4.
  • the semiconductor pattern 24 may only cover a portion of the intersectional region formed by the first wire 21 and a second wire 22.
  • the cross-sectional width of the semiconductor pattern 24 may be smaller than the cross-sectional width of the first wire 21 along the A-A’ direction, and may be smaller than the cross-sectional width of the second wire 22 along the B-B’ direction.
  • the center of the intersectional region, formed by the first wire 21 and the second wire 22, may be the center of the semiconductor pattern 24.
  • the semiconductor pattern 24 may have a structure shown in Figures 9 and 10.
  • the cross-sectional width of the semiconductor pattern 24 may extend beyond the cross-sectional width of the first wire 21 along the A1-A1” direction.
  • the cross-sectional width of the semiconductor pattern 24 may extend beyond the cross-sectional width of the second wire 22 along the B1-B1” direction.
  • the center of the intersectional region, formed by the first wire 21 and the second wire 22, may be the center of the semiconductor pattern 24.
  • the cross-sectional width of the semiconductor pattern 24 may extend beyond the cross-sectional width of the first wire 21 along the major axis of the oval, i.e., along the A-A” direction, and the cross-sectional width of the semiconductor pattern 24 may be smaller than the cross-sectional width of the second wire 22 along the minor axis of the oval, i.e., along the B-B” direction.
  • the center of intersectional region, formed by the first wire 21 and a second wire 22, may be the intersectional region of the major axis and the minor axis of the oval.
  • the cross-sectional width of the semiconductor pattern 24 may extend beyond the cross-sectional width of the second wire 22 along the major axis, of the oval, i.e., the B1-B1” direction, and the cross-sectional width of the semiconductor pattern 24 may be smaller than the cross-sectional width of the first wire 22 along the minor axis of the oval, i.e., the A1-A1” direction.
  • the center of intersectional region, formed by the first wire 21 and the second wire 22, may be the intersectional region of the major axis and the minor axis of the oval.
  • the cross-sectional width of the semiconductor pattern 24 may extend beyond the cross-sectional width of the second wire 22 along the minor axis of the oval, and the cross-sectional width of the semiconductor pattern 24 may extend beyond the cross-sectional width of the first wire 21 along the major axis of the oval.
  • the minor axis of the oval may be along the direction the second wires 22 are aligned, and the major axis of the oval may be along the direction the first wire 21 is aligned.
  • a semiconductor pattern 24 may cover or correspond to a plurality of intersectional regions formed by a first wire 21 and a plurality of second wires 22.
  • a first wire 21 may intersect with three second wires 22, and the semiconductor pattern 24 may correspond to three intersectional regions formed by the first wire 21 and the second wires 22.
  • the second wires 22 may undergo two elevations along the direction the second wires 22 are aligned. Thus, the second wires 22 may be easier to form.
  • FIG. 12 illustrates an exemplary process flow of the disclosed method.
  • a first conductive layer may be formed on a substrate.
  • the first conductive layer may include first wires disposed in a wiring mounting region of the substrate.
  • a suitable conductive thin film e.g., a metal thin film
  • a suitable patterning process e.g., an etching process, may be used to form the first wires in the wiring mounting region.
  • an insulating layer may be formed on the substrate.
  • the insulating layer may cover the first wires in the wiring mounting region.
  • the insulating layer may be formed through a suitable deposition process or a suitable coating process.
  • the insulating layer may be made of an electrically insulating material.
  • a semiconductor layer may be formed over the substrate.
  • the semiconductor layer may include the semiconductor patterns disposed in the wiring mounting region. Each semiconductor pattern may overlap with at least one first wire in the wiring mounting region.
  • a semiconductor thin film may be formed on the substrate.
  • a suitable patterning process e.g., an etching process, may be used to form the semiconductor patterns in the wiring mounting region.
  • a second conductive layer may be formed over the substrate.
  • the second conductive layer may include second wires disposed in the wiring mounting region.
  • the second wires may intersect with the first wires.
  • a semiconductor pattern may cover at least one intersectional region formed by one or more first wires and second wires.
  • a suitable conductive thin film e.g., a metal thin film
  • a suitable patterning process e.g., an etching process, may be used to form the second wires in the wiring mounting region.
  • step S102 and step S103 may switch such that step S103 may performed before step S102.
  • the fabrication of the display components included in the display region of the display substrate is known to those skilled in the art and is not repeated herein.
  • the first conductive layer may further include gate lines formed in the display region of the display substrate
  • the second conductive layer may further include data lines formed in the display region of the display substrate
  • the semiconductor layer may further include active layers in the display region of the display substrate
  • the insulating layer may further cover the gate lines in the display region. That is, the gate lines and the first wires may be formed through one single patterning process, the data lines and the second wires may be formed through one single patterning process, and the active layers and the semiconductor patterns may be formed through one single patterning process.
  • a gate insulating layer may be disposed between a gate line and a corresponding active layer. The gate insulating layer may be formed through a same, single fabrication step with the insulating layer in the wiring mounting region. That is, the insulating layer may cover the gate lines in the display region of the display substrate.
  • the display device may include one or more of the above-mentioned display substrates.
  • the display device may be a display apparatus.
  • the display device according to the embodiments of the present disclosure can be used in any suitable device with display functions such as an LCD device, an electronic paper, an OLED display device, and parts or products incorporating these devices, such as a television, a digital camera, a digital photo frame, a mobile phone and a tablet computer.
  • a semiconductor pattern is disposed between a first wire and a second wire for reducing the capacitance there-between.
  • the semiconductor pattern may at least partially cover the intersectional region formed by the first wire and the second wire.
  • the capacitance between the first wire and the second wire may be reduced.
  • the second wire, formed on the semiconductor pattern may undergo two elevations to cover the semiconductor pattern.
  • the second wire may thus be easier to form.
  • the semiconductor pattern may have a circular shape or an oval shape, the edges of the semiconductor pattern may be sufficiently smooth such that corona discharge may be reduced or eliminated.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
EP16816163.6A 2015-10-30 2016-07-01 Anzeigesubstrat, anzeigevorrichtung und vorrichtung damit sowie verfahren zur herstellung davon Withdrawn EP3369112A4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510728689.4A CN105226071B (zh) 2015-10-30 2015-10-30 一种显示基板及其制作方法、显示装置
PCT/CN2016/088179 WO2017071277A1 (en) 2015-10-30 2016-07-01 Display substrate, display device containing the same, and method for fabricating the same

Publications (2)

Publication Number Publication Date
EP3369112A1 true EP3369112A1 (de) 2018-09-05
EP3369112A4 EP3369112A4 (de) 2019-06-19

Family

ID=54994915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16816163.6A Withdrawn EP3369112A4 (de) 2015-10-30 2016-07-01 Anzeigesubstrat, anzeigevorrichtung und vorrichtung damit sowie verfahren zur herstellung davon

Country Status (4)

Country Link
US (1) US10204927B2 (de)
EP (1) EP3369112A4 (de)
CN (1) CN105226071B (de)
WO (1) WO2017071277A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226071B (zh) * 2015-10-30 2018-06-05 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN105870131B (zh) * 2016-04-14 2018-09-04 京东方科技集团股份有限公司 一种阵列基板及其制备方法和显示器件
US10784172B2 (en) * 2017-12-29 2020-09-22 Texas Instruments Incorporated Testing solid state devices before completing manufacture

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083592B2 (ja) * 1990-08-24 1996-01-17 松下電器産業株式会社 液晶表示装置
US7115902B1 (en) * 1990-11-20 2006-10-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US5414283A (en) * 1993-11-19 1995-05-09 Ois Optical Imaging Systems, Inc. TFT with reduced parasitic capacitance
JP2005084416A (ja) * 2003-09-09 2005-03-31 Sharp Corp アクティブマトリクス基板およびそれを用いた表示装置
JP2006201217A (ja) * 2005-01-18 2006-08-03 Seiko Epson Corp 配線基板、電気光学装置及び電子機器
KR101301155B1 (ko) * 2006-12-12 2013-09-03 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조방법
KR101570347B1 (ko) * 2008-11-25 2015-11-20 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
KR101064442B1 (ko) * 2009-08-21 2011-09-14 삼성모바일디스플레이주식회사 유기전계 발광 표시장치
CN101770125A (zh) 2010-01-11 2010-07-07 深超光电(深圳)有限公司 双扫描线像素阵列基板
US9019440B2 (en) * 2011-01-21 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101875774B1 (ko) 2011-08-10 2018-07-09 삼성디스플레이 주식회사 유기발광표시장치 및 그 제조 방법
WO2013080900A1 (en) * 2011-12-02 2013-06-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI611566B (zh) * 2013-02-25 2018-01-11 半導體能源研究所股份有限公司 顯示裝置和電子裝置
KR102086805B1 (ko) * 2013-11-19 2020-03-09 엘지디스플레이 주식회사 유기전계발광표시장치
US9349751B2 (en) * 2013-12-12 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TW201603249A (zh) * 2014-07-14 2016-01-16 元太科技工業股份有限公司 電路保護結構與具有電路保護結構的顯示裝置
CN205039154U (zh) * 2015-10-30 2016-02-17 京东方科技集团股份有限公司 一种显示基板及显示装置
CN105226071B (zh) * 2015-10-30 2018-06-05 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置

Also Published As

Publication number Publication date
CN105226071A (zh) 2016-01-06
US10204927B2 (en) 2019-02-12
WO2017071277A1 (en) 2017-05-04
US20170294449A1 (en) 2017-10-12
EP3369112A4 (de) 2019-06-19
CN105226071B (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
EP3483926B1 (de) Verfahren zur herstellung eines array-substrats eines tft-lcd des typs ffs
EP3306648B1 (de) Schichttransistor und herstellungsverfahren dafür, arraysubstrat und herstellungsverfahren dafür sowie anzeigevorrichtung
US9508867B2 (en) Thin film transistor, array substrate, method of fabricating same, and display device
JP2007243144A (ja) 画素アレイ基板の製造方法
JP6521534B2 (ja) 薄膜トランジスタとその作製方法、アレイ基板及び表示装置
US20150155305A1 (en) Tn-type array substrate and fabrication method thereof, and display device
US10431602B2 (en) Array substrate, display panel, and display apparatus
US9274388B2 (en) Array substrate having common electrode driving interface pattern with slits, and manufacturing method thereof, and liquid crystal display
US10043831B2 (en) Array substrate and manufacturing method thereof and display panel
KR102081598B1 (ko) 네로우 베젤 타입 액정표시장치용 어레이 기판 및 이의 제조방법
US20100207122A1 (en) Thin film transistor array substrate and manufacturing method thereof
US10204927B2 (en) Display substrate, display device containing the same, and method for fabricating the same
US9741861B2 (en) Display device and method for manufacturing the same
CN110176429B (zh) 一种阵列基板的制作方法及阵列基板、显示面板
US10153305B2 (en) Array substrate, manufacturing method thereof, and display device
US9653608B2 (en) Array substrate and manufacturing method thereof, display device and thin film transistor
EP3088952B1 (de) Maskengruppe, pixeleinheit und herstellungsverfahren dafür, arraysubstrat und anzeigevorrichtung
WO2020019869A1 (zh) 阵列基板及其制备方法、显示装置
US20100136720A1 (en) Manufacturing method of pixel structure
JP2004318076A (ja) 横方向電場駆動液晶ディスプレイの製造方法
JP2004157151A (ja) 表示装置用マトリクス基板およびその製造方法
KR102098012B1 (ko) 액정표시장치
CN113327893B (zh) 阵列基板的制备方法、阵列基板及液晶显示面板
CN113327892B (zh) 阵列基板的制备方法、阵列基板及液晶显示面板
CN213150774U (zh) 一种阵列基板、显示面板及显示装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
R17P Request for examination filed (corrected)

Effective date: 20170104

A4 Supplementary search report drawn up and despatched

Effective date: 20190516

RIC1 Information provided on ipc code assigned before grant

Ipc: G02F 1/1345 20060101ALI20190510BHEP

Ipc: H01L 27/32 20060101ALI20190510BHEP

Ipc: H01L 27/12 20060101AFI20190510BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191217