WO2012035658A1 - Procédé d'agencement d'aubes - Google Patents

Procédé d'agencement d'aubes Download PDF

Info

Publication number
WO2012035658A1
WO2012035658A1 PCT/JP2010/066219 JP2010066219W WO2012035658A1 WO 2012035658 A1 WO2012035658 A1 WO 2012035658A1 JP 2010066219 W JP2010066219 W JP 2010066219W WO 2012035658 A1 WO2012035658 A1 WO 2012035658A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
natural frequency
blades
turbine rotor
wings
Prior art date
Application number
PCT/JP2010/066219
Other languages
English (en)
Japanese (ja)
Inventor
陵 秋山
洋樹 武田
信也 圓島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2012533804A priority Critical patent/JP5357338B6/ja
Priority to PCT/JP2010/066219 priority patent/WO2012035658A1/fr
Publication of WO2012035658A1 publication Critical patent/WO2012035658A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/26Antivibration means not restricted to blade form or construction or to blade-to-blade connections or to the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements

Definitions

  • the present invention relates to a blade arrangement method when blades are planted in a turbine rotor.
  • turbomachines such as jet engines, gas turbines, and steam turbines
  • a large number of blades are attached to the outer periphery of a disk-shaped turbine rotor at equal intervals and used at high speed.
  • Each blade is manufactured within a predetermined design tolerance, and it is inevitable that characteristics such as mass and natural frequency vary from blade to blade within the tolerance.
  • the crystal orientation also varies from blade to blade. If the crystal orientation varies, the physical property values such as the longitudinal elastic modulus also vary, which causes the natural frequency to change from blade to blade.
  • mistuned system a blade system that varies from blade to blade
  • uniform system a blade system that ideally has no variation from blade to blade
  • the blades are excited by the mainstream gas flowing around the rotor blades, and vibration stress is generated. High vibration stress can cause blade damage, reducing the reliability of the turbomachine.
  • the vibration stress generated in the blades is the same for all blades, but in the case of a mistuned system, different vibration stresses are generated for each blade. In this case, higher vibration stress is generated than when the blade system is assumed to be a homogeneous system, so the reliability is lower than that of the homogeneous system.
  • the present invention has been made in view of the above problems, and the object of the present invention is to suppress the vibration level generated in the attachment of a plurality of blades manufactured within a predetermined design tolerance to the outer periphery of the rotor.
  • the object is to provide a method for arranging wings.
  • the blade arrangement method of the present invention is a blade arrangement method in which a plurality of blades that are attached to the outer periphery of the turbine rotor to form an annular blade row are provided. Dividing into a low frequency group and a high frequency group, arranging the blades of the low natural frequency group in a half region of the turbine rotor, and arranging the high frequency group of blades in the half region of the turbine rotor It arrange
  • the blade arrangement method when the turbine rotor is viewed from the front, blades having a low natural frequency are arranged in one region, and blades having a high natural frequency are arranged in the opposite region. For this reason, the node radii are not equally spaced in the circumferential direction and are not synchronized with the node radii of the excitation source, so that the vibration stress of the turbine blade is reduced.
  • FIG. 1 is a first embodiment of the present invention, and shows an arrangement of one stage of blades assembled on a wheel.
  • 1 is a blade
  • 2 is a shroud integrally formed at the blade tip
  • 3 is a turbine rotor in which the blade 1 is planted.
  • the number of wings 1 is n. That is, n blades 1 are planted in the turbine rotor 3.
  • the n blades are sequentially attached in the circumferential direction of the turbine rotor 3 to form an annular blade row.
  • region of the circumferential direction of the turbine rotor 3 is divided into the half, and is set as A area
  • the root portion of the blade 1 is planted in the turbine rotor and fixedly held by the turbine rotor. Further, by bringing the shroud 2 at the tip of the blade 1 into contact with the shroud of the adjacent blade, the blades of the entire circumference are connected together. In a state where all n blades 1 are attached in the circumferential direction of the turbine rotor 3, the shroud 2 has a ring shape as a whole.
  • FIG. 2 is a perspective view showing two of the wings 1.
  • the wing 1 includes a shroud 6, a wing portion 7, and a root portion 8. Further, the shroud 6 is in contact with the shroud of the adjacent wing at the contact surface 9.
  • FIG. 3 is a plan view of the blade 1 in FIG. 2 as viewed from the shroud side (radially outer side), and shows a state in which the shroud 6 is in contact with the two blades at the contact surface 9.
  • the blade 1 undergoes torsional deformation in the direction of the rotation direction 10 in FIG. 3 due to centrifugal force, and the contact surface 9 comes into contact with the adjacent blade.
  • all the shrouds of the wing 1 come into contact with the shrouds of the adjacent wings, and the shroud portion has a ring-like structure as a whole during operation.
  • the blade 1 is manufactured within a predetermined design tolerance, and it is inevitable that characteristics such as mass and natural frequency vary from blade to blade within the tolerance. Further, when a single crystal material or a unidirectional solidified material is used for the blade 1, the crystal orientation varies from blade to blade. If the crystal orientation varies, the physical property values such as the longitudinal elastic modulus also vary, which causes the natural frequency to change from blade to blade.
  • mistuned system a blade system that varies from blade to blade
  • uniform system a blade system that ideally has no variation from blade to blade
  • the blade 1 is excited by the mainstream gas flowing around the moving blade, and vibration stress is generated. If the vibration stress is high, the blade 1 may be damaged, and the reliability of the turbomachine is lowered.
  • the vibration stress generated in the blades is the same for all blades.
  • higher vibrational stress is generated on the blades and may cause damage.
  • the reliability of the blade system which is a mistune system is lower than that of the uniform system.
  • the present embodiment provides a blade arrangement method capable of sufficiently suppressing the vibration level generated in a blade of a blade system that is a mistune system.
  • Fig. 4 shows a perspective view of a vibration mode analysis result of blade systems arranged by a conventional method.
  • Reference numeral 11 denotes a node radius, which indicates a straight line drawn from a location where the amplitude becomes a node toward the rotor center when focusing on the axial vibration mode of the shroud portion of the turbine rotor blade.
  • the node of the amplitude of the shroud portion equivalent to the node radius 11 is 12.
  • FIG. 5 is a front view of FIG. 4 viewed in the axial direction.
  • the nodal radii appear at approximately equal intervals in the circumferential direction.
  • the vibration mode of the blade matches the excitation mode, and the blade system is supplied with energy greater than the excitation force of the fluid, resulting in a large vibration stress. Occurs.
  • a group of blades having a low natural frequency is arranged in the region A (half the region of the turbine rotor), and a group of blades having a high natural frequency is arranged in the region B (region opposite to the region A).
  • wings having a low natural frequency are arranged in the A region, and wings having a high natural frequency are arranged in the B region.
  • all of the wings having a low natural frequency are arranged in the A region and all of the wings having a high natural frequency are arranged in the B region.
  • the blades originally arranged in the A region may be arranged in the B region.
  • the intention of this embodiment is that the blade natural frequency distribution in the half region is generally low and the blade natural frequency in the other half region is generally high so that the blade natural frequency distribution is asymmetric as a whole. It is to be.
  • the unbalance generated in the turbine rotor may be removed by balancing.
  • FIG. 6 shows the vibration mode analysis results of the blades subjected to the arrangement method according to this embodiment.
  • the nodal radii have different intervals in the circumferential direction. Since the excitation modes of the fluid that excites the blades are equally spaced in the circumferential direction, the blade vibration mode does not match the excitation mode, and the blade system is not supplied with energy greater than the fluid excitation force. For this reason, the vibration stress which generate
  • FIG. 7 shows a second embodiment of the present invention. The arrangement method is shown below.
  • wings having a low natural frequency are arranged in the A region, and wings having a high natural frequency are arranged in the B region.
  • # 2 is arranged on the right side of # 1, but it may be on the left side.
  • # 3 is arranged to the right of # 1.
  • the positions of # 2 and # 3 may be reversed.
  • the positions of # i + 1 and # i + 2 may be reversed.
  • only the blades having a low natural frequency are arranged in the half region, and only the blades having a high natural frequency are arranged in the other half region, so that the natural frequency distribution of the blade is made asymmetric as a whole. It is the intention of
  • the blades having a particularly low natural frequency are concentrated in the vicinity of the center of the A region, and the blades having a particularly high natural frequency are concentrated in the vicinity of the center of the B region.
  • Asymmetry of the natural frequency distribution increases, and the difference in the nodal radius spacing between the A region and the B region increases.
  • the discrepancy between the vibration mode and the excitation mode of the blade increases, and a greater vibration stress reduction effect than in the first embodiment can be expected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne un procédé d'agencement d'aubes, dans lequel lorsqu'une pluralité d'aubes produites selon une tolérance de conception prédéterminée sont fixées sur la périphérie extérieure d'un rotor, permet de supprimer le niveau de vibrations générées. Pour ce faire, l'invention concerne un procédé d'agencement d'aubes dans lequel, au moment du calcul de l'agencement des aubes, on mesure les fréquences de vibration naturelle de toutes les aubes, les aubes étant divisées en un groupe d'aubes à fréquences de vibration naturelle élevées et un groupe d'aubes à faibles fréquences de vibration naturelle. Le groupe d'aubes à fréquences de vibration naturelle élevées est agencé sur une moitié de zone de rotor de turbine, et le groupe d'aubes à faibles fréquences de vibration naturelle est agencé dans une zone sur le côté opposé du rotor de turbine.
PCT/JP2010/066219 2010-09-17 2010-09-17 Procédé d'agencement d'aubes WO2012035658A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012533804A JP5357338B6 (ja) 2010-09-17 翼の配列方法
PCT/JP2010/066219 WO2012035658A1 (fr) 2010-09-17 2010-09-17 Procédé d'agencement d'aubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/066219 WO2012035658A1 (fr) 2010-09-17 2010-09-17 Procédé d'agencement d'aubes

Publications (1)

Publication Number Publication Date
WO2012035658A1 true WO2012035658A1 (fr) 2012-03-22

Family

ID=45831156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066219 WO2012035658A1 (fr) 2010-09-17 2010-09-17 Procédé d'agencement d'aubes

Country Status (1)

Country Link
WO (1) WO2012035658A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019500531A (ja) * 2015-10-28 2019-01-10 サフラン・エアクラフト・エンジンズ ターボ機械のタービンブレードを意図的にミスチューンさせるための方法
EP3572620A1 (fr) * 2018-05-25 2019-11-27 Rolls-Royce plc Agencement de pale de rotor
EP3572621A1 (fr) * 2018-05-25 2019-11-27 Rolls-Royce plc Agencement de pale de rotor
US10954794B2 (en) 2018-05-25 2021-03-23 Rolls-Royce Plc Rotor blade arrangement
WO2022156509A1 (fr) * 2021-01-19 2022-07-28 无锡透平叶片有限公司 Procédé de traitement de processus pour le mélange et le tri de fréquences de pales

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191401A (ja) * 1990-11-26 1992-07-09 Fuji Electric Co Ltd 軸流ターボ機械の翼列構造
JPH06248902A (ja) * 1993-03-01 1994-09-06 Toshiba Corp タービン動翼の配列方法
JPH1047007A (ja) * 1996-08-07 1998-02-17 Ishikawajima Harima Heavy Ind Co Ltd タービン動翼の配列方法
JP2004316657A (ja) * 2003-04-16 2004-11-11 General Electric Co <Ge> 混合調整式ハイブリッドバケット及びその関連方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191401A (ja) * 1990-11-26 1992-07-09 Fuji Electric Co Ltd 軸流ターボ機械の翼列構造
JPH06248902A (ja) * 1993-03-01 1994-09-06 Toshiba Corp タービン動翼の配列方法
JPH1047007A (ja) * 1996-08-07 1998-02-17 Ishikawajima Harima Heavy Ind Co Ltd タービン動翼の配列方法
JP2004316657A (ja) * 2003-04-16 2004-11-11 General Electric Co <Ge> 混合調整式ハイブリッドバケット及びその関連方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019500531A (ja) * 2015-10-28 2019-01-10 サフラン・エアクラフト・エンジンズ ターボ機械のタービンブレードを意図的にミスチューンさせるための方法
EP3572620A1 (fr) * 2018-05-25 2019-11-27 Rolls-Royce plc Agencement de pale de rotor
EP3572621A1 (fr) * 2018-05-25 2019-11-27 Rolls-Royce plc Agencement de pale de rotor
US10954794B2 (en) 2018-05-25 2021-03-23 Rolls-Royce Plc Rotor blade arrangement
US10989227B2 (en) 2018-05-25 2021-04-27 Rolls-Royce Plc Rotor blade arrangement
US11111816B2 (en) 2018-05-25 2021-09-07 Rolls-Royce Plc Rotor blade arrangement
WO2022156509A1 (fr) * 2021-01-19 2022-07-28 无锡透平叶片有限公司 Procédé de traitement de processus pour le mélange et le tri de fréquences de pales

Also Published As

Publication number Publication date
JPWO2012035658A1 (ja) 2014-01-20
JP5357338B2 (ja) 2013-12-04

Similar Documents

Publication Publication Date Title
EP2896791B1 (fr) Ensembles d&#39;aubes avec une fréquence propre différente
US9341067B2 (en) Blade arrangement and associated gas turbine
US7887299B2 (en) Rotary body for turbo machinery with mistuned blades
JP2004211705A (ja) バケット固有振動数を調整するための方法及び装置
JP2005226649A (ja) タービンの第1段及び第2段のバケット及びロータホイール用の最新型のファーツリー及びブローチスロット形態
WO2012035658A1 (fr) Procédé d&#39;agencement d&#39;aubes
CN107091120B (zh) 涡轮叶片质心偏移方法和系统
JP7267427B2 (ja) ブレードロータシステムと対応する保守点検方法
US10584591B2 (en) Rotor with subset of blades having a cutout leading edge
CA2926399C (fr) Desynchronisation de rotor de turbine a gaz
EP3456920B1 (fr) Rotor désaccordé pour moteur de turbine à gaz
US7988424B2 (en) Bucket for the last stage of a steam turbine
EP2599963B1 (fr) Largeur de virole alternée pour introduire un désaccordage sur des groupes de stator de compresseur
JP2020510159A (ja) 向上した耐フラッタ性を備えるスナバ化翼
JP6905074B2 (ja) フラッター耐性が改善されたシュラウド付きブレード
JP5357338B6 (ja) 翼の配列方法
US11319815B2 (en) Mistuning of turbine blades with one or more internal cavities
EP2997230B1 (fr) Section conique de collet de pied d&#39;aube tangentielle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857291

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533804

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857291

Country of ref document: EP

Kind code of ref document: A1