EP3339617B1 - Zylindergehäuse, verfahren zur herstellung eines zylindergehäuses und giesskern - Google Patents

Zylindergehäuse, verfahren zur herstellung eines zylindergehäuses und giesskern Download PDF

Info

Publication number
EP3339617B1
EP3339617B1 EP17206712.6A EP17206712A EP3339617B1 EP 3339617 B1 EP3339617 B1 EP 3339617B1 EP 17206712 A EP17206712 A EP 17206712A EP 3339617 B1 EP3339617 B1 EP 3339617B1
Authority
EP
European Patent Office
Prior art keywords
cooling
cylinder housing
cylinder
coolant
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17206712.6A
Other languages
English (en)
French (fr)
Other versions
EP3339617A1 (de
Inventor
Paulo Urzua Torres
Martin Bier
Michael Henn
Madlen Rudloff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP3339617A1 publication Critical patent/EP3339617A1/de
Application granted granted Critical
Publication of EP3339617B1 publication Critical patent/EP3339617B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/14Cylinders with means for directing, guiding or distributing liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/021Cooling cylinders

Definitions

  • the invention relates to a cylinder housing for a reciprocating piston device and to a method for producing such a cylinder housing.
  • the invention also relates to a reciprocating piston device with such a cylinder housing and an internal combustion engine with such a reciprocating piston device.
  • the invention also relates to a casting core for use in the method for producing such a cylinder housing.
  • Internal combustion engines are mostly cooled by means of a cooling liquid which, conveyed by at least one coolant pump, circulates in a cooling system of the internal combustion engine that integrates the cooling jacket.
  • the circulating coolant can dissipate thermal energy from the internal combustion engine to at least one ambient heat exchanger, in which the thermal energy is then given off to the ambient air, for example.
  • a coolant inlet is integrated in the area of top dead center, in which the cyclical to-and-fro movement of the piston guided in the corresponding cylinder is reversed and a fuel-fresh gas mixture is burned in the vicinity Cylinder is initiated, while an integration of a coolant outlet is provided near the bottom dead center of the piston movement.
  • the local cooling capacity requirement which varies along the longitudinal extension of the cylinder or cylinders, cannot be optimally met, because if the cooling system, including the cooling jacket, is adequately dimensioned, the cooling capacity requirement in the area of the top dead center of the piston movement, which occurs in this area because the primary combustion processes are highest there, "overcooling", ie excessive cooling, can occur in the other areas.
  • overcooling ie excessive cooling
  • too low a temperature of a cylinder wall often leads to a relatively high viscosity of a lubricant that keeps the friction of the relative movement between the cylinder wall and the associated piston low and thus to comparatively high friction losses and relatively high wear during operation of the internal combustion engine.
  • cylinders of an internal combustion engine can each be delimited by a so-called cylinder liner, which in turn is each received in an associated receiving opening of a cylinder housing.
  • cylinder liners can be designed as so-called "wet" cylinder liners, the outer walls of which with the walls of the associated receiving openings each delimit an annular gap which serves as a cooling jacket. Wet liners of this type have so far mainly been used in truck engines and large engines.
  • Cylinder liners in which a plurality of self-contained or spiral-shaped encircling recesses are integrated, which are provided as cooling channels of an internal combustion engine comprising the cylinder liners, are from the DE 102 25 062 A1 , of the U.S. 5,211,137 , of the U.S. 5,207,189 , of the U.S. 5,199,390 , of the U.S. 3,086,505 , of the JP H05-18319 A , of the U.S. 2,464,462 , of the EP 0 488 810 A1 and the U.S. 2,959,163 A known.
  • the US 2005/0274333 A1 discloses a cylinder liner for an internal combustion engine with integrated cooling ducts which run parallel to the longitudinal axis of the cylinder liner.
  • the EP 0 952 325 A2 discloses an internal combustion engine having a crankcase with cylinders formed by cylinder liners. Furthermore, a "cooling jacket" which surrounds the cylinder liners, represents a separate component and accommodated in the crankcase is provided. In the inner sides of the cooling jacket, partially circumferential grooves are formed which, in conjunction with the outer sides of the cylinder liners, each form a cooling channel for the cylinder.
  • the cooling channels which are separated from one another by a web formed by the adjacent cylinder liners, can have a spiral or meandering course.
  • the US 2010/0300394 A1 describes a cylinder housing with a plurality of cylinders, each of which is assigned a cooling jacket in the form of a single, spiral-shaped cooling channel.
  • a series connection of the individual cooling jackets is provided in such a way that an outlet of the cooling channel of a first cooling jacket merges into an inlet of the cooling channel of an adjacent, second cooling jacket.
  • the invention was based on the object of specifying a cylinder housing integrating cooling channels for a reciprocating piston device and in particular for an internal combustion engine, an advantageous cooling effect being achieved for the cylinder housing with the most compact dimensions possible.
  • a method for producing a cylinder housing according to the invention is the subject matter of claim 8 and a casting core for use in such a method is the subject matter of claim 10.
  • Advantageous embodiments of the cylinder housing according to the invention and the casting core according to the invention as well as preferred embodiments of the method according to the invention are the subjects of the further claims and / or emerge from the following description of the invention.
  • a preferably one-piece cylinder housing for a reciprocating piston device and in particular for a (reciprocating piston) internal combustion engine which comprises at least two cylinders, each of which is provided for receiving a piston of the reciprocating piston device.
  • the cylinder housing also has an integral cooling jacket for each of the cylinders (ie inside the cylinder housing and thus in particular not formed by cylinder liners), which surrounds the cylinder circumferentially in at least one longitudinally axial section, the cooling jackets each being divided into a plurality of closed circumferential cooling channels are divided and wherein a coolant inlet opens into at least one of the cooling jackets and a coolant outlet opens into at least one of the cooling jackets.
  • the cooling channels those that are assigned to different cylinders merge into one another between the cylinders.
  • a coolant inlet and a coolant outlet open into each of the cooling jackets, whereby an advantageous flow through for the individual cooling jackets and thus an advantageous cooling effect for the cylinder housing can be achieved.
  • the coolant inlet and the coolant outlet of the individual cooling jackets are arranged offset in the circumferential direction of the cylinder. Such an offset should at least affect the centers of the mouth cross-sections of the coolant inlets and the Relate coolant outlets. It can preferably be provided that the offset is 180 °. In this way, a flow of the same type as possible for the two sections of the individual cooling channels separated by the coolant inlets and the coolant outlets can be realized.
  • the coolant inlet and the coolant outlet are arranged at the same height in relation to the longitudinal direction of the associated cylinder.
  • the "same height" should relate at least to the mouth cross-sections as a whole and preferably to the centers of the mouth cross-sections.
  • a reciprocating piston device which can in particular be designed in the form of a (reciprocating piston) internal combustion engine, comprises at least one cylinder housing according to the invention and in each case one piston movably mounted in the cylinders of the cylinder housing.
  • the (wall) surface that comes into contact with a coolant provided for flowing through the cooling jackets can be significantly increased compared to conventional cooling jackets, resulting in a correspondingly high heat transfer of the cylinder housing on the coolant can be achieved.
  • a reduced volume flow of the coolant can thus lead to a reduced delivery rate for a working machine provided for delivering the coolant (pump with a preferred use of a cooling liquid or compressor with a likewise conceivable use of a cooling gas as a coolant), which has a positive effect on both costs and costs the weight of the work machine and thus a reciprocating piston device comprising such a work machine can affect.
  • a reciprocating piston device comprising such a work machine can affect.
  • an internal combustion engine according to the invention comprising such a reciprocating piston device. If, as usual, in such an internal combustion engine, the working machine provided for delivering the coolant is driven by the internal combustion engine itself, the reduced delivery rate achievable according to the invention can lead to a reduction in fuel consumption.
  • the relatively low volume flow of the coolant that can be achieved according to the invention can also have an indirect positive effect on the weight and also the dimensions of a cylinder housing according to the invention. This does not only apply because of a correspondingly reduced weight of the Coolant, which is particularly relevant in the case of the preferred use of a cooling liquid, but also because of the reduced structural weakening of the cylinder housing compared to a conventional cooling jacket that is not divided into a plurality of relatively small cooling channels due to the overall smaller cooling jacket and the stabilizing partition walls, which therefore also has to be compensated to a lesser extent by structural reinforcement measures.
  • the flow cross-sections of the cooling channels are designed as small as possible.
  • the flow cross-section of at least one, individual or preferably all cooling channels is smaller than the (respectively smallest) opening cross-sections of both the coolant inlet and the coolant outlet. If the flow cross-section of one or more of the cooling channels varies along its course, this should apply to (in each case) the largest flow cross-section.
  • the (smallest) flow cross-section of the cooling channels is 4 mm 2 .
  • This can particularly preferably be between 4 mm 2 and 100 mm 2 , in particular between 4 mm 2 and 25 mm 2 .
  • a production of a cylinder housing according to the invention, but at least the section thereof comprising the cooling channels, can advantageously be lost (ie not) by means of a generative manufacturing method or by casting using at least one of the cooling jackets and preferably also the coolant inlet (s) and the coolant outlet (s) reusable) core take place because these manufacturing processes advantageously allow the integration of at least partially fully closed and thus not externally accessible cavities in a cylinder housing to be produced.
  • a soluble and in particular water-soluble base material for example a salt
  • a soluble and in particular water-soluble base material for example a salt
  • a casting core according to the invention which is intended for use in a method according to the invention for producing a cylinder housing according to the invention, comprises at least a plurality of ring sections which are provided in groups in each case to form a cooling channel of one of the cooling jackets of the cylinder housing, with radially adjacent ring sections, the different of the Groups are assigned, merge into one another in a circumferential section and are thereby formed integrally.
  • Such a casting core also has an inlet section provided for forming a coolant inlet of each cooling jacket of the cylinder housing and an outlet section provided for forming a coolant outlet for each cooling jacket of the cylinder housing, the connection sections being arranged offset in the circumferential direction of the ring sections of the respective cooling jacket.
  • a casting core according to the invention can advantageously be produced by means of casting, in which case a sand mold can advantageously be used for this purpose. This applies in particular if a soluble base material, and in particular a salt, is to be used as the base material for the design of the casting core.
  • the opening cross section (s) of the coolant inlet / coolant inlets and / or the coolant outlet / coolant outlets over the entire length (in each case based on the longitudinal extent of the associated cylinder) of the Cooling jacket extends / extend so that the one or more coolant inlets and / or the one or more coolant outlets (each) open into each cooling channel of the cooling jacket assigned to them.
  • This can ensure that the cooling liquid is distributed as evenly as possible to all of the cooling channels, which in turn can have an advantageous effect with regard to the flow through the cooling channels and thus with regard to the cooling effect for such a cylinder housing.
  • the cooling jackets are only provided in sections along the longitudinal extensions of the cylinders, ie in one or more sections of the individual cylinders, or the cooling ducts of the individual cooling jackets are designed to be non-uniform along the longitudinal extensions of the cylinders and / or are arranged.
  • a non-uniform cooling effect can be realized along the longitudinal extent of the cylinder, which can be adapted as optimally as possible to the different heat transfer from the cylinders into the cylinder housing.
  • the cooling channels are only provided in a section encompassing the top dead center of a cyclical movement of the associated piston, or the cooling channels are designed in such a way that the (average) cooling effect in the top dead center comprehensive third of the longitudinal extent of the cylinder is greater than in the middle third and / or the lower third.
  • This ensures adequate cooling of the cylinder housing delimiting the cylinder in the upper third, in which the heat transfer is usually highest due to the primary combustion processes taking place there, while excessive cooling of the cylinder walls in the other sections is avoided.
  • the optimum setting of the viscosity of a lubricant acting between the cylinder walls and the outer surfaces of the pistons can be achieved in these other sections with regard to a reduction in friction.
  • a cylinder housing it can be provided that at least some, preferably all of the adjacent cooling channels of a cooling jacket (and in particular all cooling jackets) are directly connected to one another by means of at least one and preferably by means of several connecting channels.
  • These connecting channels can primarily serve to enable the formation of a sufficiently resilient casting core for the production of a cylinder housing according to the invention, which consequently has at least one, preferably several (for each pair of axially adjacent ring sections) connecting sections, the axially adjacent ring sections, which are used to form the cooling channels in the cylinder housing to be produced are provided, connect to one another.
  • the ring sections which are preferably relatively small in cross section and at the same time relatively long in the circumferential direction, can advantageously be supported against one another whereby a failure of the ring sections when casting a cylinder housing according to the invention using such a casting core can be avoided.
  • connection channels connecting the cooling channels to one another
  • at least some and preferably all of the connecting channels are designed to run obliquely with respect to the longitudinal axes of the associated cylinders.
  • the term "oblique" relates to the straight connecting line between the opening points of the individual connecting channels in the associated cooling channels.
  • a casting core according to the invention for the design of such a cylinder housing is characterized in that the connection section or sections are oriented obliquely with respect to the (preferably coaxially oriented) central longitudinal axes of the ring sections.
  • a support structure for example made of metal wires, can be integrated into the core, this support structure remaining in a cylinder housing formed using such a casting core, i.e. being integrated into it.
  • a sufficiently stable casting core can also be produced without connecting sections, these should not be provided if possible, in order to avoid a fluid-conducting connection between the cooling channels of the individual cooling jackets of the cylinder housing (with the exception of a possibly provided connection via the coolant inlets and the coolant outlets). This makes it possible to avoid flow losses which would occur when coolant flows over between the cooling channels via the connection sections, and a build-up of coolant within such connection channels.
  • the invention also relates to a motor vehicle, in particular a wheel-based motor vehicle (preferably a car or truck), with an internal combustion engine according to the invention.
  • a motor vehicle in particular a wheel-based motor vehicle (preferably a car or truck), with an internal combustion engine according to the invention.
  • the internal combustion engine can be provided in particular for (direct or indirect) provision of drive power for the motor vehicle.
  • the design of a cylinder housing according to the invention can serve not only to improve a (reciprocating) internal combustion engine but also to improve any reciprocating piston devices in which cooling is relevant through the active dissipation of thermal energy that passes from the cylinders into the respective cylinder housing. This can be the case with reciprocating compressors, for example.
  • the Fig. 1 shows in a cross section an internal combustion engine (according to the invention) with a cylinder housing 10 according to the invention.
  • This comprises a multi-part housing.
  • cylinder housing 10 which can preferably be made of metal and in particular a light metal, for example an aluminum alloy
  • a plurality of cylinders 12 arranged in series are formed.
  • a piston 14 is movably guided within each cylinder 12.
  • crank pin 18 of a crankshaft 20 which is rotatably mounted within a second housing part, which is referred to below as crankcase 22 and which connects to the underside of the cylinder housing 10.
  • An oil pan 24 is integrated into the crankcase 22, in which a reservoir of (liquid) lubricant can be kept.
  • a movement of the pistons 14 along their longitudinal axes 26 or the longitudinal axes 26 of the associated cylinders 12 is translated into a rotary movement of the crankshaft 20 by means of the connecting rod 16 and by means of the bearings of the connecting rod 16, which are arranged decentrally with respect to the axis of rotation 28 of the crankshaft 20, on the associated crank pin 18
  • This coupling of the pistons 14 to the crankshaft 20 also ensures that the directions of movement of the pistons 14 always change when the associated crank pins 18 with their longitudinal or rotational axes 30 cross the longitudinal axes 32 of the associated cylinders 12 or pistons 14.
  • top dead center characterized by the greatest possible distance of the respective pistons 14 from the axis of rotation 28 of the crankshaft 20
  • bottom dead center characterized by the position of the individual pistons as close as possible to that of the axis of rotation 28 of the crankshaft 20 Piston 14
  • the pistons 14 can move through the targeted combustion of a fuel-fresh gas mixture in combustion chambers 32, each from the top of a piston 14, a section of the associated cylinder 12 and a cylinder head 34 that adjoins the upper end of the cylinder housing 10 , limited, can be effected.
  • the initiation of such a combustion process takes place for each of the combustion chambers 32 in the (temporal) vicinity of the top dead center of the respective piston movement as a result of external ignition by means of spark plugs, not shown (if the internal combustion engine is designed as a gasoline engine) or by means of self-ignition as a result of, in particular, a relative high compression of the fuel-fresh gas mixture resulting in sufficient temperature increase (if the internal combustion engine is designed as a diesel engine).
  • the fuel is introduced into the combustion chambers 32 in a controlled manner by means of inlet valves 38 via an injector 36 and the fresh gas, which can be exclusively or mainly air. That at The exhaust gas generated during the combustion of the fuel-fresh gas mixture is then discharged from the combustion chambers 32, controlled via outlet valves 40.
  • the inlet valves 38 and the outlet valves 40 can be actuated in a known manner via one or more camshafts (not shown), which can be driven by the crankshaft 20, for example, via a so-called control drive.
  • a cooling jacket is provided for each of the cylinders 12 and consists of a plurality of closed, circumferential cooling channels 42 which are aligned parallel to one another and which are integrated in the cylinder housing 10. Furthermore, a coolant inlet 44 and a coolant outlet 46 are provided for each of the cooling jackets, these being arranged at the same height (based on the longitudinal extensions of the cylinder 12) and offset by 180 ° with respect to the longitudinal axis 26 of the respective cylinder 12 (diagonally opposite) . The coolant inlets 44 and the coolant outlets 46 open into all of the associated cooling channels 42.
  • the cooling jackets as well as the coolant inlets 44 and the coolant outlets 46 are part of a cooling system of the internal combustion engine, which also includes at least one coolant pump, which is used to pump a liquid coolant in a circuit, the coolant via the coolant inlets 44 into the respective associated cooling channels 42 flows and is discharged again from the cooling channels 42 via the respective associated coolant outlets 46.
  • the coolant absorbs thermal energy, which first transfers from the combustion chambers 32 to the adjacent walls of the cylinder housing 10 and then to the coolant flowing in the cooling channels 42. This achieves the desired cooling of the combustion chambers 32 and the cylinder housing 10 of the internal combustion engine.
  • the absorbed thermal energy is carried away from the coolant in an ambient heat exchanger (not shown) of the cooling system to a further cooling medium, in particular ambient air.
  • the coolant can then be recirculated again into the cooling jackets of the cylinder housing 10 via the coolant inlets 44.
  • the cooling jackets are each integrated into the cylinder housing 10 in only one section near the upper end of the cylinder 12, the longitudinal extent of these sections being, for example, approximately a quarter or a third of the total longitudinal extent of the cylinder 12.
  • the internal combustion engine according to Fig. 1 and at one Cylinder housing 10 according to the Fig. 2 Comprehensive internal combustion engine therefore direct cooling of the cylinder housing 10 takes place only in an area near the respective top dead center of the movements of the pistons 14.
  • FIGS Fig. 1 and 2 can, for example, by casting using a casting core 48, as for example in the Figs. 3 to 5 is shown.
  • This casting core 48 which can itself be formed, for example, by casting from a core material that includes, for example, salt as the base material, comprises a plurality of circular ring sections 50 that each serve to form a cooling channel of the cylinder housing 10 to be produced, with several (in the present case Embodiment four) groups are provided, each comprising a plurality of ring sections 50 which are arranged in coaxial alignment and axially spaced from one another.
  • Each of these groups of ring sections 50 forms a cooling jacket assigned to a cylinder 12 of the cylinder housing 10 to be produced.
  • the casting mold also forms two connection sections 52 for each of the groups of ring sections 50, which are arranged diagonally opposite one another with respect to the associated ring sections 50 and which merge into the associated ring sections 50. These connection sections 52 are provided to form a coolant inlet 44 and a coolant outlet 46 for the associated cooling jackets formed by the cooling channels 42.
  • the ring sections 50 of adjacent groups each lying at the same (axial) height, also merge into one another in one circumferential section, so that cooling channels 42 formed by the ring sections 50 a fluid-conducting connection with one another or an integral section which each belongs to two radially adjacent cooling channels 42 results.
  • This configuration of the casting core 48 or the configuration of the cooling channels 42 achieved thereby enables the integration of cooling channels 42 of sufficiently large dimensions with regard to the flow cross-sections in relatively narrow separating webs 54 (cf. Fig. 2 ; eg approx. 8 mm wide in the narrowest section), which are each formed between adjacent cylinders 12 of the cylinder housing 10 according to the invention. Consequently, despite the relatively compact dimensions of the cylinder housing 10, which is made possible by the narrow dimensioning of the separating webs 54, a sufficient cooling capacity can also be achieved in the area of these separating webs 54.
  • two axially spaced ring sections 50 are connected to one another by several (in the present embodiment four) connecting sections 56, whereby the stability of the casting core 48 in the areas of the ring sections 50 spaced apart from the connection sections 52 can be increased to prevent failure of the To avoid casting core 48 when casting a cylinder housing 10.
  • These connecting sections 56 each lead to the formation of a connecting channel (not visible) which connects two axially spaced cooling channels 42 to one another in a fluid-conducting manner. Coolant can flow over between the cooling channels 42 via the connecting channels.
  • the connecting sections 56 of the casting core 48 are oriented obliquely or non-parallel with respect to the (coaxial) central longitudinal axes 58 of the cooling channels 42 or the ring sections 50. This results in different distances (with respect to the circumferential direction) to the associated coolant inlet 44 and to the associated coolant outlet 46 and, as a result, at least slightly different hydraulic pressures in these openings for the two openings of the connecting sections 56 into the cooling channels 42. This leads to pressure gradients over the connecting sections 56, as a result of which a flow through the connecting sections 56 is promoted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

  • Die Erfindung betrifft ein Zylindergehäuse für eine Hubkolbenvorrichtung sowie ein Verfahren zur Herstellung eines solchen Zylindergehäuses. Die Erfindung betrifft auch eine Hubkolbenvorrichtung mit einem solchen Zylindergehäuses sowie eine Brennkraftmaschine mit einer solchen Hubkolbenvorrichtung. Die Erfindung betrifft zudem einen Gießkern zur Verwendung in dem Verfahren zur Herstellung eines solchen Zylindergehäuses.
  • Brennkraftmaschinen werden zumeist mittels einer Kühlflüssigkeit gekühlt, die, gefördert durch mindestens eine Kühlmittelpumpe, in einem den Kühlmantel integrierenden Kühlsystem der Brennkraftmaschine zirkuliert. Durch die zirkulierende Kühlflüssigkeit kann Wärmeenergie von der Brennkraftmaschine zu mindestens einem Umgebungswärmetauscher abgeführt werden, in dem die Wärmeenergie dann an beispielsweise die Umgebungsluft abgegeben wird.
  • Die meisten bekannten Brennkraftmaschinen weisen Kühlmäntel auf, die die einzelnen Zylinder bezüglich des Umfangs zumindest teilweise und bezüglich der Längserstreckung im Wesentlichen vollständig umgeben. Eine Integration eines Kühlmitteleinlasses erfolgt bei den meisten bekannten Brennkraftmaschinen im Bereich des oberen Totpunkts, in dem die zyklische Hin-und-her-Bewegung des in dem entsprechenden Zylinder geführten Kolbens umgekehrt wird und in dessen Nähe eine Verbrennung eines Kraftstoff-Frischgas-Gemischs in dem Zylinder eingeleitet wird, während eine Integration eines Kühlmittelauslasses in der Nähe des unteren Totpunkts der Kolbenbewegung vorgesehen ist. Mittels eines solchen Kühlmantels kann der lokalen, entlang der Längserstreckung des oder der Zylinder variierenden Kühlleistungsanforderung nicht in optimaler Weise gerecht werden, weil es bei einer ausreichenden Dimensionierung des Kühlsystems einschließlich des Kühlmantels hinsichtlich der Kühlleistungsanforderung im Bereich des oberen Totpunkts der Kolbenbewegung, die in diesem Bereich wegen der dort primär ablaufenden Verbrennungsprozesse am höchsten ist, zu einer "Überkühlung", d.h. zu einer zu starken Kühlung, in den anderen Bereichen kommen kann. Eine zu niedrige Temperatur einer Zylinderwand führt jedoch häufig zu einer relativ hohen Viskosität eines die Reibung der Relativbewegung zwischen der Zylinderwand und dem dazugehörigen Kolben gering haltenden Schmiermittels und damit zu vergleichsweise hohen Reibungsverlusten sowie einem relativ hohen Verschleiß im Betrieb der Brennkraftmaschine.
  • In der Veröffentlichung "Water Jacket Spacer for Improvement of Cylinder Bore Temperature Distribution" von Matsutani et al. (SAE TECHNICAL PAPER SERIES 2005-01-1156) ist beschrieben, dass für eine möglichst geringe Reibung über den gesamten Hub eines Kolbens in einem Zylinder einer Brennkraftmaschine die Temperatur der Zylinderwand in einem den oberen Totpunkt der Kolbenbewegung umfassenden Bereich (ausgehend von dem oberen Ende des Zylinders) bis zu einem Maximalwert ansteigen sollte, wobei dieser Maximalwert dann über den weiteren Verlauf der Längserstreckung, d.h. bis zumindest zum unteren Totpunkt der Kolbenbewegung, möglichst konstant bleiben sollte. Um dies zu erreichen soll in demjenigen Abschnitt der Längserstreckung des Zylinders, in dem eine möglichst konstante Temperatur für die Zylinderwand realisiert werden soll, ein den freien Strömungsquerschnitt gezielt verringernder Einsatz in einen im Übrigen konventionell ausgebildeten Kühlmantel integriert werden.
  • Eine andere Möglichkeit zur gezielten Beeinflussung der Kühlwirkung für einen Zylinder einer Brennkraftmaschine ist aus der Veröffentlichung "Analysis of Piston Friction - Effects of Cylinder Bore Temperature Distribution and Oil Temperature" von Kimura et al. (SAE 2011-01-1746) bekannt. Darin ist eine Brennkraftmaschine beschrieben, deren Zylinder jeweils von drei separaten, bezüglich der Längserstreckungen voneinander beabstandeten Kühlmänteln umgeben sind, durch die, über Ventile gesteuert, in Abhängigkeit von dem lokalen Kühlleistungsbedarf unterschiedliche Volumenströme des Kühlmittels gefördert werden können.
  • Weiterhin ist aus der DE 86 28 188 U1 eine Brennkraftmaschine bekannt, bei der für die Zylinder jeweils ausschließlich in den Bereichen beider Totpunkte der Kolbenbewegungen Kühlmäntel vorgesehen sind.
  • Allgemein bekannt ist, dass die Zylinder einer Brennkraftmaschine jeweils von einer sogenannten Zylinderlaufbuchse begrenzt sein können, die wiederum jeweils in einer dazugehörigen Aufnahmeöffnung eines Zylindergehäuses aufgenommen sind. Derartige Zylinderlaufbuchsen können als sogenannte "nasse" Zylinderlaufbuchsen ausgebildet sein, deren Außenwandungen mit den Wandungen der dazugehörigen Aufnahmeöffnungen jeweils einen Ringspalt begrenzen, der als Kühlmantel dient. Solche nasse Laufbuchsen kommen bislang hauptsächlich bei LKW-Motoren und Großmotoren zum Einsatz.
  • Zylinderlaufbuchsen, in die eine Mehrzahl von in sich geschlossen oder spiralförmig umlaufenden Vertiefungen integriert sind, die als Kühlkanäle einer die Zylinderlaufbuchsen umfassenden Brennkraftmaschine vorgesehen sind, sind aus der DE 102 25 062 A1 , der US 5,211,137 , der US 5,207,189 , der US 5,199,390 , der US 3,086,505 , der JP H05-18319 A , der US 2,464,462 , der EP 0 488 810 A1 und der US 2,959,163 A bekannt.
  • Die US 2005/0274333 A1 offenbart eine Zylinderlaufbuchse für eine Brennkraftmaschine mit integrierten Kühlkanälen, die parallel zur Längsachse der Zylinderlaufbuchse verlaufen.
  • Die EP 0 952 325 A2 offenbart eine Brennkraftmaschine mit einem Kurbelgehäuse mit Zylindern, die von Zylinderlaufbuchsen ausgebildet sind. Weiterhin ist ein die Zylinderlaufbuchsen umgebender, ein eigenes Bauteil darstellender und in dem Kurbelgehäuse aufgenommener "Kühlmantel" vorgesehen. In Innenseiten des Kühlmantels sind teilweise umlaufende Nuten ausgebildet, die in Verbindung mit den Außenseiten der Zylinderlaufbuchsen jeweils einen Kühlkanal für die Zylinder ausbilden. Die Kühlkanäle die durch einen von den benachbarten Zylinderlaufbuchsen ausgebildeten Steg voneinander separiert sind, können einen spiral-oder mäanderförmigen Verlauf aufweisen.
  • Die US 2010/0300394 A1 beschreibt ein Zylindergehäuse mit einer Mehrzahl von Zylindern, denen jeweils ein Kühlmantel in Form eines einzelnen, spiralförmig verlaufenden Kühlkanals zugeordnet ist. Dabei ist eine Reihenschaltung der einzelnen Kühlmäntel derart vorgesehen, dass ein Auslass des Kühlkanals eines ersten Kühlmantels in einen Einlass des Kühlkanals eines benachbarten, zweiten Kühlmantels übergeht.
  • Der Erfindung lag die Aufgabe zugrunde, ein Kühlkanäle integrierendes Zylindergehäuse für eine Hubkolbenvorrichtung und insbesondere für eine Brennkraftmaschine anzugeben, wobei für das Zylindergehäuse eine vorteilhafte Kühlwirkung bei möglichst kompakten Abmessungen erreicht werden soll.
  • Diese Aufgabe wird mittels eines Zylindergehäuses gemäß dem Patentanspruch 1 gelöst. Ein Verfahren zur Herstellung eines erfindungsgemäßen Zylindergehäuses ist Gegenstand des Patentanspruchs 8 und ein Gießkern zur Verwendung in einem solchen Verfahren ist Gegenstand des Patentanspruchs 10. Vorteilhafte Ausgestaltungsformen des erfindungsgemäßen Zylindergehäuses und des erfindungsgemäßen Gießkerns sowie bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens sind Gegenstände der weiteren Patentansprüche und/oder ergeben sich aus der nachfolgenden Beschreibung der Erfindung.
  • Erfindungsgemäß ist ein vorzugsweise einstückig ausgebildetes Zylindergehäuse für eine Hubkolbenvorrichtung und insbesondere für eine (Hubkolben-)Brennkraftmaschine vorgesehen, das mindestens zwei Zylinder umfasst, die jeweils zur Aufnahme eines Kolbens der Hubkolbenvorrichtung vorgesehen sind. Das Zylindergehäuse weist weiterhin für jeden der Zylinder einen integralen (d.h. innerhalb des Zylindergehäuses und somit insbesondere nicht von Zylinderlaufbuchsen ausgebildeten) Kühlmantel auf, der die Zylinder in zumindest einem längsaxialen Abschnitt umfangsseitig umgibt, wobei die Kühlmäntel jeweils mittels eines oder mehrerer Trennwände in eine Mehrzahl von geschlossen umlaufenden Kühlkanälen unterteilt sind und wobei in zumindest einen der Kühlmäntel ein Kühlmitteleinlass und in zumindest einen der Kühlmäntel ein Kühlmittelauslass mündet. Von den Kühlkanälen gehen solche, die verschiedenen der Zylinder zugeordnet sind, zwischen den Zylindern ineinander über.
  • Infolge dieses Übergangs der den verschiedenen Zylindern zugeordneten Kühlkanäle ineinander kann im Bereich eines von dem Zylindergehäuse ausgebildeten, benachbarte Zylinder voneinander separierenden Trennstegs eine vorteilhafte Kühlwirkung realisiert werden, wobei gleichzeitig die (minimale) Breite des die Kühlkanäle integrierenden Trennstegs und damit auch der Abstand benachbarter Zylinder möglichst gering gehalten werden kann. Dies kann sich entsprechend positiv auf die Gesamtabmessungen des Zylindergehäuses und einer ein solches Zylindergehäuse umfassenden Hubkolbenvorrichtung und insbesondere einer entsprechenden Brennkraftmaschine auswirken. Dies gilt insbesondere im Vergleich mit einer Hubkolbenvorrichtung, bei der Kühlkanäle durch ein Zusammenwirken von in einer Außenseite von Zylinderlaufbuchsen integrierten Vertiefungen mit Wandungen von die Zylinderlaufbuchsen aufnehmenden Aufnahmeöffnungen eines Zylinderkurbelgehäuses ausgebildet sind, weil sich hierbei die Abstände zwischen den zur Führung der Kolben vorgesehenen Innenseiten benachbarter Zylinderlaufbuchsen jeweils durch eine Addition der Breite eines zwischen den Aufnahmeöffnungen vorgesehenen Trennstegs und der zweifachen Wandstärke der Zylinderlaufbuchsen ergeben.
  • Bei einem erfindungsgemäßen Zylindergehäuse ist weiterhin vorgesehen, dass in jeden der Kühlmäntel ein Kühlmitteleinlass und ein Kühlmittelauslass mündet, wodurch eine vorteilhafte Durchströmung für die einzelnen Kühlmäntel und damit eine vorteilhafte Kühlwirkung für das Zylindergehäuse erreicht werden kann.
  • Zudem ist vorgesehen, dass der Kühlmitteleinlass und der Kühlmittelauslass der einzelnen Kühlmäntel in Umfangsrichtung des Zylinders versetzt angeordnet sind. Ein solcher Versatz soll sich dabei zumindest auf die Zentren der Mündungsquerschnitte der Kühlmitteleinlässe und der Kühlmittelauslässe beziehen. Vorzugsweise kann vorgesehen sein, dass der Versatz 180° beträgt. Auf diese Weise kann eine möglichst gleichartige Durchströmung für die zwei durch die Kühlmitteleinlässe und die Kühlmittelauslässe separierten Abschnitte der einzelnen Kühlkanäle realisiert werden.
  • Bevorzugt kann für ein solches erfindungsgemäßes Zylindergehäuse dann noch vorgesehen sein, dass der Kühlmitteleinlass und der Kühlmittelauslass bezogen auf die Längsrichtung des dazugehörigen Zylinders auf der gleichen Höhe angeordnet sind. Dabei soll sich die "gleiche Höhe" zumindest auf die Mündungsquerschnitte insgesamt und vorzugsweise auf die Zentren der Mündungsquerschnitte beziehen.
  • Eine erfindungsgemäße Hubkolbenvorrichtung, die insbesondere in Form einer (Hubkolben-)Brennkraftmaschine ausgebildet sein kann, umfasst zumindest ein erfindungsgemäßes Zylindergehäuse und jeweils einen beweglich in den Zylindern des Zylindergehäuses gelagerten Kolben.
  • Durch die Unterteilung der den einzelnen Zylindern zugeordneten Kühlmäntel in eine Mehrzahl von Kühlkanälen kann die (Wand-)Fläche, die mit einem zur Durchströmung der Kühlmäntel vorgesehenen Kühlmittel in Kontakt kommt, im Vergleich zu konventionellen Kühlmänteln deutlich erhöht werden, wodurch ein entsprechend hoher Wärmeübergang von dem Zylindergehäuse auf das Kühlmittel erreicht werden kann. Dadurch kann gegebenenfalls ermöglicht werden, einen insgesamt verringerten Volumenstrom des Kühlmittels durch die Kühlmäntel zirkulieren zu lassen, ohne dass dadurch die Kühlleistung reduziert würde. Ein verringerter Volumenstrom des Kühlmittels kann so zu einer verringerten Förderleistung für eine zur Förderung des Kühlmittels vorgesehene Arbeitsmaschine (Pumpe bei einer bevorzugten Verwendung einer Kühlflüssigkeit oder Verdichter bei einer ebenfalls denkbaren Verwendung eines Kühlgases als Kühlmittel) führen, was sich positiv auf sowohl die Kosten als auch das Gewicht der Arbeitsmaschine und damit einer eine solche Arbeitsmaschine umfassenden Hubkolbenvorrichtung auswirken kann. Gleiches gilt für eine eine solche Hubkolbenvorrichtung umfassende, erfindungsgemäße Brennkraftmaschine. Sofern, wie üblich, bei einer solchen Brennkraftmaschine die zur Förderung des Kühlmittels vorgesehene Arbeitsmaschine durch die Brennkraftmaschine selbst angetrieben wird, kann die erfindungsgemäß erzielbare, verringerte Förderleistung zu einer Reduzierung des Kraftstoffverbrauchs führen. Der erfindungsgemäß erzielbare relativ geringe Volumenstrom des Kühlmittels kann sich zudem indirekt positiv auf das Gewicht und auch die Abmessungen eines erfindungsgemäßen Zylindergehäuses auswirken. Dies gilt nicht nur wegen eines entsprechend verringerten Eigengewichts des Kühlmittels, was insbesondere bei der bevorzugten Verwendung einer Kühlflüssigkeit relevant ist, sondern auch wegen der im Vergleich zu einem konventionellen, nicht in eine Mehrzahl von relativ klein dimensionierten Kühlkanälen unterteilten Kühlmantel verringerten strukturellen Schwächung des Zylindergehäuses infolge des insgesamt kleineren Kühlmantels sowie der stabilisierend wirkenden Trennwände, die somit auch im geringeren Maße durch strukturelle Verstärkungsmaßnahmen ausgeglichen werden muss.
  • Um den durch diese Ausgestaltung eines erfindungsgemäßen Zylindergehäuses erzielbaren Vorteil möglichst optimal auszunutzen sollte vorzugsweise vorgesehen sein, dass die (bezüglich einer Längsachse des jeweiligen Zylinders radial ausgerichteten) Strömungsquerschnitte der Kühlkanäle möglichst klein ausgebildet sind. Insbesondere kann dabei vorgesehen sein, dass der Strömungsquerschnitt mindestens eines, einzelner oder vorzugsweise aller Kühlkanäle kleiner als die (jeweils kleinsten) Öffnungsquerschnitte sowohl des Kühlmitteleinlasses als auch des Kühlmittelauslasses ist. Sofern der Strömungsquerschnitt eines oder mehrerer der Kühlkanäle entlang seines Verlaufs variiert, soll dies für (jeweils) den größten Strömungsquerschnitt gelten. Eine zu kleine Dimensionierung der Strömungsquerschnitte der Kühlkanäle sollte jedoch vermieden werden, weil sich dies hinsichtlich einer Erhöhung des Strömungswiderstand für das Kühlmittel negativ auswirken kann, wodurch zumindest der erzielbare Vorteil einer vergleichsweise geringen Förderleistung für das Kühlmittel kompensiert oder überkompensiert werden könnte. Vorzugsweise sollte daher vorgesehen sein, dass der (kleinste) Strömungsquerschnitt der Kühlkanäle ≥ 4 mm2 beträgt. Besonders bevorzugt kann dieser zwischen 4 mm2 und 100 mm2, insbesondere zwischen 4 mm2 und 25 mm2, betragen.
  • Eine Herstellung eines erfindungsgemäßen Zylindergehäuses, zumindest jedoch des die Kühlkanäle umfassenden Abschnitts davon, kann in vorteilhafter Weise mittels eines generativen Fertigungsverfahrens oder durch Gießen unter Verwendung eines zumindest die Kühlmäntel und vorzugsweise auch den oder die Kühlmitteleinlässe und den oder die Kühlmittelauslässe ausbildenden, verlorenen (d.h. nicht mehrfach nutzbaren) Kerns erfolgen, weil diese Fertigungsverfahren in vorteilhafter Weise die Integration von zumindest abschnittsweise vollumfänglich geschlossen und damit nicht von außen zugänglichen Hohlräumen in einem herzustellenden Zylindergehäuse ermöglichen.
  • Bei einer solchen Herstellung eines erfindungsgemäßen Zylindergehäuses oder zumindest des die Kühlkanäle umfassenden Abschnitts davon mittels Gießens unter Verwendung eines verlorenen Kerns kann vorzugsweise vorgesehen sein, dass für den verlorenen Kern ein lösliches und insbesondere wasserlösliches Grundmaterial, beispielsweise ein Salz, verwendet wird, weil dadurch auf relativ einfache Weise ein im Wesentlichen vollständiges Ausspülen des Grundmaterials nach der Herstellung des Zylindergehäuses aus den als Kühlkanäle und gegebenenfalls auch als Kühlmitteleinlass und Kühlmittelauslass vorgesehenen Hohlräumen ermöglicht wird. Dies gilt insbesondere im Vergleich zu einem nicht-löslichen Grundmaterial, wie beispielsweise Sand, der für ein Gießen von Metallstrukturen regelmäßig verwendet wird und der zwar ausspülbar ist, sich dabei aber nicht in der Spülflüssigkeit auflöst.
  • Ein erfindungsgemäßer Gießkern, der zur Verwendung in einem erfindungsgemäßen Verfahren zur Herstellung eines erfindungsgemäßen Zylindergehäuses vorgesehen ist, umfasst zumindest eine Mehrzahl von Ringabschnitten, die in Gruppen jeweils zur Ausbildung eines Kühlkanals eines der Kühlmäntel des Zylindergehäuses vorgesehen sind, wobei radial benachbarte Ringabschnitte, die verschiedenen der Gruppen zugeordnet sind, in einem Umfangsabschnitt ineinander übergehen und dadurch integral ausgebildet sind. Ein solcher Gießkern weist weiterhin jeweils einen zur Ausbildung eines Kühlmitteleinlasses jedes Kühlmantels des Zylindergehäuses vorgesehenen Einlassabschnitt und jeweils einen zur Ausbildung eines Kühlmittelauslasses jedes Kühlmantels des Zylindergehäuses vorgesehenen Auslassabschnitt auf, wobei die Anschlussabschnitte in Umfangsrichtung der Ringabschnitte des jeweiligen Kühlmantels versetzt angeordnet sind.
  • Eine Herstellung eines erfindungsgemäßen Gießkerns kann in vorteilhafter Weise mittels Gießens erfolgen, wobei hierfür in vorteilhafter Weise eine Verwendung einer Sandform vorgesehen sein kann. Dies gilt insbesondere, sofern für die Ausgestaltung des Gießkerns eine Verwendung von einem löslichen Grundmaterial und insbesondere einem Salz als Grundmaterial vorgesehen ist.
  • Gemäß einer vorteilhaften Weiterbildung eines erfindungsgemäßen Zylindergehäuses kann vorgesehen sein, dass sich der/die Mündungsquerschnitt(e) des/der Kühlmitteleinlasses/Kühlmitteleinlässe und/oder des/der Kühlmittelauslasses/Kühlmittelauslässe über die gesamte Länge (jeweils bezogen auf die Längserstreckung des dazugehörigen Zylinders) des Kühlmantels erstreckt/erstrecken, so dass der oder die Kühlmitteleinlässe und/oder der oder die Kühlmittelauslässe (jeweils) in jeden Kühlkanal des diesen zugeordneten Kühlmantels münden. Dadurch kann sichergestellt werden, dass die Kühlflüssigkeit möglichst gleichmäßig auf sämtliche der Kühlkanäle verteilt wird, was sich wiederum vorteilhaft hinsichtlich der Durchströmung der Kühlkanäle und damit hinsichtlich der Kühlwirkung für ein solches Zylindergehäuse auswirken kann.
  • In einer bevorzugten Ausgestaltungsform eines erfindungsgemäßen Zylindergehäuses kann zudem vorgesehen sein, dass die Kühlmäntel entlang der Längserstreckungen der Zylinder nur abschnittsweise, d.h. in einem oder mehreren Abschnitten der einzelnen Zylinder, vorgesehen sind oder die Kühlkanäle der einzelnen Kühlmäntel entlang der Längserstreckungen der Zylinder ungleichförmig ausgebildet und/oder angeordnet sind. Dadurch kann eine entlang der Längserstreckungen der Zylinder ungleichförmige Kühlwirkung realisiert werden, die an den unterschiedlichen Wärmeübergang aus den Zylindern in das Zylindergehäuse möglichst optimal angepasst werden kann.
  • Bei einer erfindungsgemäßen Brennkraftmaschine mit einem solchen Zylindergehäuse kann vorzugsweise vorgesehen sein, dass die Kühlkanäle jeweils nur in einem den oberen Totpunkt einer zyklischen Bewegung des zugeordneten Kolbens umfassenden Abschnitt vorgesehen oder die Kühlkanäle derart ausgebildet sind, dass die (mittlere) Kühlwirkung in dem den oberen Totpunkt umfassenden Drittel der Längserstreckung der Zylinder größer als in dem mittleren Drittel und/oder dem unteren Drittel ist. Dadurch kann eine ausreichende Kühlung des die Zylinder begrenzenden Zylindergehäuses in dem oberen Drittel, in dem der Wärmeübergang infolge der dort primär stattfindenden Verbrennungsprozesse regelmäßig am höchsten ist, gewährleistet werden, während eine zu starke Kühlung der Zylinderwandungen in den anderen Abschnitten vermieden wird. Auf diese Weise kann in diesen anderen Abschnitten eine hinsichtlich einer Reibungsverringerung möglichst optimale Einstellung der Viskosität eines zwischen den Zylinderwandungen und den Außenflächen der Kolben wirkenden Schmiermittels erreicht werden.
  • Bei einer weiterhin bevorzugten Ausgestaltungsform eines erfindungsgemäßen Zylindergehäuses kann vorgesehen sein, dass zumindest einige, vorzugsweise alle benachbarten Kühlkanäle eines Kühlmantels (und insbesondere aller Kühlmäntel) direkt mittels mindestens eines und vorzugsweise mittels mehrerer Verbindungskanäle miteinander verbunden sind. Diese Verbindungskanäle können primär dazu dienen, die Ausbildung eines ausreichend belastbaren Gießkern zur Herstellung eines erfindungsgemäßen Zylindergehäuses zu ermöglichen, der folglich zumindest einen, vorzugsweise mehrere (für jedes Paar axial benachbarter Ringabschnitte) Verbindungsabschnitte aufweist, die axial benachbarte Ringabschnitte, die zur Ausbildung der Kühlkanäle in dem herzustellenden Zylindergehäuse vorgesehen sind, miteinander verbinden. Durch die Verbindungsabschnitte können die im Querschnitt vorzugsweise relativ klein dimensionierten und gleichzeitig in Umfangsrichtung relativ lang ausgebildeten Ringabschnitte in vorteilhafter Weise gegeneinander abgestützt werden, wodurch ein Versagen der Ringabschnitte beim Gießen eines erfindungsgemäßen Zylindergehäuses unter Verwendung eines solchen Gießkerns vermieden werden kann.
  • Bei einer bevorzugten Weiterbildung eines solchen erfindungsgemäßen Zylindergehäuses mit die Kühlkanäle miteinander verbindenden Verbindungskanälen kann dann noch vorgesehen sein, dass zumindest einige und vorzugsweise sämtliche der Verbindungskanäle schräg bezüglich der Längsachsen der dazugehörigen Zylinder verlaufend ausgebildet sind. Bei gekrümmt verlaufenden Verbindungskanälen bezieht sich die Angabe "schräg" jeweils auf die Verbindungsgerade zwischen den Mündungsstellen der einzelnen Verbindungskanäle in die dazugehörigen Kühlkanäle. Auf diese Weise wird eine bezüglich der Umfangsrichtung versetzte Anordnung für die beiden Mündungsstellen der einzelnen Verbindungskanäle erreicht, die mit einem Druckgefälle verbunden sein kann, wodurch ein Stau von Kühlmittel innerhalb der Verbindungskanäle vermieden oder zumindest gering gehalten werden kann. Ein erfindungsgemäßer Gießkern zur Ausgestaltung eines solchen Zylindergehäuses ist dadurch gekennzeichnet, dass der oder die Verbindungsabschnitte schräg bezüglich der (vorzugsweise koaxial zueinander ausgerichteten) Mittellängsachsen der Ringabschnitte verlaufend ausgerichtet sind.
  • Ergänzend oder alternativ können zu Stabilisierung eines erfindungsgemäßen Gießkerns auch andere strukturelle Maßnahmen vorgesehen sein. Beispielsweise kann eine Stützstruktur, beispielsweise aus Metalldrähten, in den Kern integriert sein, wobei diese Stützstruktur in einem unter Verwendung eines solchen Gießkerns ausgebildeten Zylindergehäuse verbleibt, d.h. in dieses integriert wird.
  • Sofern ein ausreichend stabiler Gießkern auch ohne Verbindungsabschnitte hergestellt werden kann, sollten diese möglichst nicht vorgesehen sein, um eine fluidleitende Verbindung zwischen den Kühlkanälen der einzelnen Kühlmäntel des Zylindergehäuses (mit Ausnahme einer gegebenenfalls vorgesehenen Verbindung über die Kühlmitteleinlässe und die Kühlmittelauslässe) möglichst zu vermeiden. Dadurch können Strömungsverluste, die beim Überströmen von Kühlmittel zwischen den Kühlkanälen über die Verbindungsabschnitte auftreten würden, und ein Stau von Kühlmittel innerhalb solcher Verbindungskanäle vermieden werden.
  • Die Erfindung betrifft auch ein Kraftfahrzeug, insbesondere ein radbasiertes Kraftfahrzeug (vorzugsweise PKW oder LKW), mit einer erfindungsgemäßen Brennkraftmaschine. Dabei kann die Brennkraftmaschine insbesondere zur (direkten oder indirekten) Bereitstellung der Antriebsleistung für das Kraftfahrzeug vorgesehen sein.
  • Die erfindungsgemäße Ausgestaltung eines Zylindergehäuses kann nicht nur zur Verbesserung einer (Hubkolben-)Brennkraftmaschine sondern zur Verbesserung beliebiger Hubkolbenvorrichtungen, bei denen eine Kühlung durch ein aktives Abführen von Wärmeenergie, die aus den Zylindern in das jeweilige Zylindergehäuse übergeht, relevant ist, dienen. Dies kann beispielsweise bei Kolbenverdichtern der Fall sein.
  • Die unbestimmten Artikel ("ein", "eine", "einer" und "eines"), insbesondere in den Patentansprüchen und in der die Patentansprüche allgemein erläuternden Beschreibung, sind als solche und nicht als Zahlwörter zu verstehen. Entsprechend damit konkretisierte Komponenten sind somit so zu verstehen, dass diese mindestens einmal vorhanden sind und mehrfach vorhanden sein können.
  • Die vorliegende Erfindung wird nachfolgend anhand von in den Zeichnungen dargestellten Ausgestaltungsbeispielen näher erläutert. In den Zeichnungen zeigt, in teilweise vereinfachter Darstellung, die:
  • Fig. 1:
    einen Querschnitt durch eine Brennkraftmaschine mit einem erfindungsgemäßen Zylindergehäuse;
    Fig. 2:
    ein erfindungsgemäßes Zylindergehäuse, beispielsweise für eine Brennkraftmaschine gemäß der Fig. 1;
    Fig. 3:
    einen zur Herstellung eines Zylindergehäuses gemäß der Fig. 2 nutzbaren, erfindungsgemäßen Gießkern in einer perspektivischen Ansicht;
    Fig. 4:
    den Gießkern in einer Ansicht von oben;
    Fig. 5:
    den Gießkern in einer Ansicht von vorne; und
    Fig. 6:
    einen Abschnitt des Gießkerns in einer vergrößerten, perspektivischen Ansicht.
  • Die Fig. 1 zeigt in einem Querschnitt eine (erfindungsgemäße) Brennkraftmaschine mit einem erfindungsgemäßen Zylindergehäuse 10. Diese umfasst ein mehrteiliges Gehäuse. In einem ersten Gehäuseteil dieses Gehäuses, das nachfolgend als Zylindergehäuse 10 bezeichnet wird und das vorzugsweise aus Metall und insbesondere einem Leichtmetall, beispielsweise einer Aluminiumlegierung ausgebildet sein kann, sind mehrere in Reihe angeordnete Zylinder 12 ausgebildet. Innerhalb der Zylinder 12 ist jeweils ein Kolben 14 beweglich geführt ist. Mittels jeweils eines Pleuels 16 ist jeder der Kolben 14 mit einem Kurbelzapfen 18 einer Kurbelwelle 20 verbunden, die drehbar innerhalb eines zweiten Gehäuseteils gelagert ist, der nachfolgend als Kurbelgehäuse 22 bezeichnet wird und der sich an die Unterseite des Zylindergehäuses 10 anschließt. In das Kurbelgehäuse 22 ist eine Ölwanne 24 integriert, an, in der ein Reservoir an (flüssigem) Schmiermittel vorgehalten sein kann.
  • Eine Bewegung der Kolben 14 entlang ihrer Längsachsen 26 beziehungsweise der Längsachsen 26 der dazugehörigen Zylinder 12 wird mittels der Pleuel 16 und mittels der dezentral bezüglich der Rotationsachse 28 der Kurbelwelle 20 angeordneten Lagerungen der Pleuel 16 auf den dazugehörigen Kurbelzapfen 18 in eine Drehbewegung der Kurbelwelle 20 übersetzt, wobei diese Koppelung der Kolben 14 an die Kurbelwelle 20 zudem dafür sorgt, dass sich die Bewegungsrichtungen der Kolben 14 immer dann ändern, wenn die dazugehörigen Kurbelzapfen 18 mit ihren Längs- beziehungsweise Rotationsachsen 30 die Längsachsen 32 der dazugehörigen Zylinder 12 beziehungsweise Kolben 14 kreuzen. Die entsprechenden Stellungen der Kolben 14 werden als oberer Totpunkt (gekennzeichnet durch die weitestmögliche Entfernung der jeweiligen Kolben 14 von der Rotationsachse 28 der Kurbelwelle 20) und als unterer Totpunkt (gekennzeichnet durch die weitestmöglich an die von die Rotationsachse 28 der Kurbelwelle 20 angenäherte Position der einzelnen Kolben 14) bezeichnet.
  • Eine Bewegung der Kolben 14 kann durch die gezielte Verbrennung eines Kraftstoff-Frischgas-Gemischs in Brennräumen 32, die jeweils von der Oberseite eines Kolbens 14, einem Abschnitt des dazugehörigen Zylinders 12 sowie einem Zylinderkopf 34, der sich an das obere Ende des Zylindergehäuses 10 anschließt, begrenzt ist, bewirkt werden. Die Initiierung eines solchen Verbrennungsprozesses erfolgt für jeden der Brennräume 32 in der (zeitlichen) Nähe des oberen Totpunkts der jeweiligen Kolbenbewegung infolge einer Fremdzündung mittels nicht dargestellter Zündkerzen (bei einer Ausgestaltung der Brennkraftmaschine als Ottomotor) oder mittels einer Selbstzündung infolge einer insbesondere sich aus einer relativ hohen Verdichtung des Kraftstoff-Frischgas-Gemisches ergebenden ausreichenden Temperaturerhöhung (bei einer Ausgestaltung der Brennkraftmaschine als Dieselmotor). Dazu wird der Kraftstoff über jeweils einen Injektor 36 und das Frischgas, bei dem es sich ausschließlich oder hauptsächlich um Luft handeln kann, mittels Einlassventilen 38 gesteuert in die Brennräume 32 eingebracht. Das bei der Verbrennung des Kraftstoff-Frischgas-Gemischs erzeugte Abgas wird anschließend, über Auslassventile 40 gesteuert, aus den Brennräumen 32 abgeführt. Eine Betätigung der Einlassventile 38 und der Auslassventile 40 kann in bekannter Weise über eine oder mehrere Nockenwellen (nicht dargestellt) erfolgen, die beispielsweise über einen sogenannten Steuertrieb von der Kurbelwelle 20 angetrieben sein können.
  • Für jeden der Zylinder12 ist ein Kühlmantel vorgesehen, der aus einer Mehrzahl von geschlossen umlaufenden, zueinander parallel ausgerichteten Kühlkanälen 42 besteht, die in das Zylindergehäuse 10 integriert sind. Weiterhin ist für jeden der Kühlmäntel jeweils ein Kühlmitteleinlass 44 sowie ein Kühlmittelauslass 46 vorgesehen, wobei diese auf derselben Höhe (bezogen auf die Längserstreckungen der Zylinder 12) und um 180° bezüglich der Längsachse 26 des jeweiligen Zylinders 12 versetzt zueinander (diagonal gegenüberliegend) angeordnet sind. Die Kühlmitteleinlässe 44 und die Kühlmittelauslässe 46 münden dabei in sämtliche der jeweils zugehörigen Kühlkanäle 42.
  • Die Kühlmäntel sowie die Kühlmitteleinlässe 44 und die Kühlmittelauslässe 46 sind Bestandteil eines Kühlsystems der Brennkraftmaschine, das zumindest auch noch eine Kühlmittelpumpe umfasst, die dazu dient, ein flüssiges Kühlmittel in einem Kreislauf zu pumpen, wobei das Kühlmittel über die Kühlmitteleinlässe 44 in die jeweils dazugehörigen Kühlkanäle 42 strömt und aus den Kühlkanälen 42 über die jeweils dazugehörigen Kühlmittelauslässe 46 wieder abgeführt wird. Bei der Durchströmung der Kühlkanäle 42 nimmt das Kühlmittel Wärmeenergie auf, die zunächst aus den Brennräumen 32 auf die angrenzenden Wandungen des Zylindergehäuses 10 und anschließend auf das in den Kühlkanälen 42 strömende Kühlmittel übergeht. Dadurch wird die gewünschte Kühlung der Brennräume 32 und des Zylindergehäuses 10 der Brennkraftmaschine erreicht. Die aufgenommene Wärmeenergie wird von dem Kühlmittel in einem nicht dargestellten Umgebungswärmetauscher des Kühlsystems an ein weiteres Kühlmedium, insbesondere Umgebungsluft, abgeführt. Das Kühlmittel kann dann wieder über die Kühlmitteleinlässe 44 in die Kühlmäntel des Zylindergehäuses 10 rezirkuliert werden.
  • Bei dem Zylindergehäuse der in der Fig. 1 dargestellten Brennkraftmaschine ebenso wie bei dem dazu im Wesentlichen identischen Zylindergehäuse 10 gemäß der Fig. 2 sind die Kühlmäntel jeweils in lediglich einem Abschnitt in der Nähe des oberen Endes der Zylinder 12 in das Zylindergehäuse 10 integriert, wobei die Längserstreckungen dieser Abschnitte beispielsweise ca. ein Viertel oder ein Drittel der gesamten Längserstreckungen der Zylinder 12 betragen können. Bei der Brennkraftmaschine gemäß der Fig. 1 und bei einer ein Zylindergehäuse 10 gemäß der Fig. 2 umfassenden Brennkraftmaschine erfolgt daher eine direkte Kühlung der Zylindergehäuse 10 lediglich in einem Bereich in der Nähe des jeweiligen oberen Totpunkts der Bewegungen der Kolben 14. Dies ist vorgesehen, weil dort im Betrieb einer Brennkraftmaschine primär Wärmeenergie erzeugt wird, die abgeführt werden soll, um die Temperaturen in den Brennräumen 32 und in den angrenzenden Bauteilen auf zulässige Werte begrenzt zu halten. In den übrigen Abschnitten der Zylinder 12 kann dagegen der Übergang von Wärmeenergie aus den Zylindern 12 in das Zylindergehäuse 10 und von dort in die übrigen Teile der Brennkraftmaschine so gering sein, dass auf eine direkte Kühlung verzichtet werden kann. Dies kann insbesondere bei einer Ausgestaltung der Zylindergehäuse 10 aus relativ gut Wärme leitenden Werkstoffen (z.B. Aluminiumlegierungen) der Fall sein, wodurch die übergehenden Wärmeenergie auch ohne direkte Kühlung ausreichend sicher abgeführt werden kann. In jedem Fall kann durch eine solche Ausgestaltung eine "Überkühlung" dieser Abschnitte der Zylindergehäuse 10 vermieden werden, die zu einer relativ hohen Viskosität von Schmiermittel, das zwischen den Außenflächen der Kolben 14 und den Wandungen der Zylinder 12 angeordnet ist, und damit zu relativ hohen Reibungsverlusten führen könnte.
  • Die Herstellung eines erfindungsgemäßen Zylindergehäuses 10 gemäß den Fig. 1 und 2 kann beispielsweise durch Gießen unter Verwendung eines Gießkerns 48, wie er beispielsweise in den Fig. 3 bis 5 dargestellt ist, erfolgen. Dieser Gießkern 48, der beispielsweise selbst durch Gießen aus einem Kernmaterial, das beispielsweise Salz als Grundmaterial umfasst, ausgebildet sein kann, umfasst eine Mehrzahl von kreisringförmig umlaufenden Ringabschnitten 50, die zur Ausbildung jeweils eines Kühlkanals des herzustellenden Zylindergehäuses 10 dienen, wobei mehrere (im vorliegenden Ausführungsbeispiel vier) Gruppen vorgesehen sind, die jeweils eine Mehrzahl von Ringabschnitten 50 umfassen, die in koaxialer Ausrichtung und axial beabstandet zueinander angeordnet sind. Jede dieser Gruppen von Ringabschnitten 50 bildet einen einem Zylinder 12 des herzustellenden Zylindergehäuses 10 zugeordneten Kühlmantel aus. Die Gießform bildet weiterhin für jede der Gruppen von Ringabschnitten 50 jeweils zwei Anschlussabschnitte 52 aus, die bezüglich der dazugehörigen Ringabschnitte 50 einander diagonal gegenüberliegend angeordnet sind und die in die dazugehörigen Ringabschnitte 50 übergehen. Diese Anschlussabschnitte 52 sind dafür vorgesehen, einen Kühlmitteleinlass 44 sowie einen Kühlmittelauslass 46 für die dazugehörigen, von den Kühlkanälen 42 ausgebildeten Kühlmäntel auszubilden.
  • Wie es sich insbesondere aus der Fig. 6 ergibt gehen auch die jeweils auf gleicher (axialer) Höhe liegenden Ringabschnitte 50 benachbarter Gruppen in jeweils einem Umfangsabschnitt ineinander über, so dass sich für die durch die Ringabschnitte 50 ausgebildeten Kühlkanäle 42 eine fluidleitende Verbindung miteinander beziehungsweise ein integraler Abschnitt, der jeweils zu zwei radial benachbarten Kühlkanälen 42 gehört, ergibt. Diese Ausgestaltung des Gießkerns 48 beziehungsweise die dadurch erreichte Ausgestaltung der Kühlkanäle 42 ermöglicht eine Integration von hinsichtlich der Strömungsquerschnitte ausreichend groß dimensionierten Kühlkanälen 42 in relativ schmale Trennstege 54 (vgl. Fig. 2; z.B. ca. 8 mm Breite im engsten Abschnitt), die jeweils zwischen benachbarten Zylindern 12 der erfindungsgemäßen Zylindergehäuse 10 ausgebildet sind. Folglich kann trotz relativ kompakter Abmessungen der Zylindergehäuse 10, die durch eine schmale Dimensionierung der Trennstege 54 ermöglicht wird, eine ausreichende Kühlleistung auch im Bereich dieser Trennstege 54 realisiert werden.
  • Bei dem Gießkern gemäß den Fig. 3 bis 5 ist ergänzend vorgesehen, dass jeweils zwei axial beabstandete Ringabschnitte 50 durch mehrere (im vorliegenden Ausgestaltungsbeispiel vier) Verbindungsabschnitte 56 miteinander verbunden sind, wodurch die Stabilität des Gießkerns 48 in den von den Anschlussabschnitten 52 beabstandeten Bereichen der Ringabschnitte 50 erhöht werden kann, um ein Versagen des Gießkerns 48 beim Gießen eines Zylindergehäuses 10 zu vermeiden. Diese Verbindungsabschnitte 56 führen zur Ausbildung von jeweils einem Verbindungskanal (nicht sichtbar), der zwei axial beabstandete Kühlkanäle 42 miteinander fluidleitend verbindet. Über die Verbindungskanäle kann Kühlmittel zwischen den Kühlkanälen 42 überströmen. Um zu vermeiden, dass sich in diesen Verbindungskanälen Kühlmittel staut, sind diese und somit auch die Verbindungsabschnitte 56 des Gießkerns 48 schräg beziehungsweise nicht-parallel bezüglich der (koaxialen) Mittellängsachsen 58 der Kühlkanäle 42 beziehungsweise der Ringabschnitte 50 ausgerichtet. Dadurch ergeben sich für die jeweils zwei Mündungen der Verbindungsabschnitte 56 in die Kühlkanäle 42 unterschiedliche Abstände (bezüglich der Umfangsrichtung) zu dem dazugehörigen Kühlmitteleinlass 44 sowie zu dem dazugehörigen Kühlmittelauslass 46 und daraus folgend zumindest geringfügig unterschiedliche hydraulische Drücke in diesen Mündungen. Dies führt zu Druckgefällen über den Verbindungsabschnitten 56, wodurch eine Durchströmung der Verbindungsabschnitte 56 gefördert wird.
  • BEZUGSZEICHENLISTE
  • 10
    Zylindergehäuse
    12
    Zylinder
    14
    Kolben
    16
    Pleuel
    18
    Kurbelzapfen
    20
    Kurbelwelle
    22
    Kurbelgehäuse
    24
    Ölwanne
    26
    Längsachse des Kolbens/Zylinders
    28
    Rotationsachse der Kurbelwelle
    30
    Längsachse/Rotationsachse eines Kurbelzapfens
    32
    Brennraum
    34
    Zylinderkopf
    36
    Injektor
    38
    Einlassventil
    40
    Auslassventil
    42
    Kühlkanal
    44
    Kühlmitteleinlass
    46
    Kühlmittelauslass
    48
    Gießkern
    50
    Ringabschnitt
    52
    Anschlussabschnitt
    54
    Trennsteg
    56
    Verbindungsabschnitt
    58
    Mittellängsachse eines Kühlkanals/Ringabschnitts

Claims (11)

  1. Zylindergehäuse (10) für eine Hubkolbenvorrichtung mit mindestens zwei Zylindern (12), die jeweils zur Aufnahme eines Kolbens (14) der Hubkolbenvorrichtung vorgesehen sind, und mit für jeden der Zylinder (12) einem integralen, die Zylinder (12) umfangsseitig umgebenden Kühlmantel, wobei die Kühlmäntel in eine Mehrzahl von geschlossen umlaufenden Kühlkanälen (42) unterteilt sind und wobei in zumindest einen der Kühlmäntel ein Kühlmitteleinlass (44) und in zumindest einen der Kühlmäntel ein Kühlmittelauslass (46) mündet, wobei von den Kühlkanälen (42) solche, die verschiedenen der Zylinder zugeordnet sind, zwischen den Zylindern (12) ineinander übergehen, dadurch gekennzeichnet, dass in jeden der Kühlmäntel ein Kühlmitteleinlass (44) und ein Kühlmittelauslass (46) mündet, wobei der Kühlmitteleinlass (44) und der Kühlmittelauslass (46) in Umfangsrichtung des dazugehörigen Zylinders (12) versetzt angeordnet sind.
  2. Zylindergehäuse (10) gemäß Anspruch 1, dadurch gekennzeichnet, dass der Kühlmitteleinlass (44) und der Kühlmittelauslass (46) bezogen auf die Längsrichtung des dazugehörigen Zylinders auf der gleichen Höhe angeordnet sind.
  3. Zylindergehäuse (10) gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Strömungsquerschnitt mindestens eines Kühlkanals (42) kleiner als die Öffnungsquerschnitte des Kühlmitteleinlasses (44) und des Kühlmittelauslasses (46) ist.
  4. Zylindergehäuse (10) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der oder die Kühlmitteleinlässe (44) und/oder der oder die Kühlmittelauslässe (46) in jeden Kühlkanal (42) des diesen zugeordneten Kühlmantels münden.
  5. Zylindergehäuse (10) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kühlmäntel entlang der Längserstreckungen der Zylinder (12) nur abschnittsweise vorgesehen sind oder die Kühlkanäle (42) der Kühlmäntel entlang der Längserstreckungen der Zylinder (12) ungleichförmig ausgebildet und/oder angeordnet sind.
  6. Zylindergehäuse (10) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass benachbarte Kühlkanäle (42) eines Kühlmantels direkt mittels mindestens eines Verbindungskanals miteinander verbunden sind.
  7. Zylindergehäuse (10) gemäß Anspruch 6, dadurch gekennzeichnet, dass der Verbindungskanal schräg bezüglich der Längsachse (26) des dazugehörigen Zylinders (12) verlaufend ausgebildet ist.
  8. Verfahren zur Herstellung eines Zylindergehäuses (10) gemäß einem der vorhergehenden Ansprüche, gekennzeichnet durch die Ausbildung mittels eines generativen Fertigungsverfahrens oder durch Gießen unter Verwendung eines zumindest die Kühlmäntel ausbildenden, verlorenen Gießkerns (48).
  9. Verfahren gemäß Anspruch 8, gekennzeichnet durch die Verwendung eines löslichen Grundmaterials für den Gießkern (48).
  10. Gießkern (48) zur Verwendung in einem Verfahren gemäß Anspruch 8 oder 9,
    gekennzeichnet durch
    - eine Mehrzahl von Ringabschnitten (50), die in Gruppen jeweils zur Ausbildung eines Kühlkanals (42) eines der Kühlmäntel vorgesehen sind, wobei radial benachbarte Ringabschnitte (50), die verschiedenen der Gruppen zugeordnet sind, in einem Umfangsabschnitt ineinander übergehen und
    - jeweils einen zur Ausbildung eines Kühlmitteleinlasses (44) jedes Kühlmantels vorgesehenen Anschlussabschnitt (52) und jeweils einen zur Ausbildung eines Kühlmittelauslasses (46) jedes Kühlmantels vorgesehenen Anschlussabschnitt (52), wobei die Anschlussabschnitte (52) in Umfangsrichtung der Ringabschnitte (50) des jeweiligen Kühlmantels versetzt angeordnet sind.
  11. Gießkern gemäß Anspruch 10, gekennzeichnet durch zumindest einen Verbindungsabschnitt (56), der axial benachbarte Ringabschnitte (50) miteinander verbindet.
EP17206712.6A 2016-12-23 2017-12-12 Zylindergehäuse, verfahren zur herstellung eines zylindergehäuses und giesskern Active EP3339617B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016125619.6A DE102016125619A1 (de) 2016-12-23 2016-12-23 Zylindergehäuse, Verfahren zur Herstellung eines Zylindergehäuses und Gießkern

Publications (2)

Publication Number Publication Date
EP3339617A1 EP3339617A1 (de) 2018-06-27
EP3339617B1 true EP3339617B1 (de) 2021-02-17

Family

ID=60673293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17206712.6A Active EP3339617B1 (de) 2016-12-23 2017-12-12 Zylindergehäuse, verfahren zur herstellung eines zylindergehäuses und giesskern

Country Status (2)

Country Link
EP (1) EP3339617B1 (de)
DE (1) DE102016125619A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019110566A1 (de) * 2019-04-24 2020-10-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kurbelgehäuse sowie Verfahren zu dessen Herstellung
DE102019112918B3 (de) 2019-05-16 2020-07-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kern zur Verwendung bei einer gießtechnischen Herstellung eines Kurbelgehäuses
DE102019119737A1 (de) * 2019-07-22 2021-01-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlmittelkreislauf für einen Motorblock einer Verbrennungskraftmaschine
DE102019119734B3 (de) * 2019-07-22 2020-12-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlmittelkreislauf für einen Motorblock einer Verbrennungskraftmaschine
DE102019128765B4 (de) * 2019-10-24 2022-05-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlmittelkreislauf für einen Motorblock einer Verbrennungskraftmaschine
DE102020128705B3 (de) 2020-11-02 2022-02-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlkanalanordnung zum Kühlen eines Zylindergehäuses einer Brennkraftmaschine
DE102021120984B3 (de) 2020-11-10 2022-02-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kurbelgehäuse für eine Verbrennungskraftmaschine
DE102020133308B3 (de) 2020-12-14 2022-02-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlkanalanordnung zum Kühlen eines Zylindergehäuses einer Brennkraftmaschine
CN115971424A (zh) * 2022-12-30 2023-04-18 东风商用车有限公司 一种发动机缸盖冷却结构及冷却方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959163A (en) * 1958-04-08 1960-11-08 Engineering Res & Applic Ltd Internal combustion engines

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2464462A (en) 1945-10-10 1949-03-15 Ricardo Harry Ralph Cylinder for internal-combustion engines
US3086505A (en) 1960-11-14 1963-04-23 Cooper Bessemer Corp Cylinder construction for internal combustion engines
JPS5254682Y2 (de) * 1973-01-20 1977-12-10
IT8553976V0 (it) 1985-10-25 1985-10-25 Fiat Ricerche Motore a combustione interna con raffreddamento dei cilindri solo in corrispondenza dei punti morti del la corsa dello stantuffo
DE3601383A1 (de) * 1986-01-18 1987-07-23 Kloeckner Humboldt Deutz Ag Kurbelgehaeuse mit eingegossenen kuehlraeumen
JP2567298B2 (ja) * 1990-11-29 1996-12-25 帝国ピストンリング株式会社 多気筒エンジンにおけるシリンダの冷却構造
JP2719853B2 (ja) 1991-05-09 1998-02-25 帝国ピストンリング株式会社 シリンダライナ
JP2780518B2 (ja) 1991-06-10 1998-07-30 トヨタ自動車株式会社 内燃機関の冷却装置
US5207189A (en) 1991-07-08 1993-05-04 Toyota Jidosha Kabushiki Kaisha Cooling system for an internal combustion engine
JPH0518319A (ja) 1991-07-12 1993-01-26 Toyota Motor Corp 内燃機関の冷却装置
DE19818589C2 (de) * 1998-04-25 2000-04-20 Daimler Chrysler Ag Brennkraftmaschine
DE10225062B4 (de) 2002-06-06 2005-02-10 Daimlerchrysler Ag Kühlkonzept für Zylinderlaufbuchsen
CA2555579A1 (en) 2004-02-09 2005-08-25 Benmaxx, Llc Fluid-cooled cylinder liner
US20100300394A1 (en) * 2009-05-28 2010-12-02 Gm Global Technology Operations, Inc. Metal alloy castings with cast-in-place tubes for fluid flow
DE102012224230A1 (de) * 2012-12-21 2014-06-26 Hirschvogel Umformtechnik Gmbh Verfahren zur Herstellung eines Kühlkanalkolbens für eine Brennkraftmaschine sowie ein nach diesem Verfahren hergestellter Kühlkanalkolben

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959163A (en) * 1958-04-08 1960-11-08 Engineering Res & Applic Ltd Internal combustion engines

Also Published As

Publication number Publication date
DE102016125619A1 (de) 2018-06-28
EP3339617A1 (de) 2018-06-27

Similar Documents

Publication Publication Date Title
EP3339617B1 (de) Zylindergehäuse, verfahren zur herstellung eines zylindergehäuses und giesskern
DE3032253C2 (de) Verbrennungsmotor, insbesondere Dieselmotor
DE102012215317B4 (de) Motorkühlsystem und Motorzylinderkopf mit integriertem Auspuffkrümmer
DE112012001371B4 (de) Verbrennungsmaschine mit verbesserter Kühlanordnung
DE102010038055A1 (de) Brennkraftmaschine mit Flüssigkeitskühlung
EP2003321A2 (de) Zylinderkopf für eine Brennkraftmaschine
DE3000129A1 (de) Zylinderkopf fuer kompressionsgezuendete brennkraftmaschinen jener bauart, bei welcher den zylindern des motors vorbrennkammern zugeordnet sind
DE1906171A1 (de) Verbrennungsmotor
DE102017204316A1 (de) Verbrennungsmotor
DE102010051761A1 (de) Verfahren zum Abkühlen eines Hochdruckstössels
DE60006079T2 (de) Freikolbenbrennkraftmaschine mit kolbenkopf und radial bewegbare kappe
EP3615783B1 (de) Zylinderkopfgehäuse, verfahren zur herstellung eines zylinderkopfgehäuses und giesskern
DE1960071A1 (de) Boxermotor
DE102016100411A1 (de) Hubkolbenvorrichtung sowie Brennkraftmaschine mit einer solchen Hubkolbenvorrichtung
EP0167976B1 (de) Brennkraftmaschine mit einer Kolbenkühlung und einer inneren Zylinderrohrkühlung
DE102014201339A1 (de) Zylinderkopf-Kühlstruktur für einen Verbrennungsmotor
EP3502453B1 (de) Kolben für eine hubkolben-verbrennungskraftmaschine
DE112013005665T5 (de) Zylinderblock mit integriertem Ölbad
WO2018054524A1 (de) Motor einer brennkraftmaschine, brennkraftmaschine und verfahren zum schmieren einer kolben- und pleuelbolzenlagerung beim betrieb des motors
DE102017201741A1 (de) Kolben-Pleuel-Vorrichtung zur direkten Kolbenschmierung und -kühlung
DE102020000317A1 (de) Brennkraftmaschine mit ölgekühltem Kolben und Verfahren zur Herstellung eines zugehörigen Kolbens
DE102014010156A1 (de) Anordnung eines Kolbens in einem Zylinder einer Hubkolben-Verbrennungskraftmaschine sowie Kolben für eine Hubkolben-Verbrennungskraftmaschine
DE19810790C2 (de) Motorzylinderblock
DE102019216820B4 (de) Flüssigkeitsgekühlte Brennkraftmaschine mit mindestens einem Zylinderrohr
DE102020200039B4 (de) Brennkraftmaschine mit mindestens einem flüssigkeitsgekühlten Zylinderrohr

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190102

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190805

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22C 9/04 20060101ALI20200915BHEP

Ipc: F01P 3/02 20060101ALN20200915BHEP

Ipc: F02F 1/14 20060101AFI20200915BHEP

INTG Intention to grant announced

Effective date: 20201012

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017009330

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1361801

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210518

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210517

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210517

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017009330

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211212

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171212

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231226

Year of fee payment: 7

Ref country code: DE

Payment date: 20231231

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1361801

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221212