EP3368748B1 - Procédé pour introduire un désaccordage volontaire dans une roue aubagée de turbomachine - Google Patents

Procédé pour introduire un désaccordage volontaire dans une roue aubagée de turbomachine Download PDF

Info

Publication number
EP3368748B1
EP3368748B1 EP16806240.4A EP16806240A EP3368748B1 EP 3368748 B1 EP3368748 B1 EP 3368748B1 EP 16806240 A EP16806240 A EP 16806240A EP 3368748 B1 EP3368748 B1 EP 3368748B1
Authority
EP
European Patent Office
Prior art keywords
bladed wheel
blades
disc
turbomachine
notches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16806240.4A
Other languages
German (de)
English (en)
Other versions
EP3368748A1 (fr
Inventor
Roger Felipe MONTES PARRA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3368748A1 publication Critical patent/EP3368748A1/fr
Application granted granted Critical
Publication of EP3368748B1 publication Critical patent/EP3368748B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/10Anti- vibration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Definitions

  • the present invention relates to a method for introducing a voluntary detuning in a bladed wheel of a turbomachine.
  • a turbomachine generally comprises, from upstream to downstream, in the direction of gas flow, a fan, one or more stages of compressors, for example a low pressure compressor and a high pressure compressor, a combustion chamber, one or more turbine stages, for example a high pressure turbine and a low pressure turbine, and a gas exhaust nozzle.
  • Each stage of compressor or turbine is formed by a fixed blade or stator and a rotating blade or rotor around the main axis of the turbomachine.
  • Each rotor conventionally comprises a disk extending around the main axis of the turbomachine and comprising an annular platform, and a plurality of blades distributed regularly around the main axis of the turbomachine and extending radially relative to this axis from an outer surface of the disc platform.
  • bladed wheels we also speak of "bladed wheels”.
  • the bladed wheels are the subject of multiple vibratory phenomena whose origins can be aerodynamic and / or mechanical.
  • Voluntary detune is opposed to “involuntary detuning” which is the result of small geometric variations of the bladed wheels or small variations in the characteristics of the material constituting them, generally due to manufacturing and assembly tolerances, which may lead to to small variations of the natural frequencies of vibration from one blade to another.
  • the document FR 2 869 069 describes for example a method for introducing a voluntary detuning in a bladed wheel of a turbomachine determined so as to reduce the vibratory levels of the wheel in forced response, characterized in that it consists in determining, according to the operating conditions of the wheel inside the turbomachine, an optimal value standard deviation of deviation from the maximum response in vibration amplitude wanted on the wheel, to have on said wheel, at least in part, blades of different eigenfrequencies so that the frequency distribution of all the blades has a standard deviation at least equal to said detuning value.
  • This document also proposes several technological solutions for modifying the eigenfrequencies of vibration from one blade to the other, among which the fact of using different materials for the blades or the fact to act on their geometry, for example in using blades of different lengths.
  • the present invention is intended in particular to overcome the disadvantages of the techniques of voluntary detuning of the prior art.
  • the notches are made by countersinking or the projections are made by metallization.
  • the disk comprises an annular platform from which the blades extend radially, the projections or notches being formed in the disk platform.
  • the projections or notches are formed in the disk so as to extend over an angular amplitude around the longitudinal axis of between 360 ° / N and 80 °.
  • the present invention also relates to a bladed wheel of a turbomachine comprising a disk extending around a longitudinal axis and N vanes distributed regularly around said longitudinal axis and extending radially from the disk, N being a number non-zero natural integer, said bladed wheel further comprising a plurality of projections or notches formed in the disc facing each of the blades determined according to steps a) to c) of the method for introducing a voluntary detuning in a bladed wheel d a turbomachine as previously described.
  • the detuning thus achieved is structurally different from a systematic detuning.
  • the proposed method is particularly interesting in the case of detuning other than one blade out of two.
  • the notches are made by countersinking or the projections are made by metallization.
  • the disk comprises an annular platform from which the vanes extend radially, the projections or notches being formed in said platform of the disk.
  • the projections or notches are formed in the disk so as to extend over an angular amplitude around the longitudinal axis of between 360 ° / N and 80 °.
  • vibration nodes the points of a mechanical system that for a given vibration mode have a zero displacement. These points are not in motion.
  • vibration bellies are the points of a mechanical system that for a given vibration mode have maximum displacement. These points therefore have a movement of maximum amplitude.
  • the figure 1 illustrates a turbofan engine 10.
  • the turbomachine 10 extends along a main axis 11 and comprises an air shaft 12 through which a flow of gas enters the turbine engine 10 and in which the flow of gas passes through a fan 13. Downstream of the blower 13, the flow of gas separates into a flow of primary gas flowing in a primary stream 14 and a flow of secondary gas flowing in a secondary vein 15.
  • the primary stream passes, from upstream to downstream, a low-pressure compressor 16, a high-pressure compressor 17, a combustion chamber 18, a high-pressure turbine 19, a low-pressure turbine 20, and a casing exhaust gas which is connected to an exhaust nozzle 22.
  • the secondary stream 15 the secondary flow passes through a fixed blade or fan rectifier 24, then mixes with the primary flow at the exhaust nozzle 22 .
  • Each compressor 16, 17 of the turbomachine 10 comprises several stages, each stage being formed by a fixed blade or stator and a rotating blade or rotor 23 around the main axis 11 of the turbomachine 10.
  • the rotating blade or rotor 23 is also called “bladed wheel”.
  • FIGS. 2a and 2b respectively show a view upstream and downstream, with respect to the flow direction of the gases, of a bladed wheel 23 before the implementation of a method 100 for introducing a deliberate detuning into a turbomachine bladed wheel according to a method embodiment of the invention.
  • the bladed wheel 23 comprises a disc 25 extending around a longitudinal axis 26 which, when the bladed wheel 23 is mounted in the turbomachine 10, coincides with the main axis 11 of said turbomachine 10.
  • the bladed wheel 23 comprises in addition, an annular platform 27 arranged at the periphery of the disk 25.
  • the platform 27 has an inner surface 28 facing the longitudinal axis 26 and an outer surface 29 opposite thereto.
  • the platform 27 extends on either side of the disc 25 in the direction of the longitudinal axis 26.
  • the bladed wheel 23 further comprises a plurality of vanes 30 uniformly distributed about the longitudinal axis 26 and extending radially with respect to this axis 26 from the outer surface 29 of the platform 27.
  • the bladed wheel 23 comprises N vanes 30, N being a nonzero natural whole number.
  • the blades 30 may be integral with the disc 25 or be reported on the disc 25 by means well known to those skilled in the art. In the example shown in Figures 2a and 2b , the bladed wheel 23 comprises thirty-four vanes 30 and are integral with the disc 25.
  • Each blade 30 comprises a leading edge which is situated axially upstream in the direction of flow of the gases with respect to said blade 30, and a trailing edge which is situated axially downstream in the direction of flow of the gases through relative to said blade 30.
  • the bladed wheels have a cyclic symmetry.
  • the bladed wheels are composed of a series of geometrically identical sectors that repeat in a circular manner.
  • the bladed wheel 23 comprises N identical sectors, a sector being associated with each of the blades 30.
  • the eigenvalues obtained for each Fourier order k correspond to eigenvalues of the complete bladed wheel.
  • the solutions are double and with each proper pulse ⁇ k , we associate two orthogonal eigenvectors which form a basis for the eigen modes of vibration associated with these orders of Fourier, so that any linear combination of these vectors is also a proper vector.
  • the modal deformations of the bladed wheel for all the natural modes of vibration associated with each of these Fourier orders correspond to a rotating wave of deformation which is the linear combination of two stationary deformation waves of the same frequency.
  • the two stationary deformation waves are shifted by a quarter period.
  • the modal deformations of a bladed wheel have nodal lines which extend radially with respect to the longitudinal axis of the bladed wheel. These nodal lines are commonly called “nodal diameters" and their number corresponds to the order of Fourier k.
  • the method 100 makes it possible to modify one of the two stationary deformation waves O 1 and O 2 without impacting the other of said stationary deformation waves O 1 and O 2 , thus ensuring the frequency separation of said two standing waves of deformation O 1 and O 2.
  • the method 100 takes advantage of the strong dynamic coupling between the blades 30 and the disc 25 to induce a frequency disparity between the blades 30 by changing the geometry of the disc 25.
  • the method 100 is particularly advantageous because it allows to deliberately detune the bladed wheel 23 outside the design process of said bladed wheel 23 and without applying a systematic mismatch that would not necessarily be adapted to said bladed wheel 23.
  • the bladed wheel 23 can indeed be detuned voluntarily once the bladed wheel 23 designed and manufactured to the extent that one does not directly modify the blades 30 but the disc 25. Moreover, by not modifying the geometry or the material of the blades 30, we avoid impacting their aerodynamics.
  • Stage a) is for example carried out following wind tunnel tests of the turbomachine 10 and thus of the bladed wheel 23, having demonstrated troublesome vibratory phenomena, such as the floating in a clean mode of vibration of the turbine. Bladed wheel 23.
  • These annoying vibratory phenomena can for example appear in the form of cracks at the foot of blades 30. These cracks can then be connected to a particular vibration phenomenon, for example floating, and the natural mode or modes of vibration for which or where this vibratory phenomenon appears can then be determined.
  • Step b) is for example carried out by numerical simulation by means of a suitable software, such as the numerical simulation software proposed by ANSYS Inc which implements the finite element method.
  • the displacement ⁇ of the blades 30 over the entire circumference of the bladed wheel 23 is for example determined at the top of the leading edge of the blades 30.
  • the term "top of the leading edge” the point of the leading edge of the blades 30 which is furthest from the longitudinal axis 26.
  • the Figures 5a to 5c illustrate step c) when the eigen mode selected in step a) is the first bending mode with two nodal diameters. It can be observed in these figures that the vibration bellies of the first stationary deformation wave O 1 coincide with the vibration nodes of the second stationary wave of deformation O 2 at the level of four vanes. These are the blades numbered here 6, 14, 23, and 31. These coincidences are referenced C 1 to C 4 on the Figures 5a to 5c .
  • each vibration belly of the first deformation stationary wave O 1 may also coincide with a vibration node of the second stationary deformation wave O 2 at a plurality of adjacent blades 30.
  • a protrusion 31 or notch 32 may be formed in the disk 25, facing each series of adjacent blades 30, over an angular amplitude around the longitudinal axis 26 at least equal to the number of blades 30 of each series multiplied by 360 ° / N.
  • FIGS. 6a and 6b show the bladed wheel 23 after implementation of the method 100, and the Figures 7a and 7b show in more detail the notches 32 formed in the disc 25 in step d).
  • the notches 32 are formed in the platform 27 of the disk 25.
  • the notches 32 are thus formed in the disk 25 as close to the blades 30. This makes it possible to increase the effect of the geometric modification of the disk 25 on the frequency of the blades. 30.
  • the notches 32 are preferably positioned on the platform 27 symmetrically with respect to said disc 25, to ensure the dynamic equilibrium of the bladed wheel 23.
  • the notches 32 preferably extend over an angular amplitude around the longitudinal axis 26 between 360 ° / N and 80 °. In the example shown in Figures 6a and 6b , the notches 32 extend over an angular amplitude substantially of 40 ° around the longitudinal axis 26.
  • substantially 40 ° means that the notches 32 extend over an angular amplitude of 40 ° around the longitudinal axis 26 to 5 °.
  • the notches 32 are for example made by countersinking.
  • the counterbore applied on the disc 25, more precisely on the platform 27 of the disc 25, is illustrated in dashed line at the Figure 7c .
  • the notches 32 made in the disk 25 of the bladed wheel 23 correspond, for example, to a removal of material from the bladed wheel 23 by approximately 5.5% of the mass of the bladed wheel 23 prior to the implementation of the method 100, and make it possible to obtain a separation frequency of substantially 4.1% in the first mode of bending of two nodal diameters between the blades 30 located opposite the notches 32 and the other blades 30.
  • FIGS. 8a and 8b show the bladed wheel 23 after implementation of the method 100, and the Figures 9a and 9b show in more detail the projections 31 formed in the disc 25 in step d).
  • the projections 31 are formed in the platform 27 of the disk 25.
  • the projections 31 are thus formed in the disc 25 as close to the vanes 30. This makes it possible to increase the effect of the geometric modification of the disc 25 on the frequency of the vanes. 30.
  • the projections 31 are preferably positioned on the platform 27 symmetrically with respect to said disk 25, to ensure the dynamic equilibrium of the bladed wheel 23.
  • the projections 31 preferably extend radially from the inner surface 28 of the platform 27 of the disc 25. In other words, the projections 31 preferably extend radially from the platform 27 towards the longitudinal axis 26.
  • the projections 31 extend radially from the platform 27 and along the longitudinal axis 26 from the disc 25.
  • the platform 27 comprises at its end arranged upstream with respect to the direction of flow of the gas, a flange extending radially towards the longitudinal axis 26.
  • the flange is provided with through openings arranged parallel to the longitudinal axis 26 and configured to receive weights, e.g., bolts, in order to rebalance the bladed wheel 23 as needed.
  • the projections 31 are preferably arranged at a distance from the flange, in order to free a space between the projections 31 and the flange and thus not to prevent insertion of the weights into the openings.
  • the projections 31 preferably extend over an angular amplitude around the longitudinal axis 26 between 360 ° / N and 80 °.
  • the projections 31 extend over an angular amplitude substantially of 40 ° around the longitudinal axis 26.
  • substantially 40 ° means that the notches 32 extend over an angular amplitude of 40 ° around the longitudinal axis 26 to 5 °.
  • the projections 31 are for example made by metallization of the disk 25, that is to say by adding material to the disk 25.
  • the projections 31 are made from a material which is the same as that to which from which the disc 25 is manufactured, in order to preserve the mechanical strength and the service life of the bladed wheel 23.
  • the projections 31 can also be made from a material different from that from which the disc 25 is made.
  • the present invention is described below with reference to a bladed wheel 23 of a turbomachine compressor 16, 17.
  • the invention applies in the same way to a rotor 32 of a turbine 19, 20 or a blower 13, to the extent that these bladed wheels can also be confronted with annoying vibratory phenomena, such as floating.
  • the proposed method is particularly interesting in the case of detuning other than one blade out of two.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Supercharger (AREA)

Description

    DOMAINE TECHNIQUE GENERAL
  • La présente invention concerne un procédé pour introduire un désaccordage volontaire dans une roue aubagée d'une turbomachine.
  • ETAT DE L'ART
  • Une turbomachine comprend généralement, d'amont en aval, dans le sens d'écoulement des gaz, une soufflante, un ou plusieurs étages de compresseurs, par exemple un compresseur basse pression et un compresseur haute pression, une chambre de combustion, un ou plusieurs étages de turbine, par exemple une turbine haute pression et une turbine basse pression, et une tuyère d'échappement des gaz.
  • Chaque étage de compresseur ou de turbine est formé par un aubage fixe ou stator et un aubage tournant ou rotor autour de l'axe principal de la turbomachine.
  • Chaque rotor comprend de manière classique un disque s'étendant autour de l'axe principal de la turbomachine et comprenant une plateforme annulaire, ainsi qu'une pluralité d'aubes réparties de manière régulière autour de l'axe principal de la turbomachine et s'étendant radialement par rapport à cet axe depuis une surface extérieure de la plateforme du disque. On parle aussi de « roues aubagées ».
  • Les roues aubagées font l'objet de phénomènes vibratoires multiples dont les origines peuvent être aérodynamiques et/ou mécaniques.
  • On s'intéresse tout particulièrement ici au flottement, qui est un phénomène vibratoire d'origine aérodynamique. Le flottement est lié à la forte interaction entre les aubes et le fluide qui les traverse. En effet, lorsque la turbomachine est en fonctionnement, les aubes, en étant traversées par le fluide, modifient son écoulement. En retour, la modification de l'écoulement du fluide qui traverse les aubes a pour effet de les exciter en vibrations. Or, lorsque les aubes sont excitées au voisinage d'une de leur fréquence propre de vibration, ce couplage entre le fluide et les aubes peut devenir instable ; c'est le phénomène de flottement. Ce phénomène se traduit alors par des oscillations d'amplitude croissante des aubes pouvant mener à des fissures ou pire à la destruction de la roue aubagée.
  • Ce phénomène est donc très dangereux et il est primordial d'éviter que le couplage entre le fluide et les aubes devienne instable.
  • Afin de pallier ce problème, il est connu de « désaccorder volontairement » les roues aubagées. Le désaccordage volontaire d'une roue aubagée consiste à exploiter la symétrie cyclique de la roue aubagée, à savoir le fait que les roues aubagées sont généralement composées d'une série de secteurs géométriquement identiques, et à créer une disparité fréquentielle entre toutes les aubes de ladite roue aubagée. Autrement dit, le désaccordage volontaire d'une roue aubagée consiste à introduire des variations entre les fréquences propres de vibration des aubes de ladite roue aubagée. Une telle disparité fréquentielle permet de stabiliser la roue aubagée vis-à-vis du flottement en augmentant son amortissement aéro-élastique.
  • Le « désaccordage volontaire » s'oppose au « désaccordage involontaire » qui lui est le résultat de petites variations géométriques des roues aubagées ou à de petites variations des caractéristiques du matériau qui les constitue, généralement dues aux tolérances de fabrication et de montage, pouvant conduire à de petites variations des fréquences propres de vibration d'une aube à une autre.
  • Plusieurs solutions ont déjà été apportées pour désaccorder volontairement une roue aubagée.
  • Le document FR 2 869 069 décrit par exemple un procédé pour introduire un désaccordage volontaire dans une roue aubagée d'une turbomachine déterminée de manière à réduire les niveaux vibratoires de la roue en réponse forcée, caractérisé par le fait qu'il consiste à déterminer, en fonction des conditions de fonctionnement de la roue à l'intérieur de la turbomachine, une valeur optimale d'écart type de désaccordage par rapport à la réponse maximale en amplitude de vibration voulue sur la roue, disposer sur ladite roue, au moins en partie, des aubes de fréquences propres différentes de telle sorte que la répartition des fréquences de l'ensemble des aubes présente un écart type au moins égal à la dite valeur de désaccordage. Ce document propose en outre plusieurs solutions technologiques pour modifier les fréquences propres de vibration d'une aube à l'autre, parmi lesquelles le fait d'utiliser des matériaux différents pour les aubes ou le fait s'agir sur leur géométrie, par exemple en utilisant des aubes de différentes longueurs.
  • Le procédé décrit dans ce document nécessite toutefois d'être mis en oeuvre lors de la conception de la roue aubagée. Or, lorsque la turbomachine est en fonctionnement, les roues aubagées sont soumises à des phénomènes vibratoires multiples et complexes dont les sources d'excitation sont variables et souvent difficiles à prédire. Il peut donc arriver qu'une roue aubagée désaccordée selon le procédé décrit dans ce document soit tout de même soumise à des phénomènes vibratoires gênants qui n'auraient pas pu être prévus, tels que le flottement, lorsque la turbomachine est en fonctionnement.
  • Un autre exemple est décrit dans le document EP 2 463 481 . Ce document décrit une roue aubagée dans laquelle des saillies sont ménagées toutes les deux aubes sur toute la circonférence d'une surface intérieure de la plateforme du disque, en vue de désaccorder volontairement ladite roue aubagée.
  • Un autre exemple est décrit dans le document US 2015/0198047 . Ce document décrit une roue aubagée comprenant alternativement des aubes formées à partir d'un premier alliage de titane et des aubes formées à partir d'un deuxième alliage de titane, les premier et deuxième alliages de titane induisant des fréquences propres de vibration d'aube différentes.
  • Or, ces deux documents proposent un désaccordage volontaire systématique des roues aubagées. Autrement dit, quelle que soit la roue aubagée concernée, elle est désaccordée de la même manière en introduisant une variation de fréquences propres de vibration toutes les deux aubes. Il peut donc arriver qu'une roue aubagée ainsi désaccordé soit tout de même soumise à des phénomènes vibratoires gênants, tels que le flottement, lorsque la turbomachine est en fonctionnement.
  • PRESENTATION DE L'INVENTION
  • La présente invention a notamment pour objectif de pallier les inconvénients des techniques de désaccordage volontaire de l'art antérieur.
  • Elle propose un procédé pour introduire un désaccordage volontaire dans une roue aubagée de turbomachine permettant d'adapter le désaccordage appliqué à la géométrie de ladite roue aubagée à désaccorder et donc aux phénomènes vibratoires gênants, tels que le flottement, auxquels ladite roue aubagée est soumise, lorsque la turbomachine est en fonctionnement.
  • Plus précisément, la présente invention a pour objet un procédé pour introduire un désaccordage volontaire dans une roue aubagée d'une turbomachine, ladite roue aubagée comprenant un disque s'étendant autour d'un axe longitudinal et N aubes réparties de manière régulière autour dudit axe longitudinal et s'étendant radialement par rapport à cet axe depuis le disque, N étant un nombre entier naturel non nul, ledit procédé comprenant les étapes suivantes :
    1. a) sélectionner un mode propre de vibration de la roue aubagée à k diamètres nodaux, k étant un nombre entier naturel différent de zéro et, lorsque N est un nombre pair, différent de N 2 ,
      Figure imgb0001
      ledit mode propre étant un mode de vibration dans la plage de fonctionnement de la turbomachine;
    2. b) déterminer le déplacement des aubes sur toute la circonférence de la roue aubagée pour chacune des deux ondes stationnaires de déformation de même fréquence qui combinées génèrent la déformée modale tournante de la roue aubagée au mode propre de vibration sélectionné ;
    3. c) à partir du déplacement des aubes ainsi déterminé pour chacune des deux ondes stationnaires de déformation, déterminer les aubes pour lesquelles un ventre de vibration d'une première desdites ondes stationnaires de déformation correspond à un noeud de vibration de la deuxième onde stationnaire de déformation ;
    4. d) ménager une saillie ou une encoche dans le disque de la roue aubagée en regard de chacune des aubes ainsi déterminées, de sorte à séparer fréquentiellement les deux ondes stationnaires de déformation et ainsi à introduire un désaccordage volontaire dans la roue aubagée par rapport au mode propre de vibration sélectionné.
  • Préférentiellement, les encoches sont réalisées par lamage ou les saillies sont réalisées par métallisation.
  • Préférentiellement, le disque comprend une plateforme annulaire à partir de laquelle les aubes s'étendent radialement, les saillies ou les encoches étant ménagées dans la plateforme du disque.
  • Préférentiellement, les saillies ou les encoches sont ménagées dans le disque de sorte à s'étendre sur une amplitude angulaire autour de l'axe longitudinal comprise entre 360°/N et 80°.
  • La présente invention a également pour objet une roue aubagée d'une turbomachine comprenant un disque s'étendant autour d'un axe longitudinal et N aubes réparties de manière régulière autour dudit axe longitudinal et s'étendant radialement depuis le disque, N étant un nombre entier naturel non nul, ladite roue aubagée comprenant en outre une pluralité de saillies ou d'encoches ménagées dans le disque en regard de chacune des aubes déterminées selon les étapes a) à c) du procédé pour introduire un désaccordage volontaire dans une roue aubagée d'une turbomachine tel que précédemment décrit.
  • Le désaccordage ainsi réalisé est différent structurellement d'un désaccordage systématique.
  • Notamment, le procédé proposé est particulièrement intéressant dans le cas de désaccordage autre que une aube sur deux.
  • Préférentiellement, les encoches sont réalisées par lamage ou les saillies sont réalisées par métallisation.
  • Préférentiellement, le disque comprend une plateforme annulaire à partir de laquelle les aubes s'étendent radialement, les saillies ou les encoches étant ménagées dans ladite plateforme du disque.
  • Préférentiellement, les saillies ou les encoches sont ménagées dans le disque de sorte à s'étendre sur une amplitude angulaire autour de l'axe longitudinal comprise entre 360°/N et 80°.
  • PRESENTATION DES FIGURES
  • D'autres caractéristiques, buts et avantages de la présente invention apparaitront à la lecture de la description détaillée qui va suivre, et en regard des dessins annexés donnés à titre d'exemples non limitatif et sur lesquels :
    • la figure 1 est une vue schématique d'une turbomachine à double flux ;
    • les figures 2a et 2b sont respectivement une vue en amont et en aval, par rapport au sens d'écoulement des gaz, d'une roue aubagée avant mise en oeuvre d'un procédé pour introduire un désaccordage volontaire dans une roue aubagée de turbomachine selon un mode de réalisation de l'invention ;
    • la figure 3a montre une vue en amont, par rapport au sens d'écoulement des gaz, de la déformation modale tournante du premier mode de flexion à deux diamètres nodaux de la roue aubagée illustrée aux figures 2a et 2b ;
    • la figure 3b montre une vue en aval, par rapport au sens d'écoulement des gaz, de la déformée modale correspondant à une première des deux ondes stationnaires de déformation qui combinées génèrent la déformée modale tournante de la roue aubagée illustrée à la figure 3a ;
    • la figure 3c montre une vue en aval, par rapport au sens d'écoulement des gaz, de la déformée modale correspondant à une deuxième des deux ondes stationnaires de déformation qui combinées génèrent la déformée modale tournante de la roue aubagée illustrée à la figure 3a ;
    • la figure 3d montre un graphique représentant les première et deuxième ondes stationnaires de déformation autour de la roue aubagée ;
    • la figure 4 montre le procédé pour introduire un désaccordage volontaire dans la roue aubagée, selon un mode de réalisation de l'invention ;
    • la figure 5a correspond à la figure 3b sur laquelle les ventres de vibration de la première onde stationnaire de déformation coïncidant avec les noeuds de vibration de la deuxième onde stationnaire de déformation sont mis en évidence ;
    • la figure 5b correspond à la figure 3c sur laquelle les noeuds de vibration de la deuxième onde stationnaire de déformation coïncidant avec les ventres de vibration de la première onde stationnaire de déformation sont mis en évidence ;
    • la figure 5c correspond à la figure 3d sur laquelle les coïncidences entre les ventres de vibration de la première onde stationnaire de déformation et les noeuds de vibration de la deuxième onde stationnaire de déformation ;
    • les figures 6a et 6b montrent respectivement une vue en amont et en aval, par rapport au sens d'écoulement des gaz, de la roue aubagée illustrée aux figures 2a et 2b après mise en oeuvre du procédé pour introduire un désaccordage volontaire dans une roue aubagée de turbomachine selon un premier mode de réalisation de l'invention ;
    • les figures 7a et 7b montrent respectivement une vue de détail en amont et en aval, par rapport au sens d'écoulement des gaz, des encoches ménagées dans la roue aubagée après mise en oeuvre du procédé pour introduire un désaccordage volontaire dans une roue aubagée de turbomachine selon le premier mode de réalisation de l'invention ;
    • la figure 7c montre une vue partielle, en coupe longitudinale, de la roue aubagée après mise en oeuvre du procédé pour introduire un désaccordage volontaire dans une roue aubagée de turbomachine selon le premier mode de réalisation de l'invention ;
    • les figures 8a et 8b montrent respectivement une vue en amont et en aval, par rapport au sens d'écoulement des gaz, de la roue aubagée illustrée aux figures 2a et 2b après mise en oeuvre du procédé pour introduire un désaccordage volontaire dans une roue aubagée de turbomachine selon un deuxième mode de réalisation de l'invention ;
    • les figures 9a et 9b montrent respectivement une vue de détail en amont et en aval, par rapport au sens d'écoulement des gaz, des encoches ménagées dans la roue aubagée après mise en oeuvre du procédé pour introduire un désaccordage volontaire dans une roue aubagée de turbomachine selon le deuxième mode de réalisation de l'invention.
    DESCRIPTION DETAILLEE
  • A titre préliminaire, on appelle « noeuds de vibration », les points d'un système mécanique qui pour un mode de vibration donné ont un déplacement nul. Ces points ne sont donc pas en mouvement. On appelle « ventres de vibration », les points d'un système mécanique qui pour un mode de vibration donné ont un déplacement maximal. Ces points présentent donc un mouvement d'amplitude maximale.
  • La figure 1 illustre une turbomachine à double flux 10. La turbomachine 10 s'étend selon un axe principal 11 et comprend une manche d'air 12 par laquelle un flux de gaz pénètre dans la turbomachine 10 et dans laquelle le flux de gaz traverse une soufflante 13. En aval de la soufflante 13, le flux de gaz se sépare en un flux de gaz primaire s'écoulant dans une veine primaire 14 et un flux de gaz secondaire s'écoulant dans une veine secondaire 15.
  • Dans la veine primaire 14, le flux primaire traverse, d'amont en aval, un compresseur basse pression 16, un compresseur haute pression 17, une chambre de combustion 18, une turbine haute pression 19, une turbine basse pression 20, et un carter d'échappement des gaz auquel est reliée une tuyère d'échappement 22. Dans la veine secondaire 15, le flux secondaire traverse un aubage fixe ou redresseur de soufflante 24, puis vient se mélanger au flux primaire au niveau de la tuyère d'échappement 22.
  • Chaque compresseur 16, 17 de la turbomachine 10 comprend plusieurs étages, chaque étage étant formé par un aubage fixe ou stator et un aubage tournant ou rotor 23 autour de l'axe principal 11 de la turbomachine 10. L'aubage tournant ou rotor 23 est aussi appelé « roue aubagée ».
  • Les figures 2a et 2b montrent respectivement une vue en amont et en aval, par rapport au sens d'écoulement des gaz, d'une roue aubagée 23 avant la mise en oeuvre d'un procédé 100 pour introduire un désaccordage volontaire dans une roue aubagée de turbomachine selon un mode de réalisation de l'invention.
  • La roue aubagée 23 comprend un disque 25 s'étendant autour d'un axe longitudinal 26 qui, lorsque la roue aubagée 23 est montée dans la turbomachine 10, est confondu avec l'axe principal 11 de ladite turbomachine 10. La roue aubagée 23 comprend en outre une plateforme annulaire 27 agencée à la périphérie du disque 25. La plateforme 27 présente une surface intérieure 28 en regard de l'axe longitudinal 26 et une surface extérieure 29 qui lui est opposée. La plateforme 27 s'étend de part et d'autre du disque 25 dans la direction de l'axe longitudinal 26.
  • La roue aubagée 23 comprend en outre une pluralité d'aubes 30 réparties de manière régulière autour de l'axe longitudinal 26 et s'étendant radialement par rapport à cet axe 26 depuis la surface extérieure 29 de la plateforme 27. La roue aubagée 23 comprend N aubes 30, N étant un nombre entier naturel non nul. Les aubes 30 peuvent être monoblocs avec le disque 25 ou être rapportées sur le disque 25 par des moyens bien connus de l'homme du métier. Dans l'exemple illustré aux figures 2a et 2b, la roue aubagée 23 comprend trente-quatre aubes 30 et sont d'un seul tenant avec le disque 25.
  • Chaque aube 30 comprend un bord d'attaque qui est situé axialement en amont selon le sens d'écoulement des gaz par rapport à ladite aube 30, et un bord de fuite qui est situé axialement en aval selon le sens d'écoulement des gaz par rapport à ladite aube 30.
  • D'une manière générale, les roues aubagées présentent une symétrie cyclique. Autrement dit, les roues aubagées sont composées d'une série de secteurs géométriquement identiques qui se répètent de manière circulaire. Par exemple, la roue aubagée 23 comprend N secteurs identiques, un secteur étant associé à chacune des aubes 30.
  • Pour réaliser l'analyse modale de la roue aubagée, on cherche à résoudre le problème aux valeurs propres : (K - ω2M)X = 0, avec K correspondant à la matrice de raideur de la roue aubagée, M correspondant à la matrice de masse de la roue aubagée, X correspondant au vecteur de déplacement de la roue aubagée et ω correspondant aux pulsations propres de la roue aubagée.
  • Or, la symétrie cyclique de la roue aubagée permet de réaliser l'analyse modale de la roue aubagée complète en ne considérant qu'un seul secteur. Pour cela, on se place dans l'espace de Fourier et le problème aux valeurs propres mentionné ci-dessus peut être reformulé de la façon suivante : (k - ω2k )k = 0, avec k correspondant aux ordres de Fourier, k correspondant à la matrice de raideur du secteur à l'ordre k, k correspondant à la matrice de masse du secteur à l'ordre k, k correspondant au vecteur de déplacement du secteur à l'ordre k et ω correspondant aux pulsations propres du secteur. Le problème aux valeurs propres ainsi reformulé est résolu pour chaque ordre k de Fourier. On considère en général les ordres de Fourier k ∈ [0; K], avec : K = { N 2 si N est pair , N 1 2 si N est impair .
    Figure imgb0002
  • Les valeurs propres obtenues pour chaque ordre de Fourier k correspondent à des valeurs propres de la roue aubagée complète.
  • Les solutions obtenues pour k = 0 et, lorsque N est pair, k = N 2
    Figure imgb0003
    correspondent respectivement à des modes propres de vibration où tous les secteurs se déforment en phase et à des modes propres de vibration où les secteurs adjacents se déforment en opposition de phase. Les déformées modales de la roue aubagée pour tous les modes propres de vibration associés à chacun de ces deux ordres de Fourier correspondent à une onde stationnaire de déformation.
  • Pour les autres ordres de Fourier k, les solutions sont doubles et à chaque pulsation propre ωk , on associe deux vecteurs propres orthogonaux qui forment une base pour les modes propres de vibration associés à ces ordres de Fourier, de telle sorte que toute combinaison linéaire de ces vecteurs est aussi un vecteur propre. Les déformées modales de la roue aubagée pour tous les modes propres de vibration associés à chacun de ces ordres de Fourier correspondent à une onde tournante de déformation qui est la combinaison linéaire de deux ondes stationnaires de déformation de même fréquence. Les deux ondes stationnaires de déformation sont décalées d'un quart de période.
  • Hormis les déformées modales des modes propres de vibration correspondant à l'ordre de Fourier k = 0, les déformées modales d'une roue aubagée présentent des lignes nodales qui s'étendent radialement par rapport à l'axe longitudinal de la roue aubagée. Ces lignes nodales sont communément appelées « diamètres nodaux » et leur nombre correspond à l'ordre de Fourier k.
  • Afin d'illustrer cela, les figures 3a à 3d montrent respectivement :
    • la déformée modale du premier mode de flexion à deux diamètres nodaux de la roue aubagée 23, cette déformée modale étant tournante ;
    • la déformée modale correspondant à une première O1 des deux ondes stationnaires de déformation O1 et O2 qui combinées génèrent la déformée modale de la roue aubagée 23 illustrée à la figure 3a ;
    • la déformée modale correspondant à une deuxième O2 des deux ondes stationnaires de déformation O1 et O2 qui combinées génèrent la déformée modale de la roue aubagée 23 illustrée à la figure 3a ;
    • un graphique représentant les première et deuxième ondes stationnaires de déformation O1 et O2 autour de la roue aubagée 23 ; ce graphique montre le déplacement δ des aubes 30 sur toute la circonférence de la roue aubagée 23, les aubes 30 étant numérotées de 1 à N suivant leur ordre d'apparition sur la circonférence de la roue aubagée 23, correspondant à chacune des ondes stationnaires de déformation O1 et O2 ; sur le graphique, le déplacement δ des aubes 30 correspond au déplacement des aubes 30 au sommet de leur bord d'attaque et il est normé par rapport au déplacement maximal desdites aubes 30 ; on observe bien ici que les deux ondes stationnaires de déformation O1 et O2 sont décalées d'un quart de période.
  • Pour de plus amples informations au sujet de l'analyse modale des roues aubagées, on pourra par exemple se référer aux documents suivants :
    • Nicolas Salvat, Alain Batailly, Mathias Legrand. Caractéristiques modales des mouvements d'arbre pour des structures à symétrie cyclique. 2013. <hal-00881272v2> ;
    • Bartholomé Segui Vasquez. Modélisation dynamique des systèmes disques aubes multi-étages : Effets des incertitudes. Other. INSA de Lyon, 2013. French. <NNT : 2013ISAL0057> ;
    • Denis Laxalde. Etude d'amortisseurs non-linéaires appliqués aux roues aubagées et aux systèmes multi-étages. Mechanics. Ecole Centrale de Lyon, 2007. French. <tel-00344168> ;
    • Marion Gruin. Dynamique non-linéaire d'une roue de turbine Basse Pression soumise à des excitations structurales d'un turboréacteur. Other. Ecole Centrale de Lyon, 2012. French. <NNT : 2012ECDL0003>. <tel-00750011>.
  • La figure 4 montre le procédé 100 pour introduire un désaccordage volontaire dans la roue aubagée 23, selon un mode de réalisation de l'invention. Le procédé 100 comprend les étapes suivantes :
    1. a) sélectionner un mode propre de vibration de la roue aubagée 23 à k diamètres nodaux, k étant un nombre entier naturel différent de zéro et, lorsque N est un nombre pair, différent de N 2 ;
      Figure imgb0004
    2. b) déterminer le déplacement δ des aubes 30 sur toute la circonférence de la roue aubagée 23 pour chacune des deux ondes stationnaires de déformation O1 et O2 de même fréquence f qui combinées génèrent la déformée modale tournante de la roue aubagée 23 au mode propre de vibration sélectionné ;
    3. c) à partir du déplacement δ des aubes 30 ainsi déterminé pour chacune des deux ondes stationnaires de déformation O1 et O2, déterminer les aubes 30 pour lesquelles un ventre de vibration d'une première O1, O2 desdites ondes stationnaires de déformation correspond à un noeud de vibration de la deuxième onde stationnaire de déformation O2, O1 ;
    4. d) ménager une saillie 31 ou une encoche 32 dans le disque 25 de la roue aubagée 23 en regard de chacune des aubes 30 ainsi déterminées, de sorte à séparer fréquentiellement les deux ondes stationnaires de déformation O1 et O2 et ainsi introduire un désaccordage volontaire dans la roue aubagée 23 par rapport au mode propre de vibration sélectionné.
  • Le procédé 100 permet de modifier l'une des deux ondes stationnaires de déformation O1 et O2 sans impacter l'autre desdites ondes stationnaires de déformation O1 et O2, assurant ainsi la séparation fréquentielle desdites deux ondes stationnaires de déformation O1 et O2 et donc des aubes 30 agencées en regard des encoches 31 par rapport aux autres aubes 30. Le procédé 100 tire avantage du fort couplage dynamique entre les aubes 30 et le disque 25 pour induire une disparité fréquentielle entre les aubes 30 en modifiant la géométrie du disque 25.
  • Le procédé 100 est particulièrement avantageux car il permet de désaccorder volontairement la roue aubagée 23 hors processus de conception de ladite roue aubagée 23 et sans appliquer un désaccordage systématique qui ne serait pas nécessairement adapté à ladite roue aubagée 23. La roue aubagée 23 peut en effet être désaccordée volontairement une fois la roue aubagée 23 conçue et fabriquée dans la mesure où l'on ne modifie pas directement les aubes 30 mais le disque 25. Par ailleurs, en ne modifiant pas la géométrie ou le matériau des aubes 30, on évite d'impacter leur aérodynamisme.
  • L'étape a) est par exemple réalisée suite à des essais en soufflerie de la turbomachine 10 et donc de la roue aubagée 23, ayant mis en évidence des phénomènes vibratoires gênants, tels que le flottement à un mode propre de vibration de l'a roue aubagée 23. Ces phénomènes vibratoires gênants peuvent par exemple apparaître sous la forme de fissures au pied des aubes 30. Ces fissures peuvent ensuite être reliées à un phénomène vibratoire particulier, par exemple le flottement, et le ou les modes propres de vibration pour lequel ou lesquels ce phénomène vibratoire apparaît peuvent ensuite être déterminés.
  • L'étape b) est par exemple réalisée par simulation numérique au moyen d'un logiciel adapté, tel que les logiciels de simulation numérique proposés par ANSYS Inc qui mettent en oeuvre la méthode des éléments finis. Le déplacement δ des aubes 30 sur toute la circonférence de la roue aubagée 23 est par exemple déterminé au sommet du bord d'attaque des aubes 30. On entend par « sommet du bord d'attaque » le point du bord d'attaque des aubes 30 qui est le plus éloigné de l'axe longitudinal 26.
  • Les figures 5a à 5c illustrent l'étape c) lorsque le mode propre sélectionné à l'étape a) est le premier mode de flexion à deux diamètres nodaux. On observe sur ces figures que les ventres de vibration de la première onde stationnaire de déformation O1 coïncident avec les noeuds de vibration de la deuxième onde stationnaire de déformation O2 au niveau de quatre aubes. Il s'agit des aubes numérotées ici 6, 14, 23, et 31. Ces coïncidences sont référencées C1 à C4 sur les figures 5a à 5c.
  • A l'étape c), chaque ventre de vibration de la première onde stationnaire de déformation O1 peut également coïncider avec un noeud de vibration de la deuxième onde stationnaire de déformation O2 au niveau de plusieurs aubes 30 adjacentes. Dans ce cas, une saillie 31 ou encoche 32 peut être ménagée dans le disque 25, en regard de chaque série d'aubes 30 adjacentes, sur une amplitude angulaire autour de l'axe longitudinal 26 au moins égale au nombre d'aubes 30 de chaque série multiplié par 360°/N.
  • Les figures 6a et 6b montrent la roue aubagée 23 après mise en oeuvre du procédé 100, et les figures 7a et 7b montrent plus en détail les encoches 32 ménagées dans le disque 25 à l'étape d).
  • Les encoches 32 sont ménagées dans la plateforme 27 du disque 25. Les encoches 32 sont ainsi ménagées dans le disque 25 au plus près des aubes 30. Cela permet d'augmenter l'effet de la modification géométrique du disque 25 sur la fréquence des aubes 30.
  • Les encoches 32 sont de préférence positionnées sur la plateforme 27 de manière symétrique par rapport audit disque 25, afin de s'assurer de l'équilibre dynamique de la roue aubagée 23.
  • Les encoches 32 s'étendent de préférence sur une amplitude angulaire autour de l'axe longitudinal 26 entre 360°/N et 80°. Dans l'exemple illustré aux figures 6a et 6b, les encoches 32 s'étendent sur une amplitude angulaire sensiblement de 40° autour de l'axe longitudinal 26. On entend par « sensiblement de 40° » le fait que les encoches 32 s'étendent sur une amplitude angulaire de 40° autour de l'axe longitudinal 26 à 5° près.
  • Les encoches 32 sont par exemple réalisées par lamage. Le lamage appliqué sur le disque 25, plus précisément sur la plateforme 27 du disque 25, est illustré en trait pointillé à la figure 7c.
  • Dans l'exemple illustré aux figures 6a et 6b, les encoches 32 réalisées dans le disque 25 de la roue aubagée 23 correspondent par exemple à un retrait de matière de la roue aubagée 23 d'environ 5,5% de la masse de la roue aubagée 23 avant mise en oeuvre du procédé 100, et permettent d'obtenir une séparation fréquentielle sensiblement de 4,1% au premier mode de flexion de deux diamètres nodaux entre les aubes 30 se situant en regard des encoches 32 et les autres aubes 30.
  • Les figures 8a et 8b montrent la roue aubagée 23 après mise en oeuvre du procédé 100, et les figures 9a et 9b montrent plus en détail les saillies 31 ménagées dans le disque 25 à l'étape d).
  • Les saillies 31 sont ménagées dans la plateforme 27 du disque 25. Les saillies 31 sont ainsi ménagées dans le disque 25 au plus près des aubes 30. Cela permet d'augmenter l'effet de la modification géométrique du disque 25 sur la fréquence des aubes 30.
  • Les saillies 31 sont de préférence positionnées sur la plateforme 27 de manière symétrique par rapport audit disque 25, afin de s'assurer de l'équilibre dynamique de la roue aubagée 23.
  • Les saillies 31 s'étendent de préférence radialement depuis la surface intérieure 28 de la plateforme 27 du disque 25. Autrement dit, les saillies 31 s'étendent de préférence radialement depuis la plateforme 27 vers l'axe longitudinal 26.
  • Dans l'exemple illustré aux figures 9a et 9b, les saillies 31 s'étendent radialement depuis la plateforme 27 et suivant l'axe longitudinal 26 depuis le disque 25.
  • Dans l'exemple illustré aux figures 9a et 9b, la plateforme 27 comprend à son extrémité agencée en amont par rapport au sens d'écoulement des gaz, une bride s'étendant radialement vers l'axe longitudinal 26. La bride est pourvue d'ouvertures traversantes agencées parallèlement à l'axe longitudinal 26 et configurées pour recevoir des poids, par exemple des boulons, afin de pouvoir rééquilibrer la roue aubagée 23 si besoin. Dans ce cas, les saillies 31 sont de préférence agencées à distance de la bride, afin de libérer un espace entre les saillies 31 et la bride et ainsi ne pas empêcher l'insertion des poids dans les ouvertures.
  • Les saillies 31 s'étendent de préférence sur une amplitude angulaire autour de l'axe longitudinal 26 entre 360°/N et 80°. Dans l'exemple illustré aux figures 8a et 8b, les saillies 31 s'étendent sur une amplitude angulaire sensiblement de 40° autour de l'axe longitudinal 26. On entend par « sensiblement de 40° » le fait que les encoches 32 s'étendent sur une amplitude angulaire de 40° autour de l'axe longitudinal 26 à 5° près.
  • Les saillies 31 sont par exemple réalisées par métallisation du disque 25, c'est-à-dire par ajout de matière sur le disque 25. De préférence, les saillies 31 sont réalisées à partir d'un matériau qui est le même que celui à partir duquel le disque 25 est fabriqué, afin de préserver la tenue mécanique et la durée de vie de la roue aubagée 23. Cependant, les saillies 31 peuvent également être réalisées à partir d'un matériau différent de celui à partir duquel le disque 25 est fabriqué.
  • On comprendra que l'homme du métier saura, à partir de ses connaissances générales, quelle quantité de matière retirée ou ajoutée au disque 25 par rapport à la masse de la roue aubagée 23 avant mise en oeuvre du procédé 100, de sorte à obtenir la séparation fréquentielle souhaitée au mode propre de vibration sélectionné entre les aubes 30 se situant en regard des saillies 31 ou des encoches 32 et celui des autres aubes 30.
  • La présente invention est décrite ci-dessous en faisant référence à une roue aubagée 23 d'un compresseur 16, 17 de turbomachine 10. Toutefois, l'invention s'applique de la même façon à un rotor 32 d'une turbine 19, 20 ou à une soufflante 13, dans la mesure où ces roues aubagées peuvent être également confrontées à des phénomènes vibratoires gênants, tels que le flottement. Comme on l'aura compris, le procédé proposé est particulièrement intéressant dans le cas de désaccordage autre que une aube sur deux.

Claims (8)

  1. Procédé (100) pour introduire un désaccordage volontaire dans une roue aubagée (23) d'une turbomachine (10), ladite roue aubagée (23) comprenant un disque (25) s'étendant autour d'un axe longitudinal (26) et N aubes (30) réparties de manière régulière autour dudit axe longitudinal (26) et s'étendant radialement par rapport à cet axe (26) depuis le disque (25), N étant un nombre entier naturel non nul, ledit procédé (100) comprenant les étapes suivantes :
    a) sélectionner un mode propre de vibration de la roue aubagée (23) à k diamètres nodaux, k étant un nombre entier naturel différent de zéro et, lorsque N est un nombre pair, différent de N 2 ,
    Figure imgb0005
    ledit mode propre étant un mode de vibration dans la plage de fonctionnement de la turbomachine ;
    b) déterminer le déplacement (δ) des aubes (30) sur toute la circonférence de la roue aubagée (23) pour chacune des deux ondes stationnaires de déformation (O1, O2) de même fréquence (f) qui combinées génèrent la déformée modale tournante de la roue aubagée (23) au mode propre de vibration sélectionné ;
    c) à partir du déplacement (δ) des aubes (30) ainsi déterminé pour chacune des deux ondes stationnaires de déformation (O1, O2), déterminer les aubes (30) pour lesquelles un ventre de vibration d'une première desdites ondes stationnaires de déformation (O1, O2) correspond à un noeud de vibration de la deuxième onde stationnaire de déformation (O2, O1) ;
    d) ménager une saillie (31) ou une encoche (32) dans le disque (25) de la roue aubagée (23) en regard de chacune des aubes (30) ainsi déterminées, de sorte à séparer fréquentiellement les deux ondes stationnaires de déformation (O1, O2) et ainsi à introduire un désaccordage volontaire dans la roue aubagée (23) par rapport au mode propre de vibration sélectionné.
  2. Procédé (100) selon la revendication 1, dans lequel les encoches (32) sont réalisées par lamage ou les saillies (31) sont réalisées par métallisation.
  3. Procédé (100) selon la revendication 1 ou la revendication 2, dans lequel le disque (25) comprend une plateforme (27) annulaire à partir de laquelle les aubes (30) s'étendent radialement, les saillies (31) ou les encoches (32) étant ménagées dans ladite plateforme (27) du disque (25).
  4. Procédé (100) selon l'une quelconque des revendications 1 à 3, dans lequel les saillies (31) ou les encoches (32) sont ménagées dans le disque (25) de sorte à s'étendre sur une amplitude angulaire autour de l'axe longitudinal (26) comprise entre 360°/N et 80°.
  5. Roue aubagée (23) d'une turbomachine (10) comprenant un disque (25) s'étendant autour d'un axe longitudinal (26) et N aubes (30) réparties de manière régulière autour dudit axe longitudinal (26) et s'étendant radialement depuis le disque (25), N étant un nombre entier naturel non nul, ladite roue aubagée étant caractérisée en ce qu'elle comprend une pluralité de saillies (31) ou d'encoches (32) ménagées dans le disque (25) en regard de chacune des aubes (30) déterminées selon les étapes a) à c) du procédé (100) pour introduire un désaccordage volontaire dans une roue aubagée (23) d'une turbomachine (10) selon l'une quelconque des revendications 1 à 4.
  6. Roue aubagée (23) selon la revendication 5, dans lequel les encoches (32) sont réalisées par lamage ou les saillies (31) sont réalisées par métallisation.
  7. Roue aubagée (23) selon la revendication 5 ou la revendication 6, dans lequel le disque (25) comprend une plateforme (27) annulaire à partir de laquelle les aubes (30) s'étendent radialement, les saillies (31) ou les encoches (32) étant ménagées dans ladite plateforme (27) du disque (25).
  8. Roue aubagée (23) selon l'une quelconque des revendications 5 à 7, dans lequel les saillies (31) ou les encoches (32) sont ménagées dans le disque (25) de sorte à s'étendre sur une amplitude angulaire autour de l'axe longitudinal (26) comprise entre 360°/N et 80°.
EP16806240.4A 2015-10-28 2016-10-28 Procédé pour introduire un désaccordage volontaire dans une roue aubagée de turbomachine Active EP3368748B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1560326A FR3043131B1 (fr) 2015-10-28 2015-10-28 Procede pour introduire un desaccordage volontaire dans une roue aubagee de turbomachine
PCT/FR2016/052819 WO2017072469A1 (fr) 2015-10-28 2016-10-28 Procede pour introduire un desaccordage volontaire dans une roue aubagee de turbomachine

Publications (2)

Publication Number Publication Date
EP3368748A1 EP3368748A1 (fr) 2018-09-05
EP3368748B1 true EP3368748B1 (fr) 2019-09-11

Family

ID=55022578

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16806240.4A Active EP3368748B1 (fr) 2015-10-28 2016-10-28 Procédé pour introduire un désaccordage volontaire dans une roue aubagée de turbomachine

Country Status (9)

Country Link
US (1) US10267155B2 (fr)
EP (1) EP3368748B1 (fr)
JP (1) JP6438630B1 (fr)
CN (1) CN108350744B (fr)
BR (1) BR112018008624B1 (fr)
CA (1) CA3003396C (fr)
FR (1) FR3043131B1 (fr)
RU (1) RU2689489C1 (fr)
WO (1) WO2017072469A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109583063B (zh) * 2018-11-20 2023-04-18 东北大学 一种风扇转子试验模型的动力学特性相似设计方法
US11959395B2 (en) 2022-05-03 2024-04-16 General Electric Company Rotor blade system of turbine engines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150292337A1 (en) * 2014-04-11 2015-10-15 Honeywell International Inc. Components resistant to traveling wave vibration and methods for manufacturing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3940937B2 (ja) * 1996-08-07 2007-07-04 石川島播磨重工業株式会社 タービン動翼の配列方法
US6471482B2 (en) * 2000-11-30 2002-10-29 United Technologies Corporation Frequency-mistuned light-weight turbomachinery blade rows for increased flutter stability
FR2869069B1 (fr) * 2004-04-20 2008-11-21 Snecma Moteurs Sa Procede pour introduire un desaccordage volontaire sur une roue aubagee de turbomachine roue aubagee presentant un desaccordage volontaire
WO2008041889A1 (fr) * 2006-10-05 2008-04-10 Volvo Aero Corporation Élément de rotor et procédé pour produire l'élément de rotor
US8342804B2 (en) * 2008-09-30 2013-01-01 Pratt & Whitney Canada Corp. Rotor disc and method of balancing
WO2012035658A1 (fr) * 2010-09-17 2012-03-22 株式会社日立製作所 Procédé d'agencement d'aubes
US9410436B2 (en) * 2010-12-08 2016-08-09 Pratt & Whitney Canada Corp. Blade disk arrangement for blade frequency tuning
US8926290B2 (en) * 2012-01-04 2015-01-06 General Electric Company Impeller tube assembly
EP2762678A1 (fr) * 2013-02-05 2014-08-06 Siemens Aktiengesellschaft Procédé de désaccordage d'une matrice d'aube directrice
JP5519835B1 (ja) * 2013-06-18 2014-06-11 川崎重工業株式会社 翼を備える回転体
US10400606B2 (en) * 2014-01-15 2019-09-03 United Technologies Corporation Mistuned airfoil assemblies

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150292337A1 (en) * 2014-04-11 2015-10-15 Honeywell International Inc. Components resistant to traveling wave vibration and methods for manufacturing the same

Also Published As

Publication number Publication date
CN108350744A (zh) 2018-07-31
CA3003396C (fr) 2018-07-31
JP6438630B1 (ja) 2018-12-19
EP3368748A1 (fr) 2018-09-05
US20180313216A1 (en) 2018-11-01
US10267155B2 (en) 2019-04-23
BR112018008624A2 (pt) 2018-10-30
FR3043131B1 (fr) 2017-11-03
CN108350744B (zh) 2019-04-12
JP2019500531A (ja) 2019-01-10
CA3003396A1 (fr) 2017-05-04
FR3043131A1 (fr) 2017-05-05
BR112018008624B1 (pt) 2022-11-22
RU2689489C1 (ru) 2019-05-28
WO2017072469A1 (fr) 2017-05-04

Similar Documents

Publication Publication Date Title
EP1386058B2 (fr) Structure comprenant un rotor et des sources de perturbations fixes et procede de reduction de vibrations dans cette structure
US10801519B2 (en) Blade disk arrangement for blade frequency tuning
CA2503659C (fr) Procede pour introduire un desaccordage volontaire sur une roue aubagee de turbomachine. roue aubagee presentant un desaccordage volontaire
EP2112326B1 (fr) Carter de turbomachine comportant un dispositif empêchant une instabilité lors d&#39;un contact entre le carter et le rotor
CA2919155C (fr) Procede de modelisation d&#39;une pale d&#39;une helice non-carenee
FR2931190A1 (fr) Ailette de turbine
EP3368748B1 (fr) Procédé pour introduire un désaccordage volontaire dans une roue aubagée de turbomachine
EP3152406B1 (fr) Procédé de dimensionnement d&#39;une turbomachine
FR2935350A1 (fr) Methode de reduction des niveaux vibratoires d&#39;une helice de turbomoteur.
CA2621839C (fr) Methode de reduction des niveaux vibratoires d&#39;une roue aubagee de turbomachine
FR2959535A1 (fr) Carter de turbomachine
CA2893248A1 (fr) Procede d&#39;equilibrage d&#39;un rotor de turbomachine et rotor equilibre par un tel procede
FR2960021A1 (fr) Roue mobile de turbomachine munie d&#39;un jonc d&#39;amortissement des vibrations
FR3065023A1 (fr) Diffuseur axial renforce
EP2638249B1 (fr) Procede d&#39;optimisation du profil d&#39;une aube pour roue mobile de turbomachine
EP3741981B1 (fr) Composants à forme de mode
FR3009026A1 (fr) Corps central d&#39;echappement pour une turbomachine
EP4291755A1 (fr) Rotor de turbomachine presentant un comportement vibratoire ameliore
FR3029962B1 (fr) Blocage axial des aubes dans une roue de turbomachine
BE1027711B1 (fr) Etage de compresseur de turbomachine
FR3052804A1 (fr) Roue aubagee volontairement desaccordee
Walton et al. Forced Response of a Centrifugal Compressor Stage due to the Impeller-Diffuser Interaction
FR2933129A1 (fr) Carter de turbomachine a la tenue mecanique amelioree, turbine comprenant un tel carter et moteur d&#39;aeronef equipe d&#39;une telle turbine
FR3014945A1 (fr) Carter d&#39;echappement logeant un etage de turbine pour turbomachine
FR3088972A1 (fr) Rouet de compresseur centrifuge, compresseur équipé de ce rouet et turbomachine équipée de ce compresseur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180525

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190404

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1178702

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016020560

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190911

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191212

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1178702

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200113

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016020560

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191028

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200112

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

26N No opposition filed

Effective date: 20200615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230920

Year of fee payment: 8

Ref country code: GB

Payment date: 20230920

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230922

Year of fee payment: 8

Ref country code: FR

Payment date: 20230920

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 8