EP3350507B1 - Lighting device for motor vehicles - Google Patents

Lighting device for motor vehicles Download PDF

Info

Publication number
EP3350507B1
EP3350507B1 EP16769933.9A EP16769933A EP3350507B1 EP 3350507 B1 EP3350507 B1 EP 3350507B1 EP 16769933 A EP16769933 A EP 16769933A EP 3350507 B1 EP3350507 B1 EP 3350507B1
Authority
EP
European Patent Office
Prior art keywords
sub
light
lighting
light beam
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16769933.9A
Other languages
German (de)
French (fr)
Other versions
EP3350507A1 (en
Inventor
Vanesa Sanchez
Xavier Morel
Marine Courcier
Laurent Evrard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP3350507A1 publication Critical patent/EP3350507A1/en
Application granted granted Critical
Publication of EP3350507B1 publication Critical patent/EP3350507B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/14Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having vertical cut-off lines; specially adapted for adaptive high beams, i.e. wherein the beam is broader but avoids glaring other road users
    • F21W2102/145Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having vertical cut-off lines; specially adapted for adaptive high beams, i.e. wherein the beam is broader but avoids glaring other road users wherein the light is emitted between two parallel vertical cutoff lines, e.g. selectively emitted rectangular-shaped high beam

Definitions

  • the present invention relates in particular to a lighting device.
  • a preferred application concerns the automotive industry, for vehicle equipment, in particular for the production of devices capable of emitting light beams, also called lighting functions, generally meeting regulations.
  • the invention can enable the production of a highly resolved light beam.
  • the dipped beam must ensure both the quality of the lighting and the absence, or reduction, of the disturbance caused by the luminous flux produced for surrounding vehicles.
  • low beam headlights are essentially defined with this in mind, with, in particular, the use of sometimes complex cuts at the top of the beam, so as to precisely limit or avoid lighting above the horizon line, and to best design a light projection zone to be avoided because it is likely to disturb the driver of a passing vehicle.
  • the invention falls within this framework and seeks to improve the definition of the beams, in particular the main beam.
  • It relates in particular to a lighting system for a motor vehicle, comprising a device for projecting a highly resolved beam.
  • the present invention relates to a lighting device according to claim 1.
  • the first beam serves as a supporting road beam supplemented by a pixelated and digital imaging system which advantageously happens to be a matrix of micro-mirrors.
  • the passing beam this then rests at least partly on the second sub-device, that is to say the pixelated and digital imaging system which happens to be advantageously at least one matrix of micro-mirrors.
  • the present invention also relates to a vehicle equipped with at least one lighting device according to the present invention.
  • This method thus makes it possible to adapt the lighting of the motor vehicle according to an external parameter which may be the crossing of a vehicle, the following of a vehicle, or simply driving on a road.
  • the control electronics thus make it possible to fully use all the degrees of freedom authorized by the present invention.
  • the second sub-device comprises at least a second array of micro-mirrors.
  • This second micro-mirror array is configured to form a second sub-beam light in the form of pixelated rays and forming at least partly said second light beam.
  • this second micro-mirror matrix makes it possible on the one hand to reinforce the illumination of a zone for example, by at least partially covering the light sub-beam emitted by the micro-mirror matrix by the second sub-beam. light bleam.
  • this second light sub-beam to illuminate a particular area of the visual field facing the vehicle, for example an obstacle, an information panel or any other external element which may require lighting. be illuminated independently of road lighting.
  • the second light sub-beam partly covers the light sub-beam so as to locally reinforce the second light beam to illuminate a determined area more precisely and more intensely.
  • This covering when it is not complete, makes it possible, among other things, to have an illuminated area following a brightness gradient. This situation can provide increased visual comfort, but also make it possible to attract the motorist's attention to a specific area of the scene facing the vehicle.
  • the first light sub-beam and the second light sub-beam have a coverage rate of between 5 and 100%. This coverage rate makes it possible to increase the illumination of the same area if necessary.
  • the first light sub-beam and the second light sub-beam have a lateral angular offset of between 0° and 5°, advantageously between 0 and 3°. This offset allows mobility of each of the two light sub-beams relatively to one another. relative to the other and to increase the extent of the area covered by the second light beam.
  • the second light sub-beam may be useful for the second light sub-beam to completely cover the first light sub-beam. In this situation, the illuminated area receives twice as much light flux, making it even more visible when necessary.
  • the micro-mirror matrix has a first output diopter.
  • the second micro-mirror array has a second output diopter.
  • Each of the output diopters has the function of forming at least part of the second light beam.
  • the first and second diopters have identical optical properties.
  • the first output diopter and the second output diopter form a single output diopter. This then makes it possible to have a second, more compact sub-device.
  • the first sub-device and the second sub-device each comprise an output diopter configured to form a light beam.
  • the use of two separate diopters allows greater modularity and reduces manufacturing constraints.
  • the two sub-devices emit light beams in different ways, it is therefore advantageous to be able to have a separate diopter for each of these two sub-devices in order to be able to adapt each of these diopters to the type of light source and of light beam emitted by each of the sub-devices.
  • the first sub-device and the second sub-device have a common output diopter.
  • the second light beam has a coverage rate of the first light beam of between 25% and 80%, advantageously between 25 and 40%. This coverage rate makes it possible to increase the lighting in the same area if necessary.
  • the first light beam and the second light beam have a lateral angular offset of between 4 and 10° and preferably between 6 and 10°. This shift allows a mobility of each of the two light beams relatively to each other.
  • the second light beam partly covers the first light beam in order to allow an increase in the lighting of a determined area.
  • the micro-mirror matrix is controlled by control electronics so as to modify the light sub-beam according to at least one operating parameter.
  • This control electronics makes it possible to modify the reflection properties of the micro-mirror matrix in order to adapt them to lighting requirements.
  • the second array of micro-mirrors is controlled by control electronics so as to modify the second light sub-beam according to at least one operating parameter.
  • a single control electronics makes it possible to control the two micro-mirror matrices, which then allows a saving of hardware resources and improved compactness.
  • the at least one first strip lighting sub-device is controlled by control electronics so as to modify the first light beam according to at least one operating parameter.
  • control electronics Preferably, it is the same control electronics as that of the micro-mirrors.
  • the control of the first sub-device can correspond to the activation or not of at least part of the light emitting elements so as to modify the first light beam, and to adapt it to external conditions such as weather conditions, or crossing or tracking conditions for example.
  • LEDs light-emitting diodes
  • said at least one operating parameter is at least one parameter taken from: precipitation detection, detection of the brightness of the road environment, detection of following vehicle, detection of crossed vehicle, speed of the vehicle, direction of movement of the vehicle, curvature and/or slope of the road, detection of signs, detection of people or animals on the side of the road, vehicle attitude.
  • This operation parameter is a parameter related to traffic conditions and road scene.
  • said at least one operating parameter is at least partly received by the control electronics via at least one sensor included by the vehicle and configured to measure the at least one operating parameter.
  • the vehicle can include numerous sensors allowing the detection of precipitation for example, but also the measurement of external brightness, the detection of the presence of a vehicle crossing or following, the speed of the vehicle, the direction and the orientation of the wheels. All of this data is collected and analyzed at the level of the control electronics in order to allow modification of the light beams in accordance with the needs in terms of safety but also driving comfort.
  • the present invention comprises at least two operating modes: a crossing mode and a road mode. These two modes summarize the different situations that the vehicle may encounter on the road.
  • the crossing mode corresponds to vehicle following and vehicle crossing situations.
  • road mode it corresponds to driving without interaction with other vehicles.
  • This mode therefore corresponds to optimum lighting of the road in order to facilitate driving.
  • the crossing mode presents a configuration of the second sub-device in which only part of the micro-mirror matrix is active in reflection. This configuration makes it possible to adapt the light sub-beam to the presence of a vehicle, whether following said vehicle or during a crossing.
  • the second light beam in crossing mode has a cut-off in order to achieve at least one anti-glare function.
  • This function can for example be used when crossing with another vehicle.
  • part of the micro-mirror matrix is in a passive position in reflection so as to produce a light sub-beam presenting a cutoff.
  • the road mode presents a configuration of the second sub-device in which the entire array of micro-mirrors is active in reflection.
  • the second light beam can be used to increase the visibility provided by the first light beam.
  • all of the micro-mirrors reflect the incident light beam so as to form a highly resolved light sub-beam.
  • the crossing mode presents a configuration of the first strip lighting sub-device configured not to emit the first light beam. This makes it possible to avoid dazzling a vehicle in a crossing situation; when a crossing is detected, the control electronics deactivate the emission of the first light beam.
  • the configuration of the first strip lighting sub-device in crossing mode has at least one anti-glare function.
  • the configuration of the second sub-device in crossing mode presents at least one function among anti-glare (ADB for Adaptive Driving Beam, or matrix beam) and a set of adaptive lighting functions (AFS function), such as lighting concentrated around the optical axis for high traffic speeds (MotorWay function), cornering lighting (BL function), or even lighting in rainy weather (AWL function).
  • ADB anti-glare
  • AFS function adaptive lighting functions
  • MHotorWay function lighting concentrated around the optical axis for high traffic speeds
  • BL function cornering lighting
  • ANL function even lighting in rainy weather
  • a third light beam is emitted by a third sub-device, this third light beam is configured for downward illumination relative to the horizon so as to illuminate the roadway for example.
  • the present invention can use light sources of the light-emitting diode type, also commonly called LEDs.
  • these LEDs can be equipped with at least one chip capable of emitting light of advantageously adjustable intensity according to the lighting and/or signaling function to be performed.
  • the term light source here means a set of at least one elementary source such as an LED capable of producing a flow leading to generating at the output of the device of the invention at least one output light beam filling at least least one desired function.
  • LED sources are particularly advantageous for strip lighting.
  • Other types of sources are also possible in the invention, such as one or more laser sources, in particular for micro-mirror devices.
  • verticality In the characteristics set out below, the terms relating to verticality, horizontality and transversality, or their equivalents, are understood in relation to the position in which the lighting system is intended to be mounted in a vehicle .
  • the terms “vertical” and “horizontal” are used in this description to designate directions, following an orientation perpendicular to the plane of the horizon for the term “vertical”, and following an orientation parallel to the plane of the horizon for the term “horizontal”. They must be considered in the operating conditions of the device in a vehicle.
  • the use of these words does not mean that slight variations around the vertical and horizontal directions are excluded from the invention. For example, an inclination relative to these directions of the order of + or - 10° is considered here as a minor variation around the two preferred directions.
  • bottom or lower part generally means a part of an element of the invention located, along a vertical plane, below the optical axis.
  • top or upper part means a part of an element of the invention located, along a vertical plane, above the optical axis.
  • parallel or the concept of coincident axes or lines is understood here in particular with the manufacturing or assembly tolerances, substantially parallel directions or substantially coincident axes falling within this framework.
  • pixelated and digital imaging system have the definition of a system emitting a light beam, said light beam being formed of a plurality of light sub-beams, each sub-light beam can be controlled independently of the other sub-light beams.
  • These systems can be for example micro-mirror matrices, in particular rotatable, or even liquid crystal devices.
  • Each independently controllable sub-beam forms a pixelated ray.
  • Another technology for forming pixelated rays is provided with a laser source whose ray is reflected by a scanning device onto a surface arranged at the focus of projection optics and composed of a plurality of elements of phosphor material, usually referred to as phosphorus. These phosphor elements re-emit white light which is projected by a lens to form a beam of lighting on the road in front of the vehicle.
  • the segments of phosphor material are arranged between the laser source and the projection lens, at the focus of this lens.
  • cover rate or its equivalents are defined as the quantity of illuminated surface common to two light beams. This rate is equal to 100% in the case where the smallest surface illuminated by one of the light beams is completely included in the surface illuminated by the other light beam.
  • the term passing beam is understood to mean a beam used when there are crossed and/or followed vehicles and/or other elements (individuals, obstacles, etc.) on the roadway or nearby.
  • This beam has an average downward direction. It can possibly be characterized by a absence of light above a plane inclined 1% downwards on the side of traffic in the other direction, and another plane inclined 15 degrees compared to the previous one on the side of traffic in the same direction meaning, these two plans defining a cutoff in compliance with European regulations. This upper downward cutoff aims to avoid dazzling other users present in the road scene extending in front of the vehicle or on the sides of the road.
  • the low beam here called the second light beam, formerly coming from a simple headlight, has undergone developments, the low beam function being able to be coupled with other lighting characteristics.
  • AFS Advanced Frontlighting System
  • BL Back Light
  • DBL Dynamic Bending Light
  • FBL Fielded Bending
  • These corner lighting functions are used when driving on curves, and they are carried out by means of headlamps which emit a light beam whose horizontal orientation varies when the vehicle moves on a curved path, so as to illuminate correctly the sections of road which are intended to be approached by the vehicle and which are not in the axis of the vehicle, but in the direction it is about to take, resulting from the angle imposed on the steering wheels of the vehicle by its driver.
  • Another function is called Town Light in English, for city lighting. This function widens a low beam type beam while slightly reducing its range.
  • the so-called “Motorway Light” function for motorway lighting performs the motorway function.
  • This function ensures an increase in the range of a low beam by concentrating the luminous flux of the low beam at the optical axis of the headlamp device in question.
  • Another variation of low beam is the so-called AWL (Adverse Weather Light) function for bad weather lights. This function ensures a modification of a low beam beam so that the driver of a vehicle traveling in the opposite direction is not dazzled by the reflection of the light from the spotlights on the wet road.
  • the attitude of the vehicle may undergo more or less significant variations, due for example to its state of load, its acceleration or deceleration, which cause a variation in inclination. of the upper cut-off of the beam, resulting either in dazzling other drivers if the cut-off is raised, or in insufficiently illuminating the road if the cut-off is lowered. It is then known to use a range corrector, manually or automatically controlled, to correct the orientation of the low beam headlights.
  • the attitude correction will be carried out by the second sub-device comprising a matrix of micro-mirrors.
  • the basic high beam is preferably emitted by a strip lighting device.
  • This light beam has the function of illuminating the scene in front of the vehicle over a large area but also over a significant distance, typically around 200 meters.
  • This light beam due to its lighting function, is mainly located above the horizon line. It may have a slightly ascending optical axis of illumination, for example.
  • This type of light beam is preferably emitted by a strip lighting device advantageously composed of at least one matrix of light emitting elements such as LEDs for example.
  • the light strips thus generated by the matrix can be turned off or turned on independently of each other. Strip lighting offers the possibility of superimposing two contiguous strips, for example.
  • the light sub-beams each composing at least one vertical band are preferably parallel to each other, but may however have an overlapping zone with each other.
  • this type of lighting although powerful and long-range, does not have high resolution and good precision due to its very design.
  • One of the objectives of the present invention is to partially overcome this defect.
  • the device may also be used to form other lighting functions via or apart from the devices described in detail below.
  • FIG. 1 schematically represents a view of three types of lighting zones generated from the vehicle 400.
  • the first zone illustrated by the first light beam 110 corresponds to an area extending mainly above the horizon line 10.
  • the second light beam 210 corresponds to an illuminated area located partly below the horizon line 10.
  • the third light beam 310 corresponds to an illuminated area located mainly below the horizon line and having the function of illuminating the road.
  • the area illuminated by the first light beam 110 is generated by strip lighting.
  • This strip lighting is preferably movable laterally so as to be able to move along the horizon line 10.
  • This control is advantageously adapted to the movement of the vehicle for example in order to ensure the various functions described above, and in particular the DBL function. This case is not limiting.
  • the first light beam 110 is composed of vertical light sub-beams juxtaposed with a possible overlap and forming lighting bands.
  • the second light beam 210 comprising, according to the invention, two light sub-beams 211 and 212. These two light sub-beams are emitted by several pixelated and digital imaging systems.
  • a system is according to the invention a matrix of micro-mirrors.
  • Each micro-mirror preferably has two operating positions. A so-called active position corresponds to an orientation of the micro-mirrors allowing the reflection towards an output diopter of an incident light beam.
  • a so-called passive position corresponds to an orientation of the micro-mirrors allowing the reflection towards an absorbing surface of an incident light beam, that is to say towards a direction different from that of the output diopter.
  • the two light sub-beams 211, 212 overlap one another in order to increase the brightness of a specific area.
  • This situation is represented on the figure 2 .
  • the two light sub-beams 211 and 212 partially cover the first light beam 110, but they also partially overlap each other.
  • This configuration of covering or overlapping of the illuminated areas generates zones of variable and progressive intensities, which then makes it possible to generate lighting of the scene comprising a symmetrical brightness gradient ranging from the left to right.
  • a first zone corresponds to the illumination of the first light beam 110 alone
  • a second zone presents a more intense illumination corresponding to the superposition of the first light beam 110 and a first sub-light beam 211
  • a third zone forms a zone of maximum intensity comprising the superposition of the first light beam 110 and the two light sub-beams 110, 211 and 212.
  • This zone of maximum intensity can cover a space around the optical axis of the device.
  • another zone of intensity identical to the second zone is produced by covering the light beam 110 and the second light sub-beam 212.
  • This gradient ends with an illumination zone identical to the first zone, illuminated only by the first beam 110.
  • This gradient of illumination makes it possible to increase the visual comfort of the motorist, but also the safety of driving, because it is then possible to accentuate the attention of the motorist on a particular point of the scene facing the vehicle.
  • This situation is made possible by the use of two micro-mirror matrices which make it possible to achieve this gradient. This is a non-limiting example of the numerous degrees of freedom included by the present invention.
  • control of the micro-mirror matrices is carried out by control electronics.
  • This control includes both the control of the orientations of the micro-mirrors of each matrix of micro-mirrors, but also the coverage rate of the sub-light beams. Controlling the micro-mirrors therefore makes it possible to modify the pixelation of the light sub-beams. It is then possible to form a light sub-beam presenting a cut, for example. This may be an elbow at the level of horizon line 10, during a crossing function.
  • the last light beam 310 provides illumination of the road, and more precisely of the roadway. It is preferably descending and/or illuminates below the horizon line 10. In the figure 2 , it is this last light beam which presents the cut at the level of the horizon line 10, close to the point of intersection 30 between the horizon line and the vertical axis 20.
  • This intersection point 30 preferably corresponding , but not limited to, the optical axis of the lighting device. According to another embodiment, this intersection point corresponds to the optical axis of the motorist.
  • the last light beam 310 is preferably emitted by one or more projectors whose light source(s) are advantageously LEDs.
  • FIG. 3 illustrates a non-limiting example of a pixelated and digital imaging system 200 called in English terms “Digital Micromirror Device” (DMD), that is to say a micro-mirror device, also called a micro-matrix. mirrors 203.
  • DMD Digital Micromirror Device
  • This system includes a light source 201, which can be for example LEDs or laser diodes, or any kind of light sources.
  • This light source 201 emits a light beam advantageously in the direction of a reflector 202.
  • This reflector 202 is preferably configured to concentrate the incident light flux on a surface comprising the micro-mirror matrix 203.
  • the reflector 202 is configured so that all of the micro-mirrors are illuminated by the light beam reflected by the reflector 202.
  • the reflector 202 can have, along at least one section plane, a pseudo-elliptical or pseudo profile. parabolic.
  • this diopter 204 can be a converging lens for example.
  • the micro-mirrors each have two operating positions, a so-called active position in which they reflect the incident light beam in the direction of the diopter 204, and a so-called passive position in which they reflect the incident light beam in the direction of a light radiation absorbing element not shown in the Figure 3 .
  • each pixel or pixelated rays composing this beam corresponds to a micro-mirror and it is possible to activate or not these micro-pixels by simply controlling the micro-mirrors. This particularity then makes it possible to draw, if necessary, the shape of the light beam leaving the diopter 204 according to the needs of the invention.
  • FIG 4 illustrates an area illuminated by the light sub-beam 211 emitted by the second sub-device, that is to say via a matrix of micro-mirrors 203.
  • the light sub-beam 211 presents a angular width of at least 10° and preferably at least 20°, and an angular height of at least 5° and preferably at least 9°].
  • This light sub-beam 211 is formed by a plurality of light beams all reflected by the micro-mirrors in the active position of the micro-mirror matrix 203.
  • one or more other sub-beams 212 can be formed.
  • the examples illustrated represent cases where the sub-bundles 211, 212 have the same shape and identical dimensions but this case is not limiting.
  • FIG. 5 illustrates an area illuminated by the first light beam 110 emitted by the first strip lighting sub-device.
  • the light beam 110 has an angular width of at least 30° and preferably at least 40°, and an angular height of at least 5° and preferably at least 9°.
  • This type of strip beam can be generated by a matrix of light emitting elements such as LEDs for example.
  • FIG. 6 illustrates a situation involving the combined projection of the first light beam 110 and the two light sub-beams 211 and 212.
  • the last light beam 310 is not shown.
  • the sub-beam 212 is laterally offset to the right with respect to the light beam 211 so that the The entire light beam 212 is not completely superposed with the first light beam 110.
  • the first light beam 110 is offset laterally to the left. This figure therefore differs from the figure 2 in order to illustrate the possibility of having lateral offsets between the different light beams.
  • the lighting gradient is centered along the optical axis of the motorist, that is to say facing him.
  • the gradient can be centered along the optical axis of a micro-mirror matrix.
  • the present invention offers numerous degrees of freedom regarding the possible combinations of light beams. Indeed, the possibility of having a light beam of strip lighting coupled with a pixelated and digital imaging system of the micro-mirror matrix type makes it possible to have highly resolved lighting and to make the lighting intelligent. lighting of a vehicle so that it adapts to the needs of the user but also to the road and the situations that may be encountered.
  • all of the light beams and sub-beams 110, 211, 212 and 310 are emitted and which illuminate the scene facing the vehicle.
  • lighting is maximum and ensures optimal visibility.
  • the use of two micro-mirror matrices provides efficient adaptive lighting of the scene. Indeed, it is then possible to generate lighting gradients for visual comfort, but also to highlight elements of interest facing the vehicle such as obstacles or indication signs.
  • the pixelation of the light sub-beams 211 and 212 also makes it possible to define shapes if necessary in order to accentuate certain elements of the scene.
  • the subject of the invention is a vehicle equipped with two devices according to the invention, one per projector, respectively mounted on the right side and the left side at the front of the vehicle.
  • the second beam extends at least 4°, preferably 6° on the interior side of the vehicle, that is to say on the opposite side of the vehicle from which the device is mounted, while the first The beam extends at least 6°, preferably 12° on the vehicle interior side.

Description

La présente invention est relative notamment à un dispositif d'éclairage.The present invention relates in particular to a lighting device.

Une application préférée concerne l'industrie automobile, pour l'équipement de véhicules, en particulier pour la réalisation de dispositifs susceptibles de pouvoir émettre des faisceaux lumineux, encore appelés fonctions d'éclairage, répondant en général à des réglementations.A preferred application concerns the automotive industry, for vehicle equipment, in particular for the production of devices capable of emitting light beams, also called lighting functions, generally meeting regulations.

Notamment l'invention peut permettre la production d'un faisceau lumineux hautement résolu.In particular, the invention can enable the production of a highly resolved light beam.

Les dispositifs d'éclairage connus sont jusqu'à présent prévus pour émettre par exemple :

  • un faisceau de croisement, dirigé vers le bas, encore parfois appelé faisceau de code et utilisé en cas de présence d'autres véhicules sur la chaussée;
  • un faisceau de route dépourvu de coupure, et caractérisé par un éclairement maximal dans l'axe du véhicule ;
  • un faisceau d'éclairage pour temps de brouillard, caractérisé par une coupure plate et une grande largeur d'éclairement ;
  • un faisceau de signalisation pour la circulation en ville, encore appelé lampe de ville.
Known lighting devices have so far been designed to emit, for example:
  • a passing beam, directed downwards, also sometimes called a code beam and used in the event of the presence of other vehicles on the roadway;
  • a main beam without interruption, and characterized by maximum illumination in the axis of the vehicle;
  • a lighting beam for foggy weather, characterized by a flat cut-off and a large illumination width;
  • a signaling beam for city traffic, also called a city lamp.

Le faisceau de croisement doit assurer à la fois la qualité de l'éclairage et l'absence, ou la réduction, de la gêne occasionnée par le flux lumineux produit pour les véhicules alentours. Actuellement, les feux de croisement sont essentiellement définis dans cette optique, avec, en particulier, le recours à des coupures parfois complexes en haut de faisceau, de sorte à limiter précisément ou éviter l'éclairement au-dessus de la ligne d'horizon, et à concevoir au mieux une zone de projection de lumière à proscrire car susceptible de gêner le conducteur d'un véhicule croisé.The dipped beam must ensure both the quality of the lighting and the absence, or reduction, of the disturbance caused by the luminous flux produced for surrounding vehicles. Currently, low beam headlights are essentially defined with this in mind, with, in particular, the use of sometimes complex cuts at the top of the beam, so as to precisely limit or avoid lighting above the horizon line, and to best design a light projection zone to be avoided because it is likely to disturb the driver of a passing vehicle.

De même les faisceaux routes actuels présentent des inconvénients similaires, à savoir une résolution très faible et des degrés de liberté limitée par leur technologie. Bien que des améliorations aient été proposées pour les faisceaux de route, comme par exemple l'utilisation de deux dispositifs identiques d'éclairage en bandes, cela ne solutionne pas le problème de la résolution que ce type de technologie peut atteindre. Le document US2008239746 A1 reflète ces limitations D'autres dispositifs sont connus du EP2772682 et WO2015033900 .Likewise, current main beams have similar disadvantages, namely very low resolution and degrees of freedom limited by their technology. Although improvements have been proposed for the main beam, such as the use of two identical strip lighting devices, this does not does not solve the problem of the resolution that this type of technology can achieve. The document US2008239746 A1 reflects these limitations Other devices are known to the EP2772682 And WO2015033900 .

L'invention s'inscrit dans ce cadre et cherche à améliorer la définition des faisceaux, notamment du faisceau route.The invention falls within this framework and seeks to improve the definition of the beams, in particular the main beam.

Elle concerne en particulier un système d'éclairage pour véhicule automobile, comportant un dispositif de projection d'un faisceau hautement résolu.It relates in particular to a lighting system for a motor vehicle, comprising a device for projecting a highly resolved beam.

La présente invention concerne un dispositif d'éclairage selon la revendication 1.The present invention relates to a lighting device according to claim 1.

Ce type de dispositif d'éclairage permet alors de disposer d'un faisceau route hautement résolu, mais également d'un faisceau de croisement hautement résolu. En effet, le premier faisceau sert de faisceau route de support complété par un système d'imagerie pixélisée et digitale se trouvant être avantageusement une matrice de micro-miroirs. Dans le cas considéré du faisceau de croisement, celui-ci repose alors au moins en partie sur le deuxième sous-dispositif, c'est-à-dire le système d'imagerie pixélisée et digitale qui se trouve être avantageusement au moins une matrice de micro-miroirs.This type of lighting device then makes it possible to have a highly resolved high beam, but also a highly resolved low beam. Indeed, the first beam serves as a supporting road beam supplemented by a pixelated and digital imaging system which advantageously happens to be a matrix of micro-mirrors. In the case considered of the passing beam, this then rests at least partly on the second sub-device, that is to say the pixelated and digital imaging system which happens to be advantageously at least one matrix of micro-mirrors.

La présente invention concerne également un véhicule équipé d'au moins un dispositif d'éclairage selon la présente invention.The present invention also relates to a vehicle equipped with at least one lighting device according to the present invention.

En outre, un procédé d'éclairage pour véhicule automobile est divulgué comprenant au moins une électronique de pilotage et au moins un dispositif d'éclairage selon la présente invention. Ce procédé comprend au moins les étapes suivantes :

  • Dans un mode de fonctionnement dit de croisement :
    • ∘ mesure par au moins un capteur d'au moins un paramètre de fonctionnement ;
    • ∘ réception par l'électronique de pilotage de ladite mesure ;
    • ∘ envoi par l'électronique de pilotage d'au moins un signal d'arrêt d'émission du premier faisceau lumineux à destination du premier sous-dispositif ;
    • ∘ envoi par l'électronique de pilotage d'au moins un signal de mise en position passive en réflexion d'une partie au moins des micro-miroirs du deuxième sous-dispositif ;
    • ∘ envoi par l'électronique de pilotage d'au moins un signal de mise en position active en réflexion d'une partie au moins des micro-miroirs du deuxième sous-dispositif.
  • Dans un mode de fonctionnement dit de route :
    • ∘ mesure par au moins un capteur d'au moins un paramètre de fonctionnement ;
    • ∘ réception par l'électronique de pilotage de ladite mesure ;
    • ∘ envoi par l'électronique de pilotage d'au moins un signal de mise en marche de l'émission du premier faisceau lumineux à destination du premier sous-dispositif ;
    • ∘ envoi par l'électronique de pilotage d'au moins un signal de mise en position active en réflexion d'une partie au moins des micro-miroirs du deuxième sous-dispositif ;
Furthermore, a lighting method for a motor vehicle is disclosed comprising at least one control electronics and at least one lighting device according to the present invention. This process comprises at least the following steps:
  • In a so-called crossover operating mode:
    • ∘ measurement by at least one sensor of at least one operating parameter;
    • ∘ reception by the control electronics of said measurement;
    • ∘ sending by the control electronics of at least one signal to stop emission of the first light beam to the first sub-device;
    • ∘ sending by the control electronics of at least one passive positioning signal in reflection of at least part of the micro-mirrors of the second sub-device;
    • ∘ sending by the control electronics of at least one active position signal in reflection of at least part of the micro-mirrors of the second sub-device.
  • In a so-called road operating mode:
    • ∘ measurement by at least one sensor of at least one operating parameter;
    • ∘ reception by the control electronics of said measurement;
    • ∘ sending by the control electronics of at least one signal to start the emission of the first light beam to the first sub-device;
    • ∘ sending by the control electronics of at least one active position signal in reflection of at least part of the micro-mirrors of the second sub-device;

Ce procédé permet ainsi d'adapter l'éclairage du véhicule automobile en fonction d'un paramètre extérieur pouvant être le croisement d'un véhicule, le suivi d'un véhicule, ou simplement la conduite sur une route. L'électronique de pilotage permet ainsi d'utiliser pleinement l'ensemble des degrés de liberté autorisés par la présente invention.This method thus makes it possible to adapt the lighting of the motor vehicle according to an external parameter which may be the crossing of a vehicle, the following of a vehicle, or simply driving on a road. The control electronics thus make it possible to fully use all the degrees of freedom authorized by the present invention.

Selon l'invention, le deuxième sous-dispositif comprend au moins une deuxième matrice de micro-miroirs. Cette deuxième matrice à micro-miroirs est configurée pour former un deuxième sous-faisceau lumineux sous forme de rayons pixélisés et formant au moins en partie ledit deuxième faisceau lumineux.According to the invention, the second sub-device comprises at least a second array of micro-mirrors. This second micro-mirror array is configured to form a second sub-beam light in the form of pixelated rays and forming at least partly said second light beam.

La présence de cette deuxième matrice à micro-miroirs permet d'une part de renforcer l'éclairement d'une zone par exemple, en recouvrant au moins partiellement le sous-faisceau lumineux émis par la matrice de micro-miroirs par le deuxième sous-faisceau lumineux.The presence of this second micro-mirror matrix makes it possible on the one hand to reinforce the illumination of a zone for example, by at least partially covering the light sub-beam emitted by the micro-mirror matrix by the second sub-beam. light bleam.

De manière également avantageuse, il est possible d'utiliser ce deuxième sous-faisceau lumineux pour éclairer une zone particulière du champ visuel se trouvant face au véhicule, par exemple un obstacle, un panneau d'information ou tout autre élément extérieur pouvant nécessiter d'être éclairé indépendamment de l'éclairage de la route.Also advantageously, it is possible to use this second light sub-beam to illuminate a particular area of the visual field facing the vehicle, for example an obstacle, an information panel or any other external element which may require lighting. be illuminated independently of road lighting.

De plus, la présence d'une deuxième matrice à micro-miroirs apporte des degrés de liberté supplémentaires à la présente invention.In addition, the presence of a second micro-mirror matrix brings additional degrees of freedom to the present invention.

Selon l'invention, le deuxième sous-faisceau lumineux recouvre en partie le sous-faisceau lumineux de sorte à renforcer localement le deuxième faisceau lumineux pour éclairer plus précisément et plus intensément une zone déterminée. Ce recouvrement, lorsqu'il n'est pas complet, permet entre autre de disposer d'une zone éclairée suivant un gradient de luminosité. Cette situation peut présenter un confort visuel accru, mais également permettre d'attirer l'attention de l'automobiliste vers une zone précise de la scène se trouvant face au véhicule.According to the invention, the second light sub-beam partly covers the light sub-beam so as to locally reinforce the second light beam to illuminate a determined area more precisely and more intensely. This covering, when it is not complete, makes it possible, among other things, to have an illuminated area following a brightness gradient. This situation can provide increased visual comfort, but also make it possible to attract the motorist's attention to a specific area of the scene facing the vehicle.

De manière préférentielle, le premier sous-faisceau lumineux et le deuxième sous-faisceau lumineux présentent un taux de recouvrement compris entre 5 et 100%.Ce taux de recouvrement permet d'augmenter l'éclairement d'une même zone en cas de besoin.Preferably, the first light sub-beam and the second light sub-beam have a coverage rate of between 5 and 100%. This coverage rate makes it possible to increase the illumination of the same area if necessary.

Avantageusement, le premier sous-faisceau lumineux et le deuxième sous-faisceau lumineux présentent un décalage angulaire latéral compris entre 0° et 5°, avantageusement entre 0 et 3° Ce décalage permet une mobilité de chacun des deux sous faisceaux lumineux relativement l'un par rapport à l'autre et d'augmenter l'étendue de la zone couverte par le deuxième faisceau lumineux.Advantageously, the first light sub-beam and the second light sub-beam have a lateral angular offset of between 0° and 5°, advantageously between 0 and 3°. This offset allows mobility of each of the two light sub-beams relatively to one another. relative to the other and to increase the extent of the area covered by the second light beam.

Selon un mode de réalisation, il peut être utile que le deuxième sous-faisceau lumineux recouvre en totalité le premier sous-faisceau lumineux. Dans cette situation, la zone éclairée reçoit deux fois plus de flux lumineux, la rendant encore plus visible en cas de nécessité.According to one embodiment, it may be useful for the second light sub-beam to completely cover the first light sub-beam. In this situation, the illuminated area receives twice as much light flux, making it even more visible when necessary.

Préférentiellement, la matrice de micro-miroirs présente un premier dioptre de sortie. Et de manière similaire, la deuxième matrice de micro-miroirs présente un deuxième dioptre de sortie. Chacun des dioptres de sortie a pour fonction de former au moins une partie du deuxième faisceau lumineux. De manière préférentielle, les premier et deuxième dioptres présentent des propriétés optiques identiques.Preferably, the micro-mirror matrix has a first output diopter. And similarly, the second micro-mirror array has a second output diopter. Each of the output diopters has the function of forming at least part of the second light beam. Preferably, the first and second diopters have identical optical properties.

Avantageusement et selon un mode particulier de réalisation de la présente invention, le premier dioptre de sortie et le deuxième dioptre de sortie forment un seul et unique dioptre de sortie. Cela permet alors de disposer d'un deuxième sous-dispositif plus compact.Advantageously and according to a particular embodiment of the present invention, the first output diopter and the second output diopter form a single output diopter. This then makes it possible to have a second, more compact sub-device.

De manière préférentielle, le premier sous-dispositif et le deuxième sous-dispositif comprennent chacun un dioptre de sortie configuré pour former un faisceau lumineux. L'utilisation de deux dioptres distincts permet une plus grande modularité et diminue les contraintes de fabrication. En effet, les deux sous-dispositifs émettent des faisceaux lumineux de manière différente, il est donc avantageux de pouvoir disposer d'un dioptre distinct pour chacun de ces deux sous-dispositifs afin de pouvoir adapter chacun de ces dioptres au type de source lumineuse et de faisceau lumineux émis par chacun des sous dispositifs.Preferably, the first sub-device and the second sub-device each comprise an output diopter configured to form a light beam. The use of two separate diopters allows greater modularity and reduces manufacturing constraints. Indeed, the two sub-devices emit light beams in different ways, it is therefore advantageous to be able to have a separate diopter for each of these two sub-devices in order to be able to adapt each of these diopters to the type of light source and of light beam emitted by each of the sub-devices.

Selon un mode de réalisation plus compact, le premier sous-dispositif et le deuxième sous-dispositif présente un dioptre de sortie commun.According to a more compact embodiment, the first sub-device and the second sub-device have a common output diopter.

Selon l'invention, le deuxième faisceau lumineux présente un taux de recouvrement du premier faisceau lumineux compris entre 25% et 80%, avantageusement entre 25 et 40% . Ce taux de recouvrement permet d'augmenter l'éclairement d'une même zone en cas de besoin.According to the invention, the second light beam has a coverage rate of the first light beam of between 25% and 80%, advantageously between 25 and 40%. This coverage rate makes it possible to increase the lighting in the same area if necessary.

Selon l'invention, le premier faisceau lumineux et le deuxième faisceau lumineux présente un décalage angulaire latéral compris entre 4 et 10° et de préférence entre 6 et 10°. Ce décalage permet une mobilité de chacun des deux faisceaux lumineux relativement l'un par rapport à l'autre.According to the invention, the first light beam and the second light beam have a lateral angular offset of between 4 and 10° and preferably between 6 and 10°. This shift allows a mobility of each of the two light beams relatively to each other.

De manière avantageuse, le deuxième faisceau lumineux recouvre en partie le premier faisceau lumineux afin de permettre une augmentation de l'éclairage d'une zone déterminée.Advantageously, the second light beam partly covers the first light beam in order to allow an increase in the lighting of a determined area.

De manière particulièrement avantageuse, la matrice de micro-miroirs est pilotée par une électronique de pilotage de sorte à modifier le sous-faisceau lumineux selon au moins un paramètre de fonctionnement. Cette électronique de pilotage permet de modifier les propriétés de réflexion de la matrice de micro-miroirs afin de les adapter aux besoins d'éclairement.In a particularly advantageous manner, the micro-mirror matrix is controlled by control electronics so as to modify the light sub-beam according to at least one operating parameter. This control electronics makes it possible to modify the reflection properties of the micro-mirror matrix in order to adapt them to lighting requirements.

De manière similaire, la deuxième matrice de micro-miroirs est pilotée par une électronique de pilotage de sorte à modifier le deuxième sous-faisceau lumineux selon au moins un paramètre de fonctionnement.Similarly, the second array of micro-mirrors is controlled by control electronics so as to modify the second light sub-beam according to at least one operating parameter.

Selon un mode de réalisation, une seule et unique électronique de pilotage permet de piloter les deux matrices de micro-miroirs, cela permet alors une économie de ressources matériel et une compacité améliorée.According to one embodiment, a single control electronics makes it possible to control the two micro-mirror matrices, which then allows a saving of hardware resources and improved compactness.

Préférentiellement, le au moins un premier sous-dispositif d'éclairage en bandes est piloté par une électronique de pilotage de sorte à modifier le premier faisceau lumineux selon au moins un paramètre de fonctionnement. De manière préférentielle, il s'agit de la même électronique de pilotage que celle des micro-miroirs.Preferably, the at least one first strip lighting sub-device is controlled by control electronics so as to modify the first light beam according to at least one operating parameter. Preferably, it is the same control electronics as that of the micro-mirrors.

Par exemple non limitatif, dans le cas où le premier sous-dispositif comprend une matrice d'éléments émetteurs de lumière, comme des diodes électroluminescentes (LEDs) par exemple, le pilotage du premier sous-dispositif peut correspondre à la mise en fonction ou non d'une partie au moins des éléments émetteurs de lumière de sorte à modifier le premier faisceau lumineux, et de l'adapter aux conditions extérieurs tel que les conditions météorologiques, ou les conditions de croisement ou de suivi par exemple.For non-limiting example, in the case where the first sub-device comprises a matrix of light emitting elements, such as light-emitting diodes (LEDs) for example, the control of the first sub-device can correspond to the activation or not of at least part of the light emitting elements so as to modify the first light beam, and to adapt it to external conditions such as weather conditions, or crossing or tracking conditions for example.

Ainsi, et de manière avantageuse, ledit au moins un paramètre de fonctionnement est au moins un paramètre pris parmi : détection de précipitations, détection de la luminosité de l'environnement de la route, détection de véhicule suivi, détection de véhicule croisé, vitesse du véhicule, direction d'avancement du véhicule, , courbure et/ou déclivité de la route, détection de panneaux, détection de personnes ou d'animaux sur le bas-coté de la route, assiette du véhicule. Ce paramètre de fonctionnement est un paramètre lié aux conditions de circulation et à la scène de route.Thus, and advantageously, said at least one operating parameter is at least one parameter taken from: precipitation detection, detection of the brightness of the road environment, detection of following vehicle, detection of crossed vehicle, speed of the vehicle, direction of movement of the vehicle, curvature and/or slope of the road, detection of signs, detection of people or animals on the side of the road, vehicle attitude. This operation parameter is a parameter related to traffic conditions and road scene.

Selon un mode de réalisation préférentiel, ledit au moins un paramètre de fonctionnement est au moins en partie reçu par l'électronique de pilotage par l'intermédiaire d'au moins un capteur compris par le véhicule et configuré pour mesurer le au moins un paramètre de fonctionnement. De manière préférentielle, le véhicule peut comprendre de nombreux capteurs permettant la détection de précipitations par exemple, mais aussi la mesure de la luminosité extérieure, la détection de la présence d'un véhicule en croisement ou en suivi, la vitesse du véhicule, la direction et l'orientation des roues. L'ensemble de ces données est collectée et analysée au niveau de l'électronique de pilotage afin de permettre une modification des faisceaux lumineux en accord avec les besoins en termes de sécurité mais également de confort de conduite.According to a preferred embodiment, said at least one operating parameter is at least partly received by the control electronics via at least one sensor included by the vehicle and configured to measure the at least one operating parameter. functioning. Preferably, the vehicle can include numerous sensors allowing the detection of precipitation for example, but also the measurement of external brightness, the detection of the presence of a vehicle crossing or following, the speed of the vehicle, the direction and the orientation of the wheels. All of this data is collected and analyzed at the level of the control electronics in order to allow modification of the light beams in accordance with the needs in terms of safety but also driving comfort.

De manière préférentielle, la présente invention comporte au moins deux modes de fonctionnement: un mode croisement et un mode route. Ces deux modes résument les différentes situations que le véhicule peut rencontrer sur la route.Preferably, the present invention comprises at least two operating modes: a crossing mode and a road mode. These two modes summarize the different situations that the vehicle may encounter on the road.

En effet, le mode croisement correspond aux situations de suivi de véhicule et de croisement de véhicule. Quant au mode route il correspond à une conduite sans interaction avec d'autres véhicule. Ce mode correspond donc à un éclairement optimum de la route afin de faciliter la conduite.Indeed, the crossing mode corresponds to vehicle following and vehicle crossing situations. As for road mode, it corresponds to driving without interaction with other vehicles. This mode therefore corresponds to optimum lighting of the road in order to facilitate driving.

Avantageusement, le mode croisement présente une configuration du deuxième sous-dispositif dans laquelle seulement une partie de la matrice de micro-miroirs est active en réflexion. Cette configuration permet d'adapter le sous-faisceau lumineux à la présence d'un véhicule, que cela soit en suivi dudit véhicule ou bien lors d'un croisement.Advantageously, the crossing mode presents a configuration of the second sub-device in which only part of the micro-mirror matrix is active in reflection. This configuration makes it possible to adapt the light sub-beam to the presence of a vehicle, whether following said vehicle or during a crossing.

De manière identique, il est possible de configurer la deuxième matrice de micro-miroirs pour que le mode croisement présente une configuration du deuxième sous-dispositif dans laquelle seulement une partie de la deuxième matrice de micro-miroirs est active en réflexion. De manière identique à ce qui vient d'être décrit, cela permet de n'éclairer qu'une partie de la zone d'éclairée lorsque l'ensemble des micro-miroirs est en position active en réflexion.In the same way, it is possible to configure the second array of micro-mirrors so that the crossover mode presents a configuration of the second sub-device in which only part of the second matrix of micro-mirrors is active in reflection. Identical to what has just been described, this makes it possible to illuminate only part of the illuminated zone when all of the micro-mirrors are in the active position in reflection.

De manière particulièrement avantageuse, le deuxième faisceau lumineux en mode croisement présente une coupure afin de réaliser au moins une fonction anti-éblouissement. Cette fonction peut par exemple être utilisée lors d'un croisement avec un autre véhicule. Dans cette situation, une partie de la matrice de micro-miroirs est en position passive en réflexion de sorte à réaliser un sous-faisceau lumineux présentant une coupure.Particularly advantageously, the second light beam in crossing mode has a cut-off in order to achieve at least one anti-glare function. This function can for example be used when crossing with another vehicle. In this situation, part of the micro-mirror matrix is in a passive position in reflection so as to produce a light sub-beam presenting a cutoff.

De manière très avantageuse et possible par la pixellisation du sous-faisceau lumineux, il est alors possible de former un faisceau lumineux hautement résolu présentant une coupure afin de continuer à éclairer une zone mais n'éblouissant pas un véhicule lors d'un croisement. Cette fonction est par exemple appliquée par l'électronique de pilotage lorsqu'au moins un capteur dédié à cette fonction détecte un véhicule en situation de croisement.Very advantageously and possible by the pixelation of the light sub-beam, it is then possible to form a highly resolved light beam having a cut in order to continue to illuminate an area but not dazzling a vehicle during a crossing. This function is for example applied by the control electronics when at least one sensor dedicated to this function detects a vehicle in a crossing situation.

De manière similaire, en situation de suivi de véhicule, il est possible par exemple d'éclairer le pourtour du véhicule suivi sans l'éclairer lui-même avec le deuxième faisceau lumineux afin de ne pas l'éblouir mais de conserver un faisceau lumineux hautement résolu autour dudit véhicule suivi.Similarly, in a vehicle tracking situation, it is possible for example to illuminate the perimeter of the vehicle being followed without illuminating it itself with the second light beam in order not to dazzle it but to maintain a highly visible light beam. resolved around said followed vehicle.

Selon un mode de réalisation, le mode route présente une configuration du deuxième sous-dispositif dans laquelle l'ensemble de la matrice de micro-miroirs est active en réflexion. Dans cette situation, le deuxième faisceau lumineux peut être utilisé afin d'accroître la visibilité fournie par le premier faisceau lumineux. Ainsi l'ensemble des micro-miroirs réfléchit le faisceau lumineux incident de sorte à former un sous-faisceau lumineux hautement résolu.According to one embodiment, the road mode presents a configuration of the second sub-device in which the entire array of micro-mirrors is active in reflection. In this situation, the second light beam can be used to increase the visibility provided by the first light beam. Thus all of the micro-mirrors reflect the incident light beam so as to form a highly resolved light sub-beam.

Avantageusement, le mode croisement présente une configuration du premier sous-dispositif d'éclairage à bande configuré pour ne pas émettre le premier faisceau lumineux. Cela permet de ne pas éblouir un véhicule en situation de croisement, lors de la détection d'un croisement, l'électronique de pilotage désactive l'émission du premier faisceau lumineux.Advantageously, the crossing mode presents a configuration of the first strip lighting sub-device configured not to emit the first light beam. This makes it possible to avoid dazzling a vehicle in a crossing situation; when a crossing is detected, the control electronics deactivate the emission of the first light beam.

Ainsi, selon un mode de réalisation, la configuration du premier sous-dispositif d'éclairage en bandes en mode croisement présente au moins une fonction anti-éblouissement.Thus, according to one embodiment, the configuration of the first strip lighting sub-device in crossing mode has at least one anti-glare function.

Avantageusement, la configuration du deuxième sous-dispositif en mode croisement présente au moins une fonction parmi l'anti-éblouissement (ADB pour Adaptive Driving Beam, ou faisceau matriciel) et un ensemble de fonctions d'éclairage adaptatif (fonction AFS), comme l'éclairage concentré autour de l'axe optique pour les grandes vitesses de circulation (fonction MotorWay), l'éclairage en virage (fonctionBL),, ou encore l'éclairage par temps de pluie (fonction AWL).Advantageously, the configuration of the second sub-device in crossing mode presents at least one function among anti-glare (ADB for Adaptive Driving Beam, or matrix beam) and a set of adaptive lighting functions (AFS function), such as lighting concentrated around the optical axis for high traffic speeds (MotorWay function), cornering lighting (BL function), or even lighting in rainy weather (AWL function).

Ces fonctions sont permises par le grand nombre de degrés de liberté rendu accessible par la présente invention.These functions are enabled by the large number of degrees of freedom made accessible by the present invention.

De manière préférentielle, un troisième faisceau lumineux est émis par un troisième sous-dispositif, ce troisième faisceau lumineux est configuré pour un éclairement descendant par rapport à l'horizon de sorte à éclairer la chaussée par exemple.Preferably, a third light beam is emitted by a third sub-device, this third light beam is configured for downward illumination relative to the horizon so as to illuminate the roadway for example.

D'autres caractéristiques et avantages de la présente invention seront mieux compris à l'aide de la description exemplaire et des dessins parmi lesquels :

  • la figure 1 représente une vue schématique de trois types de zones d'éclairage qu'un véhicule peut comprendre ;
  • la figure 2 illustre de manière schématique une vue des zones éclairées selon un mode de réalisation ne faisant pas partie de l'invention ;
  • la figure 3 illustre une vue schématique d'un système d'imagerie pixélisée et digitale de type matrice de micro-miroirs selon un mode de réalisation préférentiel de l'invention ;
  • la figure 4 illustre une zone lumineuse projetée par deux systèmes d'imagerie pixélisée et digitale, de type matrices à micro-miroirs, selon un mode de réalisation de l'invention ;
  • la figure 5 illustre une zone lumineuse projetée par un dispositif d'éclairage à bandes selon un mode de réalisation de l'invention ;
  • la figure 6 illustre trois zones lumineuses, dont deux en superposition partielle projetées par un dispositif d'éclairage à bandes et deux systèmes d'imagerie pixélisée et digitale de type micro-miroirs, selon un mode de réalisation de l'invention.
Other characteristics and advantages of the present invention will be better understood with the help of the exemplary description and the drawings including:
  • there figure 1 shows a schematic view of three types of lighting zones that a vehicle can include;
  • there figure 2 schematically illustrates a view of the illuminated areas according to an embodiment not forming part of the invention;
  • there Figure 3 illustrates a schematic view of a pixelated and digital imaging system of micro-mirror matrix type according to a preferred embodiment of the invention;
  • there figure 4 illustrates a light zone projected by two pixelated and digital imaging systems, of the micro-mirror matrix type, according to one embodiment of the invention;
  • there Figure 5 illustrates a light zone projected by a strip lighting device according to one embodiment of the invention;
  • there Figure 6 illustrates three light zones, two of which are partially superimposed projected by a strip lighting device and two imaging systems pixelated and digital micro-mirror type, according to one embodiment of the invention.

Dans la description qui suit, des numéros de référence similaires seront utilisés pour décrire des concepts similaires à travers des modes de réalisation différents de l'invention.In the following description, similar reference numerals will be used to describe similar concepts across different embodiments of the invention.

Sauf indication spécifique du contraire, des caractéristiques techniques décrites en détail pour un mode de réalisation donné peuvent être combinées aux caractéristiques techniques décrites dans le contexte d'autres modes de réalisation décrits à titre exemplaire et non limitatif.Unless specifically indicated otherwise, technical characteristics described in detail for a given embodiment may be combined with technical characteristics described in the context of other embodiments described by way of example and not limitation.

D'une manière générale, la présente invention peut utiliser des sources lumineuses du type diodes électroluminescentes encore communément appelées LEDs. Notamment, ces LEDs peuvent être dotées d'au moins une puce apte à émettre une lumière d'intensité avantageusement ajustable selon la fonction d'éclairage et/ou de signalisation à réaliser. Il peut y avoir plusieurs sources comme cela sera exposé plus en détail ci-après. Par ailleurs, le terme source lumineuse s'entend ici d'un ensemble d'au moins une source élémentaire telle une LED apte à produire un flux conduisant à générer en sortie du dispositif de l'invention au moins un faisceau lumineux de sortie remplissant au moins une fonction souhaitée. Des sources LED sont en particulier avantageuses pour l'éclairage en bandes. D'autres types de sources sont aussi envisageables dans l'invention, telle une ou plusieurs sources laser, notamment pour les dispositifs à micro-miroirs.Generally speaking, the present invention can use light sources of the light-emitting diode type, also commonly called LEDs. In particular, these LEDs can be equipped with at least one chip capable of emitting light of advantageously adjustable intensity according to the lighting and/or signaling function to be performed. There may be several sources as will be explained in more detail below. Furthermore, the term light source here means a set of at least one elementary source such as an LED capable of producing a flow leading to generating at the output of the device of the invention at least one output light beam filling at least least one desired function. LED sources are particularly advantageous for strip lighting. Other types of sources are also possible in the invention, such as one or more laser sources, in particular for micro-mirror devices.

Dans les caractéristiques exposées ci-après, les termes relatifs à la verticalité, l'horizontalité et à la transversalité, ou leurs équivalents, s'entendent par rapport à la position dans laquelle le système d'éclairage est destiné à être monté dans un véhicule. Les termes « vertical » et « horizontal » sont utilisés dans la présente description pour désigner des directions, suivant une orientation perpendiculaire au plan de l'horizon pour le terme « vertical », et suivant une orientation parallèle au plan de l'horizon pour le terme « horizontal ». Elles sont à considérer dans les conditions de fonctionnement du dispositif dans un véhicule. L'emploi de ces mots ne signifie pas que de légères variations autour des directions verticale et horizontale soient exclues de l'invention. Par exemple, une inclinaison relativement à ces directions de l'ordre de + ou - 10° est ici considérée comme une variation mineure autour des deux directions privilégiées.In the characteristics set out below, the terms relating to verticality, horizontality and transversality, or their equivalents, are understood in relation to the position in which the lighting system is intended to be mounted in a vehicle . The terms “vertical” and “horizontal” are used in this description to designate directions, following an orientation perpendicular to the plane of the horizon for the term “vertical”, and following an orientation parallel to the plane of the horizon for the term “horizontal”. They must be considered in the operating conditions of the device in a vehicle. The use of these words does not mean that slight variations around the vertical and horizontal directions are excluded from the invention. For example, an inclination relative to these directions of the order of + or - 10° is considered here as a minor variation around the two preferred directions.

Le terme « bas » ou partie basse s'entend généralement d'une partie d'un élément de l'invention située, suivant un plan vertical, en dessous de l'axe optique. Le terme « haut » ou partie haute s'entend d'une partie d'un élément de l'invention située, suivant un plan vertical, au-dessus de l'axe optique. Le terme « parallèle » ou la notion d'axes ou lignes confondus s'entend ici notamment avec les tolérances de fabrication ou de montage, des directions sensiblement parallèles ou des axes sensiblement confondus entrant dans ce cadre.The term “bottom” or lower part generally means a part of an element of the invention located, along a vertical plane, below the optical axis. The term “top” or upper part means a part of an element of the invention located, along a vertical plane, above the optical axis. The term "parallel" or the concept of coincident axes or lines is understood here in particular with the manufacturing or assembly tolerances, substantially parallel directions or substantially coincident axes falling within this framework.

Le terme « système d'imagerie pixélisée et digitale », « système d'imagerie à rayons pixélisés » ou leurs équivalents ont pour définition un système émetteur d'un faisceau lumineux, ledit faisceau lumineux étant formé d'une pluralité de sous faisceaux lumineux, chaque sous-faisceau lumineux pouvant être piloté indépendamment des autres sous-faisceaux lumineux. Ces systèmes peuvent être par exemple des matrices à micro-miroirs, notamment pilotables en rotation, ou encore des dispositifs à cristaux liquides. Chaque sous-faisceau pilotable indépendamment forme un rayon pixélisé. Une autre technologie de formation de rayons pixélisés est munie d'une source laser dont le rayon est renvoyé par un dispositif de balayage sur une surface disposée au foyer d'une optique de projection et composée d'une pluralité d'éléments de matériau luminophore, usuellement désignés sous l'appellation phosphore. Ces éléments luminophores réémettent de la lumière blanche qui est projetée par une lentille pour former un faisceau d'éclairage sur la route en avant du véhicule. Les segments de matériau luminophore sont disposés entre la source laser et la lentille de projection, au foyer de cette lentille.The term "pixelated and digital imaging system", "pixelated ray imaging system" or their equivalents have the definition of a system emitting a light beam, said light beam being formed of a plurality of light sub-beams, each sub-light beam can be controlled independently of the other sub-light beams. These systems can be for example micro-mirror matrices, in particular rotatable, or even liquid crystal devices. Each independently controllable sub-beam forms a pixelated ray. Another technology for forming pixelated rays is provided with a laser source whose ray is reflected by a scanning device onto a surface arranged at the focus of projection optics and composed of a plurality of elements of phosphor material, usually referred to as phosphorus. These phosphor elements re-emit white light which is projected by a lens to form a beam of lighting on the road in front of the vehicle. The segments of phosphor material are arranged between the laser source and the projection lens, at the focus of this lens.

Le terme « taux de recouvrement » ou ses équivalents ont pour définition la quantité de surface éclairée commune à deux faisceaux lumineux. Ce taux est égal à 100% dans le cas où la plus petite surface éclairée par l'un des faisceaux lumineux est totalement englobée dans la surface éclairée par l'autre faisceau lumineux.The term “coverage rate” or its equivalents are defined as the quantity of illuminated surface common to two light beams. This rate is equal to 100% in the case where the smallest surface illuminated by one of the light beams is completely included in the surface illuminated by the other light beam.

Dans le cadre de l'invention, on entend par faisceau de croisement un faisceau employé lors de la présence de véhicules croisés et/ou suivis et/ou d'autres éléments (individus, obstacles...) sur la chaussée ou à proximité. Ce faisceau présente une direction moyenne descendante. Il peut être éventuellement caractérisé par une absence de lumière au-dessus d'un plan incliné de 1% vers le bas du côté de la circulation dans l'autre sens, et d'un autre plan incliné de 15 degrés par rapport au précédent du côté de la circulation dans le même sens, ces deux plans définissant une coupure conforme à la réglementation européenne. Cette coupure supérieure descendante a pour but d'éviter d'éblouir les autres usagers présents dans la scène de route s'étendant devant le véhicule ou sur les bas-côtés de la route.In the context of the invention, the term passing beam is understood to mean a beam used when there are crossed and/or followed vehicles and/or other elements (individuals, obstacles, etc.) on the roadway or nearby. This beam has an average downward direction. It can possibly be characterized by a absence of light above a plane inclined 1% downwards on the side of traffic in the other direction, and another plane inclined 15 degrees compared to the previous one on the side of traffic in the same direction meaning, these two plans defining a cutoff in compliance with European regulations. This upper downward cutoff aims to avoid dazzling other users present in the road scene extending in front of the vehicle or on the sides of the road.

Le faisceau de croisement, ici appelé deuxième faisceau lumineux, autrefois issu d'un projecteur simple, a connu des évolutions, la fonction de croisement pouvant être couplée avec d'autres caractéristiques d'éclairage. On a ainsi récemment élaboré de nouvelles fonctions, désignées comme fonctions élaborées et regroupées sous le nom d'AFS (abréviation pour « Advanced Frontlighting System » en anglais), qui proposent notamment d'autres types de faisceaux. Il s'agit notamment de la fonction dite BL (Bending Light en anglais pour éclairage de virage), qui peut se décomposer en une fonction dite DBL (Dynamic Bending Light en anglais pour éclairage mobile de virage) et une fonction dite FBL (Fixed Bending Light en anglais pour éclairage fixe de virage). Ces fonctions d'éclairage de virage sont utilisées en cas de circulation en courbe, et elles sont réalisées au moyen de projecteurs qui émettent un faisceau lumineux dont l'orientation horizontale varie lorsque le véhicule se déplace sur une trajectoire incurvée, de façon à éclairer correctement les portions de route qui sont destinées à être abordées par le véhicule et qui se trouvent non pas dans l'axe du véhicule, mais dans la direction qu'il est sur le point d'emprunter, résultant de l'angle imprimé aux roues directrices du véhicule par son conducteur. Une autre fonction est dite Town Light en anglais, pour éclairage de ville. Cette fonction assure l'élargissement d'un faisceau de type feu de croisement tout en diminuant légèrement sa portée. La fonction dite « Motorway Light » en anglais pour éclairage d'autoroute, réalise quant à elle la fonction autoroute. Cette fonction assure une augmentation de la portée d'un feu de croisement en concentrant le flux lumineux du feu de croisement au niveau de l'axe optique du dispositif projecteur considéré. On connaît aussi la fonction dite « Overhead Light » en anglais pour feu de portique. Cette fonction assure une modification d'un faisceau de feu de croisement typique de telle sorte que des portiques de signalisation situés au-dessus de la route soient éclairés de façon satisfaisante au moyen des feux de croisement. Une autre variante de feu de croisement est la fonction dite AWL (Adverse Weather Light en anglais) pour feu de mauvais temps. Cette fonction assure une modification d'un faisceau de feu de croisement de telle sorte que le conducteur d'un véhicule circulant en sens inverse ne soit pas ébloui par le reflet de la lumière des projecteurs sur la route mouillée. De plus, lorsque l'éclairage de croisement est en fonction, l'assiette du véhicule peut subir des variations plus ou moins importantes, dues par exemple à son état de charge, son accélération ou sa décélération, qui provoquent une variation de l'inclinaison de la coupure supérieure du faisceau, ayant pour résultat soit d'éblouir les autres conducteurs si la coupure se trouve relevée, soit d'éclairer insuffisamment la route si la coupure se trouve abaissée. Il est alors connu d'utiliser un correcteur de portée, à commande manuelle ou automatique, pour corriger l'orientation des projecteurs de croisement. Avantageusement, la correction d'assiette sera réalisée par le deuxième sous-dispositif comportant une matrice de micro-miroirs.The low beam, here called the second light beam, formerly coming from a simple headlight, has undergone developments, the low beam function being able to be coupled with other lighting characteristics. We have recently developed new functions, designated as elaborate functions and grouped under the name AFS (abbreviation for “Advanced Frontlighting System” in English), which notably offer other types of beams. These include the so-called BL (Bending Light) function, which can be broken down into a so-called DBL (Dynamic Bending Light) function and a so-called FBL (Fixed Bending) function. Light in English for fixed corner lighting). These corner lighting functions are used when driving on curves, and they are carried out by means of headlamps which emit a light beam whose horizontal orientation varies when the vehicle moves on a curved path, so as to illuminate correctly the sections of road which are intended to be approached by the vehicle and which are not in the axis of the vehicle, but in the direction it is about to take, resulting from the angle imposed on the steering wheels of the vehicle by its driver. Another function is called Town Light in English, for city lighting. This function widens a low beam type beam while slightly reducing its range. The so-called “Motorway Light” function for motorway lighting, performs the motorway function. This function ensures an increase in the range of a low beam by concentrating the luminous flux of the low beam at the optical axis of the headlamp device in question. We also know the function called “Overhead Light” in English for gantry light. This function ensures a modification of a typical dipped headlight beam so that signal gantries located above the road are satisfactorily illuminated by means of the dipped headlights. Another variation of low beam is the so-called AWL (Adverse Weather Light) function for bad weather lights. This function ensures a modification of a low beam beam so that the driver of a vehicle traveling in the opposite direction is not dazzled by the reflection of the light from the spotlights on the wet road. In addition, when the low beam lighting is on, the attitude of the vehicle may undergo more or less significant variations, due for example to its state of load, its acceleration or deceleration, which cause a variation in inclination. of the upper cut-off of the beam, resulting either in dazzling other drivers if the cut-off is raised, or in insufficiently illuminating the road if the cut-off is lowered. It is then known to use a range corrector, manually or automatically controlled, to correct the orientation of the low beam headlights. Advantageously, the attitude correction will be carried out by the second sub-device comprising a matrix of micro-mirrors.

Le faisceau route de base est lui de préférence émis par un dispositif d'éclairage en bandes. Ce faisceau lumineux a pour fonction d'éclairer sur une large étendue la scène face au véhicule mais également sur une distance conséquente, typiquement environ 200 mètres. Ce faisceau lumineux, de par sa fonction d'éclairage, se situe principalement au-dessus de la ligne d'horizon. Il peut présenter un axe optique d'éclairement légèrement ascendant par exemple. Ce type de faisceau lumineux est de préférence émis par un dispositif d'éclairage en bandes avantageusement composé d'au moins une matrice d'éléments émetteurs de lumière comme des LEDs par exemple. Les bandes lumineuses ainsi générées par la matrice peuvent être éteintes ou bien allumées les unes indépendamment des autres. L'éclairage en bandes offre la possibilité de superposer deux bandes contiguës par exemple. Les sous-faisceaux lumineux composant chacun au moins une bande verticale sont de préférence parallèles entre eux, mais peuvent cependant présenter une zone de recouvrement les uns avec les autres. Cependant ce type d'éclairage, bien que puissant et de longue portée, ne dispose pas d'une haute résolution et d'une bonne précision de par sa conception même. Un des objectifs de la présente invention est de pallier en partie ce défaut.The basic high beam is preferably emitted by a strip lighting device. This light beam has the function of illuminating the scene in front of the vehicle over a large area but also over a significant distance, typically around 200 meters. This light beam, due to its lighting function, is mainly located above the horizon line. It may have a slightly ascending optical axis of illumination, for example. This type of light beam is preferably emitted by a strip lighting device advantageously composed of at least one matrix of light emitting elements such as LEDs for example. The light strips thus generated by the matrix can be turned off or turned on independently of each other. Strip lighting offers the possibility of superimposing two contiguous strips, for example. The light sub-beams each composing at least one vertical band are preferably parallel to each other, but may however have an overlapping zone with each other. However, this type of lighting, although powerful and long-range, does not have high resolution and good precision due to its very design. One of the objectives of the present invention is to partially overcome this defect.

Le dispositif peut aussi servir à former d'autres fonctions d'éclairage via ou en-dehors des dispositifs décrits en détail ci-après.The device may also be used to form other lighting functions via or apart from the devices described in detail below.

Nous allons maintenant présenter la présente invention selon un mode de réalisation particulier illustré à titre d'exemple non limitatif par les figures suivantes.We will now present the present invention according to a particular embodiment illustrated by way of non-limiting example by the following figures.

La figure 1 représente de manière schématique une vue de trois types de zones d'éclairage générées à partir du véhicule 400. La première zone illustrée par le premier faisceau lumineux 110 correspond à une zone s'étendant en majeure partie au-dessus de la ligne d'horizon 10. Le deuxième faisceau lumineux 210 correspond à une zone éclairée se trouvant en partie sous la ligne d'horizon 10. Enfin, le troisième faisceau lumineux 310 correspond à une zone éclairée se trouvant en majeure partie sous la ligne d'horizon et ayant pour fonction l'éclairement de la route.There figure 1 schematically represents a view of three types of lighting zones generated from the vehicle 400. The first zone illustrated by the first light beam 110 corresponds to an area extending mainly above the horizon line 10. The second light beam 210 corresponds to an illuminated area located partly below the horizon line 10. Finally, the third light beam 310 corresponds to an illuminated area located mainly below the horizon line and having the function of illuminating the road.

La figure 2, ne faisant pas partie de l'invention, représente les zones éclairées discutées précédemment de manière plus précise. La zone éclairée par le premier faisceau lumineux 110, correspondant au faisceau haut de route décrit précédemment, est générée par un éclairage en bandes. Cet éclairage en bandes est de manière préférentielle mobile latéralement de sorte à pouvoir se déplacer le long de la ligne d'horizon 10. Ce pilotage est avantageusement adapté au mouvement du véhicule par exemple afin d'assurer les différentes fonctions décrites précédemment, et en particulier la fonction DBL. Ce cas n'est pas limitatif. Comme indiqué précédemment, le premier faisceau lumineux 110 est composé de sous-faisceaux lumineux verticaux juxtaposés avec un éventuel recouvrement et formant des bandes d'éclairement.There figure 2 , not forming part of the invention, represents the illuminated areas discussed above in a more precise manner. The area illuminated by the first light beam 110, corresponding to the high road beam described above, is generated by strip lighting. This strip lighting is preferably movable laterally so as to be able to move along the horizon line 10. This control is advantageously adapted to the movement of the vehicle for example in order to ensure the various functions described above, and in particular the DBL function. This case is not limiting. As indicated previously, the first light beam 110 is composed of vertical light sub-beams juxtaposed with a possible overlap and forming lighting bands.

On retrouve le deuxième faisceau lumineux 210 comprenant selon l'invention deux sous-faisceaux lumineux 211 et 212. Ces deux sous faisceaux lumineux sont émis par plusieurs systèmes d'imagerie pixélisé et digitale. Un tel système est selon l'invention une matrice de micro-miroirs. Chaque micro-miroir dispose de manière préférentielle de deux positions de fonctionnement. Une position dite active correspond à une orientation des micro-miroirs permettant la réflexion vers un dioptre de sortie d'un faisceau lumineux incident. Une position dite passive correspond à une orientation des micro-miroirs permettant la réflexion vers une surface absorbante d'un faisceau lumineux incident, c'est à dire vers une direction différente de celle du dioptre de sortie.We find the second light beam 210 comprising, according to the invention, two light sub-beams 211 and 212. These two light sub-beams are emitted by several pixelated and digital imaging systems. Such a system is according to the invention a matrix of micro-mirrors. Each micro-mirror preferably has two operating positions. A so-called active position corresponds to an orientation of the micro-mirrors allowing the reflection towards an output diopter of an incident light beam. A so-called passive position corresponds to an orientation of the micro-mirrors allowing the reflection towards an absorbing surface of an incident light beam, that is to say towards a direction different from that of the output diopter.

Selon l'invention, les deux sous-faisceaux lumineux 211, 212 présentent un recouvrement l'un de l'autre afin d'accroître la luminosité d'une zone déterminée. Cette situation est représentée sur la figure 2. En effet d'une part les deux sous-faisceaux lumineux 211 et 212 recouvrent en partie le premier faisceau lumineux 110, mais ils présentent également un recouvrement partiel l'un de l'autre. Cette configuration de recouvrement ou de chevauchement des zones éclairées génère des zones d'intensités variables et progressives, qui permet alors de générer un éclairement de la scène comprenant un gradient de luminosité symétrique allant de la gauche vers la droite. Dans le cas illustré, une première zone correspond à l'éclairement du premier faisceau lumineux 110 seul, puis une seconde zone présente un éclairement plus intense correspondant à la superposition du premier faisceau lumineux 110 et d'un premier sous faisceau lumineux 211, et une troisième zone forme une zone d'intensité maximale comprenant la superposition du premier faisceau lumineux 110 et des deux sous-faisceaux lumineux 110, 211 et 212. Cette zone d'intensité maximale peut couvrir un espace autour de l'axe optique du dispositif. Puis, toujours de gauche à droite, une autre zone d'intensité identique à la seconde zone est réalisée par recouvrement du faisceau lumineux 110 et du deuxième sous-faisceau lumineux 212. Ce gradient se termine par une zone d'éclairement identique à la première zone, illuminée uniquement par le premier faisceau 110. Ce gradient d'éclairement permet d'accroître le confort visuel de l'automobiliste, mais également la sécurité de la conduite, car il est alors possible d'accentuer l'attention de l'automobiliste sur un point particulier de la scène se trouvant face au véhicule. Cette situation est rendue possible par l'utilisation de deux matrices à micro-miroirs qui permettent de réaliser ce gradient. Ceci est un exemple non limitatif des nombreux degrés de liberté compris par la présente invention.According to the invention, the two light sub-beams 211, 212 overlap one another in order to increase the brightness of a specific area. This situation is represented on the figure 2 . In fact, on the one hand, the two light sub-beams 211 and 212 partially cover the first light beam 110, but they also partially overlap each other. This configuration of covering or overlapping of the illuminated areas generates zones of variable and progressive intensities, which then makes it possible to generate lighting of the scene comprising a symmetrical brightness gradient ranging from the left to right. In the case illustrated, a first zone corresponds to the illumination of the first light beam 110 alone, then a second zone presents a more intense illumination corresponding to the superposition of the first light beam 110 and a first sub-light beam 211, and a third zone forms a zone of maximum intensity comprising the superposition of the first light beam 110 and the two light sub-beams 110, 211 and 212. This zone of maximum intensity can cover a space around the optical axis of the device. Then, still from left to right, another zone of intensity identical to the second zone is produced by covering the light beam 110 and the second light sub-beam 212. This gradient ends with an illumination zone identical to the first zone, illuminated only by the first beam 110. This gradient of illumination makes it possible to increase the visual comfort of the motorist, but also the safety of driving, because it is then possible to accentuate the attention of the motorist on a particular point of the scene facing the vehicle. This situation is made possible by the use of two micro-mirror matrices which make it possible to achieve this gradient. This is a non-limiting example of the numerous degrees of freedom included by the present invention.

Le pilotage des matrices de micro-miroirs est effectué par une électronique de pilotage. Ce pilotage comprend à la fois le pilotage des orientations des micro-miroirs de chaque matrice de micro-miroirs, mais également le taux de recouvrement des sous faisceaux lumineux. Le pilotage des micro-miroirs permet donc de modifier la pixellisation des sous faisceaux lumineux. Il est alors possible de former un sous-faisceau lumineux présentant une coupure par exemple. Il peut s'agir d'un coude au niveau de la ligne d'horizon 10, lors d'une fonction de croisement.The control of the micro-mirror matrices is carried out by control electronics. This control includes both the control of the orientations of the micro-mirrors of each matrix of micro-mirrors, but also the coverage rate of the sub-light beams. Controlling the micro-mirrors therefore makes it possible to modify the pixelation of the light sub-beams. It is then possible to form a light sub-beam presenting a cut, for example. This may be an elbow at the level of horizon line 10, during a crossing function.

Enfin le dernier faisceau lumineux 310 assure un éclairement de la route, et plus précisément de la chaussée. Il est de préférence descendant et/ou éclaire sous la ligne d'horizon 10. Dans la figure 2, c'est ce dernier faisceau lumineux qui présente la coupure au niveau de la ligne d'horizon 10, proche du point d'intersection 30 entre la ligne d'horizon et l'axe vertical 20. Ce point d'intersection 30 correspondant préférentiellement, mais de manière non limitative, à l'axe optique du dispositif d'éclairage. Selon un autre mode de réalisation, ce point d'intersection correspond à l'axe optique de l'automobiliste. Le dernier faisceau lumineux 310 est préférentiellement émis par un ou plusieurs projecteurs dont la ou les sources lumineuses sont avantageusement des LEDs.Finally, the last light beam 310 provides illumination of the road, and more precisely of the roadway. It is preferably descending and/or illuminates below the horizon line 10. In the figure 2 , it is this last light beam which presents the cut at the level of the horizon line 10, close to the point of intersection 30 between the horizon line and the vertical axis 20. This intersection point 30 preferably corresponding , but not limited to, the optical axis of the lighting device. According to another embodiment, this intersection point corresponds to the optical axis of the motorist. The last light beam 310 is preferably emitted by one or more projectors whose light source(s) are advantageously LEDs.

La figure 3 illustre un exemple non limitatif de système d'imagerie pixélisée et digitale 200 appelé en termes anglo-saxon « Digital Micromirror Device » (DMD), c'est-à-dire un dispositif à micro-miroirs, également appelé une matrice à micro-miroirs 203.There Figure 3 illustrates a non-limiting example of a pixelated and digital imaging system 200 called in English terms “Digital Micromirror Device” (DMD), that is to say a micro-mirror device, also called a micro-matrix. mirrors 203.

Ce système comprend une source lumineuse 201, pouvant être par exemple des LEDs ou bien des diodes lasers, ou toute sorte de sources lumineuses. Cette source lumineuse 201 émet un faisceau lumineux avantageusement en direction d'un réflecteur 202. Ce réflecteur 202 est de préférence configuré pour concentrer le flux de lumière incident sur une surface comportant la matrice de micro-miroirs 203.This system includes a light source 201, which can be for example LEDs or laser diodes, or any kind of light sources. This light source 201 emits a light beam advantageously in the direction of a reflector 202. This reflector 202 is preferably configured to concentrate the incident light flux on a surface comprising the micro-mirror matrix 203.

De manière avantageuse, le réflecteur 202 est configuré pour que l'ensemble des micro-miroirs soit éclairé par le faisceau lumineux réfléchi par le réflecteur 202. Le réflecteur 202 peut avoir, suivant au moins un plan de section, un profil pseudo elliptique ou pseudo parabolique.Advantageously, the reflector 202 is configured so that all of the micro-mirrors are illuminated by the light beam reflected by the reflector 202. The reflector 202 can have, along at least one section plane, a pseudo-elliptical or pseudo profile. parabolic.

Une fois réfléchi par une partie au moins des micro-miroirs, le faisceau lumineux passe au travers d'un dioptre 204. De manière avantageuse, ce dioptre 204 peut être une lentille convergente par exemple.Once reflected by at least part of the micro-mirrors, the light beam passes through a diopter 204. Advantageously, this diopter 204 can be a converging lens for example.

Comme indiqué, après réflexion du faisceau lumineux sur le réflecteur 202, celui-ci vient se concentrer sur la matrice de micro-miroirs 203. De manière préférentielle, les micro-miroirs disposent chacun de deux positions de fonctionnement, une position dite active dans laquelle ils réfléchissent le faisceau lumineux incident en direction du dioptre 204, et une position dite passive dans laquelle ils réfléchissent le faisceau lumineux incident en direction d'un élément absorbeur de rayonnement lumineux non représenté dans la figure 3.As indicated, after reflection of the light beam on the reflector 202, it focuses on the matrix of micro-mirrors 203. Preferably, the micro-mirrors each have two operating positions, a so-called active position in which they reflect the incident light beam in the direction of the diopter 204, and a so-called passive position in which they reflect the incident light beam in the direction of a light radiation absorbing element not shown in the Figure 3 .

Ce type de dispositif permet de disposer en sortie du dioptre 204 d'un faisceau lumineux hautement résolu pixélisé et digitalisé : chaque pixel ou rayons pixélisé composant ce faisceau correspond à un micro-miroir et il est possible d'activer ou non ces micro-pixels en simplement pilotant les micro-miroirs. Cette particularité permet alors de dessiner au besoin la forme du faisceau lumineux en sortie du dioptre 204 selon les besoins de l'invention.This type of device makes it possible to have at the output of the diopter 204 a highly resolved pixelated and digitalized light beam: each pixel or pixelated rays composing this beam corresponds to a micro-mirror and it is possible to activate or not these micro-pixels by simply controlling the micro-mirrors. This particularity then makes it possible to draw, if necessary, the shape of the light beam leaving the diopter 204 according to the needs of the invention.

Par exemple, il est possible de n'activer qu'une partie des micro-miroirs 203 afin de former une coupure au niveau du faisceau lumineux en sortie du dioptre 204. Cette coupure permet entre autre la réalisation des fonctions présentées précédemment.For example, it is possible to activate only part of the micro-mirrors 203 in order to form a cutoff in the light beam output from the diopter 204. This cutoff allows, among other things, the realization of the functions presented previously.

La figure 4 illustre une zone éclairée par le sous-faisceau lumineux 211 émis par le deuxième sous-dispositif, c'est à dire par l'intermédiaire d'une matrice de micro-miroirs 203. De manière avantageuse, le sous-faisceau lumineux 211 présente une largeur angulaire d'au moins 10° et de préférence d'au moins 20°, et une hauteur angulaire d'au moins 5° et de préférence d'au moins 9°].Ce sous-faisceau lumineux 211 est formé par une pluralité de faisceaux lumineux tous réfléchis par les micro-miroirs en position active de la matrice de micro-miroirs 203. Comme précédemment indiqué, un ou plusieurs autres sous-faisceaux 212 peuvent être formés. Les exemples illustrés représentent des cas où les sous-faisceaux 211, 212 ont une même forme et de dimensions identiques mais ce cas n'est pas limitatif.There figure 4 illustrates an area illuminated by the light sub-beam 211 emitted by the second sub-device, that is to say via a matrix of micro-mirrors 203. Advantageously, the light sub-beam 211 presents a angular width of at least 10° and preferably at least 20°, and an angular height of at least 5° and preferably at least 9°]. This light sub-beam 211 is formed by a plurality of light beams all reflected by the micro-mirrors in the active position of the micro-mirror matrix 203. As previously indicated, one or more other sub-beams 212 can be formed. The examples illustrated represent cases where the sub-bundles 211, 212 have the same shape and identical dimensions but this case is not limiting.

La figure 5 illustre une zone éclairée par le premier faisceau lumineux 110 émis par le premier sous-dispositif d'éclairage en bandes. De manière avantageuse, le faisceau lumineux 110 présente une largeur angulaire d'au moins 30° et de préférence d'au moins 40°, et une hauteur angulaire comprise d'au moins 5° et de préférence d'au moins 9°. Ce type de faisceau à bandes peut être généré par une matrice d'éléments émetteurs de lumière comme des LEDs par exemple.There Figure 5 illustrates an area illuminated by the first light beam 110 emitted by the first strip lighting sub-device. Advantageously, the light beam 110 has an angular width of at least 30° and preferably at least 40°, and an angular height of at least 5° and preferably at least 9°. This type of strip beam can be generated by a matrix of light emitting elements such as LEDs for example.

La figure 6 illustre une situation impliquant la projection combinée du premier faisceau lumineux 110 et des deux sous-faisceaux lumineux 211 et 212. Sur cette figure, le dernier faisceau lumineux 310 n'est pas représenté. On y remarque que les sous-faisceaux lumineux 211 et 212 présentent un recouvrement entre eux mais également en partie avec le faisceau lumineux 110. Le sous-faisceau 212 se trouve latéralement décalé sur la droite par rapport au faisceau lumineux 211 de sorte que l'ensemble du faisceau lumineux 212 n'est pas totalement en superposition avec le premier faisceau lumineux 110. De même, le premier faisceau lumineux 110 est lui décalé latéralement vers la gauche. Cette figure diffère donc de la figure 2 afin d'illustrer la possibilité de disposer de décalages latéraux entre les différents faisceaux lumineux. On retrouve la génération d'un gradient d'intensité permettant la mise en avant d'une zone déterminée de la scène face au véhicule, mais également l'amélioration du confort visuel. Il est à noter que pour une augmentation de l'éclairement d'une zone précise, l'Homme du métier s'orienterait naturellement vers l'utilisation d'une matrice de micro-miroirs disposant d'une source lumineuse de plus forte puissance. Cependant, bien que cette solution permette un gain en éclairement, elle ne permet pas la réalisation d'un gradient par exemple. La combinaison d'un éclairage à bande et d'un éclairage pixellisé et digitalisé, et plus encore l'utilisation de deux matrices de micro-miroirs pour réaliser cet éclairage pixellisé et digitalisé, confère à la présente invention des possibilités supérieures à une simple augmentation d'éclairement.There Figure 6 illustrates a situation involving the combined projection of the first light beam 110 and the two light sub-beams 211 and 212. In this figure, the last light beam 310 is not shown. It can be seen that the light sub-beams 211 and 212 have an overlap between them but also partly with the light beam 110. The sub-beam 212 is laterally offset to the right with respect to the light beam 211 so that the The entire light beam 212 is not completely superposed with the first light beam 110. Likewise, the first light beam 110 is offset laterally to the left. This figure therefore differs from the figure 2 in order to illustrate the possibility of having lateral offsets between the different light beams. We find the generation of an intensity gradient allowing the highlighting of a specific area of the scene facing the vehicle, but also the improvement of visual comfort. It should be noted that for an increase in the lighting of a specific area, those skilled in the art would naturally move towards the use of a matrix of micro-mirrors with a higher power light source. However, although this solution allows a gain in illumination, it does not allow the creation of a gradient for example. The combination of strip lighting and pixelated and digitalized lighting, and even more so the use of two micro-mirror matrices to produce this pixelated and digitalized lighting, gives the present invention greater possibilities than a simple increase lighting.

De manière avantageuse mais non limitative, le gradient d'éclairement est centré selon l'axe optique de l'automobiliste, c'est-à-dire face à lui. Toutefois selon certains modes de réalisation, le gradient peut être centré selon l'axe optique d'une matrice de micro-miroirs.Advantageously but not limitingly, the lighting gradient is centered along the optical axis of the motorist, that is to say facing him. However, according to certain embodiments, the gradient can be centered along the optical axis of a micro-mirror matrix.

La présente invention, comme illustrée sur cette figure, offre de nombreux degrés de liberté quant aux possibles combinaisons de faisceaux lumineux. En effet, la possibilité de disposer d'un faisceau lumineux d'éclairage en bandes couplé à un système d'imagerie pixélisée et digitale de type matrice de micro-miroirs permet de de disposer d'un éclairage hautement résolu et de rendre intelligent l'éclairage d'un véhicule afin que celui-ci s'adapte aux besoins de l'utilisateur mais également à la route et aux situations qu'il est possible de rencontrer.The present invention, as illustrated in this figure, offers numerous degrees of freedom regarding the possible combinations of light beams. Indeed, the possibility of having a light beam of strip lighting coupled with a pixelated and digital imaging system of the micro-mirror matrix type makes it possible to have highly resolved lighting and to make the lighting intelligent. lighting of a vehicle so that it adapts to the needs of the user but also to the road and the situations that may be encountered.

Selon un mode de réalisation, en mode route, c'est l'ensemble des faisceaux et sous-faisceaux lumineux 110, 211, 212 et 310 qui sont émis et qui éclairent la scène faisant face au véhicule. Dans cette configuration l'éclairage est maximum et assure une visibilité optimale. De plus, dans cette situation, l'utilisation de deux matrices à micro-miroirs permet de disposer d'un éclairage adaptatif performant de la scène. En effet, il est possible alors de générer des gradients d'éclairement pour le confort visuel, mais également la mise en avant d'éléments d'intérêt se trouvant face au véhicule tel que des obstacles ou des panneaux d'indications. La pixellisation des sous-faisceaux lumineux 211 et 212 permet également de définir au besoin des formes afin d'accentuer certains éléments de la scène.According to one embodiment, in road mode, all of the light beams and sub-beams 110, 211, 212 and 310 are emitted and which illuminate the scene facing the vehicle. In this configuration, lighting is maximum and ensures optimal visibility. Furthermore, in this situation, the use of two micro-mirror matrices provides efficient adaptive lighting of the scene. Indeed, it is then possible to generate lighting gradients for visual comfort, but also to highlight elements of interest facing the vehicle such as obstacles or indication signs. The pixelation of the light sub-beams 211 and 212 also makes it possible to define shapes if necessary in order to accentuate certain elements of the scene.

Selon un mode de réalisation, l'invention a pour objet un véhicule équipé de deux dispositifs selon l'invention, un par projecteur, respectivement montés coté droit et coté gauche à l'avant du véhicule.According to one embodiment, the subject of the invention is a vehicle equipped with two devices according to the invention, one per projector, respectively mounted on the right side and the left side at the front of the vehicle.

Dans ce mode de réalisation, le deuxième faisceau s'étend au minimum à 4°, de préférence à 6° coté intérieur du véhicule, c'est- à dire du coté latéral opposé du véhicule duquel le dispositif est monté, tandis que le premier faisceau s'étend au minimum à 6°, de préférence à 12° coté intérieur véhicule.In this embodiment, the second beam extends at least 4°, preferably 6° on the interior side of the vehicle, that is to say on the opposite side of the vehicle from which the device is mounted, while the first The beam extends at least 6°, preferably 12° on the vehicle interior side.

L'invention n'est pas limitée aux modes de réalisation décrits.The invention is not limited to the embodiments described.

Claims (15)

  1. Motor-vehicle lighting device comprising at least a first lighting sub-device configured to generate a first light beam (110), and a second sub-device (200) configured to generate a second light beam (210), said second sub-device comprising a digital micro-mirror device (203) configured to form a light sub-beam (211) taking the form of pixelated rays and forming at least some of said second light beam (210), the second light beam (210) having a degree of overlap with the first light beam (110) comprised between 25% and 80%, the second sub-device (200) comprising at least a second digital micro-mirror device configured to form a second light sub-beam (212) taking the form of pixelated rays and forming at least some of said second light beam (210), the second light sub-beam (212) partially overlapping the light sub-beam (211), characterized in that the first lighting sub-device is a stripwise lighting sub-device and in that the stripwise first light beam (110) and the second light beam (210) have a lateral angular offset comprised between 4º and 10º.
  2. Device according to Claim 1, wherein the light sub-beam (211) and the second light sub-beam (212) have a degree of overlap comprised between 5 and 100%.
  3. Device according to Claim 1, wherein the second light sub-beam (212) completely overlaps with the light sub-beam (211).
  4. Device according to any one of the preceding claims, wherein the first sub-device and the second sub-device (200) each comprise an exit dioptric interface.
  5. Device according to any one of Claims 1 to 4, wherein the first sub-device and the second sub-device (200) have a common exit dioptric interface.
  6. Device according to any one of the preceding claims, wherein the digital micro-mirror device (203) is driven by drive electronics so as to modify the light sub-beam (211) depending on at least one operating parameter.
  7. Device according to any one of the preceding claims, wherein the stripwise first lighting sub-device is driven by drive electronics so as to modify the first light beam (110) depending on at least one operating parameter.
  8. Device according to one of the two preceding claims, wherein the at least one operating parameter is at least one parameter selected from: detection of precipitation, detection of the light level in the road environment, detection of a followed vehicle, detection of an oncoming vehicle, speed of the vehicle, direction of advance of the vehicle, detection of signs, detection of people or animals at the side of the road, pitch angle of the vehicle, road curvature and/or incline.
  9. Device according to any one of the preceding claims, comprising at least two operating modes consisting in a low-beam mode and a high-beam mode.
  10. Device according to Claim 9, wherein the low-beam mode has a configuration of the second sub-device (200) in which only one portion of the digital micro-mirror device (203) is active in reflection.
  11. Device according to either one of Claims 9 and 10, wherein the second light beam (210) in low-beam mode contains a cutoff.
  12. Device according to any one of Claims 9 to 11, wherein the low-beam mode has a configuration of the stripwise first lighting sub-device configured to not emit the first light beam (110).
  13. Device according to any one of Claims 9 to 12, wherein the high-beam mode has a configuration of the stripwise first lighting sub-device configured to emit the first light beam (110).
  14. Device according to any one of Claims 9 to 13, wherein the high-beam mode has a configuration of the second sub-device (200) in which the entirety of the digital micro-mirror device (203) is active in reflection.
  15. Vehicle (400) equipped with at least one lighting device according to any one of Claims 1 to 14.
EP16769933.9A 2015-09-15 2016-09-15 Lighting device for motor vehicles Active EP3350507B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1558636A FR3040936B1 (en) 2015-09-15 2015-09-15 LIGHTING DEVICE FOR MOTOR VEHICLES
PCT/EP2016/071821 WO2017046243A1 (en) 2015-09-15 2016-09-15 Lighting device for motor vehicles

Publications (2)

Publication Number Publication Date
EP3350507A1 EP3350507A1 (en) 2018-07-25
EP3350507B1 true EP3350507B1 (en) 2023-09-13

Family

ID=54848709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16769933.9A Active EP3350507B1 (en) 2015-09-15 2016-09-15 Lighting device for motor vehicles

Country Status (3)

Country Link
EP (1) EP3350507B1 (en)
FR (1) FR3040936B1 (en)
WO (1) WO2017046243A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3100867A1 (en) * 2019-09-17 2021-03-19 Psa Automobiles Sa Vehicle headlight
FR3100866A1 (en) * 2019-09-17 2021-03-19 Psa Automobiles Sa Vehicle headlight
DE102020210548A1 (en) * 2020-08-20 2022-02-24 Volkswagen Aktiengesellschaft Vehicle headlights with compensation for inhomogeneities in the light distribution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013003050T5 (en) * 2012-06-29 2015-03-05 Koito Manufacturing Co., Ltd. Vehicle lamp and method for controlling the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10344174A1 (en) * 2003-09-22 2005-04-28 Hella Kgaa Hueck & Co Light beam deflection and scattering system for road vehicle headlight consists of 45 degree mirror assembly carrying large number of micro-mirrors each at slightly different angle to each other
DE102005041234A1 (en) 2005-08-31 2007-03-01 Hella Kgaa Hueck & Co. Headlight for vehicle, has optical units with characteristics in front of groups of sources in such a manner that different large light spots can be generated in traffic space by alternative switching on and off and/or dimming of sources
JP4613970B2 (en) * 2008-03-12 2011-01-19 トヨタ自動車株式会社 Vehicle lighting device
JP6174337B2 (en) * 2013-02-27 2017-08-02 株式会社小糸製作所 Vehicle lighting
WO2015033900A1 (en) * 2013-09-03 2015-03-12 株式会社小糸製作所 Vehicular lighting system
DE102014225246A1 (en) * 2014-01-07 2015-07-09 Volkswagen Aktiengesellschaft Lighting device for a motor vehicle and method for controlling a lighting device according to the invention and a motor vehicle with a lighting device according to the invention
JP6270033B2 (en) * 2014-02-17 2018-01-31 スタンレー電気株式会社 Vehicle lighting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013003050T5 (en) * 2012-06-29 2015-03-05 Koito Manufacturing Co., Ltd. Vehicle lamp and method for controlling the same

Also Published As

Publication number Publication date
FR3040936B1 (en) 2018-08-24
WO2017046243A1 (en) 2017-03-23
EP3350507A1 (en) 2018-07-25
FR3040936A1 (en) 2017-03-17

Similar Documents

Publication Publication Date Title
EP2690352B1 (en) Adaptive lighting system for an automobile
EP3350019A1 (en) Lighting system for motor vehicles
EP2060441B1 (en) Method for automatically adjusting the light beam of a headlight device to road traffic
EP3521691B1 (en) Light module for a motor vehicle, and lighting and/or signalling device comprising such a module
EP3301348A1 (en) Lighting device in strips for motor vehicle headlight
EP1923262A1 (en) Method for automatically adjusting the light beam of a headlight device
EP3350507B1 (en) Lighting device for motor vehicles
FR2963589A1 (en) LIGHTING SYSTEM FOR VEHICLE
EP2068071A1 (en) Method for automatically adjusting the light beam of a headlight device to driving conditions, and associated headlight
WO2015014793A1 (en) Projector and lighting system, in particular for a motor vehicle
EP3531010B1 (en) Lighting device for a motor vehicle, and lighting and/or signalling unit comprising such a device
FR3043168A1 (en) DEVICE FOR PROJECTING THE LIGHT BEAM OF A MOTOR VEHICLE CONFIGURED TO PROJECT A PIXELIZED IMAGE
EP3453946A1 (en) Light module for a motor vehicle, and lighting and/or signalling device comprising such a module
FR2916036A1 (en) VEHICLE PROJECTOR
FR3042844A1 (en) LIGHTING SYSTEM FOR MOTOR VEHICLES
EP1870283B1 (en) Triple-function headlight unit for vehicle
EP3717828B1 (en) Luminous module for motor vehicle, and lighting and/or signalling device provided with such a module
EP4077046A1 (en) Method for controlling a motor vehicle lighting system
EP1241050B1 (en) Arrangement of a lighting device in a vehicle
FR3019266A1 (en) LIGHTING SYSTEM FOR VEHICLE WITH AUTOMATED ADJUSTMENT
WO2023031344A1 (en) Lighting device for a motor vehicle
WO2022157339A1 (en) Motor vehicle illumination system provided with a lighting module able to emit a pixellated light beam
WO2021053281A1 (en) Vehicle headlamp
FR3100864A1 (en) Vehicle headlight
FR2502293A1 (en) Anti-dazzle vehicle headlamp - has two part parabolic reflector directing large component of beam below horizontal axis

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/12 20060101AFI20170403BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210319

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602016082756

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008120000

Ipc: F21S0041151000

Ref legal event code: R079

Ipc: F21S0041151000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/675 20180101ALI20230328BHEP

Ipc: F21S 41/151 20180101AFI20230328BHEP

INTG Intention to grant announced

Effective date: 20230421

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016082756

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230929

Year of fee payment: 8

Ref country code: DE

Payment date: 20230911

Year of fee payment: 8

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231213

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1611628

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240113