EP3337327A1 - Non-toxic plant agent compositions and methods and uses thereof - Google Patents
Non-toxic plant agent compositions and methods and uses thereofInfo
- Publication number
- EP3337327A1 EP3337327A1 EP16839958.2A EP16839958A EP3337327A1 EP 3337327 A1 EP3337327 A1 EP 3337327A1 EP 16839958 A EP16839958 A EP 16839958A EP 3337327 A1 EP3337327 A1 EP 3337327A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- agent composition
- weight
- plant
- plant agent
- disclosed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 526
- 238000000034 method Methods 0.000 title claims abstract description 180
- 231100000252 nontoxic Toxicity 0.000 title claims description 11
- 230000003000 nontoxic effect Effects 0.000 title claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 467
- 239000012677 causal agent Substances 0.000 claims abstract description 105
- 201000010099 disease Diseases 0.000 claims abstract description 66
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 66
- 230000008635 plant growth Effects 0.000 claims abstract description 32
- 230000001965 increasing effect Effects 0.000 claims abstract description 30
- 239000006228 supernatant Substances 0.000 claims description 119
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 111
- 230000000813 microbial effect Effects 0.000 claims description 76
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 71
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims description 67
- 238000003973 irrigation Methods 0.000 claims description 64
- 230000002262 irrigation Effects 0.000 claims description 64
- 239000002736 nonionic surfactant Substances 0.000 claims description 64
- -1 sucrose ester Chemical class 0.000 claims description 49
- 239000002689 soil Substances 0.000 claims description 43
- 241000894006 Bacteria Species 0.000 claims description 41
- 230000000694 effects Effects 0.000 claims description 40
- 235000015097 nutrients Nutrition 0.000 claims description 36
- 239000011707 mineral Substances 0.000 claims description 33
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 32
- 150000001875 compounds Chemical class 0.000 claims description 31
- 108090000790 Enzymes Proteins 0.000 claims description 30
- 102000004190 Enzymes Human genes 0.000 claims description 30
- 230000015572 biosynthetic process Effects 0.000 claims description 30
- 230000000903 blocking effect Effects 0.000 claims description 30
- 241000894007 species Species 0.000 claims description 30
- 230000001580 bacterial effect Effects 0.000 claims description 26
- 210000004209 hair Anatomy 0.000 claims description 26
- 238000003786 synthesis reaction Methods 0.000 claims description 25
- 238000010521 absorption reaction Methods 0.000 claims description 20
- 239000003945 anionic surfactant Substances 0.000 claims description 20
- 230000009471 action Effects 0.000 claims description 19
- 150000002148 esters Chemical class 0.000 claims description 19
- 230000002411 adverse Effects 0.000 claims description 18
- 229930006000 Sucrose Natural products 0.000 claims description 17
- 230000002706 hydrostatic effect Effects 0.000 claims description 17
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 claims description 12
- 241000223218 Fusarium Species 0.000 claims description 12
- 238000012272 crop production Methods 0.000 claims description 12
- 229930182478 glucoside Natural products 0.000 claims description 11
- 150000001412 amines Chemical class 0.000 claims description 10
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 10
- 239000000194 fatty acid Substances 0.000 claims description 10
- 229930195729 fatty acid Natural products 0.000 claims description 10
- 229920001282 polysaccharide Polymers 0.000 claims description 10
- 239000005017 polysaccharide Substances 0.000 claims description 10
- 239000005720 sucrose Substances 0.000 claims description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 9
- 239000003876 biosurfactant Substances 0.000 claims description 9
- 150000004665 fatty acids Chemical class 0.000 claims description 9
- 241000722885 Brettanomyces Species 0.000 claims description 8
- 241000222120 Candida <Saccharomycetales> Species 0.000 claims description 8
- 241000124008 Mammalia Species 0.000 claims description 8
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 8
- 241000223252 Rhodotorula Species 0.000 claims description 8
- 150000003973 alkyl amines Chemical class 0.000 claims description 8
- 150000002191 fatty alcohols Chemical class 0.000 claims description 8
- 229920000570 polyether Polymers 0.000 claims description 8
- 229920000223 polyglycerol Polymers 0.000 claims description 8
- 241000192001 Pediococcus Species 0.000 claims description 7
- 241000082085 Verticillium <Phyllachorales> Species 0.000 claims description 7
- 150000001298 alcohols Chemical class 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 241000228143 Penicillium Species 0.000 claims description 5
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical class CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 claims description 4
- DUIOKRXOKLLURE-UHFFFAOYSA-N 2-octylphenol Chemical class CCCCCCCCC1=CC=CC=C1O DUIOKRXOKLLURE-UHFFFAOYSA-N 0.000 claims description 4
- 241000048017 Cyberlindnera Species 0.000 claims description 4
- 241000222039 Cystofilobasidium Species 0.000 claims description 4
- 241000235035 Debaryomyces Species 0.000 claims description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 4
- 241000159512 Geotrichum Species 0.000 claims description 4
- 241001149669 Hanseniaspora Species 0.000 claims description 4
- 241000235644 Issatchenkia Species 0.000 claims description 4
- 241001233945 Kazachstania Species 0.000 claims description 4
- 241000235649 Kluyveromyces Species 0.000 claims description 4
- 241001121967 Lecanicillium Species 0.000 claims description 4
- 241000235395 Mucor Species 0.000 claims description 4
- 241000221960 Neurospora Species 0.000 claims description 4
- 241000235648 Pichia Species 0.000 claims description 4
- 241000235527 Rhizopus Species 0.000 claims description 4
- 241000235070 Saccharomyces Species 0.000 claims description 4
- 241000235346 Schizosaccharomyces Species 0.000 claims description 4
- 241000235006 Torulaspora Species 0.000 claims description 4
- 241000235013 Yarrowia Species 0.000 claims description 4
- 241000235017 Zygosaccharomyces Species 0.000 claims description 4
- 241001229690 Zygotorulaspora Species 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- 239000004359 castor oil Substances 0.000 claims description 4
- 235000019438 castor oil Nutrition 0.000 claims description 4
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical class CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 claims description 4
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical class CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 claims description 4
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims description 4
- UBHWBODXJBSFLH-UHFFFAOYSA-N hexadecan-1-ol;octadecan-1-ol Chemical class CCCCCCCCCCCCCCCCO.CCCCCCCCCCCCCCCCCCO UBHWBODXJBSFLH-UHFFFAOYSA-N 0.000 claims description 4
- 229920000847 nonoxynol Polymers 0.000 claims description 4
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical group CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 claims description 4
- 229940055577 oleyl alcohol Drugs 0.000 claims description 4
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical class C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims description 3
- 230000000845 anti-microbial effect Effects 0.000 claims 1
- 239000004599 antimicrobial Substances 0.000 claims 1
- 235000013399 edible fruits Nutrition 0.000 abstract description 33
- 238000004519 manufacturing process Methods 0.000 abstract description 18
- 241000196324 Embryophyta Species 0.000 description 647
- 238000000855 fermentation Methods 0.000 description 65
- 230000004151 fermentation Effects 0.000 description 65
- 238000011282 treatment Methods 0.000 description 43
- 238000006243 chemical reaction Methods 0.000 description 34
- 239000004094 surface-active agent Substances 0.000 description 33
- 235000010755 mineral Nutrition 0.000 description 32
- 241000233866 Fungi Species 0.000 description 29
- 229940088598 enzyme Drugs 0.000 description 29
- 230000036541 health Effects 0.000 description 23
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 21
- 244000005700 microbiome Species 0.000 description 21
- 230000032258 transport Effects 0.000 description 20
- 210000001519 tissue Anatomy 0.000 description 19
- 241000244206 Nematoda Species 0.000 description 18
- 241000700605 Viruses Species 0.000 description 18
- 230000001276 controlling effect Effects 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 17
- 235000013339 cereals Nutrition 0.000 description 17
- 230000012010 growth Effects 0.000 description 17
- 235000013379 molasses Nutrition 0.000 description 17
- 230000008569 process Effects 0.000 description 16
- 229960004793 sucrose Drugs 0.000 description 16
- 235000000346 sugar Nutrition 0.000 description 16
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 15
- 230000001681 protective effect Effects 0.000 description 15
- 206010039509 Scab Diseases 0.000 description 14
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 14
- 230000002538 fungal effect Effects 0.000 description 14
- 239000000843 powder Substances 0.000 description 14
- 239000007789 gas Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 238000010790 dilution Methods 0.000 description 12
- 239000012895 dilution Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 240000007594 Oryza sativa Species 0.000 description 11
- 229910019142 PO4 Inorganic materials 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 235000021317 phosphate Nutrition 0.000 description 11
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 10
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 10
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 241000233614 Phytophthora Species 0.000 description 10
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 10
- 240000003768 Solanum lycopersicum Species 0.000 description 10
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 10
- 229920000136 polysorbate Polymers 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 9
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 9
- 241000218922 Magnoliophyta Species 0.000 description 9
- 235000007164 Oryza sativa Nutrition 0.000 description 9
- 239000010452 phosphate Substances 0.000 description 9
- 229920001983 poloxamer Polymers 0.000 description 9
- 235000009566 rice Nutrition 0.000 description 9
- 235000011069 sorbitan monooleate Nutrition 0.000 description 9
- 239000001593 sorbitan monooleate Substances 0.000 description 9
- 229940035049 sorbitan monooleate Drugs 0.000 description 9
- 230000002792 vascular Effects 0.000 description 9
- 241000218631 Coniferophyta Species 0.000 description 8
- 241000282412 Homo Species 0.000 description 8
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical group [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 241000813090 Rhizoctonia solani Species 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 241001133184 Colletotrichum agaves Species 0.000 description 7
- 206010061217 Infestation Diseases 0.000 description 7
- 244000070406 Malus silvestris Species 0.000 description 7
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 7
- 241000589516 Pseudomonas Species 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 230000034994 death Effects 0.000 description 7
- 239000012153 distilled water Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 159000000003 magnesium salts Chemical class 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 235000018102 proteins Nutrition 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 241000233629 Phytophthora parasitica Species 0.000 description 6
- 241000209504 Poaceae Species 0.000 description 6
- 241000592342 Tracheophyta Species 0.000 description 6
- 244000301083 Ustilago maydis Species 0.000 description 6
- 239000003093 cationic surfactant Substances 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 150000008163 sugars Chemical class 0.000 description 6
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 5
- 239000004475 Arginine Substances 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 241000186216 Corynebacterium Species 0.000 description 5
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 5
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 239000004471 Glycine Substances 0.000 description 5
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 5
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 5
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 5
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 5
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 5
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 5
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 5
- 239000004472 Lysine Substances 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 5
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 5
- 241000208125 Nicotiana Species 0.000 description 5
- 240000007817 Olea europaea Species 0.000 description 5
- 235000002725 Olea europaea Nutrition 0.000 description 5
- 241001480007 Phomopsis Species 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- 241000985694 Polypodiopsida Species 0.000 description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 5
- 235000006040 Prunus persica var persica Nutrition 0.000 description 5
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 5
- 235000002595 Solanum tuberosum Nutrition 0.000 description 5
- 244000061456 Solanum tuberosum Species 0.000 description 5
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 5
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 5
- 239000004473 Threonine Substances 0.000 description 5
- 241000221561 Ustilaginales Species 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 235000004279 alanine Nutrition 0.000 description 5
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 5
- 235000009697 arginine Nutrition 0.000 description 5
- 235000003704 aspartic acid Nutrition 0.000 description 5
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 5
- 229960002685 biotin Drugs 0.000 description 5
- 235000020958 biotin Nutrition 0.000 description 5
- 239000011616 biotin Substances 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 210000000234 capsid Anatomy 0.000 description 5
- 238000006555 catalytic reaction Methods 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 5
- 235000018417 cysteine Nutrition 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 229960000304 folic acid Drugs 0.000 description 5
- 235000019152 folic acid Nutrition 0.000 description 5
- 239000011724 folic acid Substances 0.000 description 5
- 235000013922 glutamic acid Nutrition 0.000 description 5
- 239000004220 glutamic acid Substances 0.000 description 5
- 239000002563 ionic surfactant Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 230000035800 maturation Effects 0.000 description 5
- 229930182817 methionine Natural products 0.000 description 5
- 235000001968 nicotinic acid Nutrition 0.000 description 5
- 229960003512 nicotinic acid Drugs 0.000 description 5
- 239000011664 nicotinic acid Substances 0.000 description 5
- 235000019161 pantothenic acid Nutrition 0.000 description 5
- 229940055726 pantothenic acid Drugs 0.000 description 5
- 239000011713 pantothenic acid Substances 0.000 description 5
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 5
- 230000035790 physiological processes and functions Effects 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 235000019192 riboflavin Nutrition 0.000 description 5
- 229960002477 riboflavin Drugs 0.000 description 5
- 239000002151 riboflavin Substances 0.000 description 5
- 150000003333 secondary alcohols Chemical class 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 5
- 235000019157 thiamine Nutrition 0.000 description 5
- 229960003495 thiamine Drugs 0.000 description 5
- 239000011721 thiamine Substances 0.000 description 5
- 235000013311 vegetables Nutrition 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 241000589220 Acetobacter Species 0.000 description 4
- 241000223600 Alternaria Species 0.000 description 4
- 241000228438 Bipolaris maydis Species 0.000 description 4
- 241000195940 Bryophyta Species 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 4
- 241000222199 Colletotrichum Species 0.000 description 4
- 241000195947 Lycopodium Species 0.000 description 4
- 241001459558 Monographella nivalis Species 0.000 description 4
- 244000046052 Phaseolus vulgaris Species 0.000 description 4
- 241000221301 Puccinia graminis Species 0.000 description 4
- 241001246061 Puccinia triticina Species 0.000 description 4
- 241000221535 Pucciniales Species 0.000 description 4
- 244000305267 Quercus macrolepis Species 0.000 description 4
- 241001361634 Rhizoctonia Species 0.000 description 4
- 241000187747 Streptomyces Species 0.000 description 4
- 235000015919 Ustilago maydis Nutrition 0.000 description 4
- 241001464837 Viridiplantae Species 0.000 description 4
- 239000003905 agrochemical Substances 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 4
- 229940063953 ammonium lauryl sulfate Drugs 0.000 description 4
- 239000001110 calcium chloride Substances 0.000 description 4
- 229910001628 calcium chloride Inorganic materials 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000002478 diastatic effect Effects 0.000 description 4
- SOROIESOUPGGFO-UHFFFAOYSA-N diazolidinylurea Chemical compound OCNC(=O)N(CO)C1N(CO)C(=O)N(CO)C1=O SOROIESOUPGGFO-UHFFFAOYSA-N 0.000 description 4
- 229960001083 diazolidinylurea Drugs 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 230000035784 germination Effects 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- ZCTXEAQXZGPWFG-UHFFFAOYSA-N imidurea Chemical compound O=C1NC(=O)N(CO)C1NC(=O)NCNC(=O)NC1C(=O)NC(=O)N1CO ZCTXEAQXZGPWFG-UHFFFAOYSA-N 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000004310 lactic acid Substances 0.000 description 4
- 235000014655 lactic acid Nutrition 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 4
- 235000019341 magnesium sulphate Nutrition 0.000 description 4
- 230000010534 mechanism of action Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 230000029553 photosynthesis Effects 0.000 description 4
- 238000010672 photosynthesis Methods 0.000 description 4
- 235000012015 potatoes Nutrition 0.000 description 4
- 150000003141 primary amines Chemical class 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 150000003335 secondary amines Chemical class 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 4
- 239000004299 sodium benzoate Substances 0.000 description 4
- 235000010234 sodium benzoate Nutrition 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- 239000002888 zwitterionic surfactant Substances 0.000 description 4
- 241000193798 Aerococcus Species 0.000 description 3
- 241000223602 Alternaria alternata Species 0.000 description 3
- 244000144725 Amygdalus communis Species 0.000 description 3
- 235000011437 Amygdalus communis Nutrition 0.000 description 3
- 244000144730 Amygdalus persica Species 0.000 description 3
- 241001444083 Aphanomyces Species 0.000 description 3
- 241001425476 Apiosporina morbosa Species 0.000 description 3
- 241000186063 Arthrobacter Species 0.000 description 3
- 241000228212 Aspergillus Species 0.000 description 3
- 241000193830 Bacillus <bacterium> Species 0.000 description 3
- 241000186000 Bifidobacterium Species 0.000 description 3
- 241001480061 Blumeria graminis Species 0.000 description 3
- 241000190146 Botryosphaeria Species 0.000 description 3
- 241000157902 Brachybacterium Species 0.000 description 3
- 240000007124 Brassica oleracea Species 0.000 description 3
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 3
- 241000186146 Brevibacterium Species 0.000 description 3
- 241000206594 Carnobacterium Species 0.000 description 3
- 241001157813 Cercospora Species 0.000 description 3
- 241000221756 Cryphonectria parasitica Species 0.000 description 3
- 241000235819 Cytospora Species 0.000 description 3
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 3
- 241000125117 Elsinoe Species 0.000 description 3
- 241000194033 Enterococcus Species 0.000 description 3
- 241000588698 Erwinia Species 0.000 description 3
- 241000588722 Escherichia Species 0.000 description 3
- 241001231225 Eutypella Species 0.000 description 3
- 241001620302 Glomerella <beetle> Species 0.000 description 3
- 241000032681 Gluconacetobacter Species 0.000 description 3
- 241000589236 Gluconobacter Species 0.000 description 3
- 235000010469 Glycine max Nutrition 0.000 description 3
- 244000068988 Glycine max Species 0.000 description 3
- 241000588731 Hafnia Species 0.000 description 3
- 241000206596 Halomonas Species 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 3
- 241000579722 Kocuria Species 0.000 description 3
- 241000186660 Lactobacillus Species 0.000 description 3
- 241000194036 Lactococcus Species 0.000 description 3
- 241000192132 Leuconostoc Species 0.000 description 3
- 241000973040 Macrococcus Species 0.000 description 3
- 235000011430 Malus pumila Nutrition 0.000 description 3
- 235000015103 Malus silvestris Nutrition 0.000 description 3
- 241001467578 Microbacterium Species 0.000 description 3
- 241000192041 Micrococcus Species 0.000 description 3
- 241001226034 Nectria <echinoderm> Species 0.000 description 3
- 241000588653 Neisseria Species 0.000 description 3
- 241000202223 Oenococcus Species 0.000 description 3
- 241000682645 Phakopsora pachyrhizi Species 0.000 description 3
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 3
- 241000896242 Podosphaera Species 0.000 description 3
- 241000219000 Populus Species 0.000 description 3
- 241000186429 Propionibacterium Species 0.000 description 3
- 241000588769 Proteus <enterobacteria> Species 0.000 description 3
- 241000588671 Psychrobacter Species 0.000 description 3
- 241001123583 Puccinia striiformis Species 0.000 description 3
- 241000233639 Pythium Species 0.000 description 3
- 241000109329 Rosa xanthina Species 0.000 description 3
- 235000004789 Rosa xanthina Nutrition 0.000 description 3
- 241000607142 Salmonella Species 0.000 description 3
- 241000221662 Sclerotinia Species 0.000 description 3
- 241001219482 Spongospora Species 0.000 description 3
- 241000204117 Sporolactobacillus Species 0.000 description 3
- 241000191940 Staphylococcus Species 0.000 description 3
- 241000194017 Streptococcus Species 0.000 description 3
- 241000500334 Tetragenococcus Species 0.000 description 3
- 241000207194 Vagococcus Species 0.000 description 3
- 241000589634 Xanthomonas Species 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- 241000588901 Zymomonas Species 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 235000020224 almond Nutrition 0.000 description 3
- 102000016679 alpha-Glucosidases Human genes 0.000 description 3
- 108010028144 alpha-Glucosidases Proteins 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 235000021016 apples Nutrition 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 210000002615 epidermis Anatomy 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 229940039696 lactobacillus Drugs 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 230000033458 reproduction Effects 0.000 description 3
- 230000002786 root growth Effects 0.000 description 3
- DGSDBJMBHCQYGN-UHFFFAOYSA-M sodium;2-ethylhexyl sulfate Chemical compound [Na+].CCCCC(CC)COS([O-])(=O)=O DGSDBJMBHCQYGN-UHFFFAOYSA-M 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- YFSUTJLHUFNCNZ-UHFFFAOYSA-M 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1-sulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YFSUTJLHUFNCNZ-UHFFFAOYSA-M 0.000 description 2
- QHZLMUACJMDIAE-UHFFFAOYSA-N 1-monopalmitoylglycerol Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)CO QHZLMUACJMDIAE-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 2
- 241000589212 Acetobacter pasteurianus Species 0.000 description 2
- 235000016626 Agrimonia eupatoria Nutrition 0.000 description 2
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 2
- 241000919511 Albugo Species 0.000 description 2
- 241001157812 Alternaria brassicicola Species 0.000 description 2
- 241000266416 Alternaria japonica Species 0.000 description 2
- 241000323752 Alternaria longipes Species 0.000 description 2
- 241000213004 Alternaria solani Species 0.000 description 2
- 108010065511 Amylases Proteins 0.000 description 2
- 102000013142 Amylases Human genes 0.000 description 2
- 241000172143 Aphanomyces cochlioides Species 0.000 description 2
- 241000203069 Archaea Species 0.000 description 2
- 244000221226 Armillaria mellea Species 0.000 description 2
- 235000011569 Armillaria mellea Nutrition 0.000 description 2
- 241000216674 Armillaria tabescens Species 0.000 description 2
- 244000003416 Asparagus officinalis Species 0.000 description 2
- 235000005340 Asparagus officinalis Nutrition 0.000 description 2
- 241000258746 Asterina <sea star> Species 0.000 description 2
- 241001530056 Athelia rolfsii Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000342315 Basidiophora Species 0.000 description 2
- 241000702451 Begomovirus Species 0.000 description 2
- 241001450781 Bipolaris oryzae Species 0.000 description 2
- 241000123650 Botrytis cinerea Species 0.000 description 2
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 2
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 2
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 2
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 2
- 241000233684 Bremia Species 0.000 description 2
- 241000233685 Bremia lactucae Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000206600 Carnobacterium maltaromaticum Species 0.000 description 2
- 241001247237 Ceratocystis fagacearum Species 0.000 description 2
- 241000530549 Cercospora beticola Species 0.000 description 2
- 241000113401 Cercospora sojina Species 0.000 description 2
- 241000437818 Cercospora vignicola Species 0.000 description 2
- 241001620052 Cercosporella Species 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- 241000195628 Chlorophyta Species 0.000 description 2
- 241000228437 Cochliobolus Species 0.000 description 2
- 241001123536 Colletotrichum acutatum Species 0.000 description 2
- 241000222201 Colletotrichum capsici Species 0.000 description 2
- 241000152100 Colletotrichum horii Species 0.000 description 2
- 241000222235 Colletotrichum orbiculare Species 0.000 description 2
- 241000998302 Colletotrichum tabaci Species 0.000 description 2
- 241001266001 Cordyceps confragosa Species 0.000 description 2
- 241000609458 Corynespora Species 0.000 description 2
- 241001123528 Cronartium ribicola Species 0.000 description 2
- 241000192700 Cyanobacteria Species 0.000 description 2
- 241001345881 Cytospora sacculus Species 0.000 description 2
- 241001314253 Didymoeca Species 0.000 description 2
- 241000461780 Diplocarpon Species 0.000 description 2
- 241000663351 Diplocarpon rosae Species 0.000 description 2
- 241000901048 Elsinoe ampelina Species 0.000 description 2
- 241001564064 Elsinoe theae Species 0.000 description 2
- 102000010911 Enzyme Precursors Human genes 0.000 description 2
- 108010062466 Enzyme Precursors Proteins 0.000 description 2
- 241000758993 Equisetidae Species 0.000 description 2
- 241000588694 Erwinia amylovora Species 0.000 description 2
- 241000221787 Erysiphe Species 0.000 description 2
- 241000510928 Erysiphe necator Species 0.000 description 2
- 241001489205 Erysiphe pisi Species 0.000 description 2
- 241001411323 Exobasidium reticulatum Species 0.000 description 2
- 240000009088 Fragaria x ananassa Species 0.000 description 2
- 241000122692 Fusarium avenaceum Species 0.000 description 2
- 241000223194 Fusarium culmorum Species 0.000 description 2
- 241000223221 Fusarium oxysporum Species 0.000 description 2
- 241000223247 Gloeocercospora Species 0.000 description 2
- 241000461774 Gloeosporium Species 0.000 description 2
- 241001344107 Gnomonia Species 0.000 description 2
- 241000896246 Golovinomyces cichoracearum Species 0.000 description 2
- 241001194823 Gymnosporangium asiaticum Species 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- 241001247311 Kocuria rhizophila Species 0.000 description 2
- 241000191953 Kocuria varians Species 0.000 description 2
- 240000001929 Lactobacillus brevis Species 0.000 description 2
- 241000186840 Lactobacillus fermentum Species 0.000 description 2
- 241000186851 Lactobacillus mali Species 0.000 description 2
- ARIWANIATODDMH-UHFFFAOYSA-N Lauric acid monoglyceride Natural products CCCCCCCCCCCC(=O)OCC(O)CO ARIWANIATODDMH-UHFFFAOYSA-N 0.000 description 2
- 241000196323 Marchantiophyta Species 0.000 description 2
- 241001022799 Microdochium sorghi Species 0.000 description 2
- 241001314407 Microsphaera Species 0.000 description 2
- 241001518731 Monilinia fructicola Species 0.000 description 2
- 241001363493 Monilinia mali Species 0.000 description 2
- 241000235526 Mucor racemosus Species 0.000 description 2
- 241000204031 Mycoplasma Species 0.000 description 2
- 241001433116 Mycosphaerella nawae Species 0.000 description 2
- 241000083073 Neopseudocercosporella capsellae Species 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 241001329956 Nothopassalora personata Species 0.000 description 2
- 241000315044 Passalora arachidicola Species 0.000 description 2
- 241000222291 Passalora fulva Species 0.000 description 2
- 241001507673 Penicillium digitatum Species 0.000 description 2
- 241001223281 Peronospora Species 0.000 description 2
- 241001670201 Peronospora destructor Species 0.000 description 2
- 241001223280 Peronospora sparsa Species 0.000 description 2
- 241000582441 Peronospora tabacina Species 0.000 description 2
- 244000062780 Petroselinum sativum Species 0.000 description 2
- 241000199919 Phaeophyceae Species 0.000 description 2
- 241001098206 Phakopsora ampelopsidis Species 0.000 description 2
- 241001409766 Phragmidium Species 0.000 description 2
- 241000579813 Phyllactinia Species 0.000 description 2
- 241000210649 Phyllosticta ampelicida Species 0.000 description 2
- 241001270527 Phyllosticta citrullina Species 0.000 description 2
- 241000162671 Phytophthora erythroseptica Species 0.000 description 2
- 241000233622 Phytophthora infestans Species 0.000 description 2
- 231100000674 Phytotoxicity Toxicity 0.000 description 2
- 241000235645 Pichia kudriavzevii Species 0.000 description 2
- 241001503436 Plasmodiophora brassicae Species 0.000 description 2
- 241000233626 Plasmopara Species 0.000 description 2
- 241001281803 Plasmopara viticola Species 0.000 description 2
- 241000317981 Podosphaera fuliginea Species 0.000 description 2
- 241001337928 Podosphaera leucotricha Species 0.000 description 2
- 241001294742 Podosphaera macularis Species 0.000 description 2
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 2
- 241000710078 Potyvirus Species 0.000 description 2
- 235000009827 Prunus armeniaca Nutrition 0.000 description 2
- 244000018633 Prunus armeniaca Species 0.000 description 2
- 241001290151 Prunus avium subsp. avium Species 0.000 description 2
- 240000005809 Prunus persica Species 0.000 description 2
- 241000301598 Pseudocercospora kaki Species 0.000 description 2
- 241000589615 Pseudomonas syringae Species 0.000 description 2
- 241001281802 Pseudoperonospora Species 0.000 description 2
- 241001281805 Pseudoperonospora cubensis Species 0.000 description 2
- 241000221300 Puccinia Species 0.000 description 2
- 241001246058 Puccinia allii Species 0.000 description 2
- 241001123559 Puccinia hordei Species 0.000 description 2
- 241000312975 Puccinia horiana Species 0.000 description 2
- 241000228453 Pyrenophora Species 0.000 description 2
- 241000190117 Pyrenophora tritici-repentis Species 0.000 description 2
- 241000206572 Rhodophyta Species 0.000 description 2
- 241001123227 Saccharomyces pastorianus Species 0.000 description 2
- 240000000111 Saccharum officinarum Species 0.000 description 2
- 235000007201 Saccharum officinarum Nutrition 0.000 description 2
- 241000825109 Schizothyrium Species 0.000 description 2
- 241000342317 Sclerospora Species 0.000 description 2
- 241001518640 Sclerotinia homoeocarpa Species 0.000 description 2
- 241000221696 Sclerotinia sclerotiorum Species 0.000 description 2
- 241001533598 Septoria Species 0.000 description 2
- 241000336765 Septoria chrysanthemella Species 0.000 description 2
- 241001597349 Septoria glycines Species 0.000 description 2
- 240000003461 Setaria viridis Species 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 235000002597 Solanum melongena Nutrition 0.000 description 2
- 244000061458 Solanum melongena Species 0.000 description 2
- 241000579741 Sphaerotheca <fungi> Species 0.000 description 2
- 241000187181 Streptomyces scabiei Species 0.000 description 2
- 241000228446 Taphrina Species 0.000 description 2
- 241000228448 Taphrina deformans Species 0.000 description 2
- 244000269722 Thea sinensis Species 0.000 description 2
- 241000722093 Tilletia caries Species 0.000 description 2
- 241000723848 Tobamovirus Species 0.000 description 2
- 244000288561 Torulaspora delbrueckii Species 0.000 description 2
- 241000684582 Torulaspora microellipsoides Species 0.000 description 2
- 241000959260 Typhula Species 0.000 description 2
- 241000333201 Typhula incarnata Species 0.000 description 2
- 241000510929 Uncinula Species 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 241000122124 Urnula Species 0.000 description 2
- 241000007070 Ustilago nuda Species 0.000 description 2
- 241000233791 Ustilago tritici Species 0.000 description 2
- 241001669640 Venturia carpophila Species 0.000 description 2
- 241000228452 Venturia inaequalis Species 0.000 description 2
- 241001669638 Venturia nashicola Species 0.000 description 2
- 241001006642 Venturia pyrina Species 0.000 description 2
- 241001123669 Verticillium albo-atrum Species 0.000 description 2
- 241001123668 Verticillium dahliae Species 0.000 description 2
- 235000009754 Vitis X bourquina Nutrition 0.000 description 2
- 235000012333 Vitis X labruscana Nutrition 0.000 description 2
- 240000006365 Vitis vinifera Species 0.000 description 2
- 235000014787 Vitis vinifera Nutrition 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 241000589652 Xanthomonas oryzae Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- KGUHOFWIXKIURA-VQXBOQCVSA-N [(2r,3s,4s,5r,6r)-6-[(2s,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl dodecanoate Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](COC(=O)CCCCCCCCCCC)O[C@@H]1O[C@@]1(CO)[C@@H](O)[C@H](O)[C@@H](CO)O1 KGUHOFWIXKIURA-VQXBOQCVSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- 229960001950 benzethonium chloride Drugs 0.000 description 2
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- 230000032770 biofilm formation Effects 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 239000008366 buffered solution Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000032823 cell division Effects 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 2
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 2
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 2
- 235000019693 cherries Nutrition 0.000 description 2
- 210000003763 chloroplast Anatomy 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 235000008504 concentrate Nutrition 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 244000038559 crop plants Species 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- QECQLMGRLZYSEW-UHFFFAOYSA-N decoxybenzene Chemical compound CCCCCCCCCCOC1=CC=CC=C1 QECQLMGRLZYSEW-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- PSLWZOIUBRXAQW-UHFFFAOYSA-M dimethyl(dioctadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC PSLWZOIUBRXAQW-UHFFFAOYSA-M 0.000 description 2
- 231100000676 disease causative agent Toxicity 0.000 description 2
- 210000001339 epidermal cell Anatomy 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 244000037666 field crops Species 0.000 description 2
- 150000008131 glucosides Chemical class 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 208000037824 growth disorder Diseases 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 235000003642 hunger Nutrition 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 235000021109 kimchi Nutrition 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 231100000344 non-irritating Toxicity 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 235000014571 nuts Nutrition 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 235000011197 perejil Nutrition 0.000 description 2
- 230000000243 photosynthetic effect Effects 0.000 description 2
- 229950008882 polysorbate Drugs 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- LXNHXLLTXMVWPM-UHFFFAOYSA-N pyridoxine Chemical compound CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 2
- 230000018612 quorum sensing Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000001850 reproductive effect Effects 0.000 description 2
- WBHHMMIMDMUBKC-QJWNTBNXSA-M ricinoleate Chemical compound CCCCCC[C@@H](O)C\C=C/CCCCCCCC([O-])=O WBHHMMIMDMUBKC-QJWNTBNXSA-M 0.000 description 2
- 229940066675 ricinoleate Drugs 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- 229940032085 sucrose monolaurate Drugs 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 2
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 2
- HEGSGKPQLMEBJL-RQICVUQASA-N (2r,3s,4s,5r)-2-(hydroxymethyl)-6-octoxyoxane-3,4,5-triol Chemical compound CCCCCCCCOC1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RQICVUQASA-N 0.000 description 1
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 description 1
- HPEGNLMTTNTJSP-HENWMNBSSA-N (3r,4s,5s,6r)-2-heptylsulfanyl-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound CCCCCCCSC1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HPEGNLMTTNTJSP-HENWMNBSSA-N 0.000 description 1
- JGTNAGYHADQMCM-UHFFFAOYSA-M 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F JGTNAGYHADQMCM-UHFFFAOYSA-M 0.000 description 1
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical class CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- QIZPVNNYFKFJAD-UHFFFAOYSA-N 1-chloro-2-prop-1-ynylbenzene Chemical compound CC#CC1=CC=CC=C1Cl QIZPVNNYFKFJAD-UHFFFAOYSA-N 0.000 description 1
- ARIWANIATODDMH-AWEZNQCLSA-N 1-lauroyl-sn-glycerol Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)CO ARIWANIATODDMH-AWEZNQCLSA-N 0.000 description 1
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 1
- SNGREZUHAYWORS-UHFFFAOYSA-M 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoate Chemical compound [O-]C(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-M 0.000 description 1
- UZUFPBIDKMEQEQ-UHFFFAOYSA-M 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluorononanoate Chemical compound [O-]C(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F UZUFPBIDKMEQEQ-UHFFFAOYSA-M 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- IXOCGRPBILEGOX-UHFFFAOYSA-N 3-[3-(dodecanoylamino)propyl-dimethylazaniumyl]-2-hydroxypropane-1-sulfonate Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC(O)CS([O-])(=O)=O IXOCGRPBILEGOX-UHFFFAOYSA-N 0.000 description 1
- CDOUZKKFHVEKRI-UHFFFAOYSA-N 3-bromo-n-[(prop-2-enoylamino)methyl]propanamide Chemical compound BrCCC(=O)NCNC(=O)C=C CDOUZKKFHVEKRI-UHFFFAOYSA-N 0.000 description 1
- ISAVYTVYFVQUDY-UHFFFAOYSA-N 4-tert-Octylphenol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(O)C=C1 ISAVYTVYFVQUDY-UHFFFAOYSA-N 0.000 description 1
- 229940046305 5-bromo-5-nitro-1,3-dioxane Drugs 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- 244000155688 Abutilon pannosum Species 0.000 description 1
- 241000208140 Acer Species 0.000 description 1
- 235000004422 Acer negundo Nutrition 0.000 description 1
- 244000046151 Acer negundo Species 0.000 description 1
- 240000004731 Acer pseudoplatanus Species 0.000 description 1
- 235000002754 Acer pseudoplatanus Nutrition 0.000 description 1
- 244000283763 Acetobacter aceti Species 0.000 description 1
- 241000209191 Acetobacter fabarum Species 0.000 description 1
- 241001497546 Acetobacter lovaniensis Species 0.000 description 1
- 241000776559 Acetobacter malorum Species 0.000 description 1
- 241000923672 Acetobacter pomorum Species 0.000 description 1
- 241001310552 Acetobacter syzygii Species 0.000 description 1
- 241001497552 Acetobacter tropicalis Species 0.000 description 1
- 244000235858 Acetobacter xylinum Species 0.000 description 1
- 241000186426 Acidipropionibacterium acidipropionici Species 0.000 description 1
- 241000186335 Acidipropionibacterium thoenii Species 0.000 description 1
- 241000580482 Acidobacteria Species 0.000 description 1
- 241001156739 Actinobacteria <phylum> Species 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000970968 Aeriscardovia Species 0.000 description 1
- 241000954717 Aesculus californica Species 0.000 description 1
- 241000702449 African cassava mosaic virus Species 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 241001163841 Albugo ipomoeae-panduratae Species 0.000 description 1
- 235000017334 Alcea rosea Nutrition 0.000 description 1
- 240000000530 Alcea rosea Species 0.000 description 1
- 235000006667 Aleurites moluccana Nutrition 0.000 description 1
- 241000724328 Alfalfa mosaic virus Species 0.000 description 1
- 235000008553 Allium fistulosum Nutrition 0.000 description 1
- 244000257727 Allium fistulosum Species 0.000 description 1
- 229920000310 Alpha glucan Polymers 0.000 description 1
- 235000017303 Althaea rosea Nutrition 0.000 description 1
- 241001092083 Amelanchier Species 0.000 description 1
- 235000003840 Amygdalus nana Nutrition 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 241001237431 Anomala Species 0.000 description 1
- 240000001436 Antirrhinum majus Species 0.000 description 1
- 241001550224 Apha Species 0.000 description 1
- 241000294569 Aphelenchoides Species 0.000 description 1
- 241001142141 Aquificae <phylum> Species 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 241000233788 Arecaceae Species 0.000 description 1
- 241000949061 Armatimonadetes Species 0.000 description 1
- 241000216654 Armillaria Species 0.000 description 1
- 241000235349 Ascomycota Species 0.000 description 1
- 241001642196 Aspergillus acidus Species 0.000 description 1
- 241001225321 Aspergillus fumigatus Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 241000131386 Aspergillus sojae Species 0.000 description 1
- 241000193749 Bacillus coagulans Species 0.000 description 1
- 241000194108 Bacillus licheniformis Species 0.000 description 1
- 241000194103 Bacillus pumilus Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000605059 Bacteroidetes Species 0.000 description 1
- 241000221198 Basidiomycota Species 0.000 description 1
- 241000196477 Beet mosaic virus Species 0.000 description 1
- 241000580217 Belonolaimus Species 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 241000219495 Betulaceae Species 0.000 description 1
- 241000186018 Bifidobacterium adolescentis Species 0.000 description 1
- 241001134770 Bifidobacterium animalis Species 0.000 description 1
- 241000901050 Bifidobacterium animalis subsp. lactis Species 0.000 description 1
- 241000186016 Bifidobacterium bifidum Species 0.000 description 1
- 241001608472 Bifidobacterium longum Species 0.000 description 1
- 241000186015 Bifidobacterium longum subsp. infantis Species 0.000 description 1
- 241000186148 Bifidobacterium pseudolongum Species 0.000 description 1
- 241001468229 Bifidobacterium thermophilum Species 0.000 description 1
- 241001465178 Bipolaris Species 0.000 description 1
- 241001465180 Botrytis Species 0.000 description 1
- 235000011331 Brassica Nutrition 0.000 description 1
- 241000219198 Brassica Species 0.000 description 1
- 235000011297 Brassica napobrassica Nutrition 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000011293 Brassica napus Nutrition 0.000 description 1
- 241000219192 Brassica napus subsp. rapifera Species 0.000 description 1
- 235000004221 Brassica oleracea var gemmifera Nutrition 0.000 description 1
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 1
- 235000012905 Brassica oleracea var viridis Nutrition 0.000 description 1
- 244000308368 Brassica oleracea var. gemmifera Species 0.000 description 1
- 244000304217 Brassica oleracea var. gongylodes Species 0.000 description 1
- 235000010149 Brassica rapa subsp chinensis Nutrition 0.000 description 1
- 235000000536 Brassica rapa subsp pekinensis Nutrition 0.000 description 1
- 235000000540 Brassica rapa subsp rapa Nutrition 0.000 description 1
- 241000499436 Brassica rapa subsp. pekinensis Species 0.000 description 1
- 241001522017 Brettanomyces anomalus Species 0.000 description 1
- 244000027711 Brettanomyces bruxellensis Species 0.000 description 1
- 241000722883 Brettanomyces custersianus Species 0.000 description 1
- 241000722860 Brettanomyces naardenensis Species 0.000 description 1
- 241000735514 Brettanomyces nanus Species 0.000 description 1
- 101150076749 C10L gene Proteins 0.000 description 1
- DHFUFHYLYSCIJY-WSGIOKLISA-N CCCCCCCCCCCCCCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O Chemical compound CCCCCCCCCCCCCCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O DHFUFHYLYSCIJY-WSGIOKLISA-N 0.000 description 1
- 241000949049 Caldiserica Species 0.000 description 1
- 241000315389 Calonectria humicola Species 0.000 description 1
- 244000206911 Candida holmii Species 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000206593 Carnobacterium divergens Species 0.000 description 1
- 235000009025 Carya illinoensis Nutrition 0.000 description 1
- 244000068645 Carya illinoensis Species 0.000 description 1
- 240000004045 Cassia javanica Species 0.000 description 1
- 102000016938 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 241000221866 Ceratocystis Species 0.000 description 1
- 241000947067 Cercospora zeae-maydis Species 0.000 description 1
- 240000001817 Cereus hexagonus Species 0.000 description 1
- 235000005078 Chaenomeles speciosa Nutrition 0.000 description 1
- 241001185363 Chlamydiae Species 0.000 description 1
- RZXLPPRPEOUENN-UHFFFAOYSA-N Chlorfenson Chemical compound C1=CC(Cl)=CC=C1OS(=O)(=O)C1=CC=C(Cl)C=C1 RZXLPPRPEOUENN-UHFFFAOYSA-N 0.000 description 1
- 241000191368 Chlorobi Species 0.000 description 1
- 241001142109 Chloroflexi Species 0.000 description 1
- 235000007516 Chrysanthemum Nutrition 0.000 description 1
- 244000189548 Chrysanthemum x morifolium Species 0.000 description 1
- 241001143290 Chrysiogenetes <phylum> Species 0.000 description 1
- 241000222290 Cladosporium Species 0.000 description 1
- 241000502280 Clitocybe Species 0.000 description 1
- 206010009691 Clubbing Diseases 0.000 description 1
- 240000007154 Coffea arabica Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 241000186145 Corynebacterium ammoniagenes Species 0.000 description 1
- 241000723655 Cowpea mosaic virus Species 0.000 description 1
- 235000009917 Crataegus X brevipes Nutrition 0.000 description 1
- 235000013204 Crataegus X haemacarpa Nutrition 0.000 description 1
- 235000009685 Crataegus X maligna Nutrition 0.000 description 1
- 235000009444 Crataegus X rubrocarnea Nutrition 0.000 description 1
- 235000009486 Crataegus bullatus Nutrition 0.000 description 1
- 235000017181 Crataegus chrysocarpa Nutrition 0.000 description 1
- 235000009682 Crataegus limnophila Nutrition 0.000 description 1
- 240000000171 Crataegus monogyna Species 0.000 description 1
- 235000004423 Crataegus monogyna Nutrition 0.000 description 1
- 235000002313 Crataegus paludosa Nutrition 0.000 description 1
- 235000009840 Crataegus x incaedua Nutrition 0.000 description 1
- 241001123530 Cronartium Species 0.000 description 1
- 241000221755 Cryphonectria Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000724252 Cucumber mosaic virus Species 0.000 description 1
- 235000009849 Cucumis sativus Nutrition 0.000 description 1
- 240000008067 Cucumis sativus Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 240000001980 Cucurbita pepo Species 0.000 description 1
- 241000235646 Cyberlindnera jadinii Species 0.000 description 1
- 241001042096 Cyberlindnera tropicalis Species 0.000 description 1
- 235000018783 Dacrycarpus dacrydioides Nutrition 0.000 description 1
- 241000235036 Debaryomyces hansenii Species 0.000 description 1
- JDRSMPFHFNXQRB-CMTNHCDUSA-N Decyl beta-D-threo-hexopyranoside Chemical compound CCCCCCCCCCO[C@@H]1O[C@H](CO)C(O)[C@H](O)C1O JDRSMPFHFNXQRB-CMTNHCDUSA-N 0.000 description 1
- 241001143296 Deferribacteres <phylum> Species 0.000 description 1
- 241000192095 Deinococcus-Thermus Species 0.000 description 1
- 241001508802 Diaporthe Species 0.000 description 1
- 241001508801 Diaporthe phaseolorum Species 0.000 description 1
- 241000382787 Diaporthe sojae Species 0.000 description 1
- 241000970811 Dictyoglomi Species 0.000 description 1
- 244000236655 Diospyros kaki Species 0.000 description 1
- 235000008597 Diospyros kaki Nutrition 0.000 description 1
- 241000243990 Dirofilaria Species 0.000 description 1
- 241000243988 Dirofilaria immitis Species 0.000 description 1
- 241001523339 Discula theae-sinensis Species 0.000 description 1
- 241000399934 Ditylenchus Species 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 240000004530 Echinacea purpurea Species 0.000 description 1
- 241001260322 Elusimicrobia <phylum> Species 0.000 description 1
- 241000194032 Enterococcus faecalis Species 0.000 description 1
- 241000194031 Enterococcus faecium Species 0.000 description 1
- 241000221785 Erysiphales Species 0.000 description 1
- WYUFTYLVLQZQNH-JAJWTYFOSA-N Ethyl beta-D-glucopyranoside Chemical compound CCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O WYUFTYLVLQZQNH-JAJWTYFOSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 241000221997 Exobasidium Species 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 241000948950 Fallax Species 0.000 description 1
- 241000923108 Fibrobacteres Species 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 235000016623 Fragaria vesca Nutrition 0.000 description 1
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 1
- 241000288833 Fusarium domesticum Species 0.000 description 1
- 241001453172 Fusobacteria Species 0.000 description 1
- 241000453701 Galactomyces candidum Species 0.000 description 1
- 240000008397 Ganoderma lucidum Species 0.000 description 1
- 241001265526 Gemmatimonadetes <phylum> Species 0.000 description 1
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 1
- 241000208150 Geraniaceae Species 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- 241001263198 Gluconacetobacter azotocaptans Species 0.000 description 1
- 241001468096 Gluconacetobacter diazotrophicus Species 0.000 description 1
- 241001547089 Gluconacetobacter entanii Species 0.000 description 1
- 241000171864 Gluconacetobacter johannae Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920002306 Glycocalyx Polymers 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 241000555709 Guignardia Species 0.000 description 1
- 241000221557 Gymnosporangium Species 0.000 description 1
- 241000588729 Hafnia alvei Species 0.000 description 1
- 244000286779 Hansenula anomala Species 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 241001480224 Heterodera Species 0.000 description 1
- 241000580313 Heterodera zeae Species 0.000 description 1
- 241000201431 Hirschmanniella Species 0.000 description 1
- 241001540513 Hoplolaimus Species 0.000 description 1
- 241000549404 Hyaloperonospora parasitica Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 241000721662 Juniperus Species 0.000 description 1
- 241000512931 Kazachstania humilis Species 0.000 description 1
- 241001123232 Kazachstania unispora Species 0.000 description 1
- 244000285963 Kluyveromyces fragilis Species 0.000 description 1
- 241001468094 Komagataeibacter europaeus Species 0.000 description 1
- 241000589216 Komagataeibacter hansenii Species 0.000 description 1
- 241000923674 Komagataeibacter oboediens Species 0.000 description 1
- 241001661539 Kregervanrija fluxuum Species 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 241001149681 Lachancea cidri Species 0.000 description 1
- 241000235031 Lachancea fermentati Species 0.000 description 1
- 108010059881 Lactase Proteins 0.000 description 1
- 241000186717 Lactobacillus acetotolerans Species 0.000 description 1
- 241000110061 Lactobacillus acidifarinae Species 0.000 description 1
- 241000028630 Lactobacillus acidipiscis Species 0.000 description 1
- 241000186715 Lactobacillus alimentarius Species 0.000 description 1
- 241000208559 Lactobacillus cacaonum Species 0.000 description 1
- 244000199866 Lactobacillus casei Species 0.000 description 1
- 241001468197 Lactobacillus collinoides Species 0.000 description 1
- 241000933456 Lactobacillus composti Species 0.000 description 1
- 241000186842 Lactobacillus coryniformis Species 0.000 description 1
- 241000218492 Lactobacillus crispatus Species 0.000 description 1
- 241001134659 Lactobacillus curvatus Species 0.000 description 1
- 241000186673 Lactobacillus delbrueckii Species 0.000 description 1
- 241000500356 Lactobacillus dextrinicus Species 0.000 description 1
- 241000790171 Lactobacillus diolivorans Species 0.000 description 1
- 241000208558 Lactobacillus fabifermentans Species 0.000 description 1
- 241000186841 Lactobacillus farciminis Species 0.000 description 1
- 241000186606 Lactobacillus gasseri Species 0.000 description 1
- 241000950383 Lactobacillus ghanensis Species 0.000 description 1
- 241000111368 Lactobacillus hammesii Species 0.000 description 1
- 241000925032 Lactobacillus harbinensis Species 0.000 description 1
- 240000002605 Lactobacillus helveticus Species 0.000 description 1
- 241000186685 Lactobacillus hilgardii Species 0.000 description 1
- 241001468190 Lactobacillus homohiochii Species 0.000 description 1
- 241001561398 Lactobacillus jensenii Species 0.000 description 1
- 241001468157 Lactobacillus johnsonii Species 0.000 description 1
- 241000108055 Lactobacillus kefiranofaciens Species 0.000 description 1
- 241001468191 Lactobacillus kefiri Species 0.000 description 1
- 241000191683 Lactobacillus kisonensis Species 0.000 description 1
- 241001339775 Lactobacillus kunkeei Species 0.000 description 1
- 241000016642 Lactobacillus manihotivorans Species 0.000 description 1
- 241000414465 Lactobacillus mindensis Species 0.000 description 1
- 241000394636 Lactobacillus mucosae Species 0.000 description 1
- 241001635183 Lactobacillus nagelii Species 0.000 description 1
- 241001097694 Lactobacillus nodensis Species 0.000 description 1
- 241000908019 Lactobacillus oeni Species 0.000 description 1
- 241000191684 Lactobacillus otakiensis Species 0.000 description 1
- 241000216456 Lactobacillus panis Species 0.000 description 1
- 241001105994 Lactobacillus parabrevis Species 0.000 description 1
- 241001643453 Lactobacillus parabuchneri Species 0.000 description 1
- 241000186605 Lactobacillus paracasei Species 0.000 description 1
- 241001643449 Lactobacillus parakefiri Species 0.000 description 1
- 241001647418 Lactobacillus paralimentarius Species 0.000 description 1
- 241000866650 Lactobacillus paraplantarum Species 0.000 description 1
- 241000186684 Lactobacillus pentosus Species 0.000 description 1
- 241001448603 Lactobacillus perolens Species 0.000 description 1
- 240000006024 Lactobacillus plantarum Species 0.000 description 1
- 241000488807 Lactobacillus pobuzihii Species 0.000 description 1
- 241001495404 Lactobacillus pontis Species 0.000 description 1
- 241000191682 Lactobacillus rapi Species 0.000 description 1
- 241000186604 Lactobacillus reuteri Species 0.000 description 1
- 241000218588 Lactobacillus rhamnosus Species 0.000 description 1
- 241000602084 Lactobacillus rossiae Species 0.000 description 1
- 241000186612 Lactobacillus sakei Species 0.000 description 1
- 241000186869 Lactobacillus salivarius Species 0.000 description 1
- 241000186868 Lactobacillus sanfranciscensis Species 0.000 description 1
- 241001424195 Lactobacillus satsumensis Species 0.000 description 1
- 241000915257 Lactobacillus secaliphilus Species 0.000 description 1
- 241000024101 Lactobacillus senmaizukei Species 0.000 description 1
- 241000755777 Lactobacillus siliginis Species 0.000 description 1
- 241001004348 Lactobacillus similis Species 0.000 description 1
- 241001599932 Lactobacillus spicheri Species 0.000 description 1
- 241001643448 Lactobacillus suebicus Species 0.000 description 1
- 241000191665 Lactobacillus sunkii Species 0.000 description 1
- 241000692136 Lactobacillus tucceti Species 0.000 description 1
- 241000751212 Lactobacillus vaccinostercus Species 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 235000008994 Laurocerasus officinalis Nutrition 0.000 description 1
- 244000061600 Laurocerasus officinalis Species 0.000 description 1
- 241001387859 Lentisphaerae Species 0.000 description 1
- 241000193386 Lysinibacillus sphaericus Species 0.000 description 1
- 241000973043 Macrococcus caseolyticus Species 0.000 description 1
- 235000005087 Malus prunifolia Nutrition 0.000 description 1
- 206010027146 Melanoderma Diseases 0.000 description 1
- 241001143352 Meloidogyne Species 0.000 description 1
- 241000243786 Meloidogyne incognita Species 0.000 description 1
- 241000243785 Meloidogyne javanica Species 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241000947859 Microdochium Species 0.000 description 1
- 241001518729 Monilinia Species 0.000 description 1
- 241001518836 Monilinia fructigena Species 0.000 description 1
- 241000862466 Monilinia laxa Species 0.000 description 1
- 241000907556 Mucor hiemalis Species 0.000 description 1
- 241000378863 Mucor plumbeus Species 0.000 description 1
- 241000131448 Mycosphaerella Species 0.000 description 1
- 240000007357 Nauclea orientalis Species 0.000 description 1
- 241000221962 Neurospora intermedia Species 0.000 description 1
- 241000192121 Nitrospira <genus> Species 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 241000207836 Olea <angiosperm> Species 0.000 description 1
- 241000243981 Onchocerca Species 0.000 description 1
- 241000243985 Onchocerca volvulus Species 0.000 description 1
- 241001671835 Panicum mosaic satellite virus Species 0.000 description 1
- 241000191998 Pediococcus acidilactici Species 0.000 description 1
- 241000191996 Pediococcus pentosaceus Species 0.000 description 1
- 241000036267 Penicillium jensenii Species 0.000 description 1
- 240000004050 Pentaglottis sempervirens Species 0.000 description 1
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 1
- 241000233679 Peronosporaceae Species 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 241001523629 Pestalotiopsis Species 0.000 description 1
- 241001505931 Pestalotiopsis sp. Species 0.000 description 1
- 241000440444 Phakopsora Species 0.000 description 1
- 241000257732 Phomopsis vexans Species 0.000 description 1
- 241000425347 Phyla <beetle> Species 0.000 description 1
- 241000948155 Phytophthora sojae Species 0.000 description 1
- 241000875883 Phytopythium vexans Species 0.000 description 1
- 241000235062 Pichia membranifaciens Species 0.000 description 1
- 240000007320 Pinus strobus Species 0.000 description 1
- 235000008578 Pinus strobus Nutrition 0.000 description 1
- 241000758706 Piperaceae Species 0.000 description 1
- 241001180199 Planctomycetes Species 0.000 description 1
- 241001503464 Plasmodiophora Species 0.000 description 1
- 235000006485 Platanus occidentalis Nutrition 0.000 description 1
- 241000723784 Plum pox virus Species 0.000 description 1
- 241000896203 Podosphaera pannosa Species 0.000 description 1
- 229920002507 Poloxamer 124 Polymers 0.000 description 1
- 229920002508 Poloxamer 181 Polymers 0.000 description 1
- 229920002509 Poloxamer 182 Polymers 0.000 description 1
- 229920002511 Poloxamer 237 Polymers 0.000 description 1
- 229920002517 Poloxamer 338 Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001219 Polysorbate 40 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 229920002642 Polysorbate 65 Polymers 0.000 description 1
- 229920002651 Polysorbate 85 Polymers 0.000 description 1
- 241000183024 Populus tremula Species 0.000 description 1
- 241000193943 Pratylenchus Species 0.000 description 1
- 241000186428 Propionibacterium freudenreichii Species 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 241000192142 Proteobacteria Species 0.000 description 1
- 241000220299 Prunus Species 0.000 description 1
- 235000011432 Prunus Nutrition 0.000 description 1
- 235000004098 Prunus caroliniana Nutrition 0.000 description 1
- 235000006029 Prunus persica var nucipersica Nutrition 0.000 description 1
- 244000017714 Prunus persica var. nucipersica Species 0.000 description 1
- 241000415582 Puccinia striiformis f. sp. tritici Species 0.000 description 1
- 244000128206 Pyracantha coccinea Species 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- 244000184734 Pyrus japonica Species 0.000 description 1
- 235000013502 Pyrus japonica Nutrition 0.000 description 1
- 241000201377 Radopholus Species 0.000 description 1
- 241000201375 Radopholus similis Species 0.000 description 1
- 206010037888 Rash pustular Diseases 0.000 description 1
- 241000589180 Rhizobium Species 0.000 description 1
- 235000001537 Ribes X gardonianum Nutrition 0.000 description 1
- 235000001535 Ribes X utile Nutrition 0.000 description 1
- 235000002357 Ribes grossularia Nutrition 0.000 description 1
- 244000171263 Ribes grossularia Species 0.000 description 1
- 235000016919 Ribes petraeum Nutrition 0.000 description 1
- 244000281247 Ribes rubrum Species 0.000 description 1
- 235000002355 Ribes spicatum Nutrition 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 241001540480 Rotylenchulus Species 0.000 description 1
- 241000702971 Rotylenchulus reniformis Species 0.000 description 1
- 241001092459 Rubus Species 0.000 description 1
- 235000017848 Rubus fruticosus Nutrition 0.000 description 1
- 244000057899 Rudbeckia hirta var. pulcherrima Species 0.000 description 1
- 241000235072 Saccharomyces bayanus Species 0.000 description 1
- 241001063879 Saccharomyces eubayanus Species 0.000 description 1
- 241001123228 Saccharomyces paradoxus Species 0.000 description 1
- 241000582914 Saccharomyces uvarum Species 0.000 description 1
- 235000014327 Sedum acre Nutrition 0.000 description 1
- 240000005319 Sedum acre Species 0.000 description 1
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 241001180364 Spirochaetes Species 0.000 description 1
- 241000723658 Squash mosaic virus Species 0.000 description 1
- 241000191965 Staphylococcus carnosus Species 0.000 description 1
- 241001033898 Staphylococcus equorum Species 0.000 description 1
- 241001617353 Staphylococcus fleurettii Species 0.000 description 1
- 241001220301 Staphylococcus piscifermentans Species 0.000 description 1
- 241000192097 Staphylococcus sciuri Species 0.000 description 1
- 241000191978 Staphylococcus simulans Species 0.000 description 1
- 241000861996 Staphylococcus succinus Species 0.000 description 1
- 241001234013 Staphylococcus vitulinus Species 0.000 description 1
- 241000192086 Staphylococcus warneri Species 0.000 description 1
- 241000191973 Staphylococcus xylosus Species 0.000 description 1
- 241001076352 Stemphylium lycopersici Species 0.000 description 1
- XZAGBDSOKNXTDT-UHFFFAOYSA-N Sucrose monopalmitate Chemical compound CCCCCCCCCCCCCCCC(O)=O.OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(CO)O1 XZAGBDSOKNXTDT-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 241000390529 Synergistetes Species 0.000 description 1
- 241000131694 Tenericutes Species 0.000 description 1
- 240000003892 Tetracera indica Species 0.000 description 1
- 241000500332 Tetragenococcus halophilus Species 0.000 description 1
- 241001110440 Tetragenococcus koreensis Species 0.000 description 1
- 241000221372 Thanatephorus Species 0.000 description 1
- 241001143138 Thermodesulfobacteria <phylum> Species 0.000 description 1
- 241001141092 Thermomicrobia Species 0.000 description 1
- 241001143310 Thermotogae <phylum> Species 0.000 description 1
- 241000722133 Tilletia Species 0.000 description 1
- 241000723873 Tobacco mosaic virus Species 0.000 description 1
- 241000520653 Torulaspora franciscae Species 0.000 description 1
- 241001144461 Torulaspora maleeae Species 0.000 description 1
- 241001495125 Torulaspora pretoriensis Species 0.000 description 1
- 241001026577 Torulaspora quercuum Species 0.000 description 1
- 240000002438 Trichosanthes globosa Species 0.000 description 1
- BAECOWNUKCLBPZ-HIUWNOOHSA-N Triolein Natural products O([C@H](OCC(=O)CCCCCCC/C=C\CCCCCCCC)COC(=O)CCCCCCC/C=C\CCCCCCCC)C(=O)CCCCCCC/C=C\CCCCCCCC BAECOWNUKCLBPZ-HIUWNOOHSA-N 0.000 description 1
- PHYFQTYBJUILEZ-UHFFFAOYSA-N Trioleoylglycerol Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCCCCCCCC)COC(=O)CCCCCCCC=CCCCCCCCC PHYFQTYBJUILEZ-UHFFFAOYSA-N 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 241000723798 Tulip breaking virus Species 0.000 description 1
- 241000051572 Typhula sp. Species 0.000 description 1
- 241000221566 Ustilago Species 0.000 description 1
- 241001645362 Valsa Species 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 241000317942 Venturia <ichneumonid wasp> Species 0.000 description 1
- 241001261005 Verrucomicrobia Species 0.000 description 1
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 1
- 241000726445 Viroids Species 0.000 description 1
- 241000344586 Weissella beninensis Species 0.000 description 1
- 241000975185 Weissella cibaria Species 0.000 description 1
- 241000162188 Weissella fabaria Species 0.000 description 1
- 241000384856 Weissella koreensis Species 0.000 description 1
- 241000192133 Weissella paramesenteroides Species 0.000 description 1
- 241000028633 Weissella thailandensis Species 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 241000235015 Yarrowia lipolytica Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 240000003307 Zinnia violacea Species 0.000 description 1
- 241000758405 Zoopagomycotina Species 0.000 description 1
- 241000723854 Zucchini yellow mosaic virus Species 0.000 description 1
- 241000235029 Zygosaccharomyces bailii Species 0.000 description 1
- 241000235034 Zygosaccharomyces bisporus Species 0.000 description 1
- 241000400042 Zygosaccharomyces kombuchaensis Species 0.000 description 1
- 241001655839 Zygosaccharomyces lentus Species 0.000 description 1
- 241000144010 Zygosaccharomyces mellis Species 0.000 description 1
- 241000317165 Zygosaccharomyces pseudorouxii Species 0.000 description 1
- 241000235033 Zygosaccharomyces rouxii Species 0.000 description 1
- 241000229116 Zygotorulaspora florentina Species 0.000 description 1
- 241000144024 Zygotorulaspora mrakii Species 0.000 description 1
- 241000588902 Zymomonas mobilis Species 0.000 description 1
- IJCWFDPJFXGQBN-RYNSOKOISA-N [(2R)-2-[(2R,3R,4S)-4-hydroxy-3-octadecanoyloxyoxolan-2-yl]-2-octadecanoyloxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCCCCCCCCCCCC IJCWFDPJFXGQBN-RYNSOKOISA-N 0.000 description 1
- HLLPKVARTYKIJB-MCQPFKOBSA-N [(2r,3s,4s,5r,6r)-6-[(2s,3s,4s,5r)-3,4-dihydroxy-2,5-bis(octadecanoyloxymethyl)oxolan-2-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl octadecanoate Chemical compound O[C@H]1[C@H](O)[C@@H](COC(=O)CCCCCCCCCCCCCCCCC)O[C@@]1(COC(=O)CCCCCCCCCCCCCCCCC)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](COC(=O)CCCCCCCCCCCCCCCCC)O1 HLLPKVARTYKIJB-MCQPFKOBSA-N 0.000 description 1
- VFCBYFDYBODXCH-YGWGHPONSA-N [(2s,3s,4r,5r)-5-(hydroxymethyl)-3,4-bis[[(z)-octadec-9-enoyl]oxy]-2-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxolan-2-yl]methyl (z)-octadec-9-enoate Chemical compound O([C@@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@]1(COC(=O)CCCCCCC\C=C/CCCCCCCC)O[C@H](CO)[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC VFCBYFDYBODXCH-YGWGHPONSA-N 0.000 description 1
- 241000222295 [Candida] zeylanoides Species 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001346 alkyl aryl ethers Chemical class 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000005599 alkyl carboxylate group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000011681 asexual reproduction Effects 0.000 description 1
- 238000013465 asexual reproduction Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- XVBRCOKDZVQYAY-UHFFFAOYSA-N bronidox Chemical compound [O-][N+](=O)C1(Br)COCOC1 XVBRCOKDZVQYAY-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920006184 cellulose methylcellulose Polymers 0.000 description 1
- 239000011153 ceramic matrix composite Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012710 chemistry, manufacturing and control Methods 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- 239000001752 chlorophylls and chlorophyllins Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 description 1
- 229940073507 cocamidopropyl betaine Drugs 0.000 description 1
- 229940080421 coco glucoside Drugs 0.000 description 1
- 235000016213 coffee Nutrition 0.000 description 1
- 235000013353 coffee beverage Nutrition 0.000 description 1
- 230000008645 cold stress Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002361 compost Substances 0.000 description 1
- 235000013409 condiments Nutrition 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- JDRSMPFHFNXQRB-IBEHDNSVSA-N decyl glucoside Chemical compound CCCCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O JDRSMPFHFNXQRB-IBEHDNSVSA-N 0.000 description 1
- 229940073499 decyl glucoside Drugs 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000035613 defoliation Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 229940111205 diastase Drugs 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- 229940099686 dirofilaria immitis Drugs 0.000 description 1
- FDENMIUNZYEPDD-UHFFFAOYSA-L disodium [2-[4-(10-methylundecyl)-2-sulfonatooxyphenoxy]phenyl] sulfate Chemical compound [Na+].[Na+].CC(C)CCCCCCCCCc1ccc(Oc2ccccc2OS([O-])(=O)=O)c(OS([O-])(=O)=O)c1 FDENMIUNZYEPDD-UHFFFAOYSA-L 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000008641 drought stress Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000009328 dry farming Methods 0.000 description 1
- 235000014134 echinacea Nutrition 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 235000021321 essential mineral Nutrition 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- SFNALCNOMXIBKG-UHFFFAOYSA-N ethylene glycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCO SFNALCNOMXIBKG-UHFFFAOYSA-N 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000004459 forage Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 229940074046 glyceryl laurate Drugs 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 210000004517 glycocalyx Anatomy 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- FQKWHGOHXVHGMR-UHFFFAOYSA-N hexadecoxybenzene Chemical compound CCCCCCCCCCCCCCCCOC1=CC=CC=C1 FQKWHGOHXVHGMR-UHFFFAOYSA-N 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 208000006278 hypochromic anemia Diseases 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 210000004020 intracellular membrane Anatomy 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 229940116108 lactase Drugs 0.000 description 1
- 230000001418 larval effect Effects 0.000 description 1
- LAPRIVJANDLWOK-UHFFFAOYSA-N laureth-5 Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCO LAPRIVJANDLWOK-UHFFFAOYSA-N 0.000 description 1
- PYIDGJJWBIBVIA-UYTYNIKBSA-N lauryl glucoside Chemical compound CCCCCCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O PYIDGJJWBIBVIA-UYTYNIKBSA-N 0.000 description 1
- 229940048848 lauryl glucoside Drugs 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 240000004308 marijuana Species 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- KJLLKLRVCJAFRY-UHFFFAOYSA-N mebutizide Chemical compound ClC1=C(S(N)(=O)=O)C=C2S(=O)(=O)NC(C(C)C(C)CC)NC2=C1 KJLLKLRVCJAFRY-UHFFFAOYSA-N 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- 230000000442 meristematic effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000005649 metathesis reaction Methods 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 229920004918 nonoxynol-9 Polymers 0.000 description 1
- 229940087419 nonoxynol-9 Drugs 0.000 description 1
- 231100001184 nonphytotoxic Toxicity 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 235000015816 nutrient absorption Nutrition 0.000 description 1
- 235000018343 nutrient deficiency Nutrition 0.000 description 1
- 235000021231 nutrient uptake Nutrition 0.000 description 1
- YYELLDKEOUKVIQ-UHFFFAOYSA-N octaethyleneglycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCO YYELLDKEOUKVIQ-UHFFFAOYSA-N 0.000 description 1
- 125000002801 octanoyl group Chemical group C(CCCCCCC)(=O)* 0.000 description 1
- SMGTYJPMKXNQFY-UHFFFAOYSA-N octenidine dihydrochloride Chemical compound Cl.Cl.C1=CC(=NCCCCCCCC)C=CN1CCCCCCCCCCN1C=CC(=NCCCCCCCC)C=C1 SMGTYJPMKXNQFY-UHFFFAOYSA-N 0.000 description 1
- 229920002114 octoxynol-9 Polymers 0.000 description 1
- 239000002420 orchard Substances 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 238000009329 organic farming Methods 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000009928 pasteurization Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 230000026961 phloem transport Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 210000002706 plastid Anatomy 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229940093448 poloxamer 124 Drugs 0.000 description 1
- 229940085692 poloxamer 181 Drugs 0.000 description 1
- 229940093426 poloxamer 182 Drugs 0.000 description 1
- 229940116406 poloxamer 184 Drugs 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229940044519 poloxamer 188 Drugs 0.000 description 1
- 229920001992 poloxamer 407 Polymers 0.000 description 1
- 229940044476 poloxamer 407 Drugs 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010483 polyoxyethylene sorbitan monopalmitate Nutrition 0.000 description 1
- 239000000249 polyoxyethylene sorbitan monopalmitate Substances 0.000 description 1
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 1
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 1
- 235000010988 polyoxyethylene sorbitan tristearate Nutrition 0.000 description 1
- 239000001816 polyoxyethylene sorbitan tristearate Substances 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229940068977 polysorbate 20 Drugs 0.000 description 1
- 229940101027 polysorbate 40 Drugs 0.000 description 1
- 229940113124 polysorbate 60 Drugs 0.000 description 1
- 229940099511 polysorbate 65 Drugs 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229940113171 polysorbate 85 Drugs 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 235000014774 prunus Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 208000029561 pustule Diseases 0.000 description 1
- 235000008160 pyridoxine Nutrition 0.000 description 1
- 239000011677 pyridoxine Substances 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 108700004121 sarkosyl Proteins 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000007226 seed germination Effects 0.000 description 1
- 230000014639 sexual reproduction Effects 0.000 description 1
- NRHMKIHPTBHXPF-TUJRSCDTSA-M sodium cholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 NRHMKIHPTBHXPF-TUJRSCDTSA-M 0.000 description 1
- 229940057950 sodium laureth sulfate Drugs 0.000 description 1
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 1
- 229940045885 sodium lauroyl sarcosinate Drugs 0.000 description 1
- MDSQKJDNWUMBQQ-UHFFFAOYSA-M sodium myreth sulfate Chemical compound [Na+].CCCCCCCCCCCCCCOCCOCCOCCOS([O-])(=O)=O MDSQKJDNWUMBQQ-UHFFFAOYSA-M 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- SXHLENDCVBIJFO-UHFFFAOYSA-M sodium;2-[2-(2-dodecoxyethoxy)ethoxy]ethyl sulfate Chemical compound [Na+].CCCCCCCCCCCCOCCOCCOCCOS([O-])(=O)=O SXHLENDCVBIJFO-UHFFFAOYSA-M 0.000 description 1
- 244000000000 soil microbiome Species 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 235000011071 sorbitan monopalmitate Nutrition 0.000 description 1
- 239000001570 sorbitan monopalmitate Substances 0.000 description 1
- 229940031953 sorbitan monopalmitate Drugs 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 235000011078 sorbitan tristearate Nutrition 0.000 description 1
- 239000001589 sorbitan tristearate Substances 0.000 description 1
- 229960004129 sorbitan tristearate Drugs 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 230000005082 stem growth Effects 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000036435 stunted growth Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229940035023 sucrose monostearate Drugs 0.000 description 1
- 150000003445 sucroses Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 210000000242 supportive cell Anatomy 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- FBWNMEQMRUMQSO-UHFFFAOYSA-N tergitol NP-9 Chemical compound CCCCCCCCCC1=CC=C(OCCOCCOCCOCCOCCOCCOCCOCCOCCO)C=C1 FBWNMEQMRUMQSO-UHFFFAOYSA-N 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 229940011671 vitamin b6 Drugs 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C39/00—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C5/00—Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
- D21C5/02—Working-up waste paper
- D21C5/025—De-inking
- D21C5/027—Chemicals therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P1/00—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/02—Cleaning pipes or tubes or systems of pipes or tubes
- B08B9/027—Cleaning the internal surfaces; Removal of blockages
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/08—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
- A01N25/10—Macromolecular compounds
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/30—Microbial fungi; Substances produced thereby or obtained therefrom
- A01N63/32—Yeast
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/005—Microorganisms or enzymes
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/06—Paper forming aids
- D21H21/08—Dispersing agents for fibres
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/32—Bleaching agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/64—Paper recycling
Definitions
- Non-Toxic Plant Agent Compositions and Methods and Uses Thereof [001] This application claims the benefit of priority and the filing date of U.S. Provisional Patent Application 62/208,662, filed on August 22, 2015, the content of which is hereby incorporated by reference in its entirety.
- Agriculture is of the upmost importance to the world. Not only does agriculture essential to providing foodstuffs world-wide it is of critical economic importance to the economy of most, if not all countries. Three factor that can impact the yields of agricultural crops are plant disease, unfavorable growth conditions and cultivation inefficiency.
- Losses from infectious plant diseases can have catastrophic humanitarian impact, where crop losses result in hunger, famine and starvation.
- the disclosed plant agent compositions comprises a treated fermented microbial supernatant and one or more nonionic surfactants.
- the disclosed plant agent compositions may further comprise one or more anionic surfactants.
- the disclosed plant agent compositions are biodegradable and non-toxic to humans, mammals, plants and the environment.
- Aspects of the present specification disclose a plant agent kit.
- the disclosed plant agent kit comprises a plant agent composition disclosed herein and instructions for how to use the compositions to improve the health and vigor of plants.
- Aspects of the present specification disclose methods of controlling a plant disease.
- the disclosed methods comprises applying an effective amount of a plant agent composition disclosed herein to one or more plants and/or one or more locations where control of a plant disease is desired.
- Aspects of the present specification disclose methods of increasing plant growth and/or fruit production.
- the disclosed methods comprises applying an effective amount of a plant agent composition disclosed herein to one or more plants and/or one or more locations where increase in plant growth and/or fruit production is desired.
- Aspects of the present specification disclose uses of a plant agent composition for controlling a plant disease. The disclosed uses comprises applying an effective amount of the plant agent composition disclosed herein to one or more plants and/or one or more locations where control of a plant disease is desired.
- Aspects of the present specification disclose uses of a plant agent composition for increasing plant growth and/or fruit production. The disclosed uses comprises applying an effective amount of a plant agent composition disclosed herein to one or more plants and/or one or more locations where increased plant growth and/or fruit production is desired.
- a plant becomes diseased when it is continuously disturbed by some causal agent that results in an abnormal physiological process that disrupts a plant’s normal structure, growth, function, or other activities.
- This interference with one or more of a plant’s essential physiological or biochemical systems elicits characteristic pathological conditions or symptoms.
- Plant diseases are caused by a pathogenic organism such as a fungus, bacterium, mycoplasma, virus, viroid, nematode, or parasitic flowering plant.
- An infectious agent is transmissible, being capable of reproducing within or on its host and spreading from one susceptible host to another. Plant diseases can be broadly classified according to the nature of their primary causal agent.
- Such primary causal agents include viruses, microorganisms like fungi and bacteria, and animals like nematodes.
- one difficulty in treating a plant disease caused by such primary causal agents is that they are typically protected from the environment by some sort of structure. These protective structures not only essential in maintaining the health of these causal agents, but also helpful in shielding these causal agents from compounds designed to destroy them.
- a complete virus particle known as a virion, consists of nucleic acid surrounded by a protective coat of protein called a capsid.
- the capsid encloses the genetic material of the virus and consists of several oligomeric structural subunits made of protein called protomers.
- Some viruses are enveloped, meaning that the capsid is coated with a lipid membrane known as the viral envelope.
- the envelope is acquired by the capsid from an intracellular membrane in the virus' host; examples include the inner nuclear membrane, the golgi membrane, and the cell's outer membrane.
- Microorganisms such as, e.g., bacterium, mycoplasma (bacteria without a cell wall) and certain fungi, secrete a polymeric conglomeration of biopolymers, generally composed of extracellular nucleic acids, proteins, and polysaccharides, that form a matrix of extracellular polymeric substance (EPS).
- EPS extracellular polymeric substance
- the EPS matrix embeds the cells causing the cells to adhere to each other as well as to any living (biotic) or non-living (abiotic) surface to form a sessile community of microorganisms referred to as a biofilm or slime layer.
- a biofilm colony can also form on solid substrates submerged in or exposed to an aqueous solution, or form as floating mats on liquid surfaces.
- Maturation I and II are where the biofilm is established and may only change in shape and size.
- microorganisms living in a biofilm are physiologically distinct and have significantly different properties from free-floating planktonic microorganisms of the same species.
- One reason for these differences is because the biofilm protects the microorganisms from the environment and allows them to cooperate and interact in various ways. For example, a biofilm increased the resistance of microorganisms to detergents and antibiotics. In addition, lateral gene transfer is greatly facilitated in biofilms and leads to a more stable biofilm structure.
- Microorganisms within a biofilm can also communicate with each other via quorum sensing (QS) using products such as N-acyl homoserine lactone (AHL).
- QS quorum sensing
- AHL N-acyl homoserine lactone
- biofilms play essential and critical roles in protecting microorganisms by insulating them from potentially harmful interactions with the environment.
- Larger organisms also are protected from the environment by some sort of structure.
- Nematodes have a cuticle, a polymerized, proteinacious extracellular matrix. The cuticle of nematodes is formed when a mostly syncial epidermal cell layer, termed hypodermis, secretes various proteins from its apical membranes that are then extensively cross-linked by peroxidases on the outer surface of the hypodermis to form a cuticle.
- This flexible cuticle The major component of this flexible cuticle are members of the collagen superfamily and cuticlins, a highly cross-linked insoluble class of proteins. Overlying the cuticle is the lipid-rich, trilaminar epicuticle that is itself overlaid by a loosely associated, glycoprotein-rich, negatively charged surface coat (or glycocalyx).
- This multi-functional extracellular structure creates a highly impervious barrier that protects nematodes from desiccation and pathogenic infection as well as creates a structural framework that maintains its body morphology and integrity, prevents mechanical damage by environmental insults, and enables locomotion via attachments to body-wall muscles.
- the nematode cuticle plays essential and critical roles in preserving the integrity of the animal and its interactions with the environment.
- protective structures present in primary causal agents of plant diseases such as, e.g., viruses, bacteria, fungi and nematodes is not only essential for the survival of these agents, but also protects them from the environment.
- a treatment that disrupts or otherwise destroys a protective structure of a primary causal agents of plant diseases would be of great benefit.
- Plants, or green plants are multicellular eukaryotes of the kingdom Plantae that form the clade Viridiplantae.
- Green plants includes the flowering plants, conifers and other gymnosperms, ferns, clubmosses, hornworts, liverworts, mosses and the green algae, but exclude the red and brown algae, the fungi, archaea, bacteria and animals. Plants are characterized by obtaining most of their energy from sunlight via photosynthesis using chloroplasts. Chloroplasts contain chlorophylls a and b, which gives them their green color. Plants are also characterized by having a thick cell wall of cellulose, a central vacuole for storage, plastids for storage of pigments, sexual reproduction, modular and indeterminate growth, and an alternation of generations, although asexual reproduction is also common.
- a typical plant is structurally organized into two primary divisions, the root system and the shoot system.
- the root system is usually underground and comprises primary and lateral roots as well as modified stem structures such as tubers and rhizomes. This system functions to anchor a plant in the soil, absorb water and nutrients from the ground, transport water and nutrients throughout a plant, store food produce certain hormones.
- the shoot system is usually above ground and comprises stems, leaves and the reproductive organs. This system functions to elevate a plant above the soil, conduct photosynthesis, conduct reproduction, transport water and nutrients throughout a plant, store food and produce hormones.
- Plants containing vascular tissues which distribute resources throughout plant are referred to as vascular plants.
- Vascular plants also known as tracheophytes, are defined as those land plants that have lignified vascular tissues (the xylem) for conducting water and minerals throughout a plant and specialized non-lignified vascular tissues (the phloem) to conduct products of photosynthesis.
- Vascular plants include the clubmosses, horsetails, ferns, gymnosperms (including conifers) and angiosperms (flowering plants). Scientific names for the group include Tracheophyta and Tracheobionta.
- Xylem is a vascular tissue that on maturity is composed of dead cells. Xylem provides unidirectional transport of xylem sap from the roots up to and throughout a plant.
- Xylem sap includes water, soluble mineral nutrients and inorganic ions, although it can contain a number of organic chemicals as well. Movement of xylem sap through xylem is passive, relying on capillary action to provide the force that establishes an equilibrium configuration that counteracts gravity. This capillary action is achieved principally through two mechanisms, transpirational pull and root pressure. Transpirational pull is due to a surface tension created by evaporation of water from the surfaces of cells in the leaves which causes a negative pressure in the xylem that generates enough force to pulls xylem sap upwards from the roots and soil.
- Phloem comprises living vascular tissue composed of 1) conducting cells called sieve elements that form tubes; 2) parenchyma cells, including both specialized companion cells or albuminous cells and unspecialized cells; and 3) supportive cells, such as fibres and sclereids that provide mechanical support.
- sieve elements lack a nucleus and have very few organelles, so they rely on companion cells or albuminous cells for most of their metabolic needs.
- Phloem provides multi-directional transport of photosynthate (or sap) made by the photosynthetic areas of a plant (principally the leaves) to all other parts of a plant where needed, especially the non-photosynthetic parts of a plant, such as the roots, or into storage structures, such as tubers or bulbs.
- Photosynthate is a water-based solution rich is sugars and other soluble organic nutrients made during photosynthesis. Movement of photosynthate through the phloem is driven by positive hydrostatic pressures. This process is termed translocation, and is accomplished by a process called phloem loading and unloading. Cells in a sugar source "load" a sieve-tube element by actively transporting solute molecules into it.
- the root system is the organ of a plant that typically lies below the surface of the soil. Structurally, a root is composed of an epidermis, a cortex, an endodermis, a pericycle and a vascular system.
- the epidermis is the outer layer of cells.
- the cortex is the primary structural tissue of the root bound on the outside by the epidermis and on the inside by the endodermis. The endodermis separates the cortex from the pericycle, the tissue from which lateral (or branch) roots arise from.
- a root system comprises a primary root, lateral roots and root hairs and can be divided into three regions of growth.
- a zone of maturation is the portion of the root system that comprises the mature portion of the primary root, lateral roots and root hairs that is absorbing water and nutrients from the soil and transporting them through the xylem into the shoot system.
- the zone of elongation is where newly divided cells are enlarging.
- the meristematic zone is composed of the root tip meristem and the root cap and is the zone where cell division and new cell growth occurs.
- any impediment that disrupts or halts the movement of xylem sap and photosynthate affects the health of a plant. For example, disturbance of transpirational pull due to high temperatures, high humidity, darkness or drought dramatically decrease the negative water pressure in the xylem resulting in poor flow of xylem sap.
- Irrigation is the artificial application of water to the land or soil. It is used to assist in the growing of agricultural crops, maintenance of landscapes, and revegetation of disturbed soils in dry areas and during periods of inadequate rainfall. Irrigation also has a few other uses in crop production, which include protecting plants against frost, suppressing weed growth and preventing soil consolidation. In contrast, agriculture that relies only on direct rainfall is referred to as rain-fed or dryland farming.
- Overhead or sprinkler irrigation is a system where water is distributed under high pressure through a piped network to one or more central locations within a field and distributed by overhead sprinklers or guns. Sprinklers can also be mounted on platforms that can be manually or automatically moved to different regions of the field. Center pivot, traveling sprinkler, lateral move and wheel line irrigation are types of overhead irrigation methods.
- Localized irrigation is a system where water is distributed under low pressure through a piped network, in a pre-determined pattern, and applied as a small discharge to each plant or adjacent to it. Drip, spray or micro-sprinkler and bubbler irrigation are types of localized irrigation methods.
- Localized irrigation methods can be the most water- efficient methods of irrigation because they deliver only the amount of water needed and minimize evaporation and runoff.
- Most commercial and residential irrigation systems are "in ground” systems, meaning that everything is buried in the ground. With the pipes, sprinklers, emitters (drippers), and irrigation valves being hidden, it makes for a cleaner, more presentable landscape without garden hoses or other items having to be moved around manually. This does, however, create some drawbacks in the maintenance of a completely buried system.
- Irrigation can lead to a number of problems. For example, the piped network of overhead and localized irrigation systems can become clogged due to growth of algae and other microorganisms creating biofilms, leading to aberrant water distribution.
- the presently disclosed plant agent compositions dissolve, disperse, or otherwise disrupt one or more components of the protective structures present on the causal agents of plant diseases, like viruses, bacteria, fungi and nematodes, resulting in their death through disruption of one or more essential physiological processes.
- This mechanism of action is tied to the ability of a plant agent composition disclosed herein to breach or otherwise rupture the capsid of viruses, the biofilms of microorganisms and the lipid-based membrane epicuticle layer of a nematode’s cuticle.
- Methods of applying a disclosed plant agent compositions is effected thorough an external exposure, either by direct application to the causal agent, indirectly by treating a location where the causal agent will become exposed to a disclosed plant agent composition, or any other method that exposes the causal agent to the disclosed plant agent compositions in a manner that provides adequate disruption of one or more components of the protective structures present on the causal agents and subsequent death through disruption of an essential physiological process.
- the presently disclosed plant agent compositions improve absorption by root hairs, improve xylem sap flow through xylem and improve photosynthate flow in phloem, resulting in improved transport of water and nutrients that will maintain and/or enhance the health and vigor of plants.
- This mechanism of action is tied to the ability of a plant agent compositions disclosed herein to increase uptake of water, minerals and other nutrients from the soil, increase the capillary action and/or hydrostatic pressure in xylem, and/or increase synthesis of compounds and energy, resulting in sustained and continued plant growth and/or enhanced health and vigor of a plant.
- Methods of applying a disclosed plant agent compositions is effected thorough an external exposure, either by direct application to a plant, indirectly by treating a location where a plant will become exposed to a disclosed plant agent composition, or any other method that exposes a plant to the disclosed plant agent compositions in a manner that improves the absorption of water, minerals and other nutrients, improves the transportation of these raw materials throughout a plant and/or improves the synthesis of compounds and energy needed to sustain and continue plant growth.
- the presently disclosed plant agent compositions dissolve, disperse, or otherwise remove one or more components that disrupt xylem sap flow in xylem and/or photosynthate flow in phloem, resulting in improved transport of water and nutrients that will maintain and/or enhance the health and vigor of plants.
- This mechanism of action is tied to the ability of a plant agent composition disclosed herein to dissolve or otherwise remove one or more components blocking the channels of xylem and phloem.
- Methods of applying a disclosed plant agent compositions is effected thorough an external exposure, either by direct application to a plant, indirectly by treating a location where a plant will become exposed to a disclosed plant agent composition, or any other method that exposes a plant to the disclosed plant agent compositions in a manner that provides adequate disruption of one or more components blocking xylem sap and/or photosynthate flow and subsequent improved transport of water and nutrients throughout a plant.
- one or more components blocking xylem sap flow and/or photosynthate flow includes biofilm.
- the presently disclosed plant agent compositions dissolve, disperse, or otherwise remove one or more components that disrupt water flow in a pipeline network of an irrigation system, resulting in improved water distribution that will maintain and/or enhance the health and vigor of plants.
- This mechanism of action is tied to the ability of a plant agent compositions disclosed herein to dissolve or otherwise remove one or more components blocking the pipeline network.
- Methods of applying a disclosed plant agent compositions is effected thorough an external exposure, either by direct application to the pipeline network of an irrigation system, or any other method that exposes the pipeline network to the disclosed plant agent compositions in a manner that provides adequate removal of one or more components blocking the pipeline network and subsequent improved water transport throughout the pipeline network.
- one or more components blocking a pipeline network includes biofilm.
- the disclosed plant agent compositions and methods and uses offer an alternative means that does not rely on chemicals toxic to humans or the environment. Rather, a plant agent compositions and methods and uses disclosed herein act by exploiting an inherent process to improve raw material absorption and transport as well as improve synthesis of growth-sustaining compounds and energy. Similarly, a plant agent compositions and methods and uses disclosed herein act by exploiting a natural vulnerability of the causal agent to its environment, one or more components blocking xylem sap and/or photosynthate flow in a plant, or one or more components blocking water flow in an irrigation system.
- a plant agent composition disclosed herein comprises a treated fermented microbial supernatant and one or more non- ionic surfactants.
- the treated fermented microbial supernatant lacks any live microorganisms such as yeast or bacteria, and additionally, lacks any active enzymes, activatable pro-enzymes, or any enzymatic activity.
- a plant agent composition itself lacks any live microorganisms such as yeast or bacteria, and additionally, lacks any active enzymes, activatable pro-enzymes, or any enzymatic activity.
- a plant agent composition disclosed herein comprises, e.g., about 75% to about 99% of treated fermented microbial supernatant and about 1%-25% of one or more non-ionic surfactants.
- a plant agent composition disclosed herein comprises, e.g., about 80% to about 97% of treated fermented microbial supernatant and about 3%-20% of one or more non-ionic surfactants.
- a plant agent composition disclosed herein comprises, e.g., about 85% to about 95% of treated fermented microbial supernatant and about 5%- 15% of one or more non-ionic surfactants.
- a plant agent composition disclosed herein comprises, e.g., about 87% to about 93% of treated fermented microbial supernatant and about 7%-13% of one or more non-ionic surfactants.
- a plant agent composition disclosed herein comprises, e.g., about 88% to about 92% of treated fermented microbial supernatant and about 8%-12% of one or more non-ionic surfactants.
- a plant agent composition disclosed herein comprises, e.g., about 89% to about 91% of treated fermented microbial supernatant and about 9%-11% of one or more non-ionic surfactants.
- a fermented microbial supernatant disclosed herein can be prepared by culturing a yeast strain, a bacterial strain, or a combination of both a yeast strain and a bacterial strain in a fermenting medium comprising a sugar source, a malt and a magnesium salt. In an aspect of this embodiment, only a single yeast strain is used in a fermenting medium.
- a sugar source includes, without limitation, sucrose from molasses, raw cane sugar, soybeans or mixtures thereof.
- Molasses generally contains up to about 50% sucrose in addition to reducing sugars such as glucose and maltase as well as ash, organic non-sugars and some water.
- reducing sugars such as glucose and maltase
- ash organic non-sugars and some water.
- the presence of the sugars of the type found in the molasses is important in encouraging the activity of the enzymes and the yeast bacteria by which they are produced.
- the untreated cane blackstrap molasses is preferred, other molasses such as beet molasses, barrel molasses and the like may also be used as a natural source of the materials required for the enzymatic fermentation.
- the amount of molasses useful in preparing a fermenting medium disclosed herein is between 40% and about 80% by weight, and preferably between about 55% and about 75% by weight.
- Raw cane sugar is a sugar product which has not been refined and which contains residual molasses as well as other natural impurities. Although it is not clearly understood, it has been found that the presence of raw sugar in the fermentation reaction yields significantly improved properties as compared to the use of refined sugars which contain residual chemicals used in the decolorization and final purification and refinement which may have some deleterious effect on the yeast and malt enzymes. It has been found that optimum biological and enzymatic properties of the disclosed fermenting medium are improved where a portion of the fermentable materials present in the mixture comprises raw sugar.
- the amount of raw cane sugar useful in preparing a fermenting medium disclosed herein may be about 10% and about 40% by weight, and preferably between about 10% and about 30% by weight. It will be appreciated that specific amounts of the raw cane sugar utilized may be varied to yield optimum compositions desired.
- the essential enzymes which advantageously contribute to the fermentation reaction are provided by the malt and the yeast and/or bacteria.
- the specific malt utilized is preferably a diastatic malt which contains enzymes including diastase, maltase and amylase. The malt also is believed to improve the activity of the yeast and/or bacteria in addition to contributing to the overall potency and activity of the enzymatic composition within the final product mixture.
- the amount of malt useful in preparing a fermenting medium disclosed herein may be between about 3% and about 15% by weight, and preferably between about 7% and about 12% by weight. It will be appreciated that specific amounts of the malt utilized may be varied to yield optimum compositions desired.
- Fermentation is a metabolic process that results in the breakdown of carbohydrates and other complex organic substances into simpler substances like sugars, acids, gases or alcohol. Fermentation can occurs in yeast, bacteria and mold. Fermentation includes ethanol fermentation and lactic acid fermentation. Lactic acid fermentation includes homolactic fermentation and heterolactic fermentation.
- a yeast refers to any fermentation fungi that can be produce the needed enzymes for a fermentation reaction that results in, for example the conversion of carbohydrates into carbon dioxide and alcohols.
- a number of enzymes are produced by the active yeast during the fermentation reaction and include both hydrolytic and oxidative enzymes such as invertase, catalase, lactase, maltase, carboxylase and others.
- Yeast include yeast strains useful in food processing fermentation, such as, e.g., bean-based fermentation, dough-based fermentation, grain-based fermentation, vegetable-based fermentation, fruit-based fermentation, honey-based fermentation, dairy-based fermentation, fish-based fermentation, meat-based fermentation and tea-based fermentation.
- yeast genera useful in a fermentation reaction disclosed herein include, but is not limited, Brettanomyces, Candida, Cyberlindnera, Cystofilobasidium, Debaryomyces, Dekkera, Fusarium, Geotrichum, Issatchenkia, Kazachstania, Kloeckera, Kluyveromyces, Lecanicillium, Mucor, Neurospora, Pediococcus, Penicillium, Pichia, Rhizopus, Rhodosporidium, Rhodotorula, Saccharomyces, Schizosaccharomyces, Thrichosporon, Torulaspora, Torulopsis, Verticillium, Yarrowia, Zygosaccharomyces and Zygotorulaspora.
- yeast species useful in a fermentation reaction disclosed herein belong to, without limitation
- a non-exhaustive list of particular yeast species useful in a fermentation reaction disclosed herein includes, but is not limited, B. anomalus, B. bruxellensis, B. claussenii, B. custersianus, B. naardenensis, B. nanus, C. colliculosa, C. exiguous, C. humicola, C. kefyr, C. krusei, C. milleri, C. mycoderma, C. pelliculosa, C. rugose, C. stellate, C. tropicalis, C. utilis, C. valida, C. vini, C.
- pretoriensis T. microellipsoides, T. globosa, T. indica, T. maleeae, T. quercuum, To. versatilis, V. lecanii, Y. lipolytica, Z. bailii, Z. bisporus, Z. cidri, Z. fermentati, Z. florentinus, Z. kombuchaensis, Z. lentus, Z. mellis, Z. microellipsoides, Z. mrakii, Z. pseudorouxii and Z. rouxii and Zt. florentina.
- a preferred yeast is Saccharomyces cerevisiae commonly available as baker's yeast.
- Bacteria refer to any fermentation bacteria that can be produce the needed enzymes for a fermentation reaction that results in, for example the production of alcohols like ethanol or acids like acetic acid, lactic acid and/or succinic acid.
- a non-exhaustive list of particular bacterial genera useful in a fermentation reaction disclosed herein include, but is not limited, Acetobacter, Arthrobacter, Aerococcus, Bacillus, Bifidobacterium, Brachybacterium, Brevibacterium, Barnobacterium, Carnobacterium, Corynebacterium, Enterococcus, Escherichia, Gluconacetobacter, Gluconobacter, Hafnia, Halomonas, Kocuria, Lactobacillus, Lactococcus, Leuconostoc, Macrococcus, Microbacterium, Micrococcus, Neisseria, Oenococcus, Pediococcus, Propionibacterium, Proteus, Pseudomonas, Psychr
- a non-exhaustive list of particular bacterial species useful in a fermentation reaction disclosed herein includes, but is not limited, A. aceti, A. fabarum, A. lovaniensis, A. malorum, A. orientalis, A. pasteurianus, A. pasteurianus, A. pomorum, A. syzygii, A. tropicalis, Ar. arilaitensis, Ar. Bergerei, Ar. Globiformis, Ar. nicotianae, Ar. variabilis, B. cereus, B. coagulans, B. licheniformis, B. pumilus, B. sphaericus, B. stearothermophilus, B. subtilis, B.
- adolescentis B. animalis, B. bifidum, B. breve, B. infantis, B. lactis, B. longum, B. pseudolongum, B. thermophilum, Br. alimentarium, Br. alimentarium, Br. tyrofermentans, Br. tyrofermentans, Bv. aurantiacum, Bv. casei, Bv. linens, C. divergens, C. maltaromaticum, C. piscicola, C. ammoniagenes, Co. casei, Co.flavescens, Co. mooreparkense, Co. variabile, E. faecalis, E. faecium, G.
- azotocaptans G. diazotrophicus, G. entanii, G. europaeus, G. hansenii, G. johannae, G. oboediens, G. xylinus, Gl. oxydans, H. alvei, Hl. elongate, K. rhizophila, K. rhizophila, K. varians, K. varians, L. acetotolerans, L. acidifarinae, L. acidipiscis, L. alimentarius, L. brevis, L. bucheri, L. cacaonum, L. casei, L. cellobiosus, L. collinoides, L. composti, L.
- coryniformis L. crispatus, L. curvatus, L. delbrueckii, L. dextrinicus, L. diolivorans, L. fabifermentans, L. farciminis, L. fermentum, L. gasseri, L. ghanensis, L. hammesii, L. harbinensis, L. helveticus, L. hilgardii, L. homohiochii, L. jensenii, L. johnsonii, L. kefiranofaciens, L. kefiri, L. kimchi, L. kisonensis, L. kunkeei, L. mali, L.
- Mold refer to any fermentation mold that can be produce the needed enzymes for a fermentation reaction that results in, for example the production of alcohols like ethanol or acids like acetic acid, lactic acid and/or succinic acid.
- a non-exhaustive list of particular mold genera useful in a fermentation reaction disclosed herein include, but is not limited, Aspergillus.
- a non-exhaustive list of particular mold species useful in a fermentation reaction disclosed herein includes, but is not limited, A. acidus, A. fumigatus, A. niger, A. oryzae, and A. sojae.
- the amount of yeast useful in preparing a fermenting medium disclosed herein may be between about 0.2% and about 5% by weight, and preferably between about 1% and about 3% by weight. It will be appreciated that specific amounts of the yeast utilized may be varied to yield optimum compositions desired.
- the presence of a small amount of inorganic catalyst such as a magnesium salt enhances the activity of the enzymes not only during the fermentation reaction but thereafter in the product composition in attacking and decomposing the organic waste materials.
- a preferred magnesium salt is magnesium sulfate.
- the amount of magnesium salt useful in preparing a fermenting medium disclosed herein may be between about 0.1% and about 5% by weight, and preferably between about 1% and about 3% by weight.
- the magnesium salt utilized may be varied to yield optimum compositions desired.
- the molasses, sucrose and magnesium salt are added to a suitable amount of warm water.
- typically suitable amounts of water are from about 2 to about 20 times the total weight of the other ingredients of the fermenting medium used in the fermentation reaction. This amount of water is sufficient to facilitate easy admixture as well as to activate the yeast, bacterial and/or mold and dissolve the other materials.
- the temperature of the water cannot be too hot such that the heat inactivates the malt and yeast enzymes needed for fermentation.
- water temperatures greater than about 65 °C must be avoided and preferred temperatures are between about 25 °C to about 45 °C.
- the use of cold water may result in unduly slow fermentation reaction rates and, thus, should also be avoided where increased reaction rates are desired.
- the malt and the yeast are added, the mixture stirred and allowed to set until fermentation is essentially complete.
- the reaction time may be between about 2 and about 5 days at temperatures between about 20 °C and about 45 °C. Completion may be readily ascertained by noting that the effervescence of the reacting mixture has substantially subsided.
- a fermented microbial supernatant contains bio-nutrients, minerals and amino acids. Bio-nutrients are typically present in an amount of from about 0.01% to about 1% of the total weight of fermented microbial supernatant. Each individual bio-nutrient is typically present in an amount of from about 0.00001% to about 0.01% of the total weight of fermented microbial supernatant.
- bio-nutrients include, without limitation, biotin, folic acid, glucans like ⁇ -glucan and ⁇ -glucan, niacin, insotil, pantothenic acid, pyridoxine, riboflavin and thiamine.
- a fermented microbial supernatant disclosed herein comprises, e.g., about 0.00001% to about 0.0011% of biotin, about 0.0006% to about 0.016% of folic acid, about 0.005% to about 15% of niacin, about 0.01% to about 1% of insotil, about 0.00017% to about 0.017% of pantothenic acid, about 0.0006% to about 0.016% of pyrodoxine, about 0.002% to about 0.023% of riboflavin and about 0.001% to about 0.02% of thiamine.
- a fermented microbial supernatant disclosed herein comprises, e.g., about 0.00006% to about 0.0006% of biotin, about 0.001% to about 0.011% of folic acid, about 0.01% to about 0.1% of niacin, about 0.08% to about 0.18% of insotil, about 0.002% to about 0.012% of pantothenic acid, about 0.001% to about 0.011% of pyrodoxine, about 0.007% to about 0.017% of riboflavin, about 0.003% to about 0.013% of thiamine.
- a fermented microbial supernatant disclosed herein comprises, e.g., about 0.00012% to about 0.0006% of biotin, about 0.001% to about 0.011% of folic acid, about 0.01% to about 0.1% of niacin, about 0.08% to about 0.18% of insotil, about 0.003% to about 0.013% of pantothenic acid, about 0.001% to about 0.011% of pyrodoxine, about 0.008% to about 0.017% of riboflavin, about 0.003% to about 0.013% of thiamine.
- a fermented microbial supernatant disclosed herein comprises, e.g., about 0.00009% to about 0.0003% of biotin, about 0.004% to about 0.008% of folic acid, about 0.03% to about 0.07% of niacin, about 0.11% to about 0.15% of insotil, about 0.006% to about 0.01% of pantothenic acid, about 0.004% to about 0.008% of pyrodoxine, about 0.01% to about 0.014% of riboflavin, about 0.006% to about 0.010% of thiamine.
- Minerals are typically present in an amount of from about 0.1% to about 20% of the total weight of fermented microbial supernatant.
- Each individual mineral is typically present in an amount of from about 0.0001% to about 5% of the total weight of fermented microbial supernatant.
- Examples of minerals include, without limitation, calcium, chromium, copper, iron, magnesium, phosphate, potassium, sodium and zinc.
- a fermented microbial supernatant disclosed herein comprises, e.g., about 0.02% to about 0.3% of calcium, about 0.000002% to about 0.0016% of chromium, about 0.000009% to about 0.0014% of copper, about 0.00005% to about 0.02% of iron, about 0.001% to about 1.3% of magnesium, about 0.2% to about 14% of phosphate, about 0.4% to about 16% of potassium, about 0.2% to about 15% of sodium and about 0.08% to about 13% of zinc.
- a fermented microbial supernatant disclosed herein comprises, e.g., about 0.07% to about 0.21% of calcium, about 0.000007% to about 0.0011% of chromium, about 0.00004% to about 0.0009% of copper, about 0.0001% to about 0.015% of iron, about 0.005% to about 0.9% of magnesium, about 0.7% to about 9% of phosphate, about 0.9% to about 11% of potassium, about 0.7% to about 10% of sodium and about 0.3% to about 8% of zinc.
- a fermented microbial supernatant disclosed herein comprises, e.g., about 0.05% to about 1% of calcium, about 0.0001% to about 0.0009% of chromium, about 0.00006% to about 0.0007% of copper, about 0.0001% to about 0.013% of iron, about 0.005% to about 1% of magnesium, about 0.1% to about 7% of phosphate, about 0.5% to about 9% of potassium, about 0.5% to about 8% of sodium and about 0.5% to about 6% of zinc.
- a fermented microbial supernatant disclosed herein comprises, e.g., about 0.12% to about 0.16% of calcium, about 0.0002% to about 0.0006% of chromium, about 0.00009% to about 0.0004% of copper, about 0.0006% to about 0.01% of iron, about 0.01% to about 0.4% of magnesium, about 1% to about 4% of phosphate, about 2% to about 6% of potassium, about 1% to about 5% of sodium and about 0.8% to about 3% of zinc.
- Amino acids are typically present in an amount of from about 20% to about 60% of the total weight of fermented microbial supernatant.
- Each individual amino acid is typically present in an amount of from about 0.1% to about 15% of the total weight of fermented microbial supernatant.
- minerals include, without limitation, alanine, arginine, aspartic acid, cysteine, glutamic acid, glycine, lysine, methionine, phenylalanine, proline, serine, and threonine.
- a fermented microbial supernatant disclosed herein comprises, e.g., about 0.2% to about 16% of alanine, about 0.09% to about 15% of arginine, about 0.4% to about 18% of aspartic acid, about 0.003% to about 5% of cysteine, about 0.5% to about 20% of glutamic acid, about 0.09% to about 15% of glycine, about 0.09% to about 15% of lysine, about 0.002% to about 5% of methionine, about 0.09% to about 15% of phenylalanine, about 0.09% to about 15% of proline, about 0.09% to about 15% of serine and about 0.09% to about 15% of threonine.
- a fermented microbial supernatant disclosed herein comprises, e.g., about 0.7% to about 11% of alanine, about 0.5% to about 10% of arginine, about 0.9% to about 13% of aspartic acid, about 0.008% to about 1.2% of cysteine, about 1% to about 15% of glutamic acid, about 0.5% to about 10% of glycine, about 0.8% to about 12% of lysine, about 0.2% to about 1.6% of methionine, about 0.5% to about 10% of phenylalanine, about 0.5% to about 10% of proline, about 0.5% to about 10% of serine and about 0.5% to about 10% of threonine.
- a fermented microbial supernatant disclosed herein comprises, e.g., about 0.5% to about 9% of alanine, about 0.5% to about 8% of arginine, about 1% to about 11% of aspartic acid, about 0.01% to about 2% of cysteine, about 3% to about 13% of glutamic acid, about 0.5% to about 8% of glycine, about 1% to about 10% of lysine, about 0.3% to about 3% of methionine, about 0.5% to about 7% of phenylalanine, about 0.5% to about 7% of proline, about 0.5% to about 7% of serine and about 0.5% to about 7% of threonine.
- a fermented microbial supernatant disclosed herein comprises, e.g., about 2% to about 6% of alanine, about 1% to about 5% of arginine, about 4% to about 8% of aspartic acid, about 0.03% to about 0.7% of cysteine, about 6% to about 10% of glutamic acid, about 1% to about 5% of glycine, about 3% to about 7% of lysine, about 0.7% to about 1.1% of methionine, about 1% to about 5% of phenylalanine, about 1% to about 5% of proline, about 1% to about 5% of serine and about 1% to about 5% of threonine.
- a treated fermented microbial supernatant is one that is processed in a manner that denatures, kills or otherwise destroys any remaining live yeast, active enzymes contributed by the yeast and malt as well as any other microorganism or enzymes contributed by another source present in a fermented microbial supernatant disclosed herein.
- Non-limiting examples, of useful treatment procedures include a boiling process using high temperatures, an autoclaving process using high temperatures and high pressure or an irradiation process by exposing the supernatant to ionizing radiation, or any other sterilization process that denatures, kills or otherwise destroys any remaining live yeast, active enzymes contributed by the yeast and malt as well as any other microorganism or enzymes contributed by another source present in a fermented microbial supernatant disclosed herein.
- the above treatment processes could be used alone, in combination with one another, or in combination with a pasteurization process, a chemical sterilization process and a sterile filtration process to denature, kill or otherwise destroys proteins such as enzymes and microorganisms such as yeast, bacteria and/or mold present the fermentation supernatant disclosed herein. All the methods discussed above are processes known to a person of ordinary skilled in the art as these are routinely used in the food preparation and/or sterilization arts. [055]
- the treated fermented microbial supernatant can then be stored in liquid form for subsequent use.
- the treated fermented microbial supernatant can be spray dried by methods known in the art to produce a dry powder.
- the dry powder form can also be stored for subsequent use.
- any amount of treated fermented microbial supernatant disclosed herein may be used in a disclosed plant agent composition, with the proviso that the amount is useful to practice the methods disclosed herein.
- Factor used in determining an appropriate amount include, e.g., whether the treated fermented microbial supernatant is in liquid or powder form, the particular commercial source of the treated fermented microbial supernatant, the particular method used to produce the treated fermented microbial supernatant, whether a plant agent composition is produced as a concentrate or as a ready as is product, and the dilution factor desired when preparing plant agent composition from a concentrate.
- the amount of treated fermented microbial supernatant used is, e.g., about 0.5% by weight, about 1.0% by weight, about 1.5% by weight, about 2.0% by weight, about 2.5% by weight, about 3.0% by weight, about 3.5% by weight, about 4.0% by weight, about 4.5% by weight, about 5.0% by weight, about 6.0% by weight, about 7.0% by weight, about 7.5% by weight, about 8.0% by weight, about 9.0% by weight or about 10.0% by weight.
- the amount of treated fermented microbial supernatant used is, e.g., at least 0.5% by weight, at least 1.0% by weight, at least 1.5% by weight, at least 2.0% by weight, at least 2.5% by weight, at least 3.0% by weight, at least 3.5% by weight, at least 4.0% by weight, at least 4.5% by weight, at least 5.0% by weight, at least 6.0% by weight, at least 7.0% by weight, at least 7.5% by weight, at least 8.0% by weight, at least 9.0% by weight or at least 10.0% by weight.
- the amount of treated fermented microbial supernatant used is, e.g., at most 0.5% by weight, at most 1.0% by weight, at most 1.5% by weight, at most 2.0% by weight, at most 2.5% by weight, at most 3.0% by weight, at most 3.5% by weight, at most 4.0% by weight, at most 4.5% by weight, at most 5.0% by weight, at most 6.0% by weight, at most 7.0% by weight, at most 7.5% by weight, at most 8.0% by weight, at most 9.0% by weight or at most 10.0% by weight.
- the amount of treated fermented microbial supernatant used is between, e.g., about 0.1% to about 2.5% by weight, about 0.1% to about 3.0% by weight, about 0.1% to about 3.5% by weight, about 0.1% to about 4.0% by weight, about 0.1% to about 5.0% by weight, about 0.5% to about 2.5% by weight, about 0.5% to about 3.0% by weight, about 0.5% to about 3.5% by weight, about 0.5% to about 4.0% by weight, about 0.5% to about 5.0% by weight, about 1% to about 2.5% by weight, about 1% to about 3.0% by weight, about 1% to about 3.5% by weight, about 1% to about 4.0% by weight, about 1% to about 5.0% by weight, about 1% to about 6.0% by weight, about 1% to about 7.0% by weight, about 1% to about 8.0% by weight, about 1% to about 9.0% by weight or about 1% to about 10.0% by weight.
- the amount of treated fermented microbial supernatant used is, e.g., about 15.0% by weight, about 20.0% by weight, about 25.0% by weight, about 30.0% by weight, about 35.0% by weight, about 40.0% by weight, about 45.0% by weight, about 50.0% by weight, about 55.0% by weight, about 60.0% by weight, about 65.0% by weight, about 70.0% by weight, about 75.0% by weight, about 80.0% by weight, about 85.0% by weight or about 90.0% by weight.
- the amount of treated fermented microbial supernatant used is, e.g., at least 15.0% by weight, at least 20.0% by weight, at least 25.0% by weight, at least 30.0% by weight, at least 35.0% by weight, at least 40.0% by weight, at least 45.0% by weight, at least 50.0% by weight, at least 55.0% by weight, at least 60.0% by weight, at least 65.0% by weight, at least 70.0% by weight, at least 75.0% by weight, at least 80.0% by weight, at least 85.0% by weight or at least 90.0% by weight.
- the amount of treated fermented microbial supernatant used is, e.g., at most 15.0% by weight, at most 20.0% by weight, at most 25.0% by weight, at most 30.0% by weight, at most 35.0% by weight, at most 40.0% by weight, at most 45.0% by weight, at most 50.0% by weight, at most 55.0% by weight, at most 60.0% by weight, at most 65.0% by weight, at most 70.0% by weight, at most 75.0% by weight, at most 80.0% by weight, at most 85.0% by weight or at most 90.0% by weight.
- the amount of treated fermented microbial supernatant used is between, e.g., about 5% to about 7.5% by weight, about 5% to about 10% by weight, about 5% to about 15% by weight, about 5% to about 20% by weight, about 5% to about 25% by weight, about 5% to about 30% by weight, about 5% to about 35% by weight, about 5% to about 40% by weight, about 5% to about 45% by weight, about 5% to about 50% by weight, about 5% to about 55% by weight, about 5% to about 60% by weight, about 5% to about 65% by weight, about 5% to about 70% by weight, about 5% to about 75% by weight, about 5% to about 80% by weight, about 5% to about 85% by weight, about 5% to about 90% by weight, about 5% to about 95% by weight, about 10% to about 15% by weight, about 10% to about 20% by weight, about 10% to about 25% by weight, about 10% to about 30% by weight, about 10% to about 35% by weight, about 5% to about 40% by weight,
- Surfactants are compounds that lower the surface tension of a liquid, allowing easier spreading, and lowering of the interfacial tension between two liquids, or between a liquid and a solid. Either a single surfactant may be mixed with the buffered solution disclosed herein, or a plurality of surfactants may be mixed with the buffered solution disclosed herein.
- Useful surfactants include, without limitation, ionic surfactants, zwitterionic (amphoteric) surfactants, non-ionic surfactants, or any combination therein.
- Ionic surfactants include anionic surfactants.
- Anionic surfactants include ones based on permanent functional groups attached to the head, such as, e.g., sulfate, sulfonate, phosphate carboxylates) or pH dependent anionic surfactants.
- Anionic surfactants include, without limitation, alkyl sulfates like ammonium lauryl sulfate and sodium lauryl sulfate (SDS); alkyl ether sulfates like sodium laureth sulfate and sodium myreth sulfate; docusates like dioctyl sodium sulfosuccinate; sulfonate fluorosurfactants like perfluorooctanesulfonate (PFOS) and perfluorobutanesulfonate; alkyldiphenyloxide Disulfonates like DOWFAXTM 2A1 (Disodium Lauryl Phenyl Ether Disulfonate), DOWFAXTM 3B2 (Disodium Decyl Phenyl Ether Disulfonate), DOWFAXTM C10L (Disodium Decyl Phenyl Ether Disulfonate), DOWFAXTM 2EP, and DOWFAXTM 83
- Ionic surfactants also include cationic surfactants.
- Cationic surfactants include ones based on permanent or pH dependent cationic surfactants, such as, e.g., primary, secondary or tertiary amines.
- Cationic surfactants include, without limitation, alkyltrimethylammonium salts like cetyl trimethylammonium bromide (CTAB) and cetyl trimethylammonium chloride (CTAC); cetylpyridinium chloride (CPC); polyethoxylated tallow amine (POEA); benzalkonium chloride (BAC); benzethonium chloride (BZT); 5- Bromo-5-nitro-1,3-dioxane; dimethyldioctadecylammonium chloride; and dioctadecyldimethylammonium bromide (DODAB), as well as pH-dependent primary, secondary or tertiary amines like surfactants where the primary amines
- anionic surfactants include bio- based anionic surfactants, including, without limitation, STEPONOL ® AM 30-KE, an ammonium lauryl sulfate, and STEPONOL ® EHS, a sodium 2-ethyl hexyl sulfate.
- bio-based surfactants are not synthetic molecules, but instead are anionic biosurfactants derived from organic matter such as plants.
- Zwitterionic surfactants are based on primary, secondary or tertiary amines or quaternary ammonium cation with a sulfonate, a carboxylate, or a phosphate.
- Zwitterionic surfactants include, without limitation, 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS); sultaines like cocamidopropyl hydroxysultaine; betaines like cocamidopropyl betaine; or lecithins.
- Non-ionic surfactants are less denaturing and as such are useful to solubilize membrane proteins and lipids while retaining protein-protein interactions.
- Nonionic surfactant include polyether nonionic surfactants, polyhydroxyl nonionic surfactants and biosurfactants.
- Nonionic surfactant include alcohol ethoxylates, alkylphenol ethoxylates, phenol ethoxylates, amide ethoxylates, glyceride ethoxylates, fatty acid ethoxylates, and fatty amine ethoxylates.
- a nonionic surfactant disclosed herein may have the general formula of H(OCH2CH2)xOC6H4R 1 , (OCH2CH2)xOR 2 , or H(OCH2CH2)xOC(O)R 2 , wherein x represents the number of moles of ethylene oxide added to an alkyl phenol and/or a fatty alcohol or a fatty acid, R 1 represents a long chain alkyl group and, R 2 represents a long chain aliphatic group. In aspects of this embodiment, R 1 is a C7-C10 alkyl group and/or R 2 is a C12-C20 aliphatic group.
- non-ionic surfactants include bio-based non-ionic surfactants, including, without limitation, STEPOSOL ® MET-10U, a metathesis-derived, nonionic surfactant that is an unsaturated, short chain amide.
- bio-based surfactants are not synthetic molecules, but instead are non-ionic biosurfactants derived from organic matter such as plants.
- Non-limiting examples of surfactants include polyoxyethylene glycol sorbitan alkyl esters (or ethoxylated sorbital esters) like polysorbate 20 sorbitan monooleate (TWEEN ® 20), polysorbate 40 sorbitan monooleate (TWEEN ® 40), polysorbate 60 sorbitan monooleate (TWEEN ® 60), polysorbate 61 sorbitan monooleate (TWEEN ® 61), polysorbate 65 sorbitan monooleate (TWEEN ® 65), polysorbate 80 sorbitan monooleate (TWEEN ® 80), polysorbate 81 sorbitan monooleate (TWEEN ® 81) and polysorbate 85 sorbitan monooleate (TWEEN ® 85); sorbital esters like sorbitan monooleate, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate and sorbitan tristea
- surfactants useful in the methods disclosed herein can be found in, e.g., Winslow, et al., Methods and Compositions for Simultaneously Isolating Hemoglobin from Red Blood Cells and Inactivating Viruses, U.S. 2008/0138790; Pharmaceutical Dosage Forms and Drug Delivery Systems (Howard C. Ansel et al., eds., Lippincott Williams & Wilkins Publishers, 7 th ed. 1999); Remington: The Science and Practice of Pharmacy (Alfonso R.
- Non-ionic surfactants act synergistically to enhance the action of the fermentated microbial supernatant.
- a plant agent composition disclosed herein contains only one or more nonionic surfactants.
- a plant agent composition disclosed herein contains only one or more nonionic surfactants and one or more anionic surfactants.
- a plant agent composition disclosed herein does not contain any cationic surfactants.
- a plant agent composition disclosed herein does not contain any cationic surfactants or zwitterionic surfactants.
- a plant agent composition disclosed herein does not contain any ionic surfactants.
- a plant agent composition disclosed herein does not contain any ionic surfactants or zwitterionic surfactants.
- Any amount of surfactant disclosed herein may be used, with the proviso that the amount is useful to practice the methods disclosed herein.
- the amount of surfactant used is, e.g., about 0.01% by weight, about 0.05% by weight, about 0.075% by weight, about 0.1% by weight, about 0.2% by weight, about 0.3% by weight, about 0.4% by weight, about 0.5% by weight, about 0.6% by weight, about 0.7% by weight, about 0.8% by weight, about 0.9% by weight, about 1.0% by weight, about 1.5% by weight, about 2.0% by weight, about 2.5% by weight, about 3.0% by weight, about 4.0% by weight, about 5.0% by weight, about 6.0% by weight, about 7.0% by weight, about 7.5% by weight, about 8.0% by weight, about 9.0% by weight or about 10.0% by weight.
- the amount of surfactant used is, e.g., at least 0.01% by weight, at least 0.05% by weight, at least 0.075% by weight, at least 0.1% by weight, at least 0.25% by weight, at least 0.5% by weight, at least 0.75% by weight, at least 1.0% by weight, at least 1.5% by weight, at least 2.0% by weight, at least 2.5% by weight, at least 3.0% by weight, at least 4.0% by weight, at least 5.0% by weight, at least 6.0% by weight, at least 7.0% by weight, at least 7.5% by weight, at least 8.0% by weight, at least 9.0% by weight, or at least 10.0% by weight.
- the amount of surfactant used is, e.g., at most 0.01% by weight, at most 0.05% by weight, at most 0.075% by weight, at most 0.1% by weight, at most 0.25% by weight, at most 0.5% by weight, at most 0.75% by weight, at most 1.0% by weight, at most 1.5% by weight, at most 2.0% by weight, at most 2.5% by weight, at most 3.0% by weight, at most 4.0% by weight, at most 5.0% by weight, at most 6.0% by weight, at most 7.5% by weight, at most 8.0% by weight, at most 9.0% by weight or at most 10.0% by weight.
- the amount of surfactant used is between, e.g., about 0.1% by weight to about 0.5% by weight, about 0.1% by weight to about 0.75% by weight, about 0.1% by weight to about 1.0% by weight, about 0.1% by weight to about 1.5% by weight, about 0.1% by weight to about 2.0% by weight, about 0.1% by weight to about 2.5% by weight, about 0.2% by weight to about 0.5% by weight, about 0.2% by weight to about 0.75% by weight, about 0.2% by weight to about 1.0% by weight, about 0.2% by weight to about 1.5% by weight, about 0.2% by weight to about 2.0% by weight, about 0.2% by weight to about 2.5% by weight, about 0.5% by weight to about 1.0% by weight, about 0.5% by weight to about 1.5% by weight, about 0.5% by weight to about 2.0% by weight, about 0.5% by weight to about 2.5% by weight, about 0.5% by weight to about 1.0% by weight, about 0.5% by weight to about 1.5% by weight, about 0.5% by weight to about 2.0% by weight, about 0.5% by weight to about 2.
- aspects of the present specification disclose, in part, a pH of a plant agent composition disclosed herein.
- the final pH of a plant agent composition is typically acidic as this contributes to a longer shelf-life of the composition.
- the pH of a plant agent composition disclosed herein is, e.g., about 2, about 2.5, about 3, about 3.5, about 4, about 4.5, about 5, about 5.5 or about 6.
- the pH of a plant agent composition disclosed herein is, e.g., at least 2, at least 2.5, at least 3, at least 3.5, at least 4, at least 4.5, at least 5, at least 5.5 or at least 6.
- the pH of a plant agent composition disclosed herein is, e.g., at most 2, at most 2.5, at most 3, at most 3.5, at most 4, at most 4.5, at most 5, at most 5.5 or at most 6.
- the pH of a plant agent composition disclosed herein is between, e.g., about 2 to about 3, about 2 to about 3.5, about 2 to about 4, about 2 to about 4.5, about 2 to about 5, about 2 to about 5.5, about 2 to about 6, about 2.5 to about 3, about 2.5 to about 3.5, about 2.5 to about 4, about 2.5 to about 4.5, about 2.5 to about 5, about 2.5 to about 5.5, about 2.5 to about 6, about 3 to about 3.5, about 3 to about 4, about 3 to about 4.2, about 3 to about 4.5, about 3 to about 4.7, about 3 to about 5, about 3 to about 5.2, about 3 to about 5.5, about 3 to about 6, about 3.5 to about 4, about 3.5 to about 4.2, about 3.5 to about 4.5, about 3.5 to about 3.5 to about 3.5 to about
- a plant agent composition disclosed herein has minimal adverse effects on humans, mammals including domestic animals, plant life and the environment.
- a plant agent composition disclosed herein is substantially non-toxic to humans, mammals, plants and the environment.
- a plant agent composition disclosed herein is essentially non-toxic to humans, mammals, plants and the environment.
- a biodegradable plant agent composition disclosed herein is one that is prone to degrading, eroding, resorbing, decomposing, or breaking down to a substantial or significant degree once applied according to the methods and uses disclosed herein.
- At least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% of a plant agent composition disclosed herein biodegrades in, e.g., about 1 day, about 2 days, about 3 days, about 4 days, about 5 days, about 6 days or about 7 days.
- At least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% of a plant agent composition disclosed herein biodegrades in, e.g., about 1 to about 2 days, about 1 to about 3 days, about 1 to about 4 days, about 1 to about 5 days, about 1 to about 6 days, about 1 to about 7 days, about 2 to about 3 days, about 2 to about 4 days, about 2 to about 5 days, about 2 to about 6 days, about 2 to about 7 days, about 3 to about 4 days, about 3 to about 5 days, about 3 to about 6 days, about 3 to about 7 days, about 4 to about 5 days, about 4 to about 6 days, about 4 to about 7 days, about 5 to about 6 days, about 5 to about 7 days or about 6 to about 7 days.
- At least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% of a plant agent composition disclosed herein biodegrades in, e.g., about 7 day, about 8 days, about 9 days, about 10 days, about 11 days, about 12 days, about 13 days or about 14 days.
- At least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% of a plant agent composition disclosed herein biodegrades in, e.g., about 7 to about 8 days, about 7 to about 9 days, about 7 to about 10 days, about 7 to about 11 days, about 7 to about 12 days, about 7 to about 13 days, about 7 to about 14 days, about 8 to about 9 days, about 8 to about 10 days, about 8 to about 11 days, about 8 to about 12 days, about 8 to about 13 days, about 8 to about 14 days, about 9 to about 10 days, about 9 to about 11 days, about 9 to about 12 days, about 9 to about 13 days, about 9 to about 14 days, about 9 to about 11 days, about 9 to about 12 days, about 9 to about 13 days, about 9 to about 14 days, about 10 to about 11 days, about 10 to about 12 days, about 10 to about 13 days, about 10 to about 14 days, about 11 to about 12 days, about 11 to about 13 days, about 11 to about 14 days, about 10
- At least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% of a plant agent composition disclosed herein biodegrades in, e.g., about 15 day, about 16 days, about 17 days, about 18 days, about 19 days, about 20 days or about 21 days.
- At least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% of a plant agent composition disclosed herein biodegrades in, e.g., about 15 to about 16 days, about 15 to about 17 days, about 15 to about 18 days, about 15 to about 19 days, about 15 to about 20 days, about 15 to about 21 days, about 16 to about 17 days, about 16 to about 18 days, about 16 to about 19 days, about 16 to about 20 days, about 16 to about 21 days, about 17 to about 18 days, about 17 to about 19 days, about 17 to about 20 days, about 17 to about 21 days, about 18 to about 19 days, about 18 to about 20 days, about 18 to about 21 days, about 19 to about 20 days, about 19 to about 21 days or about 20 to about 21 days.
- kits comprising one or more components useful to practice a method or use disclosed herein.
- Kits provide a convenient enclosure of components useful to practice a method or use disclosed herein to facilitate or enhance a commercial sale.
- a kit may comprises a plant agent composition disclosed herein and one or more other reagents useful to practice a method or use disclosed herein, such as, e.g., one or more dilutants and/or one or more carriers.
- Kits typically provide a suitable container, e.g., a box or other enclosed carrier that contain the one or more components useful to practice a method or use disclosed herein.
- kits disclosed herein will typically include separate containers, e.g., a bottle, a vial, a flask or other enclosed carrier that contains the one or more components.
- a container for a plant agent composition disclosed herein and a separate container for the one or more other reagents included in the kit.
- Kits can be portable, for example, able to be transported and used in remote areas such as commercial or industrial installations or agricultural fields. Other kits may be of use in a residential building.
- a kit disclosed herein may include labels or inserts. Labels or inserts include "printed matter” that can be provided as separate material, a packing material (e.g., a box), or attached or affixed to a container containing a kit component.
- Labels or inserts can additionally include a computer readable medium, such as a disk (e.g., hard disk, flash memory), optical disk such as CD- or DVD-ROM/RAM, DVD, MP3, magnetic tape, or an electrical storage media such as RAM and ROM or hybrids of these such as magnetic/optical storage media, FLASH media or memory type cards.
- Labels or inserts may include identifying information of one or more components therein, dose amounts, does frequency or timing, information on the individual components. Labels or inserts can include information identifying manufacturer information, lot numbers, manufacturer location and date. Labels or inserts can include information on a condition or situation for which a kit component may be used. Labels or inserts can include instructions for using one or more of the kit components in a method, or use as disclosed herein.
- a disclosed method of controlling a causal agent of a plant disease includes a step of applying an effective amount of a plant agent composition disclosed herein to one or more plants infested with a causal agent and/or applying an effective amount of a plant agent composition disclosed herein to one or more locations in a manner where a causal agent will be exposed to a plant agent composition.
- a plant agent composition disclosed herein results in e.g., an adverse effect on the causal agent of a plant disease sought to be controlled.
- a disclosed use of a plant agent composition includes applying an effective amount of a plant agent composition disclosed herein to one or more plants infested with a causal agent and/or applying an effective amount of a plant agent composition disclosed herein to one or more locations in a manner where a causal agent will be exposed to a plant agent composition.
- Application of a plant agent composition disclosed herein results in e.g., an adverse effect on the causal agent of a plant disease sought to be controlled.
- a disclosed method of increasing plant growth and/or crop production includes a step of applying an effective amount of a plant agent composition disclosed herein to one or more plants and/or applying an effective amount of a plant agent composition disclosed herein to one or more locations in a manner where the one or more plants will be exposed to a plant agent composition.
- a plant agent composition disclosed herein results in e.g., improved absorption by root hairs, improve xylem sap flow through xylem and improve photosynthate flow in phloem, increased uptake of water, minerals and other nutrients from the soil, increase the capillary action and/or hydrostatic pressure in xylem, and/or increase synthesis of compounds and energy and/or disruption of one or more components blocking xylem sap flow and/or photosynthate flow.
- one or more components blocking xylem sap flow and/or photosynthate flow includes biofilm.
- a disclosed use of a plant agent composition includes applying an effective amount of a plant agent composition disclosed herein to one or more plants and/or applying an effective amount of a plant agent composition disclosed herein to one or more locations where a plant agent composition will be exposed to the one or more plants.
- Application of a plant agent composition disclosed herein results in e.g., improved absorption by root hairs, improve xylem sap flow through xylem and improve photosynthate flow in phloem, increased uptake of water, minerals and other nutrients from the soil, increase the capillary action and/or hydrostatic pressure in xylem, and/or increase synthesis of compounds and energy and/or disruption of one or more components blocking xylem sap flow and/or photosynthate flow.
- one or more components blocking xylem sap flow and/or photosynthate flow includes biofilm.
- a disclosed method of maintaining or improving the efficiency of an irrigation system includes a step of applying an effective amount of a plant agent composition disclosed herein to one or more pipes in a pipeline network of the irrigation system.
- Application of a plant agent composition disclosed herein results in e.g., adequate removal of one or more components blocking one or more pipeline networks of an irrigation system.
- one or more components blocking one or more pipeline networks includes biofilm.
- a disclosed use of a plant agent composition includes applying an effective amount of a plant agent composition disclosed herein to one or more pipes in a pipeline network of the irrigation system.
- Application of a plant agent composition disclosed herein results in e.g., adequate removal of one or more components blocking one or more pipeline networks of an irrigation system.
- one or more components blocking one or more pipeline networks includes biofilm.
- the combination of the nonionic surfactant and the treated fermented microbial supernatant in a plant agent composition disclosed herein results in an accelerated in situ chemical reactions of the molecular structures, particularly chemical bonds present in polysaccharide and lipid-based components, of 1) the one or more components present in the protective structure of a causal agent of a plant disease; 2) the one or more components blocking xylem sap and/or photosynthate flow in a plant; or 3) the one or more components blocking water flow in an irrigation system.
- microbubbles upon application of a plant agent composition in an aqueous environment, highly reactive, uniquely structured, ultra-fine microbubbles are spontaneously formed.
- These“functionalized” microbubbles comprise an outer“highly reactive” shell composed of one or more nonionic surfactants and components from the treated fermented microbial supernatant and an inner core containing air.
- The“highly reactive” shell enables a dramatic increase in the mass transfer of oxygen in an aqueous environment and an accelerated bio-catalysis of the molecular structures of compounds, which in combination provide a synergistic functionality.
- this functionality increases transfer rates of oxygen and raises the level of dissolved oxygen in an aqueous environment which far exceeding the solubility limits anticipated by Henry’s Law, and, are at levels that simply cannot be achieved through mechanical aeration systems. It appears that components from the treated fermented microbial supernatant interfere with the ability of the nonionic surfactants to create a well- organized micellar shell. The result is a loose molecular packing of these fermentation components and surfactants that“functionalized” the shell to be more gas permeable, thereby creating more favorable conditions for mass gas transfer. As such, this oxygen transfer function increases the availability of oxygen in an aqueous environment.
- this functionality lowers the transition of energy required for a catalytic reaction to occur by providing a reaction platform that increases localized concentrations of reactants, enables donation of electrons and facilitate chemical reactions at electron poor sites.
- this bio-catalysis function mediates cleavage of chemical bonds, including glycosidic and ester bonds, present in a compound.
- the“functionalized” shell of the microbubbles have catalytic activities that like conventional enzyme systems, but without the need of any enzymes.
- application of a plant agent composition disclosed herein creates“functionalized: microbubbles that increase oxygen dispersion resulting in higher dissolved oxygen levels and accelerate molecular interactions resulting in catalytic breakdown of compounds.
- the“functionalized” microbubbles When in contact with a protective structure of a causal agent, the“functionalized” microbubbles chemically interacts with one or more components of the protective structure in a manner that enables donation of electrons or reactions at electron poor sites that mediates cleavage of chemical bonds, including glycosidic and ester bonds, present in the one or more components.
- the“functionalized” microbubbles when in contact with one or more components blocking xylem sap and/or photosynthate flow in a plant, chemically interacts with one or more components in a manner that enables donation of electrons or reactions at electron poor sites that mediates cleavage of chemical bonds, including glycosidic and ester bonds, present in the one or more components.
- the“functionalized” microbubbles when in contact with one or more components blocking water flow in an irrigation system, chemically interacts with one or more components in a manner that enables donation of electrons or reactions at electron poor sites that mediates cleavage of chemical bonds, including glycosidic and ester bonds, present in the one or more components. These interactions appear to be a form of hydrolysis using beta-oxidation where, in addition to relying on the“highly reactive” shell, oxygen present in the core of the microbubble is also utilized.
- the properties present in the“functionalized” microbubbles works synergistically with the oxygen transfer capabilities of the core to enhance the in situ breaking of chemical bonds, including glycosidic and ester bonds present in 1) the one or more components present in the protective structure of a causal agent of a plant disease; 2) the one or more components blocking xylem sap and/or photosynthate flow in a plant; and/or 3) the one or more components blocking water flow in an irrigation system.
- “functionalized” microbubbles when in contact with root hairs,“functionalized” microbubbles increase water absorption, increase nitrogen-fixation, increase gas exchange, increase capillary action and hydrostatic pressure in vascular tissue by making the membranes of the root hairs more permeable to water transfer and providing a better microbial environment for symbiotic organisms that enhance root hair function.
- Such interactions improve absorption by root hairs, improve xylem sap flow through xylem and improve photosynthate flow in phloem, resulting in improved transport of raw materials, growth components and energy that will be used to maintain and/or enhance the health and vigor of plants.
- Application of a plant agent composition disclosed herein can be by any method that exposes the one or more components present in the protective structure of a causal agent of a plant disease to the disclosed plant agent compositions in a manner that provides adequate disruption of one or more components of the protective structure and subsequent death through disruption of one or more essential physiological processes.
- exposure can be by direct application to the causal agent or by indirect application to a location were the causal agent will be exposed to a plant agent composition.
- application of a plant agent composition disclosed herein can be by any method that exposes the root hairs to the disclosed plant agent compositions in a manner that provides increase uptake of water, minerals and other nutrients from the soil, increase the capillary action and/or hydrostatic pressure in xylem, and/or increase synthesis of compounds and energy and subsequent improvement in root hair absorption, xylem sap flow through xylem and photosynthate flow in phloem.
- exposure can be by direct application to one or more plants or by indirect application to a location were the one or more plants will be exposed to a plant agent composition.
- application of a plant agent composition disclosed herein can be by any method that exposes the one or more components that block xylem sap flow in xylem and/or photosynthate flow in phloem to the disclosed plant agent compositions in a manner that provides adequate disruption of one or more components of the protective structure and subsequent improvement of transport of water and nutrients that will maintain and/or enhance the health and vigor of plants.
- exposure can be by direct application to one or more plants or by indirect application to a location were the one or more plants will be exposed to a plant agent composition.
- application of a plant agent composition disclosed herein can be by any method that exposes the one or more components that disrupt water flow in a pipeline network of an irrigation system to the disclosed plant agent compositions in a manner that provides adequate disruption of one or more components of the protective structure and subsequent improvement of water distribution in the irrigation system that will maintain and/or enhance the health and vigor of plants.
- exposure can be by direct application to one or more pipeline networks of the irrigation system or by indirect application to a location were the one or more pipeline networks of the irrigation system will be exposed to a plant agent composition.
- An undiluted form of a plant agent composition disclosed herein can be used in the methods and uses disclosed herein.
- a plant agent composition disclosed herein it may desirable to dilute a plant agent composition disclosed herein, and those skilled in the art are aware that dilutions of such compositions can be used. Dilution of a plant agent composition disclosed herein is typically done using water, although other appropriate diluents may be used so long as they are compatible with the formation of microbubbles as disclosed herein.
- a plant agent composition is diluted to a ratio of, e.g., 1:10, 1:25, 1:50, 1:75, 1:100, 1:200, 1:300, 1:400, 1:500, 1:600, 1:700, 1:800, 1:900, 1:1000, 1:2000, 1:3000, 1:4000, 1:5000, 1:6000, 1:7000, 1:8000, 1:9000, 1:10000, 1:20000, 1:30000, 1:40000, 1:50000, 1:60000, 1:70000, 1:80000, 1:90000 or 1:100000.
- a plant agent composition is diluted to a ratio of, e.g., at least 1:10, at least 1:25, at least 1:50, at least 1:75, at least 1:100, at least 1:200, at least 1:300, at least 1:400, at least 1:500, at least 1:600, at least 1:700, at least 1:800, at least 1:900, at least 1:1000, at least 1:2000, at least 1:3000, at least 1:4000, at least 1:5000, at least 1:6000, at least 1:7000, at least 1:8000, at least 1:9000, at least 1:10000, at least 1:20000, at least 1:30000, at least 1:40000, at least 1:50000, at least 1:60000, at least 1:70000, at least 1:80000, at least 1:90000 or at least 1:100000.
- a plant agent composition is diluted to a ratio of, e.g., at most 1:10, at most 1:25, at most 1:50, at most 1:75, at most 1:100, at most 1:200, at most 1:300, at most 1:400, at most 1:500, at most 1:600, at most 1:700, at most 1:800, at most 1:900, at most 1:1000, at most 1:2000, at most 1:3000, at most 1:4000, at most 1:5000, at most 1:6000, at most 1:7000, at most 1:8000, at most 1:9000, at most 1:10000, at most 1:20000, at most 1:30000, at most 1:40000, at most 1:50000, at most 1:60000, at most 1:70000, at most 1:80000, at most 1:90000 or at most 1:100000.
- a plant agent composition is diluted to a ratio of, e.g., about 1:1 to about 1:10, about 1:1 to about 1:25, about 1:1 to about 1:50, about 1:1 to about 1:75, about 1:1 to about 1:100, about 1:2 to about 1:10, about 1:2 to about 1:25, about 1:2 to about 1:50, about 1:2 to about 1:75, about 1:2 to about 1:100, about 1:10 to about 1:25, about 1:10 to about 1:50, about 1:10 to about 1:75, about 1:10 to about 1:100, about 1:10 to about 1:125, about 1:10 to about 1:150, about 1:10 to about 1:175, about 1:10 to about 1:200, about 1:10 to about 1:225, about 1:10 to about 1:250, about 1:50 to about 1:100, about 1:50 to about 1:200, about 1:50 to about 1:300, about 1:50 to about 1:400, about 1:50 to about 1:500, about 1:50 to about 1:600, about 1:50 to about 1:700,
- An effective amount of a disclosed plant agent composition can be 1) an amount sufficient to cause an adverse effect on the population of a causal agent of a plant disease sought to be controlled; 2) an amount sufficient to improve absorption by root hairs, improve xylem sap flow through xylem and improve photosynthate flow in phloem; 3) an amount sufficient to increase uptake of water, minerals and other nutrients from the soil, increase the capillary action and/or hydrostatic pressure in xylem, and/or increase synthesis of compounds and energy; 4) an amount sufficient to cause adequate disruption of one or more components blocking xylem sap and/or photosynthate flow; and/or 5) an amount sufficient to cause adequate removal of one or more components blocking one or more pipeline networks of an irrigation system.
- the actual effective amount of a disclosed plant agent composition is determined by routine screening procedures employed to evaluate controlling activity and efficacy of a plant agent composition disclosed herein. Such screening procedures are well known by those skilled in the art. It is expected that a plant agent composition disclosed herein having a higher level of activity can be used in smaller amounts and concentrations, while those having a lower level of activity may require larger amounts or concentrations in order to achieve the same controlling effect. [094] Application of a plant agent composition disclosed herein is in an effective amount. An effective amount of a disclosed plant agent composition can be an amount sufficient to cause there desired effect. The actual effective amount of a disclosed plant agent composition is determined by routine screening procedures employed to evaluate controlling activity and efficacy of a plant agent composition disclosed herein.
- An effective amount of a disclosed plant agent composition can be an amount sufficient to cause an adverse effect to causal agents sought to be controlled.
- an effective amount of a disclosed plant agent composition is an amount sufficient to cause an adverse effect on, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95% of the causal agents in a population infecting a plant.
- an effective amount of a disclosed plant agent composition is an amount sufficient to cause an adverse effect on, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95% of the causal agents in a population infecting a plant.
- an effective amount of a disclosed plant agent composition is an amount sufficient to cause an adverse effect on, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95% of the causal agents in a population infecting a plant.
- an effective amount of a disclosed plant agent composition is an amount sufficient to cause an adverse effect on, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%, about 50% to about 90%, about 50% to about 95%,
- an effective amount of a disclosed plant agent composition is an amount sufficient to cause mortality on, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95% of the causal agents in a population infecting a plant.
- an effective amount of a disclosed plant agent composition is an amount sufficient to cause mortality on, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95% of the causal agents in a population infecting a plant.
- an effective amount of a disclosed plant agent composition is an amount sufficient to cause mortality on, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95% of the causal agents in a population infecting a plant.
- an effective amount of a disclosed plant agent composition is an amount sufficient to cause mortality on, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%, about 50% to about 90%, about 50% to about 95%, about 60%
- An effective amount of a disclosed plant agent composition can be an amount sufficient to reduce the size of a population of a causal agent sought to be controlled.
- an effective amount of a disclosed plant agent composition is an amount sufficient to reduce the size of a population of a causal agent sought to be controlled by, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to reduce the size of a population of a causal agent sought to be controlled by, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to reduce the size of a population of a causal agent sought to be controlled by, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to reduce the size of the population of a causal agent sought to be controlled by, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%, about 50%
- An effective amount of a disclosed plant agent composition can be an amount sufficient to deter a population of a causal agent sought to be controlled from entering or infesting one or more locations.
- an effective amount of a disclosed plant agent composition is an amount sufficient to deter, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95% of a population of a causal agent from entering or infesting one or more locations.
- an effective amount of a disclosed plant agent composition is an amount sufficient to deter, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95% of a population of a causal agent from entering or infesting one or more locations.
- an effective amount of a disclosed plant agent composition is an amount sufficient to deter, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95% of a population of a causal agent from entering or infesting one or more locations.
- an effective amount of a disclosed plant agent composition is an amount sufficient to deter, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%, about 50% to about 90%, about 50% to about 95%, about 60% to
- An effective amount of a disclosed plant agent composition can be an amount sufficient to improve absorption of water, minerals and other nutrients from the soil by root hairs.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve absorption of water, minerals and other nutrients from the soil by root hairs by, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve absorption of water, minerals and other nutrients from the soil by root hairs by, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve absorption of water, minerals and other nutrients from the soil by root hairs by, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve absorption of water, minerals and other nutrients from the soil by root hairs by, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%,
- An effective amount of a disclosed plant agent composition can be an amount sufficient to improve xylem sap flow through xylem.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve xylem sap flow through xylem by, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve xylem sap flow through xylem by, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve xylem sap flow through xylem by, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve xylem sap flow through xylem by, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%, about 50% to
- An effective amount of a disclosed plant agent composition can be an amount sufficient to improve photosynthate flow in phloem.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve photosynthate flow in phloem by, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve photosynthate flow in phloem by, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve photosynthate flow in phloem by, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve photosynthate flow in phloem by, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%, about 50%
- An effective amount of a disclosed plant agent composition can be an amount sufficient to increase uptake of water, minerals and other nutrients from the soil.
- an effective amount of a disclosed plant agent composition is an amount sufficient to increase uptake of water, minerals and other nutrients from the soil by, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to increase uptake of water, minerals and other nutrients from the soil by, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to increase uptake of water, minerals and other nutrients from the soil by, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to increase uptake of water, minerals and other nutrients from the soil by, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%, about 50% to about 50% to about 50% to about
- An effective amount of a disclosed plant agent composition can be an amount sufficient to increase capillary action and/or hydrostatic pressure in xylem.
- an effective amount of a disclosed plant agent composition is an amount sufficient to increase capillary action and/or hydrostatic pressure in xylem by, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to increase capillary action and/or hydrostatic pressure in xylem by, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to increase capillary action and/or hydrostatic pressure in xylem by, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to increase capillary action and/or hydrostatic pressure in xylem by, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%,
- An effective amount of a disclosed plant agent composition can be an amount sufficient to improve the transportation of raw materials through a plant.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve the transportation of raw materials through a plant by, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve the transportation of raw materials through a plant by, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve the transportation of raw materials through a plant by, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve the transportation of raw materials through a plant by, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%, about 50% to about 90%, about about
- An effective amount of a disclosed plant agent composition can be an amount sufficient to increase synthesis of compounds and energy in a plant.
- an effective amount of a disclosed plant agent composition is an amount sufficient to increase synthesis of compounds and energy in a plant by, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient increase synthesis of compounds and energy in a plant by, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient increase synthesis of compounds and energy in a plant by, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to increase synthesis of compounds and energy in a plant by, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%, about 50% to about 90%,
- An effective amount of a disclosed plant agent composition can be an amount sufficient to improve the synthesis of compounds and energy needed to sustain and continue plant growth.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve the synthesis of compounds and energy needed to sustain and continue plant growth by, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient improve the synthesis of compounds and energy needed to sustain and continue plant growth by, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient improve the synthesis of compounds and energy needed to sustain and continue plant growth by, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve the synthesis of compounds and energy needed to sustain and continue plant growth by, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%, about 50%
- An effective amount of a disclosed plant agent composition can be an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt xylem sap flow in xylem.
- an effective amount of a disclosed plant agent composition is an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt xylem sap flow in xylem by, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt xylem sap flow in xylem by, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt xylem sap flow in xylem by, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt xylem sap flow in xylem by, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 10% to about 30%, about 10% to
- An effective amount of a disclosed plant agent composition can be an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt photosynthate flow in phloem.
- an effective amount of a disclosed plant agent composition is an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt photosynthate flow in phloem by, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt photosynthate flow in phloem by, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt photosynthate flow in phloem by, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt photosynthate flow in phloem by, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 40% to about 70%, about 40%
- An effective amount of a disclosed plant agent composition can be an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt water flow in a pipeline network of an irrigation system.
- an effective amount of a disclosed plant agent composition is an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt water flow in a pipeline network of an irrigation system by, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt water flow in a pipeline network of an irrigation system by, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt water flow in a pipeline network of an irrigation system by, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to dissolve, disperse, or otherwise remove one or more components that disrupt water flow in a pipeline network of an irrigation system by, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 50% to about 50% to about 60%
- An effective amount of a disclosed plant agent composition can be an amount sufficient to improve water transport throughout the pipeline network.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve water transport throughout the pipeline network by, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve water transport throughout the pipeline network by, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve water transport throughout the pipeline network by, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to improve water transport throughout the pipeline network by, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%, about 50% to about 90%, about 50% to about 50% to about 50% to about 60%
- An effective amount of a disclosed plant agent composition can be an amount sufficient to maintain and/or enhance the health and vigor of a plant.
- an effective amount of a disclosed plant agent composition is an amount sufficient to maintain and/or enhance the health and vigor of a plant by, e.g., about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90% or about 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to maintain and/or enhance the health and vigor of a plant by, e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90% or at least 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to maintain and/or enhance the health and vigor of a plant by, e.g., at most 10%, at most 15%, at most 20%, at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90% or at most 95%.
- an effective amount of a disclosed plant agent composition is an amount sufficient to maintain and/or enhance the health and vigor of a plant by, e.g., about 10% to about 20%, about 10% to about 30%, about 10% to about 40%, about 10% to about 50%, about 10% to about 60%, about 10% to about 70%, about 10% to about 80%, about 10% to about 90%, about 10% to about 95%, about 20% to about 30%, about 20% to about 40%, about 20% to about 50%, about 20% to about 60%, about 20% to about 70%, about 20% to about 80%, about 20% to about 90%, about 20% to about 95%, about 30% to about 40%, about 30% to about 50%, about 30% to about 60%, about 30% to about 70%, about 30% to about 80%, about 30% to about 90%, about 30% to about 95%, about 40% to about 50%, about 40% to about 60%, about 40% to about 70%, about 40% to about 80%, about 40% to about 90%, about 40% to about 95%, about 50% to about 60%, about 50% to about 70%, about 50% to about 80%, about 50%
- an effective amount of a disclosed plant agent composition can be a dilution of a plant agent composition disclosed herein.
- an effective amount of a disclosed plant agent composition is a plant agent composition:dilutant ratio of, e.g., about 1:50, about 1:75, about 1:100, about 1:125, about 1:150, about 1:175, about 1:200, about 1:225, about 1:250, about 1:275, about 1:300, about 1:325, about 1:350, about 1:375, about 1:400, about 1:425, about 1:450, about 1:475, about 1:500, about 1:525, about 1:550, about 1:575 or about 1:600.
- an effective amount of a disclosed plant agent composition is a plant agent composition:dilutant ratio of, e.g., at least 1:50, at least 1:75, at least 1:100, at least 1:125, at least 1:150, at least 1:175, at least 1:200, at least 1:225, at least 1:250, at least 1:275, at least 1:300, at least 1:325, at least 1:350, at least 1:375, at least 1:400, at least 1:425, at least 1:450, at least 1:475, at least 1:500, at least 1:525, at least 1:550, at least 1:575 or at least 1:600.
- an effective amount of a disclosed plant agent composition is a plant agent composition:dilutant ratio of, e.g., at most 1:50, at most 1:75, at most 1:100, at most 1:125, at most 1:150, at most 1:175, at most 1:200, at most 1:225, at most 1:250, at most 1:275, at most 1:300, at most 1:325, at most 1:350, at most 1:375, at most 1:400, at most 1:425, at most 1:450, at most 1:475, at most 1:500, at most 1:525, at most 1:550, at most 1:575 or at most 1:600.
- an effective amount of a disclosed plant agent composition is a plant agent composition:dilutant ratio of, e.g., about 1:50 to about 1:100, about 1:50 to about 1:200, about 1:50 to about 1:300, about 1:50 to about 1:400, about 1:50 to about 1:500, about 1:50 to about 1:600, about 1:100 to about 1:200, about 1:100 to about 1:300, about 1:100 to about 1:400, about 1:100 to about 1:500, about 1:100 to about 1:600, about 1:200 to about 1:300, about 1:200 to about 1:400, about 1:200 to about 1:500, about 1:200 to about 1:600, about 1:300 to about 1:400, about 1:300 to about 1:500, about 1:300 to about 1:600, about 1:400 to about 1:500, about 1:400 to about 1:600 or about 1:500 to about 1:600.
- These plant agent composition:dilutant ratios are typically concentrations that are an effective amount for the disclosed methods, uses of controlling a causal agent of a plant disease and for the disclosed methods and uses of increasing plant growth and/or crop production and uses of controlling a causal agent of a plant disease and for the disclosed methods and uses of maintaining or improving the efficiency of an irrigation system.
- an effective amount of a disclosed plant agent composition is a plant agent composition:dilutant ratio of, e.g., about 1:500, about 1:750, about 1:1000, about 1:1250, about 1:1500, about 1:1750, about 1:2000, about 1:2250, about 1:2500, about 1:2750, about 1:3000, about 1:3250, about 1:3500, about 1:3750, about 1:4000, about 1:4250, about 1:4500, about 1:4750, about 1:5000, about 1:5250, about 1:5500, about 1:5750, about 1:6000 about 1:7000, about 1:8000, about 1:9000 or about 1:10000.
- an effective amount of a disclosed plant agent composition is a plant agent composition:dilutant ratio of, e.g., at least 1:500, at least 1:750, at least 1:1000, at least 1:1250, at least 1:1500, at least 1:1750, at least 1:2000, at least 1:2250, at least 1:2500, at least 1:2750, at least 1:3000, at least 1:3250, at least 1:3500, at least 1:3750, at least 1:4000, at least 1:4250, at least 1:4500, at least 1:4750, at least 1:5000, at least 1:5250, at least 1:5500, at least 1:5750, at least 1:6000, at least 1:7000, at least 1:8000, at least 1:9000 or at least 1:10000.
- an effective amount of a disclosed plant agent composition is a plant agent composition:dilutant ratio of, e.g., at most 1:500, at most 1:750, at most 1:1000, at most 1:1250, at most 1:1500, at most 1:1750, at most 1:2000, at most 1:2250, at most 1:2500, at most 1:2750, at most 1:3000, at most 1:3250, at most 1:3500, at most 1:3750, at most 1:4000, at most 1:4250, at most 1:4500, at most 1:4750, at most 1:5000, at most 1:5250, at most 1:5500, at most 1:5750, at most 1:6000 at most 1:7000, at most 1:8000, at most 1:9000 or at most 1:10000.
- an effective amount of a disclosed plant agent composition is a plant agent composition:dilutant ratio of, e.g., about 1:500 to about 1:1000, about 1:500 to about 1:2000, about 1:500 to about 1:3000, about 1:500 to about 1:4000, about 1:500 to about 1:5000, about 1:500 to about 1:6000, about 1:500 to about 1:7000, about 1:500 to about 1:8000, about 1:500 to about 1:9000, about 1:500 to about 1:10000, about 1:1000 to about 1:2000, about 1:1000 to about 1:3000, about 1:1000 to about 1:4000, about 1:1000 to about 1:5000, about 1:1000 to about 1:6000, about 1:1000 to about 1:7000, about 1:1000 to about 1:8000, about 1:1000 to about 1:9000, about 1:1000 to about 1:10000, about 1:2000 to about 1:3000, about 1:2000 to about 1:4000, about 1:2000 to about 1:5000, about 1:2000 to about 1:6000, about 1:2000 to about 1:
- These plant agent composition:dilutant ratios are typically concentrations that are an effective amount for the disclosed methods, uses of controlling a causal agent of a plant disease and for the disclosed methods and uses of increasing plant growth and/or crop production and uses of controlling a causal agent of a plant disease and for the disclosed methods and uses of maintaining or improving the efficiency of an irrigation system.
- an effective amount of a disclosed plant agent composition has a final concentration of, e.g., about 0.0001%, about 0.0002%, about 0.0003%, about 0.0004%, about 0.0005%, about 0.0006%, about 0.0007%, about 0.0008%, about 0.0009%, about 0.001%, about 0.002%, about 0.003%, about 0.004%, about 0.005%, about 0.006%, about 0.007%, about 0.008%, about 0.009%, about 0.01%, about 0.02%, about 0.
- an effective amount of a disclosed plant agent composition has a final concentration of, e.g., at least 0.0001%, at least 0.0002%, at least 0.0003%, at least 0.0004%, at least 0.0005%, at least 0.0006%, at least 0.0007%, at least 0.0008%, at least 0.0009%, at least 0.001%, at least 0.002%, at least 0.003%, at least 0.004%, at least 0.005%, at least 0.006%, at least 0.007%, at least 0.008%, at least 0.009%, at least 0.01%, at least 0.02%, at least 0.03%, at least 0.04%, at least 0.05%, at least 0.06%, at least 0.07%, at least 0.08%, at least 0.09%, at least 0.1%, at least 0.2%, at least 0.3%, at least 0.4%, at least 0.5%, at least 0.6%, at least 0.7%, at least 0.8%, at least 0.9%, at least 1%, at least 2%, at least 0.3%, at least 0.4%, at least 0.5%
- an effective amount of a disclosed plant agent composition has a final concentration of, e.g., at most 0.0001%, at most 0.0002%, at most 0.0003%, at most 0.0004%, at most 0.0005%, at most 0.0006%, at most 0.0007%, at most 0.0008%, at most 0.0009%, at most 0.001%, at most 0.002%, at most 0.003%, at most 0.004%, at most 0.005%, at most 0.006%, at most 0.007%, at most 0.008%, at most 0.009%, at most 0.01%, at most 0.02%, at most 0.03%, at most 0.04%, at most 0.05%, at most 0.06%, at most 0.07%, at most 0.08%, at most 0.09%, at most 0.1%, at most 0.2%, at most 0.3%, at most 0.4%, at most 0.5%, at most 0.6%, at most 0.7%, at most 0.8%, at most 0.9%, at most 1%, at most 2%, at most 0.3%, at most 0.4%, at most 0.5%
- an effective amount of a disclosed plant agent composition has a final concentration of, e.g., about 0.0001% to about 0.0005%, about 0.0001% to about 0.001%, about 0.0001% to about 0.005%, about 0.0001% to about 0.01%, about 0.0001% to about 0.05%, about 0.0001% to about 0.1%, about 0.0001% to about 0.5%, about 0.0001% to about 1%, about 0.0001% to about 0.5%, about 0.0001% to about 1%, about 0.0001% to about 5%, about 0.0001% to about 10%, about 0.0005% to about 0.001%, about 0.0005% to about 0.005%, about 0.0005% to about 0.01%, about 0.0005% to about 0.05%, about 0.0005% to about 0.1%, about 0.0005% to about 0.5%, about 0.0005% to about 1%, about 0.0005% to about 5%, about 0.0005% to about 10%, about 0.001% to about 0.005%, about 0.001% to about 0.01%, 0.001% to about 0.05%, about 0.001% to about
- the efficacy of a plant agent composition disclosed herein may be monitored by determining the adverse effect, mortality, reduced causal agent population, reduced entering or infestation of one or more locations, or any other assessment of damage to a causal agent population, including, without limitation, inhibition, arrestment, or retardation of causal agent growth, inhibition, arrestment, or retardation of causal agent reproduction or inhibition, arrestment, or retardation of causal agent development, all of which are encompassed by the term "controlling".
- Efficacy is also monitored by phytotoxicity to a plants that are infested with a causal agent population, tissue damage to the host plant infected with a causal agent population and any adverse effects that might be experienced by a human who is applying a disclosed plant agent composition to an infested plant, or otherwise exposed to a plant agent composition disclosed herein. Accordingly, the amount of a plant agent composition disclosed herein used in the disclosed methods or uses, meets the effective amount criteria above, and preferably has minimal or no adverse effect on ornamental and agricultural plants (such as phytotoxicity), wildlife and humans that may come into contact with such compositions. [0116] Application of a plant agent composition disclosed herein can be achieved by any process that effectively creates microbubbles as disclosed herein and effectively exposes a causal agent sought to be controlled.
- any method that can introduce large concentrations of a gas into a plant agent composition during application is suitable because such gas introduction enables the spontaneous formation of microbubbles.
- Suitable application processes include, without limitation, spraying, fogging, atomizing, vaporizing, scattering, watering, squirting, sprinkling and the like.
- One preferred method of application is by a manual or mechanical application by irrigation, spraying, fogging, atomizing or vaporizing.
- Such applications provide formation of finely divided mist with sufficient aeration during the application process to create microbubbles as disclosed herein.
- Microbubbles exposed to a dispersion of gas in a liquid show colloidal properties and are referred to as colloidal gas aphrons (CGA).
- CGA differ from ordinary gas bubbles in that they contain a distinctive shell layer containing a low concentration of a surfactant.
- the microbubbles formed with a plant agent composition disclosed herein appear to increase the mass transfer of oxygen in liquids. Without being bound by scientific theory, there are several possible explanations for this difference.
- the surfactants formulated into a plant agent composition disclosed herein include nonionic surfactants and/or biosurfactants which significantly alter the properties of bubble behavior.
- a plant agent composition disclosed herein requires a much lower concentration of surfactants for microbubble formation. It has been suggested that surfactant concentrations must approach the critical micelles concentration (CMS) of a surfactant system.
- CMS critical micelles concentration
- microbubbles are formed below estimated CMCs for the surfactants used. This suggests that the microbubbles are the result of aggregates of surfactant molecules with a loose molecular packing more favorable to gas mass transfer characteristics. A surface containing fewer surfactant molecules would be more gas permeable than a well-organized micelle containing gas. Regardless of the mechanism, the tendency of a plant agent composition disclosed herein to organizes into clusters, aggregates, or gas-filled bubbles provides a platform for reactions to occur by increasing localized concentrations of reactants, lowering the transition of energy required for a catalytic reaction to occur, or some other mechanism which has not yet been described.
- a microbubbles disclosed herein have a mean diameter of, e.g., about 5 ⁇ m, about 10 ⁇ m, about 15 ⁇ m, about 20 ⁇ m, about 25 ⁇ m, about 30 ⁇ m, about 40 ⁇ m, about 50 ⁇ m, about 75 ⁇ m, about 100 ⁇ m, about 150 ⁇ m, about 200 ⁇ m, about 250 ⁇ m, about 300 ⁇ m, about 350 ⁇ m, about 400 ⁇ m, about 450 ⁇ m, about 500 ⁇ m, about 550 ⁇ m, about 600 ⁇ m, about 650 ⁇ m, about 700 ⁇ m, about 750 ⁇ m, about 800 ⁇ m, about 850 ⁇ m, about 900 ⁇ m, about 950 ⁇ m or about 1000 ⁇ m.
- a microbubbles disclosed herein have a mean diameter of, e.g., at least 5 ⁇ m, at least 10 ⁇ m, at least 15 ⁇ m, at least 20 ⁇ m, at least 25 ⁇ m, at least 30 ⁇ m, at least 40 ⁇ m, at least 50 ⁇ m, at least 100 ⁇ m, at least 150 ⁇ m, at least 200 ⁇ m, at least 250 ⁇ m, at least 300 ⁇ m, at least 350 ⁇ m, at least 400 ⁇ m, at least 450 ⁇ m, at least 500 ⁇ m, at least 550 ⁇ m, at least 600 ⁇ m, at least 650 ⁇ m, at least 700 ⁇ m, at least 750 ⁇ m, at least 800 ⁇ m, at least 850 ⁇ m, at least 900 ⁇ m, at least 950 ⁇ m or at least 1000 ⁇ m.
- a microbubbles disclosed herein have a mean diameter of, e.g., at most 5 ⁇ m, at most 10 ⁇ m, at most 15 ⁇ m, at most 20 ⁇ m, at most 25 ⁇ m, at most 30 ⁇ m, at most 40 ⁇ m, at most 50 ⁇ m, at most 100 ⁇ m, at most 150 ⁇ m, at most 200 ⁇ m, at most 250 ⁇ m, at most 300 ⁇ m, at most 350 ⁇ m, at most 400 ⁇ m, at most 450 ⁇ m, at most 500 ⁇ m, at most 550 ⁇ m, at most 600 ⁇ m, at most 650 ⁇ m, at most 700 ⁇ m, at most 750 ⁇ m, at most 800 ⁇ m, at most 850 ⁇ m, at most 900 ⁇ m, at most 950 ⁇ m or at most 1000 ⁇ m.
- a microbubbles disclosed herein have a mean diameter of, e.g., about 5 ⁇ m to about 10 ⁇ m, about 5 ⁇ m to about 15 ⁇ m, about 5 ⁇ m to about 20 ⁇ m, about 5 ⁇ m to about 25 ⁇ m, about 5 ⁇ m to about 30 ⁇ m, about 5 ⁇ m to about 40 ⁇ m, about 5 ⁇ m to about 50 ⁇ m, about 5 ⁇ m to about 75 ⁇ m, about 5 ⁇ m to about 100 ⁇ m, about 10 ⁇ m to about 15 ⁇ m, about 10 ⁇ m to about 20 ⁇ m, about 10 ⁇ m to about 25 ⁇ m, about 10 ⁇ m to about 30 ⁇ m, about 10 ⁇ m to about 40 ⁇ m, about 10 ⁇ m to about 50 ⁇ m, about 10 ⁇ m to about 75 ⁇ m, about 10 ⁇ m to about 100 ⁇ m, about 15 ⁇ m to about 20 ⁇ m, about 15 ⁇ m to about 30 ⁇ m, about 10 ⁇
- a plant includes, by way of example, a plant or group of plants or part of a plant, a particular area of land like a lawn, a garden or an agricultural field.
- the term“plant” refers to any living organism belonging to the Kingdom Plantae that form the clade Viridiplantae.
- Non-limiting examples the flowering plants, conifers and other gymnosperms, ferns, clubmosses, hornworts, liverworts, mosses and the green algae, but exclude the red and brown algae, the fungi, archaea, bacteria and animals.
- a vascular plant include the clubmosses, horsetails, ferns, gymnosperms (including conifers) and angiosperms (flowering plants).
- the scientific names for this group include Tracheophyta and Tracheobionta.
- the term“flower” is synonymous with“bloom” or“blossom” and refers the reproductive structure found in angiosperms.
- the term "crop plant” refers to a plant that produces a crop. Non-limiting examples include are plants that produce fruits, seeds, nuts, grains, oil, wood, and fibers.
- the term “crop” refers to a plant product which is of economic value. Non-limiting examples include are fruits, seeds, nuts, grains, oil, wood, and fibers.
- a plant agent composition disclosed herein is advantageously employed in a wide variety of locations, including without limitation, household applications, lawn and garden applications, agriculture applications, organic farming applications, greenhouse and nursery applications, stored product applications, professional plant agent applications, foliage applications, underwater or submerged applications, soil incorporation applications, seedling box treatment applications, stalk injection and planting treatment applications.
- Plant disease that can be treated by a plant agent composition, method and/or use disclosed herein include, without limitation, an anthracnose, a blight, a canker, a club root, a damping off, a gall, a leaf blister, a leaf spot, a mildew, a mold, a mosaic virus disease, a rot, a rust, a scab, a smut and a wilt.
- Anthracnose, or bird's-eye spot refers to a group of plant diseases caused by numerous species of fungi from the genera Colletotrichum, Gloeosporium, Glomerella and Elsinoe that affect a variety of plants in warm, humid areas.
- anthracnose fungi produce spores in tiny, sunken, saucer-shaped fruiting bodies known as acervuli. Symptoms include small sunken dead spots or lesions with a raised border of various colors in leaves, stems, fruits, or flowers, and some infections form cankers on twigs and branches. Anthracnose causes the wilting, withering, and dying of tissues, though the severity of the infection depends on both the causative agent and the infected species and can range from mere unsightliness to death. Shade trees such as sycamore, ash, oak, and maple are especially susceptible, though the disease is found in a number of plants, including grasses and annuals.
- anthracnoses include, without limitation, grape anthracnose (Elsinoe ampelina), Japanese persimmon anthracnose (Gloeosporium kaki), strawberry anthracnose (Glomerella cingulata), gourd anthracnose (Colletotrichum lagenarium), kidney bean anthracnose (Colletotrichum lindemthianum), tea anthracnose (Colletotrichum theaesinensis) and tabacco anthracnose (Colletotrichum tabacum).
- Blight refers to a group of plant diseases caused by numerous species of fungi and bacteria symptomatically characterized by a rapid and severe chlorosis, yellowing, browning, spotting, withering and then death of plant tissues such as leaves, branches, twigs, or floral organs. Both fungal and bacterial blights occur most often under cool moist conditions, and usually attack the shoots and other young, rapidly growing tissues of a plant. Most economically important plants are susceptible to one or more blights, including tomatoes, potatoes, and apples, as well as many ornamental species.
- Blights are often named after their causative agent, for example Colletotrichum blight is named after the fungi Colletotrichum capsici, and Phytophthora blight is named after the water mold Phytophthora parasitica.
- Examples of blights include, without limitation, alternaria (early) blight (Alternaria solani), fusarium blight (Fusarium gaminearum, F. avenaceum, F.
- Canker refers to a group of common and widespread plant diseases cause by numerous species of fungi and bacteria that occurs primarily on a wide range of woody plants. Symptoms include round-to- irregular, sunken, swollen, flattened, or cracked, discolored, and dieback, dead areas on the stem (cane), twig, limb, or trunk. Cankers may enlarge and girdle a twig or branch, killing the foliage beyond it. Canker can structurally weaken a plant until it breaks over in the wind or during an ice storm.
- Cankers also slow the normal healing of wounds and provide entry for wood decay or wilt producing fungi and other organisms. They are most common on plants weakened by cold or drought stresses, insect injury, nutritional imbalances, nematodes, or root rot. Cankers can be classified as annual cankers (Fusarium canker), perennial cankers (Nectria canker, Eutypella canker) and diffuse cankers (Botryosphaeria canker, Phytophthora dieback, Cytospora canker).
- cankers examples include, without limitation, fungal cankers like aApple tree canker (Valsa ceratosperma), Botryosphaeria canker Cytospora canker, Eutypella (maple tree) canker, Nectria canker, Phytophthora dieback, Urnula (oak tree) canker and bacterial cankers like Erwinia canker, Pseudomonas canker (Pseudomonas syringae) and Xanthomonas canker.
- Club root refers to a group of plant diseases affecting members of the cabbage family that is caused by the soil-borne fungus, Plasmodiophora brassicae and is symptomatically characterized by misshapen and deformed (clubbed) roots which often cracking and rotting. As a result, plants have difficulty absorbing water and nutrients properly. Plants may grow slowly and wilt during the heat of the day; plants often revive during cool nights. Outer leaves eventually turn yellow or brown. Club root will reduce yields and can cause total plant loss.
- Damping off refers to a group of plant diseases affecting seeds and new seedlings and is caused by several fungi including species of Fusarium, Phytophthora, Pythium and Rhizoctonia including R. solani, and is symptomatically characterized by rotting of stem and root tissues at and below the soil surface. In most cases, infected plants will germinate and begin to sprout, but within a few days they become water- soaked and mushy, fall over at the base, and die.
- Galls refers to a group of plant diseases caused by fungi, bacteria, viruses, and nematodes as well as certain insects symptomatically characterized by an abnormal, localized outgrowth or swelling of plant tissue.
- Leaf blister also called leaf curl, refers to a group of plant diseases of many woody plants and ferns worldwide and is caused by fungi of the genus Taphrina, and is symptomatically characterized by distorted, curled leaves.
- leaf blisters affect peach, nectarine, plum, almond, amelanchier, apricot, birch, cherry, cherry laurel, California buckeye, alder, oak and poplar trees.
- molds include, without limitation, leaf curl (Taphrina deformans).
- Leaf Spots refers to a group of plant diseases caused by a vast number of fungi and bacteria symptomatically characterized by spots on the leaves of plants. Infected plants have brown or black water- soaked spots on the foliage, sometimes with a yellow halo, usually uniform in size. The spots enlarge and will run together under wet conditions. Under dry conditions the spots have a speckled appearance. As spots become more numerous, entire leaves may yellow, wither and drop.
- Fungal leaf spots include species from the genera Alternaria, Asterina, Asterinella, Cercospora, Cercosporella, Cochliobolus, Corynespora, Diplocarpon, Diplotheca, Gloeocercospora, Glomerella, Gnomonia, Phomopsis, Placosphaeria, Pyrenophora, Schizothyrium, Sclerotinia, Septoria and Stigmea. Fungal leaf spot attacks lettuce and can also occur on brassicas and other vegetables including such as cabbage, cauliflower, Chinese cabbage, broccoli, Brussels sprouts, kohlrabi, kale, turnip, and rutabaga. Fungal leaf spot will also infect strawberry plants as well as aspen and poplar trees.
- Leaf spot will also cause problems for.
- Fungal leaf spots include species from the genus Pseudomonas. Bacterial leaf spot particularly attacks members of the Prunus family (stone fruits, including cherry, plum, almond, apricot and peach) are particularly susceptible to bacterial leaf spot. The fruit may appear spotted or have sunken brown areas. Bacterial leaf spot will also infect tomato and pepper crops as well as some annual and perennial flowering plants including roses, geraniums, zinnias, purple coneflowers and black-eyed susans.
- wilts leaf spots without limitation, alternaria leaf spot (Alternaria alternata, Alternaria brassicicola, Alternaria japonica), black spot (Alternaria alternata, Diplocarpon rosae), brown spot (Alternaria longipes, Cochliobolus miyabeanus, Phomopsis vexans, Septoria glycines), cercospora leaf spot (Cercospora beticola), dollar spot (Sclerotinia homeocarpa), early leaf spot (Cercospora personata), frog eye leaf spot (Cercospora sojina), gray leaf spot (Cercospora zeae-maydis), late leaf spot (Cercospora arachidicola), leaf spot (Cercospora kaki, Mycosphaerella nawae), tan spot (Pyrenophora tritici-repentis), white spot (Cercosporella brassicae), target
- Mildew refers to a group of plant diseases caused by numerous fungi symptomatically characterized by white, gray, bluish, or violet powdery growth, usually on the upper or lower surfaces of leaves. Small black dots appear and produce spores that are blown by wind to infect new plants. Leaves will become brown and often wilt, wither, and die early when mildew is extensive, fruits ripen prematurely and have poor texture and flavor. Seedlings may wilt and collapse. Hundreds of species of trees, shrubs, vines, flowers, vegetables, fruits, grasses, field crops, garden plants, bush fruits, and weeds can be affected by mildew.
- mildews include, without limitation, downy mildew (Basidiophora spp., Bremia lactucae and other Bremia spp., Erysiphe graminis, Plasmopara viticola, Podosphaera, Peronospora destructor, Peronospora parasitica, Peronospora sparsa, Peronospora tabacina, and other Peronospora spp., Phytophthora spp., Plasmopara spp., Pseudoperonospora cubensis and other Pseudoperonospora spp., and Sclerospora spp.) and powdery mildew (Erysiphe cichoracearum, Erysiphe graminis, Erysiphe pisi and other Erysiphe spp., Microsphaera, Phyllactinia, Podosphaera leu
- Mold refers to a group of plant diseases caused by several fungi symptomatically characterized by a powdery or woolly appearance on the surface of the infected plant part. Molds attacks a wide range of plants including cereals, forage grasses and turf grasses especially during damp, cool to mild weather. Examples of molds include, without limitation, gray mold (Botrytis cinerea), leaf mold (Cladosporium fulvum), pink snow mold (Fusarium nivale) and snow mold (Typhula itoana).
- Mosaic virus disease refers to a group of plant diseases caused by plant viruses and is symptomatically characterized by the appearance of having several nutrient deficiencies.
- Mosaic virus affects a wide variety of plants, including roses, beans, tobacco, tomatoes, potatoes and peppers.
- mosaic virus species include, without limitation, beet mosaic virus, plum pox virus (Potyvirus spp.), tobacco mosaic virus (Tobamovirus spp.), cassava mosaic virus (Begomovirus spp.), cowpea mosaic virus, cucumber mosaic virus, alfalfa mosaic virus, panicum mosaic satellite virus, squash mosaic virus, tulip breaking virus and zucchini yellow mosaic virus.
- Rot also called decay, refers to a group of plant diseases caused by any of hundreds of species of soil-borne fungi and bacteria symptomatically characterized by plant decomposition and putrefaction. Decomposition and putrefaction are due to decay of roots, stems, wood, flowers, and/or fruit. The decay can be hard and dry, soft and squishy, watery, mushy, or slimy and may affect any plant part. Many rots are very active in stored fruits, roots, bulbs, or tubers. Some rot diseases cause leaves to decay, but those symptoms tend to be described as leaf spots and blights.
- rots include, without limitation, Aphanomyces root rot (Aphanomyces cochlioides), Phomopsis rot (Phomopsis spp.), Phytophthora rot (Phytophtora cactorum, Phytophthora sojae, other Phytophthora spp.), Sclerotinia rot (Sclerotinia sclerotiorum), bitter rot (Colletotrichum acutatum), black rot (Guignardia bidwellii), brown rot (Monilinia fructicola), crown rot (Phytophtora cactorum), fruit rot (Penicillium digitatum, P.
- Rust refers to a group of plant diseases caused by more than 5,000 species of fungi symptomatically characterized by yellow, orange, red, rust, brown, or black powdery pustules which appears as a coating on leaves, young shoots, and fruits of thousands of economically important plants. Plant growth and productivity are commonly reduced; some plants wither and die back. During their life cycle rust fungi parasitize either one species of plant (autoecious, or monoecious, rust) or two distinct species (heteroecious rust). Autoecious rusts include those that attack asparagus, bean, chrysanthemum, coffee, hollyhock, snapdragon, and sugarcane.
- Heteroecious rusts include those that attack cereals, grasses, junipers, fir, poplars, apple trees, Japanese quince, hawthorn, rose, currant and gooseberry.
- Examples of rusts include, without limitation, asparagus rust, barley rust (Puccinia striiformis, P. graminis, P.
- Scab refers to a group of plant diseases caused by several fungi and bacteria symptomatically characterized by hardened, overgrown, and sometimes cracked tissue (crustaceous lesions) on fruit, tuber, leaf, or stem. Leaves of affected plants may wither and drop early. Scabs often affects the trees or plants of apples, crab apples, cereals, cucumbers, peaches, pecans, photinis, potatoes, and pyracantha. Fruit scab can be a major problem on apples and peaches and potatoes are especially susceptible to common scab.
- scabs include, without limitation, Apple scab (Venturia inaequalis), citris scab (Elsinoe fawcetti), common scab (Streptomyces scabies), peach scab (Cladosporium carpophilum), scab (Venturia nashicola, V. pirina), powdery potato scab (Spongospora subterranean f. sp. subterranea) and white scab (Elsinoe leucospila).
- Smuts refers to a group of plant diseases caused by fungi symptomatically characterized by fungal spores that accumulate in sootlike masses called sori, which are formed within blisters in seeds, leaves, stems, flower parts, and bulbs.
- the sori usually break up into a black powder that is readily dispersed by the wind.
- Many smut fungi enter embryos or seedling plants, develop systemically, and appear externally only when the plants are near maturity. Other smuts are localized, infecting actively growing tissues. Smuts are most commonly seen on grasses, grains, and corn (maize), sugarcane, and sorghum.
- smuts include, without limitation, barley smut (Ustilago nuda), corn smut (Ustilago maydis, U. zeae), loose smut (Ustilago tritici) and stinking smut (Tilletia caries).
- barley smut Ustilago nuda
- corn smut Ustilago maydis, U. zeae
- loose smut Ustilago tritici
- stinking smut Tilletia caries.
- Wilt refers to a group of plant diseases caused by numerous fungi and bacteria and is symptomatically characterized by permanent stunting, wilting, and withering, often followed by the death of all or part of the plant.
- Fungi causing wilt include species from the genera Fusarium and Verticillium, whereas bacteria causing wilt include species from the genera Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas.
- Wilt affects over 500 species of trees, shrubs, vines, flowers, house plants, vegetables, fruits, field crops, and weeds.
- Examples of wilts include, without limitation, Fusarium wilt (Fusarium oxysporum), oak wilt (Ceratocystis fagacearum), Stewart's wilt and Verticillium wilt (Verticillium alboatrum, V. dahliae).
- Causal agents whose population can be controlled by a plant agent composition, method and/or use disclosed herein include, without limitation, viruses, bacteria, fungi and nematodes. In addition, all stages of development can be controlled by a plant agent composition, method and/or use disclosed herein include, without limitation, egg, larval, nymphal, juvenile, pupal and adult. [0140] A plant agent composition, method and/or use disclosed herein can control a population of causal agents belongs to the Kingdom Monera, Kingdom Fungi and Phyla Nematoda. In an embodiment, a plant agent composition, method and/or use disclosed herein can control a population of causal agents belongs to the Domain Bacteria and Cyanobacteria (referred to as bacterial causal agents).
- a plant agent composition, method and/or use disclosed herein can control a population of causal agents belongs to the Phylum Acidobacteria, Actinobacteria, Aquificae, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Chlorobi, Chloroflexi, Chrysiogenetes, Cyanobacteria, Deferribacteres, Deinococcus-Thermus, Dictyoglomi, Elusimicrobia, Fibrobacteres, Firmicutes, Fusobacteria, Gemmatimonadetes, Lentisphaerae, Nitrospira, Planctomycetes, Proteobacteria, Spirochaetes, Synergistetes, Tenericutes, Thermodesulfobacteria, Thermomicrobia, Thermotogae or Verrucomicrobia.
- a non-exhaustive list of particular genera of bacterial causal agents includes, but is not limited to, Agrobacterium, Corynebacterium, Cryphonectria, Erwinia, Penicillium, Pseudomonas, Streptomyces and Xanthomonas.
- a non-exhaustive list of particular species of bacterial causal agents includes, but is not limited to, Agrobacterium tumefaciens, Cryphonectria parasitica, Erwinia amylovora, Penicillium digitatum, P. italicum, Pseudomonas syringae, Streptomyces scabies and Xanthomonas oryzae.
- a plant agent composition, method and/or use disclosed herein can control a population of causal agents belongs to the Order Virales.
- viral causal agents a non- exhaustive list of particular genera includes, but is not limited to, Begomovirus, Potyvirus and Tobamovirus
- a plant agent composition, method and/or use disclosed herein can control a population of causal agents belongs to the Division Ascomycota, Basidiomycota, Deuteromycota or Zygomycota.
- fungal causal agents a non-exhaustive list of particular genera includes, but is not limited to, Albugo, Alternaria, Aphanomyces, Armillaria, Asterina, Asterinella, Basidiophora, Bipolaris, Botryosphaeria, Botrytis, Bremia, Ceratocystis, Cercospora, Cercosporella, Cladosporium, Clitocybe, Cochliobolus, Colletotrichum, Corynespora, Cronartium, Cytospora, Diaporthe, Dibotryon, Diplocarpon, Diplotheca, Elsinoe, Erysiphe, Eutypella, Exobasidium, Fusarium, Gloeocercospora, Gloeosporium, Glomerella, Gnomonia, Guignardia, Gymnosporangium, Microdochium, Microsphaera, Monilinia, Mycosphaerella, Nectria, Peronospor
- a non-exhaustive list of particular species of fungal causal agents includes, but is not limited to, Alternaria alternata, Alternaria brassicicola, Alternaria japonica, Alternaria longipes, Alternaria solani, Aphanomyces cochlioides, Armillaria mellea, Bipolaris maydis, Botrytis cinerea, Bremia lactucae, Ceratocystis fagacearum, Cercospora arachidicola, C. beticola, C. kaki, C. personata, C. sojina, C. zeae-maydis, Cercosporella brassicae, Cladosporium carpophilum, C.
- a plant agent composition, method and/or use disclosed herein can control a population of causal agents belongs to the Phylum Nematoda (round worms).
- nematode causal agents a non-exhaustive list of particular genera includes, but is not limited to, Aphelenchoides, Belonolaimus, Criconemella, Dirofilaria, Ditylenchus, Heterodera, Hirschmanniella, Hoplolaimus, Meloidogyne, Onchocerca, Pratylenchus, Radopholus and Rotylenchulus.
- a non-exhaustive list of particular species of nematode causal agents includes, but is not limited to, Dirofilaria immitis, Heterodera zeae, Meloidogyne incognita, Meloidogyne javanica, Onchocerca volvulus, Radopholus similis, and Rotylenchulus reniformis.
- the plant agent compositions, method and uses described herein will most likely not harm mammals or the environment and are non-phytotoxic and can be safely applied to economically valuable plants or crops. Furthermore, the plant agent compositions, method and uses described herein can be used indoors and outdoors and will not soften, dissolve, or otherwise adversely affect treated surfaces. Lastly, a causal agent will not build resistance to the plant agent compositions, method and uses described herein. [0145] Aspects of the present specification can also be described as follows:
- a method of controlling a causal agent of a plant disease comprising, consisting essential of or consisting of applying an effective amount of a plant agent composition to one or more plants infested with a causal agent and/or applying an effective amount of a plant agent composition to one or more locations in a manner where the causal agent will be exposed to the plant agent composition, wherein application of the plant agent composition results in an adverse effect on the causal agent of a plant disease sought to be controlled, wherein the composition comprises, consists essential of or consists of a treated, fermented microbial supernatant and one or more nonionic surfactants, wherein the composition lacks any active enzymes or live bacteria, and wherein the composition has a pH of at most 5.0.
- a method of increasing plant growth and/or crop production comprising, consisting essential of or consisting of applying an effective amount of a plant agent composition to one or more plants and/or applying an effective amount of a plant agent composition to one or more locations where a plant agent composition will be exposed to the one or more plants, wherein application of the plant agent composition results in improved absorption by root hairs, improve xylem sap flow through xylem and improve photosynthate flow in phloem, increased uptake of water, minerals and other nutrients from the soil, increase the capillary action and/or hydrostatic pressure in xylem, and/or increase synthesis of compounds and energy and/or disruption of one or more components blocking xylem sap flow and/or photosynthate flow, wherein the composition comprises, consists essential of or consists of a treated, fermented microbial supernatant and one or more nonionic surfactants, wherein the composition lacks any active enzymes or live bacteria, and wherein the composition has a
- a method of maintaining or improving the efficiency of an irrigation system comprising, consisting essential of or consisting of applying an effective amount of a plant agent composition to one or more pipes in a pipeline network of the irrigation system, wherein application of the plant agent composition results in adequate removal of one or more components blocking one or more pipeline networks of an irrigation system, wherein the composition comprises, consists essential of or consists of a treated, fermented microbial supernatant and one or more nonionic surfactants, wherein the composition lacks any active enzymes or live bacteria, and wherein the composition has a pH of at most 5.0.
- composition for controlling a plant disease, wherein the composition comprises, consists essential of or consists of a treated, fermented microbial supernatant and one or more nonionic surfactants, wherein the composition lacks any active enzymes or live bacteria, and wherein the composition has a pH of at most 5.0.
- composition for increasing plant growth and/or crop production, wherein the composition comprises, consists essential of or consists of a treated, fermented microbial supernatant and one or more nonionic surfactants, wherein the composition lacks any active enzymes or live bacteria, and wherein the composition has a pH of at most 5.0.
- composition for maintaining or improving the efficiency of an irrigation system, wherein the composition comprises, consists essential of or consists of a treated, fermented microbial supernatant and one or more nonionic surfactants, wherein the composition lacks any active enzymes or live bacteria, and wherein the composition has a pH of at most 5.0.
- the fermented yeast supernatant is produced from a species of yeast belonging to the genera Brettanomyces, Candida, Cyberlindnera, Cystofilobasidium, Debaryomyces, Dekkera, Fusarium, Geotrichum, Issatchenkia, Kazachstania, Kloeckera, Kluyveromyces, Lecanicillium, Mucor, Neurospora, Pediococcus, Penicillium, Pichia, Rhizopus, Rhodosporidium, Rhodotorula, Saccharomyces, Schizosaccharomyces, Thrichosporon, Torulaspora, Torulopsis, Verticillium, Yarrowia, Zygosaccharomyces or Zygotorulaspora.
- the fermented yeast supernatant is produced from the yeast Saccharomyces cerevisiae.
- the fermented bacterial supernatant is produced from a species of bacteria belonging to the genera Acetobacter, Arthrobacter, Aerococcus, Bacillus, Bifidobacterium, Brachybacterium, Brevibacterium, Barnobacterium, Carnobacterium, Corynebacterium, Enterococcus, Escherichia, Gluconacetobacter, Gluconobacter, Hafnia, Halomonas, Kocuria, Lactobacillus, Lactococcus, Leuconostoc, Macrococcus, Microbacterium, Micrococcus, Neisseria, Oenococcus, Pediococcus, Propionibacterium, Proteus, Pseudomonas, Psychrobacter, Salmonella, Sporolactobacillus, Staphy
- nonionic surfactant comprises, consists essential of or consists of a polyether nonionic surfactant, a polyhydroxyl nonionic surfactant, and/or a nonionic biosurfactant.
- the polyhydroxyl nonionic surfactant comprises, consists essential of or consists of a sucrose ester, an ethoxylated sucrose ester, a sorbital ester, an ethoxylated sorbital ester, an alkyl glucoside, an ethoxylated alkyl glucoside, a polyglycerol ester, or an ethoxylated polyglycerol ester.
- nonionic surfactant comprises, consists essential of or consists of an amine oxide, an ethoxylated alcohol, an ethoxylated aliphatic alcohol, an alkylamine, an ethoxylated alkylamine, an ethoxylated alkyl phenol, an alkyl polysaccharide, an ethoxylated alkyl polysaccharide, an ethoxylated fatty acid, an ethoxylated fatty alcohol, or an ethoxylated fatty amine, or a nonionic surfactant having the general formula of H(OCH 2 CH 2 ) x OC 6 H 4 R 1 , (OCH 2 CH 2 ) x OR 2 , or H(OCH 2 CH 2 ) x OC(O)R 2 , wherein x represents the number of moles of ethylene oxide added to an alkyl phenol and/or a
- R 1 is a C 7 -C 10 normal- alkyl group and/or wherein R 2 is a C 12 -C 20 aliphatic group.
- nonionic surfactant is an ethoxylated nonyl phenol, an ethoxylated octyl phenol, an ethoxylated ceto-oleyl alcohol, an ethoxylated ceto-stearyl alcohol, an ethoxylated decyl alcohol, an ethoxylated dodecyl alcohol, an ethoxylated tridecyl alcohol, or an ethoxylated castor oil.
- the effective amount of the plant agent composition improves absorption of water, minerals and other nutrients from the soil by root hairs by about 70%, about 75%, about 80%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98% or about 99%; or at least 70%, at least 75%, at least 80%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99%; or at most 70%, at most 75%, at most 80%, at most 85%, at most 86%, at most 87%, at most 88%, at most 89%, at most 90%, at most 91%, at most 92%, at most
- the effective amount of the plant agent composition increases synthesis of compounds and energy in the plant by about 70%, about 75%, about 80%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98% or about 99%; or at least 70%, at least 75%, at least 80%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99%; or at most 70%, at most 75%, at most 80%, at most 85%, at most 86%, at most 87%, at most 88%, at most 89%, at most 90%, at most 91%, at most 92%, at most 93%, at most 94%,
- the effective amount of the plant agent composition dissolves, disperses, or otherwise removes one or more components that disrupt xylem sap flow in xylem by about 70%, about 75%, about 80%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98% or about 99%; or at least 70%, at least 75%, at least 80%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99%; or at most 70%, at most 75%, at most 80%, at most 85%, at most 86%, at most 87%, at most 88%, at most 89%, at most 90%
- the effective amount of the plant agent composition is a plant agent composition:dilutant ratio of about 1:50, about 1:75, about 1:100, about 1:125, about 1:150, about 1:175, about 1:200, about 1:225, about 1:250, about 1:275, about 1:300, about 1:325, about 1:350, about 1:375, about 1:400, about 1:425, about 1:450, about 1:475, about 1:500, about 1:525, about 1:550, about 1:575 or about 1:600; or at least 1:50, at least 1:75, at least 1:100, at least 1:125, at least 1:150, at least 1:175, at least 1:200, at least 1:225, at least 1:250, at least 1:275, at least 1:300, at least 1:325, at least 1:350, at least 1:375, at least 1:400, at least 1:425, at least 1:450, at least 1:
- the effective amount of the plant agent composition is a plant agent composition:dilutant ratio of about 1:500, about 1:750, about 1:1000, about 1:1250, about 1:1500, about 1:1750, about 1:2000, about 1:2250, about 1:2500, about 1:2750, about 1:3000, about 1:3250, about 1:3500, about 1:3750, about 1:4000, about 1:4250, about 1:4500, about 1:4750, about 1:5000, about 1:5250, about 1:5500, about 1:5750, about 1:6000 about 1:7000, about 1:8000, about 1:9000 or about 1:10000; or at least 1:500, at least 1:750, at least 1:1000, at least 1:1250, at least 1:1500, at least 1:1750, at least 1:2000, at least 1:2250, at least 1:2500, at least 1:2750, at least 1:3000, at least 1:3250, at least 1:3500,
- a plant agent composition comprising, consisting essential of or consisting of a treated, fermented microbial supernatant and one or more nonionic surfactants, wherein the composition lacks any active enzymes or live bacteria, and wherein the composition has a pH below 5.0.
- the plant agent composition according to embodiment 67, wherein the treated, fermented microbial supernatant is from a fermented yeast supernatant, a fermented bacterial supernatant, a fermented mold supernatant, or any combination thereof.
- the plant agent composition according to embodiment 68, wherein the fermented yeast supernatant is produced from a species of yeast belonging to the genera Brettanomyces, Candida, Cyberlindnera, Cystofilobasidium, Debaryomyces, Dekkera, Fusarium, Geotrichum, Issatchenkia, Kazachstania, Kloeckera, Kluyveromyces, Lecanicillium, Mucor, Neurospora, Pediococcus, Penicillium, Pichia, Rhizopus, Rhodosporidium, Rhodotorula, Saccharomyces, Schizosaccharomyces, Thrichosporon, Torulaspora, Torulopsis, Verticillium, Yarrowia, Zygosaccharomyces or Zygotorulaspora.
- the plant agent composition according to embodiment 68, wherein the fermented bacterial supernatant is produced from a species of bacteria belonging to the genera Acetobacter, Arthrobacter, Aerococcus, Bacillus, Bifidobacterium, Brachybacterium, Brevibacterium, Barnobacterium, Carnobacterium, Corynebacterium, Enterococcus, Escherichia, Gluconacetobacter, Gluconobacter, Hafnia, Halomonas, Kocuria, Lactobacillus, Lactococcus, Leuconostoc, Macrococcus, Microbacterium, Micrococcus, Neisseria, Oenococcus, Pediococcus, Propionibacterium, Proteus, Pseudomonas, Psychrobacter, Salmonella, Sporolactobacillus, Staphylococcus, Streptococcus, Streptomyces, Tetragenococcus, Vagococcus, Weisse
- nonionic surfactant comprises, consists essential of or consists of a polyether nonionic surfactant, a polyhydroxyl nonionic surfactant, and/or a biosurfactant.
- polyhydroxyl nonionic surfactant comprises, consists essential of or consists of a sucrose ester, an ethoxylated sucrose ester, a sorbital ester, an ethoxylated sorbital ester, an alkyl glucoside, an ethoxylated alkyl glucoside, a polyglycerol ester, or an ethoxylated polyglycerol ester.
- nonionic surfactant comprises, consists essential of or consists of an amine oxide, an ethoxylated alcohol, an ethoxylated aliphatic alcohol, an alkylamine, an ethoxylated alkylamine, an ethoxylated alkyl phenol, an alkyl polysaccharide, an ethoxylated alkyl polysaccharide, an ethoxylated fatty acid, an ethoxylated fatty alcohol, or an ethoxylated fatty amine, or a nonionic surfactant having the general formula of H(OCH2CH2)xOC6H4R 1 , (OCH2CH2)xOR 2 , or H(OCH2CH2)xOC(O)R 2 , wherein x represents the number of moles of ethylene oxide added to an alkyl phenol and/or a fatty alcohol or a fatty acid, R 1 represents
- nonionic surfactant is an ethoxylated nonyl phenol, an ethoxylated octyl phenol, an ethoxylated ceto-oleyl alcohol, an ethoxylated ceto-stearyl alcohol, an ethoxylated decyl alcohol, an ethoxylated dodecyl alcohol, an ethoxylated tridecyl alcohol, or an ethoxylated castor oil.
- the nonionic surfactant is an ethoxylated nonyl phenol, an ethoxylated octyl phenol, an ethoxylated ceto-oleyl alcohol, an ethoxylated ceto-stearyl alcohol, an ethoxylated decyl alcohol, an ethoxylated dodecyl alcohol, an ethoxylated tridecyl alcohol, or an ethoxylated castor oil.
- a method of controlling a causal agent of a plant disease comprising, consisting essential of or consisting of applying an effective amount of a plant agent composition as defined in any one of embodiments 67-91 to one or more plants infested with a causal agent and/or applying an effective amount of a plant agent composition to one or more locations in a manner where the causal agent will be exposed to the plant agent composition, wherein application of the plant agent composition results in an adverse effect on the causal agent of a plant disease sought to be controlled.
- a method of increasing plant growth and/or crop production comprising, consisting essential of or consisting of applying an effective amount of a plant agent composition as defined in any one of embodiments 67-91 and/or applying an effective amount of a plant agent composition as defined in any one of embodiments 67-91 to one or more locations where a plant agent composition will be exposed to the one or more plants, wherein application of the plant agent composition results in improved absorption by root hairs, improve xylem sap flow through xylem and improve photosynthate flow in phloem, increased uptake of water, minerals and other nutrients from the soil, increase the capillary action and/or hydrostatic pressure in xylem, and/or increase synthesis of compounds and energy and/or disruption of one or more components blocking xylem sap flow and/or photosynthate flow
- a method of maintaining or improving the efficiency of an irrigation system comprising, consisting essential of or consisting of applying an effective amount of a plant agent composition as defined in any one of embodiments 67-91 to one or more pipes in a pipeline network of the irrigation system, wherein application of the plant agent composition results in adequate removal of one or more components blocking one or more pipeline networks of an irrigation system.
- a fermentation reaction is set up in which about 1,000 L of warm water having a temperature of between about 29 °C to about 38 °C was placed in a large jacketed mixing kettle. To the water was added about 84.9 kg black untreated cane molasses, about 25.2 kg raw cane sugar and about 1.2 kg magnesium sulfate. The mixture was thoroughly blended, after which about 11.4 kg diastatic malt and about 1.2 kg baker's yeast were added and agitated slightly.
- the mixture is incubated at about 26 °C to about 42 °C for about 3 days, after which the effervescent reaction had subsided, indicating essentially complete fermentation.
- the yeast fermentation composition is centrifuged to remove the "sludge" formed during the fermentation.
- the resulting fermentation supernatant (about 98.59%, by weight) was collected and sterilized by autoclaving.
- the treated fermented yeast supernatant can then be stored in liquid form for subsequent use.
- the treated fermented yeast supernatant can be spray dried by methods known in the art to produce a dry powder.
- the dry powder form can also be stored for subsequent use.
- a fermentation reaction is set up in which about 1,000 L of warm water having a temperature of between about 29 °C to about 38 °C was placed in a large jacketed mixing kettle. To the water was added about 42.5 kg black untreated cane molasses, about 12.6 kg raw cane sugar and about 1.2 kg magnesium sulfate. The mixture was thoroughly blended, after which about 10.3 kg diastatic malt and about 1.2 kg baker's yeast were added and agitated slightly.
- the mixture is incubated at about 26 °C to about 42 °C for about 3 days, after which the effervescent reaction had subsided, indicating essentially complete fermentation.
- the yeast fermentation culture is centrifuged to remove the "sludge" formed during the fermentation.
- the resulting fermentation yeast supernatant (about 98.59%, by weight) was collected and treated by autoclaving.
- the treated fermented yeast supernatant can then be stored in liquid form for subsequent use.
- the treated fermented yeast supernatant can be spray dried by methods known in the art to produce a dry powder.
- the dry powder form can also be stored for subsequent use.
- a fermentation reaction is set up in which about 1,000 L of warm water having a temperature of between about 29 °C to about 38 °C was placed in a large jacketed mixing kettle. To the water was added about 21.3 kg black untreated cane molasses, about 6.3 kg raw cane sugar and about 1.2 kg magnesium sulfate. The mixture was thoroughly blended, after which about 9.3 kg diastatic malt and about 1.2 kg baker's yeast were added and agitated slightly.
- the mixture is incubated at about 26 °C to about 42 °C for about 3 days, after which the effervescent reaction had subsided, indicating essentially complete fermentation.
- the yeast fermentation culture is centrifuged to remove the "sludge" formed during the fermentation.
- the resulting fermentation supernatant (about 98.59%, by weight) was collected and treated by autoclaving.
- the treated fermented yeast supernatant can then be stored in liquid form for subsequent use.
- the treated fermented yeast supernatant can be spray dried by methods known in the art to produce a dry powder.
- the dry powder form can also be stored for subsequent use.
- a plant agent composition 1,000 L of hot sterile water (about 60 °C to about 65 °C) was added to 1,000 L of treated fermented yeast supernatant in a large jacketed mixing kettle. To this mixture was added about 168.8 kg of TERGITOLTM 15-S-7, a linear secondary alcohol ethoxylate, about 168.8 kg of TERGITOLTM 15-S-5, a linear secondary alcohol ethoxylate, about 67.5 kg of DOWFAXTM 2A1, alkyldiphenyloxide disulfonate, and about 67.5 kg of TRITONTM H-66, phosphate polyether ester. This mixture was thoroughly blended to effect solution.
- the composition was found to be nonirritating to skin tissue, nontoxic and could be stored in a cool location over periods of months without any discernible loss in effectiveness or deterioration.
- DOWFAXTM 2A1 can be substituted with an anionic biosurfactant such as, e.g., STEPONOL ® AM 30-KE, an ammonium lauryl sulfate, STEPONOL ® EHS, a sodium 2-ethyl hexyl sulfate, or a combination thereof.
- an anionic biosurfactant such as, e.g., STEPONOL ® AM 30-KE, an ammonium lauryl sulfate, STEPONOL ® EHS, a sodium 2-ethyl hexyl sulfate, or a combination thereof.
- the resulting plant agent composition may then be mixed with preservative or stabilizing agents, such as about 1% by weight sodium benzoate, about 0.01% by weight imidazolidinyl urea, about 0.15% by weight diazolidinyl urea, about 0.25% by weight calcium chloride.
- a plant agent composition 850 L of hot sterile water (about 60 °C to about 65 °C) was placed in a large jacketed mixing kettle. To the water was added about 7.62 g treated fermented yeast supernatant dried powder, about 37.5 kg of TERGITOLTM 15-S-7, a linear secondary alcohol ethoxylate, about 37.5 kg of TERGITOLTM 15-S-5, a linear secondary alcohol ethoxylate, about 15.0 kg of DOWFAXTM 2A1, alkyldiphenyloxide disulfonate, and about 25.0 kg of TRITONTM H-66, phosphate polyether ester. This mixture was thoroughly blended to effect solution.
- the resulting plant agent composition may then be mixed with preservative or stabilizing agents, such as about 1% by weight sodium benzoate, about 0.01% by weight imidazolidinyl urea, about 0.15% by weight diazolidinyl urea, about 0.25% by weight calcium chloride. With continuous agitation, sodium benzoate, imidazolidinyl urea, diazolidinyl urea and calcium chloride are added.
- preservative or stabilizing agents such as about 1% by weight sodium benzoate, about 0.01% by weight imidazolidinyl urea, about 0.15% by weight diazolidinyl urea, about 0.25% by weight calcium chloride.
- the temperature of the mixture is then slowly raised to about 40 °C and the mixture is agitated continuously. The temperature is maintained at about 40 °C for about one hour to ensure that all the components of the mixture are dissolved.
- the mixture is then cooled to from about 20 °C to about 25 °C.
- the pH of the resulting plant agent composition was adjusted to from about 3.7 to about 4.2 with phosphoric acid. The pH adjusted plant agent composition was then filter sterilized to remove any microbial contamination. [0156]
- the composition was found to be nonirritating to skin tissue, nontoxic and could be stored in a cool location over periods of months without any discernible loss in effectiveness or deterioration.
- DOWFAXTM 2A1 can be substituted with an anionic biosurfactant such as, e.g., STEPONOL ® AM 30-KE, an ammonium lauryl sulfate, STEPONOL ® EHS, a sodium 2-ethyl hexyl sulfate, or a combination thereof.
- an anionic biosurfactant such as, e.g., STEPONOL ® AM 30-KE, an ammonium lauryl sulfate, STEPONOL ® EHS, a sodium 2-ethyl hexyl sulfate, or a combination thereof.
- an anionic biosurfactant such as, e.g., STEPONOL ® AM 30-KE, an ammonium lauryl sulfate, STEPONOL ® EHS, a sodium 2-ethyl hexyl sulfate, or a combination thereof.
- commercially available treated fermented yeast supernatant dried powders can
- Rice Study shows the effects of a plant agent composition disclosed herein on rice plant growth and grain production.
- the effects of a plant agent composition disclosed herein on rice seed germination, seedling height and root length was assessed. Seeds from the rice variety Oryzica 1 were divided into three groups of 100 seeds, placed in a bag and each group pre-treated for 2 minutes by immersing the bag in one of the following solutions: 1) distilled water (control); 2) a 2% solution of a plant agent composition disclosed herein (92% treated fermented supernatant and 8% surfactant); and 3) a 2% solution of a plant agent composition disclosed herein (90% treated fermented supernatant and 10% surfactant).
- Treated seeds were was sown in sterile sand and then placed in a soil grower for 7-10 days to allow for germination.
- Germination effects was assessed by determining germination percentage, height of seedling and root length. This assay was performed four times. The results indicated that seed treatments of rice seed variety Oryzica 1 showed no differences in the measured variables: germination percentage, seedling height and root length.
- the effects of a plant agent composition disclosed herein on growth of rice seedlings was assessed. Seedlings from the rice variety Oryzica 1 were divided into group of 20 seedlings and transplanted into planters with previously sterilized soil fertilized properly to meet the nutritional requirements of a good development of the rice plant.
- the seedlings were divided into three groups of five planters. Seedlings were treated with 2 mL of one of three solution each day for 20 days. Group 1 was treated with distilled water (control); Group 2 was treated with a 2% solution of a plant agent composition disclosed herein (92% treated fermented supernatant and 8% surfactant); and Group 3 was treated with a 2% solution of a plant agent composition disclosed herein (90% treated fermented supernatant and 10% surfactant). At the end of the 20-day period, data seedling height, stem production, and grain yield was taken. [0162] The results indicated that Treatment Groups 1 and 2 showed significant improvement relative to Control Group 1. For example, one assessment I the ratio of stem growth to panicle (loose, branching cluster of flower) growth.
- the Control Group 1 showed greater stem/panicle ratio (15.4/12.2) with many long stems with very short panicle, an indicator of less grain production.
- Treatment Group 1 and Treatment Group 2 showed more favorable stem/panicle ratios (10.4/7.4 and 12.2/10.2, respectively) which will result in higher grain yields.
- Treatment Group 2 showed a better stem/panicle ratio relative to Treatment Group 1, producing long stems with good panicles.
- the Control Group 1 contained 13.5% vain grain (not full of rice grain), which is an indicator of sterility.
- Treatment Group 2 showed 6.4% vain grain and Treatment Group 3 showed 3.9% vain grain.
- Treatment with a plant agent composition disclosed herein reduced sterility in the plants.
- Treatment Group 2 produced 14% more grains per plant and Treatment Group 3 produced 64% more grains per plant when compared to Control Group 1. Furthermore, Treatment Group 2 showed a 55% increase in root growth and Treatment Group 3 produced 104% increase in root growth when compared to Control Group 1. Taken together, significant benefits were observed when rice plants were treated with a 2% solution of a plant agent composition disclosed herein.
- Example 7
- Tomato Study shows the effects of a plant agent composition disclosed herein on tomato plant growth and fruit production.
- Tomato seedlings were grown in greenhouses in soil composed of 40% sand and 60% organic compost. Although no fertilizer or urea was used, cow manure was applied.
- the tomato seedlings were divided into two groups: The Control Group comprised seedlings that were drip irrigated with distilled water (control) each day for 6 months.
- the Treatment Group comprised seedlings that were drip irrigated with a 1:400 dilution of a plant agent composition disclosed herein (90% treated fermented supernatant and 10% surfactant). Plants were assessed on a monthly basis for a 6-month period of time. Plant growth and fruit production were assessed.
- Treatment Group showed significant improvement relative to Control Group. For example Treatment Group plants were stronger and more robust than the Control Group throughout the entire 6-month period. In addition, the Control Group had a 30% mortality for this study while the Treatment Group exhibited 100% survivability rate. Furthermore, Treatment Group plants were still flowering and bearing fruit for 5 months while the Control Group stopped flowering and bearing fruit after 3 months. Lastly, the final yield of the crop for the Treatment Group was over 2 times more than the Control Group yield. For example, the Control Group yielded 720 Kg of tomatoes while the Treatment Group yielded 1,715 Kg of tomatoes. Taken together, significant benefits were observed when tomato plants were treated with a 2% solution of a plant agent composition disclosed herein. [0166] Similar studies were conducted for parsley.
- Olive Tree Study shows the effects of a plant agent composition disclosed herein on olive tree growth and fruit production.
- the Control Group comprised trees that were drip irrigated with distilled water (control) over the course of two seasons.
- the Treatment Group comprised trees that were drip irrigated with a 1:400 dilution of a plant agent composition disclosed herein (90% treated fermented supernatant and 10% surfactant) over the course of two seasons. Plants were assessed on a monthly basis over the study period. Plant growth and fruit production were assessed.
- the Treatment Group yielded about 35% to about 40% more olives compared to the Control Group. More astonishingly, fruiting occurring every year for olive trees in the Treatment Group as compared to the Control Group which fruited every other year. Lastly, the taste of the oil, specifically the phenols, were enhanced, and therefore taste or quality was improved in the oil from the trees in the Treatment Group relative to the Control Group.
- Tobacco Study shows the effects of a plant agent composition disclosed herein on tobacco growth and fruit production.
- Tobacco seedlings were grown in field. The tobacco seedlings were divided into two groups: The Control Group comprised seedlings that were drip irrigated with distilled water (control) each day for 6 months.
- the Treatment Group comprised seedlings that were drip irrigated with a 1:400 dilution a plant agent composition disclosed herein (90% treated fermented supernatant and 10% surfactant). After transplantation into the field the Treatment Group comprised seedlings that were drip irrigated with a 1:800 dilution a plant agent composition disclosed herein. Plants were assessed on a monthly basis for a 6- month period of time.
- Treatment Group showed significant improvement relative to Control Group. For example, tobacco crops from the Treatment Group showed about 40% to about 50% more growth compared to the Control Group. In addition, tobacco crops from the Treatment Group exhibited larger root growth and better survival rates of seedlings. [0176] Similar test results were observed for cannabis, although the study was performed in a greenhouse. Example 10
- This example shows the effects of a plant agent composition disclosed herein on treating a plant disease caused by a causal agent disclosed herein.
- Roses with leaf spot caused by a fungal infestation were treated with a 1:200 dilution on a plant agent composition disclosed herein using a spray bottle. After one to two weeks the fungal infestation was gone.
- Olive trees with blight caused by a fungal infestation were treated with a 1:1000 dilution on a plant agent composition disclosed herein using a drip irrigation system. After one to two weeks the fungal infestation was gone.
- Olive trees with blight caused by a bacterial infestation were treated with a 1:1000 dilution on a plant agent composition disclosed herein using a drip irrigation system.
- the open-ended transitional term“comprising” (and equivalent open-ended transitional phrases thereof like including, containing and having) encompasses all the expressly recited elements, limitations, steps and/or features alone or in combination with unrecited subject matter; the named elements, limitations and/or features are essential, but other unnamed elements, limitations and/or features may be added and still form a construct within the scope of the claim.
- the meaning of the open-ended transitional phrase“comprising” is being defined as encompassing all the specifically recited elements, limitations, steps and/or features as well as any optional, additional unspecified ones.
- the meaning of the closed-ended transitional phrase“consisting of” is being defined as only including those elements, limitations, steps and/or features specifically recited in the claim whereas the meaning of the closed-ended transitional phrase“consisting essentially of” is being defined as only including those elements, limitations, steps and/or features specifically recited in the claim and those elements, limitations, steps and/or features that do not materially affect the basic and novel characteristic(s) of the claimed subject matter.
- the open-ended transitional phrase “comprising” includes within its meaning, as a limiting case, claimed subject matter specified by the closed-ended transitional phrases“consisting of” or“consisting essentially of.”
- embodiments described herein or so claimed with the phrase“comprising” are expressly or inherently unambiguously described, enabled and supported herein for the phrases“consisting essentially of” and “consisting of.”
- All patents, patent publications, and other publications referenced and identified in the present specification are individually and expressly incorporated herein by reference in their entirety for the purpose of describing and disclosing, for example, the compositions and methodologies described in such publications that might be used in connection with the present invention.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Mycology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Plant Pathology (AREA)
- Pest Control & Pesticides (AREA)
- Environmental Sciences (AREA)
- Dentistry (AREA)
- Agronomy & Crop Science (AREA)
- Virology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Tropical Medicine & Parasitology (AREA)
- Botany (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Paper (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Wrappers (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Detergent Compositions (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562208662P | 2015-08-22 | 2015-08-22 | |
PCT/US2016/048094 WO2017035101A1 (en) | 2015-08-22 | 2016-08-22 | Non-toxic plant agent compositions and methods and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3337327A1 true EP3337327A1 (en) | 2018-06-27 |
EP3337327A4 EP3337327A4 (en) | 2019-10-30 |
Family
ID=58100834
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16839958.2A Pending EP3337327A4 (en) | 2015-08-22 | 2016-08-22 | Non-toxic plant agent compositions and methods and uses thereof |
EP16839956.6A Pending EP3337779A4 (en) | 2015-08-22 | 2016-08-22 | Non-toxic pest control compositions and methods and uses thereof |
EP16839957.4A Pending EP3337846A4 (en) | 2015-08-22 | 2016-08-22 | Papermaking additive compositions and methods and uses thereof |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16839956.6A Pending EP3337779A4 (en) | 2015-08-22 | 2016-08-22 | Non-toxic pest control compositions and methods and uses thereof |
EP16839957.4A Pending EP3337846A4 (en) | 2015-08-22 | 2016-08-22 | Papermaking additive compositions and methods and uses thereof |
Country Status (15)
Country | Link |
---|---|
EP (3) | EP3337327A4 (en) |
JP (3) | JP7177697B2 (en) |
KR (1) | KR102602869B1 (en) |
CN (2) | CN108135179A (en) |
AU (3) | AU2016311182A1 (en) |
BR (1) | BR112018003404B1 (en) |
CA (2) | CA2996192A1 (en) |
CL (2) | CL2018000449A1 (en) |
CO (2) | CO2018002709A2 (en) |
IL (1) | IL257672B (en) |
MX (2) | MX2018002206A (en) |
NZ (1) | NZ739887A (en) |
RU (1) | RU2721135C2 (en) |
WO (3) | WO2017035099A1 (en) |
ZA (2) | ZA201801763B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10681914B2 (en) | 2012-05-29 | 2020-06-16 | Neozyme International, Inc. | Non-toxic plant agent compositions and methods and uses thereof |
US10557234B2 (en) | 2012-05-29 | 2020-02-11 | Neozyme International, Inc. | Papermaking additive compositions and methods and uses thereof |
KR102171932B1 (en) | 2012-05-29 | 2020-10-30 | 네오자임 인터내셔널, 인코포레이티드 | Process for treating organic material |
US10334856B2 (en) | 2012-05-29 | 2019-07-02 | Neozyme International, Inc. | Non-toxic pest control compositions and methods and uses thereof |
JP7319254B2 (en) | 2017-09-28 | 2023-08-01 | ローカス アグリカルチャー アイピー カンパニー エルエルシー | Large scale production of liquid and solid Trichoderma products |
US11414640B2 (en) | 2017-10-31 | 2022-08-16 | Locus Ip Company, Llc | Matrix fermentation systems and methods for producing microbe-based products |
US11666074B2 (en) | 2017-12-26 | 2023-06-06 | Locus Solutions Ipco, Llc | Organic food preservative compositions |
CA3092099A1 (en) | 2018-02-26 | 2019-08-29 | Locus Agriculture Ip Company, Llc | Materials and methods for control of insect pests using entomopathogenic fungi |
MX2020011893A (en) | 2018-05-08 | 2021-01-29 | Locus Agriculture Ip Co Llc | Microbe-based products for enhancing plant root and immune health. |
WO2020069177A1 (en) * | 2018-09-28 | 2020-04-02 | Locus Ip Company, Llc | Multi-use fermentation products obtained through production of sophorolipids |
AU2020272591A1 (en) | 2019-04-12 | 2021-11-04 | Locus Solutions Ipco, Llc | Pasture treatments for enhanced carbon sequestration and reduction in livestock-produced greenhouse gas emissions |
CN110093289B (en) * | 2019-05-05 | 2020-12-04 | 西南大学 | Pediococcus acidilactici and application thereof |
CN110284371A (en) * | 2019-06-26 | 2019-09-27 | 安徽顺彤包装材料有限公司 | A kind of environment-friendly high is every wrapping paper and preparation method thereof |
MX2022001930A (en) * | 2019-08-12 | 2022-03-11 | Locus Agriculture Ip Co Llc | Microbe-based compositions for restoring soil health and controlling pests. |
CN110527653B (en) * | 2019-09-29 | 2020-07-07 | 南京林业大学 | Mixed bacterium for promoting nodulation and nitrogen fixation of robinia pseudoacacia and application thereof |
CN110964612A (en) * | 2019-11-29 | 2020-04-07 | 张启田 | Efficient laundry detergent and preparation method thereof |
IL297629A (en) * | 2020-04-26 | 2022-12-01 | Neozyme Int Inc | Dry powdered compositions and methods and uses thereof |
JP2023524914A (en) * | 2020-04-26 | 2023-06-13 | ネオザイム,インコーポレイテッド | Non-toxic fire extinguishing composition, apparatus and method for using same |
KR102444742B1 (en) * | 2020-10-13 | 2022-09-19 | 일동바이오사이언스(주) | Composition for relieving brown spot disease of crops |
KR102586228B1 (en) * | 2021-06-14 | 2023-10-10 | 대한민국 | A composition comprising Pediococcus sp. to control Protaetia brevitarsis fungal diseases caused by Metarhizium anisopliae |
EP4293084A1 (en) * | 2022-06-14 | 2023-12-20 | polycirQ GmbH | Composition and method for deinking a printed polymer substrate |
CN116162577B (en) * | 2023-03-22 | 2023-08-04 | 湖北同光生物科技有限公司 | Bacillus mucilaginosus and application thereof |
CN118680181A (en) * | 2024-08-23 | 2024-09-24 | 华南农业大学 | Preparation for preventing and controlling tobacco mosaic disease and application thereof |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1124459A (en) * | 1979-03-27 | 1982-06-01 | Donald C. Wood | Alkaline surfactant system for de-inking printed fibrous material |
FR2604198B1 (en) * | 1986-09-22 | 1989-07-07 | Du Pin Cellulose | PROCESS FOR TREATING A PAPER PULP WITH AN ENZYMATIC SOLUTION. |
GB8829830D0 (en) * | 1988-12-21 | 1989-02-15 | Ciba Geigy Ag | Method for treating water |
US5876559A (en) * | 1991-06-25 | 1999-03-02 | International Paper Company | Deinking of impact and non-impact printed paper by an agglomeration process |
US5582681A (en) * | 1994-06-29 | 1996-12-10 | Kimberly-Clark Corporation | Production of soft paper products from old newspaper |
US6001218A (en) * | 1994-06-29 | 1999-12-14 | Kimberly-Clark Worldwide, Inc. | Production of soft paper products from old newspaper |
CA2165251A1 (en) * | 1994-12-15 | 1996-06-16 | Jill Marie Jobbins | Deinking composition and process |
US5879928A (en) * | 1995-10-31 | 1999-03-09 | Neozyme International, Inc. | Composition for the treatment for municipal and industrial waste-water |
US5849566A (en) * | 1997-01-23 | 1998-12-15 | Neozyme International, Inc. | Composition for accelerating the decomposition of hydrocarbons |
US5820758A (en) * | 1996-01-31 | 1998-10-13 | Neozyme International, Inc. | Composition and method for clarifying and deodorizing a standing body of water |
US6103763A (en) * | 1996-03-20 | 2000-08-15 | H & I Agritech, Inc. | Methods of killing insects |
EP0823215A1 (en) * | 1996-08-06 | 1998-02-11 | BIO INTEGRATED TECHNOLOGY S.r.l. | Insecticidal bacteria |
CN1246901A (en) * | 1996-11-26 | 2000-03-08 | 金伯利-克拉克环球有限公司 | Method of making sanitary paper products from recycled newspapers |
JP4017824B2 (en) * | 1998-10-23 | 2007-12-05 | 明治製菓株式会社 | Endoglucanase enzyme and cellulase preparation comprising the same |
US6682925B1 (en) * | 2000-04-13 | 2004-01-27 | Agraquest, Inc. | Streptomyces strain with insecticidal activity and method of using as an insecticide |
AU2002212755A1 (en) * | 2000-11-10 | 2002-05-21 | Meiji Seika Kaisha Ltd. | Cellulase preparation containing nonionic surfactant and method of treating fiber |
US20030073583A1 (en) * | 2001-10-09 | 2003-04-17 | Kostka Stanley J. | Wetting of water repellent soil by low HLB EO/PO block copolymers and enhancing solubility of same |
JP2005506472A (en) * | 2001-10-23 | 2005-03-03 | ノボザイムス アクティーゼルスカブ | Oxidase in the manufacture of paper materials |
US6841572B2 (en) * | 2003-02-20 | 2005-01-11 | H&I Agritech | Environmentally safe fungicide and bactericide formulations |
WO2004081034A2 (en) * | 2003-03-11 | 2004-09-23 | Advanced Biocatalytics Corporation | Altering metabolism in biological processes |
US20050039873A1 (en) * | 2003-08-18 | 2005-02-24 | Curham Kevin D. | High HLB non-ionic surfactants for use as deposition control agents |
WO2005054475A1 (en) * | 2003-12-03 | 2005-06-16 | Meiji Seika Kaisha, Ltd. | Endoglucanase stce and cellulase preparation containing the same |
US7994138B2 (en) * | 2004-06-01 | 2011-08-09 | Agscitech Inc. | Microbial biosurfactants as agents for controlling pests |
GB0425691D0 (en) * | 2004-11-23 | 2004-12-22 | Hepworth David G | Improved biocomposite material |
CN101094917B (en) * | 2004-12-30 | 2012-04-25 | 金克克国际有限公司 | Variant hypocrea jecorina cbh2 cellulases |
US8821646B1 (en) * | 2006-01-30 | 2014-09-02 | John C. Miller | Compositions and methods for cleaning and preventing plugging in micro-irrigation systems |
US7601266B2 (en) * | 2006-04-20 | 2009-10-13 | Ch2O Incorporated | Method of promoting unrestricted flow of irrigation water through irrigation networks |
WO2008111613A1 (en) * | 2007-03-12 | 2008-09-18 | Meiji Seika Kaisha, Ltd. | Endoglucanase ppce and cellulase preparation containing the same |
US20090186761A1 (en) * | 2008-01-18 | 2009-07-23 | Cleareso, Llc | Use of bio-derived surfactants for mitigating damage to plants from pests |
WO2009137047A1 (en) * | 2008-05-06 | 2009-11-12 | Purdue Research Foundation | Crawling arthropod intercepting device and method |
CN101423812B (en) * | 2008-12-17 | 2010-12-08 | 河南省农业科学院 | Bacillus amyloliquefaciens and microbiological preparation and preparation method thereof |
MX2011010040A (en) * | 2009-04-01 | 2011-11-18 | Danisco Us Inc | Cleaning system comprising an alpha-amylase and a protease. |
US8951585B2 (en) * | 2010-02-25 | 2015-02-10 | Marrone Bio Innovations, Inc. | Compositions and methods for modulating plant parasitic nematodes |
DK2588494T3 (en) * | 2010-06-29 | 2018-06-14 | Dsm Ip Assets Bv | POLYPEPTIDE WITH BETA-GLUCOSIDASE ACTIVITY AND APPLICATIONS THEREOF |
US20120172219A1 (en) * | 2010-07-07 | 2012-07-05 | Advanced Biocatalytics Corporation | Methods for enhanced root nodulation in legumes |
US20130284386A1 (en) * | 2010-09-28 | 2013-10-31 | Dow Global Technologies Llc | Deinking compositions and methods of use |
WO2012051328A2 (en) * | 2010-10-12 | 2012-04-19 | Ecolab Usa Inc. | High surface activity pesticides |
TW201225844A (en) * | 2010-10-25 | 2012-07-01 | Marrone Bio Innovations Inc | Chromobacterium bioactive compositions and metabolites |
KR102171932B1 (en) * | 2012-05-29 | 2020-10-30 | 네오자임 인터내셔널, 인코포레이티드 | Process for treating organic material |
US8722911B2 (en) * | 2012-06-20 | 2014-05-13 | Valicor, Inc. | Process and method for improving the water reuse, energy efficiency, fermentation, and products of an ethanol fermentation plant |
CN104452385B (en) * | 2013-09-12 | 2018-04-13 | 凯米罗总公司 | Dipping system and purposes and method |
CN104531574B (en) * | 2014-12-17 | 2018-02-09 | 安徽科技学院 | A kind of bacillus amyloliquefaciens gfj 4 and combinations thereof |
-
2016
- 2016-08-22 CN CN201680061820.9A patent/CN108135179A/en active Pending
- 2016-08-22 EP EP16839958.2A patent/EP3337327A4/en active Pending
- 2016-08-22 MX MX2018002206A patent/MX2018002206A/en unknown
- 2016-08-22 WO PCT/US2016/048092 patent/WO2017035099A1/en active Application Filing
- 2016-08-22 CN CN201680061816.2A patent/CN108347946A/en active Pending
- 2016-08-22 AU AU2016311182A patent/AU2016311182A1/en not_active Abandoned
- 2016-08-22 WO PCT/US2016/048093 patent/WO2017035100A1/en active Application Filing
- 2016-08-22 MX MX2018002205A patent/MX2018002205A/en unknown
- 2016-08-22 JP JP2018528938A patent/JP7177697B2/en active Active
- 2016-08-22 RU RU2018109945A patent/RU2721135C2/en active
- 2016-08-22 CA CA2996192A patent/CA2996192A1/en active Pending
- 2016-08-22 JP JP2018528937A patent/JP6976945B2/en active Active
- 2016-08-22 EP EP16839956.6A patent/EP3337779A4/en active Pending
- 2016-08-22 EP EP16839957.4A patent/EP3337846A4/en active Pending
- 2016-08-22 BR BR112018003404-5A patent/BR112018003404B1/en active IP Right Grant
- 2016-08-22 CA CA2996188A patent/CA2996188C/en active Active
- 2016-08-22 AU AU2016311181A patent/AU2016311181C1/en active Active
- 2016-08-22 NZ NZ739887A patent/NZ739887A/en unknown
- 2016-08-22 WO PCT/US2016/048094 patent/WO2017035101A1/en active Application Filing
- 2016-08-22 KR KR1020187007082A patent/KR102602869B1/en active IP Right Grant
-
2018
- 2018-02-19 CL CL2018000449A patent/CL2018000449A1/en unknown
- 2018-02-19 CL CL2018000450A patent/CL2018000450A1/en unknown
- 2018-02-21 IL IL257672A patent/IL257672B/en active IP Right Grant
- 2018-03-14 CO CONC2018/0002709A patent/CO2018002709A2/en unknown
- 2018-03-15 ZA ZA2018/01763A patent/ZA201801763B/en unknown
- 2018-03-15 ZA ZA2018/01762A patent/ZA201801762B/en unknown
- 2018-03-15 CO CONC2018/0002747A patent/CO2018002747A2/en unknown
-
2021
- 2021-01-21 AU AU2021200398A patent/AU2021200398B2/en active Active
-
2022
- 2022-08-04 JP JP2022125035A patent/JP2022169594A/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2021200398B2 (en) | Non-toxic plant agent compositions and methods and uses thereof | |
US11771091B2 (en) | Non-toxic plant agent compositions and methods and uses thereof | |
KR101857646B1 (en) | Antimicrobial compositions and related methods of use | |
BR112020004812A2 (en) | methods and compositions for the biological control of plant pathogens | |
US20240180155A1 (en) | Antimicrobial Compositions and Related Methods of Use | |
Guijarro et al. | Effects of different biological formulations of Penicillium frequentans on brown rot of peaches | |
BR112021009991A2 (en) | composition comprising a choline salt of a fatty acid and its use as a fungicide | |
RU2777770C2 (en) | Non-toxic compositions of plant agent, their application methods | |
JP2000511204A (en) | Bio-nematicide with effective ovicidal action against plant parasitic nematodes | |
US12010992B2 (en) | Dry powdered compositions and methods and uses thereof | |
CN108719315A (en) | A kind of bactericidal composition | |
US20230067609A1 (en) | Endophytic microbes for growth promotion of crop plants and suppression of aggressive invasive plant species, bioherbicides comprising the same and methods of use thereof | |
CN108260597A (en) | A kind of bactericidal composition | |
CN106982842A (en) | A kind of bactericidal composition | |
FR3025401A1 (en) | ANTI-BOTRYTIS COMPOSITIONS | |
CN108719311A (en) | A kind of bactericidal composition | |
CN106982855A (en) | A kind of bactericidal composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180314 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B08B 9/027 20060101ALI20190614BHEP Ipc: A01G 25/00 20060101ALI20190614BHEP Ipc: A01N 25/10 20060101ALI20190614BHEP Ipc: A01N 63/04 20060101AFI20190614BHEP |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20190930 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A01G 25/00 20060101ALI20190924BHEP Ipc: A01N 63/04 20060101AFI20190924BHEP Ipc: B08B 9/027 20060101ALI20190924BHEP Ipc: A01N 25/10 20060101ALI20190924BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20240422 |