EP3334995B1 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP3334995B1
EP3334995B1 EP16747730.6A EP16747730A EP3334995B1 EP 3334995 B1 EP3334995 B1 EP 3334995B1 EP 16747730 A EP16747730 A EP 16747730A EP 3334995 B1 EP3334995 B1 EP 3334995B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
threaded spindle
cleaning element
cylinder tube
exchanger according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16747730.6A
Other languages
English (en)
French (fr)
Other versions
EP3334995A1 (de
Inventor
Robert Adler
Ekkehardt Klein
Christoph Nagl
Andreas POLLAK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to PL16747730T priority Critical patent/PL3334995T3/pl
Publication of EP3334995A1 publication Critical patent/EP3334995A1/de
Application granted granted Critical
Publication of EP3334995B1 publication Critical patent/EP3334995B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G3/00Rotary appliances
    • F28G3/08Rotary appliances having coiled wire tools, i.e. basket type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/30Cleaning by methods involving the use of tools by movement of cleaning members over a surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • F28G1/08Non-rotary, e.g. reciprocated, appliances having scrapers, hammers, or cutters, e.g. rigidly mounted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/04Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes
    • B08B9/043Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved by externally powered mechanical linkage, e.g. pushed or drawn through the pipes
    • B08B9/0436Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved by externally powered mechanical linkage, e.g. pushed or drawn through the pipes provided with mechanical cleaning tools, e.g. scrapers, with or without additional fluid jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • F28G1/14Pull-through rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • F28G15/08Locating position of cleaning appliances within conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G3/00Rotary appliances
    • F28G3/10Rotary appliances having scrapers, hammers, or cutters, e.g. rigidly mounted

Definitions

  • the present invention relates to a heat exchanger, in particular for natural gas as the working medium for the purpose of drying and cleaning the natural gas.
  • Natural gas from storage facilities often has a particularly high percentage of undesirable accompanying substances and particularly high proportions of water. It is desirable to remove the accompanying substances and the water content from the natural gas before it is used for other purposes.
  • One possibility for this is to cool the natural gas in one or more steps to suitable low temperatures. In particular, liquefaction of the natural gas can be expedient here.
  • Heat exchangers with cleaning devices are for example in the GB375132 or the DE29724316U described. For the reasons mentioned, however, it is difficult to specify generally valid cleaning intervals for the heat exchangers in question.
  • Known gas dryer systems work, for example, with beds made of porous materials such as silica gel.
  • Another method uses triethylene glycol to dehumidify the working gas, whereby the process usually has to be carried out in several stages in order to be able to achieve the desired purity.
  • Moist working gases are the cause of hydrate formation and corrosion.
  • limit values apply to the water content.
  • Compressor stations and downstream Compressor stations and downstream elements such as pipelines, valves, etc., are basically designed for operation with dry working gas, which is why water should be removed from the working medium in addition to accompanying substances.
  • the gas drying process can include, for example, mechanical steps (mechanical separation of free water) and thermodynamic steps (separation by pressure reduction) and finally the step of absorption, for example by highly hygroscopic substances such as the triethylene glycol mentioned.
  • the triethylene glycol can be sprayed into the gas stream and absorbs the remaining water.
  • Condensing and freezing accompanying substances such as water, CO2 and hydrocarbon compounds are deposited on the heat transfer surfaces and thus reduce the heat transfer. Even at operating temperatures above the freezing point of water, methane hydrate is formed on the heat transfer surfaces.
  • the porous beds in dryer systems according to the prior art require a very large volume due to their principle. Furthermore, the beds only absorb the liquid portion, primarily the water portion, from the working gas. During regeneration of the bed, which takes place, for example, by flowing through it with a dry, unsaturated inert gas and / or heating and / or settling of the bed, a large proportion of working gas is discharged unused. When replacing the bed, it is necessary in known dryers according to the prior art to open the container in order to be able to completely replace the bed. This is costly and labor intensive and leads to an interruption in the production cycle.
  • the invention proposes a heat exchanger with the features of claim 1.
  • This cleaning element is used to clean deposits on the heat transfer surfaces between the inner surface of the first cylinder tube and the threaded spindle.
  • This cleaning element is either attached directly to the threaded spindle in the form of a driver or attached to such a driver, which in turn is attached directly to the threaded spindle.
  • a working medium that flows for heat exchange in an intermediate space between the first cylinder tube and the threaded spindle will - as explained at the beginning - leave deposits on the heat transfer surfaces, especially when it cools down. With natural gas as the working medium, these deposits consist in particular of accompanying substances and water. The mentioned deposits can be picked up and / or transported away or taken along by the cleaning element.
  • the threaded spindle is actuated, whereby the cleaning element is displaced in the axial direction within the first cylinder tube, whereby it can remove deposits from the heat-transferring surfaces.
  • deposits arise in particular on the threaded spindle and on the axially extending guide grooves of the heat exchanger.
  • the cleaning element cleans these surfaces.
  • steels in particular heat-treatable steels and alloys made from non-ferrous metals, and also nickel alloys (such as Inconel) and cast materials, can be used.
  • the cleaning element During normal operation of the heat exchanger, the cleaning element is in a rest position in which it influences the heat exchange between the working medium and the coolant as little as possible or not at all.
  • a coolant it is of course also possible to use a heating medium if the working medium is to be heated.
  • the cleaning takes place, for example, according to empirically determined period durations or when an externally measured maximum permissible differential pressure is reached, which indicates a reduction in the free flow cross section for the working medium due to deposits.
  • the heat exchanger according to the invention with a cleaning element allows the heat transfer surfaces to be cleaned effectively without having to be opened manually.
  • the cleaning process described is easy to carry out. For this only the Threaded spindle are rotated to move the cleaning element in the axial direction. Further process steps are not required. It is particularly advantageous if the cleaning element takes with it or transports away deposits. In this way a change and thus wear and tear or aging of the cleaning element can be prevented.
  • the heat exchanger has a second cylinder tube which is arranged coaxially to the first cylinder tube.
  • the coolant in order to let coolant in and out of an intermediate space between the second and first cylinder tube.
  • it is useful if there is an inlet and an outlet opening for a working medium in order to let the working medium in or out of an intermediate space between the first cylinder tube and the threaded spindle.
  • the cleaning element is designed as an essentially hollow-cylindrical cleaning element, the inner surface of the cleaning element having an internal thread corresponding to the thread of the threaded spindle and the outer surface of the cleaning element having external grooves corresponding to the guide grooves of the internal surface of the first cylinder tube.
  • the cleaning element can be attached to the threaded spindle in a simple manner (without a separate driver) and remove as thoroughly existing deposits as possible on heat-transferring inner surfaces in the space between the inner surface of the first cylinder tube and threaded spindle.
  • the cleaning element has recesses in the otherwise essentially cylindrically shaped circumference of the cleaning element, these recesses extending parallel to the axial direction. These recesses are in particular in the cleaning element in the circumferential direction arranged equidistantly.
  • the recesses or millings produce “teeth” or “claws” in the cleaning element, which in particular help to avoid seizing or blocking of the cleaning element during cleaning.
  • Deposits loosened from the threaded spindle can get into the recesses or millings mentioned and from there fall downwards (in the direction of movement of the cleaning element) when the heat exchanger is operated vertically, at least during the cleaning phase. In this way, a blockage of the cleaning element due to accumulating deposits can be effectively avoided.
  • the internal thread of the cleaning element has a diameter that increases in the axial direction. This configuration ensures that the thread grooves are not cleaned as abruptly as, for example, in the case of a cleaning element which is seated on the thread grooves in the axial direction over its entire extent. This avoids any possible jamming of the cleaning element.
  • the individual "claws" or “teeth” produced thereby become more elastic and press better against the outer wall or the thread grooves.
  • Another advantage is the free space that this creates, comparable to a chip channel in a machining process.
  • the outer surface of the first cylinder tube has a helix running helically in the axial direction.
  • This helix is part of the outer surface of the first cylinder tube and is applied to this outer surface or is produced by milling.
  • the coolant can then flow helically in the axial direction in the spaces between this coil.
  • This first cylinder tube with this helix can therefore also be referred to as a cooling helix.
  • a deposit storage device for deposits / contaminants cleared out by means of the cleaning element is connected, in particular thermally decoupled, to the space between the threaded spindle and the inner surface of the first cylinder tube / cooling coil.
  • the cleaning element transports contaminants into the deposit reservoir, which is in particular from the heat-transferring surfaces mentioned, i.e. the space between the threaded spindle and the inner surface of the first cylinder tube, is thermally decoupled. This thermal decoupling allows thermal treatment of the accompanying substances or other deposits collected in the deposit reservoir without affecting the further operation of the heat exchanger.
  • a heating element is advantageously present in or on the heat exchanger and is arranged in such a way that accompanying substances / impurities present in the deposit reservoir can be heated.
  • the cleaning element can transport the condensed impurities into the deposit reservoir, which can then also be referred to, for example, as a condensate reservoir.
  • the collected condensate can then be heated by means of the heating element mentioned.
  • the heated condensate, which has been melted, can be drained through a condensate drain by opening a downstream valve. In this way, the deposit storage can be freed from existing impurities at given times.
  • a position measuring means is advantageously provided and arranged such that the position of the cleaning element can be measured in the axial direction.
  • Such a position measurement enables or simplifies the reversal of the direction of rotation of the threaded spindle at a certain predetermined position so that the cleaning element moves back in the opposite direction. Reaching a predetermined rest position can also be detected in a simple manner by means of the position meter.
  • a drive motor To drive the threaded spindle, it is advantageous to use a drive motor, a particle barrier being present between the drive motor and the space between the threaded spindle and the inner surface of the first cylinder tube, i.e. between the drive motor and the heat-conducting surfaces of the heat exchanger.
  • a particle barrier prevents foreign matter from entering the space in which the working medium flows to the heat exchanger and, conversely, serves to protect the drive motor or its bearings from particles.
  • the internal threaded spindle is surrounded by a first cylinder tube or the cooling coil.
  • the latter is in turn surrounded by a second cylinder tube or an outer cylinder tube.
  • the space between the threaded spindle and the cooling coil forms the working space for the working medium, which is supplied to this space via an inlet opening and removed from this space via an outlet opening after heat exchange.
  • the named inlet opening is used as the outlet opening and the named outlet opening is used as the inlet opening.
  • the threaded spindle On one side of the heat exchanger there is a drive motor that sets the threaded spindle in rotation.
  • the threaded spindle is mounted in a bearing.
  • a position measuring means which, based on the number of revolutions of the drive motor with a known pitch of the thread of the threaded spindle, can provide information on the position of the cleaning element moved by the threaded spindle.
  • the cleaning element which can also be referred to as a scraper, is preferably located in its rest position on the same side as the drive motor and is from this through a particle barrier Cut.
  • a particle barrier can be made of PTFE, for example, and is then so soft, even at low temperatures, that particles can accumulate in it.
  • the radial distance from the shaft is as small as possible, ideally a few tenths of a mm, preferably less than 0.4 mm, more preferably less than 0.3 mm, more preferably approximately equal to 0.2 mm.
  • a deposit storage or a condensate reservoir which in particular is thermally decoupled from this working space.
  • a heating element that is thermally coupled to the condensate reservoir in order to heat it.
  • the condensate reservoir is connected to the surroundings of the heat exchanger via a condensate drain in order to be able to empty the contents of the condensate reservoir.
  • a plain bearing bush for the threaded spindle at this end of the heat exchanger.
  • the threaded spindle is set in rotation by the drive motor.
  • the housing of the drive motor is preferably connected to the space through which the working medium flows and is thus loaded with the operating pressure.
  • the thread of the threaded spindle is preferably designed as a right-hand thread with a trapezoidal profile, left-handed threads and other flank shapes can in principle also be conceivable and advantageous. In this regard, reference is also made to what is below.
  • the cleaning element or the scraper engages on the one hand in the thread of the threaded spindle and on the other hand in the guide or profile grooves of the cooling coil, whereby the cleaning element is set in a translational movement.
  • the position of the cleaning element can be detected with the aid of the number of revolutions of the drive motor measured by the position means.
  • the cleaning element slides up to the thermally decoupled condensate reservoir or deposit store at the end of the working space.
  • the cleaning element pushes the existing sediments carried along into the condensate reservoir.
  • the direction of rotation of the drive motor is reversed and the cleaning element moves back to its rest position next to the particle barrier.
  • the collected condensate can be heated by the heating element and, depending on the state of aggregation, made to melt or evaporate and then drained through the condensate drain, preferably on both sides, by opening a downstream valve.
  • a threaded spindle with a cross thread can be used with advantage.
  • Such threaded spindles are known per se and are referred to as cross-threaded spindles.
  • Threaded spindles with trapezoidal profiles can only map one assigned direction of movement according to their direction of rotation, which as a result is also reversed when the direction of rotation is reversed.
  • the reversal of the direction of rotation requires a switching element in the electrical supply of the drive motor or a change gear.
  • sliding elements, such as the cleaning element these are common equipped with a position stop.
  • the position of the sliding element is detected with a position detection means.
  • a cross thread is constructed in such a way that both a left-hand and a right-hand thread turn, preferably with the same pitch, is mapped on a spindle, which has a reversal point in its respective end positions, in which at least one sliding block sliding in the thread groove from a first direction of movement to a second Direction of movement is transferred.
  • the direction of rotation of the shaft of the threaded spindle thus always remains the same.
  • the determination of the rest position of the cleaning element must be carried out using an alternative method.
  • a torque measurement is possible, for example, which registers significant changes in the torque in the two end positions of the cleaning element.
  • the end positions or at least the upper end position of the rest position can be determined by means of initiators, that is to say limit switches.
  • the heat exchanger according to the invention consequently has a cross-threaded spindle with at least one sliding block that slides in the threads and a scraper or cleaning element connected to the sliding block, for example via a bolt.
  • the advantages of using the cross-thread spindle are an automatic reversal of the direction of movement without changing the direction of rotation of the shaft, so that braking and restarting the electric motor becomes obsolete, which in turn results in a more energy-efficient process. Furthermore, as already stated, no electrical device for reversing the direction of rotation has to be provided or a corresponding program part in the control is omitted. Overall, the cleaning process of the heat exchanger is shortened by the omitted direction reversal. The end positions of the cleaning element are automatically defined by the reverse grinding of the cross thread and can therefore not be exceeded. Finally, the position measuring means described above can be omitted.
  • the invention also relates to a use of the heat exchanger according to the invention for liquefying a gas.
  • a second cylinder tube is arranged coaxially to the first cylinder tube of the heat exchanger, with a coolant flowing between the first and second cylinder tubes.
  • a working medium containing the gas to be liquefied flows between the first cylinder tube and the threaded spindle.
  • the gas to be liquefied can be nitrogen, for example.
  • the cooling medium flows at a lower temperature than the working medium, the pressure and the temperature of the cooling medium and the pressure of the working medium being set such that the gas to be liquefied in the working medium is liquefied through the heat exchange with the cooling medium.
  • natural gas for example, liquefied nitrogen at a pressure of 1 bar and a temperature of -196 ° C can be used as the cooling medium.
  • the working medium naturally gas
  • the working medium is introduced through an upstream heat exchanger at a pressure of, for example, 10 bar, in particular after appropriate pre-cooling.
  • the nitrogen contained in natural gas can cool down to a temperature of - 170 ° C and below, so that it liquefies at a pressure of 10 bar.
  • the process mentioned can be used analogously to the liquefaction of helium, oxygen and / or hydrogen as one or more components in a working medium.
  • Specific examples for the liquefaction of helium, hydrogen and oxygen are given below: Liquefaction of various gases, for example for the purpose of separating them from gas mixtures
  • the pressure of the cooling medium is chosen so that the temperature of the cooling medium is always lower than that of the working medium.
  • the pressure of the cooling medium is chosen so that the temperature of the cooling medium is always lower than that of the working medium.
  • FIG 1 shows schematically a longitudinal section through an embodiment of a heat exchanger 13, as it can be used in particular for cooling natural gas.
  • the heat exchanger 13 has an outer cylinder tube 1 which surrounds a cooling coil 2.
  • This cooling coil 2 is in turn designed as a cylinder tube and has at least one, preferably spiral-shaped channel 23 on its outer surface, which is used to guide a coolant.
  • this channel 23 is generated by a corresponding coil 21 on the outer surface of the cooling coil 2.
  • the inner surface of the hollow-cylindrical cooling coil has guide or profile grooves 22. This at least one guide groove 22 serves to guide a cleaning element or scraper 12.
  • a threaded spindle 3 is located in the interior of the cooling coil 2 coaxially with it.
  • the threaded spindle 3 is driven by a drive motor 4 and is mounted in a bearing, which is preferably designed as an axial / radial mixed bearing 5.
  • a bearing which is preferably designed as an axial / radial mixed bearing 5.
  • this is in a radial bearing that is preferably designed as a plain bearing bush 8, stored.
  • At this end of the heat exchanger 13 there is also a thermally decoupled condensate reservoir 7 and a heating element 9 for heating condensate in the condensate reservoir 7.
  • a particle barrier 11 separates the drive motor 4 from the working space for the working medium.
  • the particle barrier 11 also serves to protect the drive motor 4 and the bearing 5 from coarse particles, but does not act as a gas seal.
  • a plurality of outer cylinder tubes 1 are connected by a clamping device 10.
  • the clamping device 10 is constructed in such a way that two union rings with an internal thread are screwed onto the external cylinder tube 1, which in turn is provided with an external thread.
  • the union rings are pulled together by means of screws and the individual segments are pressed together and sealed with a seal.
  • a plurality of such outer cylinder tubes can also be understood and referred to as one “outer cylinder tube”.
  • a cleaning element or scraper 12 is arranged next to the particle barrier 11 in its rest position.
  • the threaded spindle 3 is set in rotation, so that the reamer 12 is displaced on the threaded spindle along the guide or profile grooves 22 of the cooling coil 2 in the axial direction.
  • a threaded spindle 3 is used, for example with a trapezoidal profile.
  • a reversal of the direction of movement of the reamer 12 requires a reversal of the direction of rotation of the threaded spindle 3.
  • Another embodiment of the threaded spindle 3 is further below in connection with Figure 4 explained.
  • moist, contaminated working medium is passed through a working medium inlet opening 14 into the space between the threaded spindle 3 and between the cooling coil 2 and flows in the axial direction to the working medium outlet opening 15 at the other end of the heat exchanger 13.
  • the working medium flows in the process in the profile grooves 22 on the inner surface of the hollow cylindrical cooling coil 2 (cf. Figure 2 ) along the axis of rotation of the Threaded spindle 3.
  • Coolant is supplied to the space between cooling coil 2 and outer cylinder tube 1 via a coolant inlet opening 16, which coolant flows to the other end of heat exchanger 13 and leaves it through coolant outlet opening 17.
  • the coolant flows in a spiral in the axial direction in the channel 23 formed between the outer cylinder tube 1 and the cooling coil 2.
  • the coolant removes heat from the cooling coil 2, so that heat is in turn removed from the working medium.
  • natural gas is heated to a temperature of approx. 20 ° C from an underground cavern at a pressure of 4 to a maximum of 220 bar.
  • the working medium is preferably cooled to 1 ° C. in a first heat exchanger.
  • the working medium is preferably cooled to -40 ° C to -60 ° C.
  • the working medium is cooled to preferably -80 ° C. to -150 ° C. and in a last stage the working medium is liquefied via a heat exchanger again connected in series.
  • the temperature of the natural gas is reduced to as low as -196 ° C, causing the natural gas to undercool.
  • the first stage falls out of a large part of the water, the next stages mainly the higher hydrocarbons, CO 2 and other accompanying substances.
  • the scrapers 12 present in the respective stages of the heat exchangers 13 condensed components can be cleaned from the heat-transferring surfaces.
  • the first two heat exchanger stages are cooled by refrigeration machines, the other two by liquid nitrogen, cryogenic liquid CNG or cryogenic gaseous nitrogen.
  • the maximum operating pressure of the heat exchanger is 300 bar, the permissible operating temperatures are 100 ° C to -200 ° C.
  • nitrogen can be used as an accompanying substance at high pressure (e.g. at 10 bar) through liquid nitrogen low pressure (e.g. at 1 bar), due to the different pressure-dependent phase transitions, liquefied and separated.
  • the proposed heat exchanger 13 can thus also be used to liquefy nitrogen.
  • the threaded spindle 3 of one stage is set in rotation by the drive motor 4.
  • the reamer 12 which engages on the one hand in the thread of the threaded spindle 3 and on the other hand in the profile grooves 22 of the cooling coil 2, is thereby set in a translational movement.
  • the scraper 12 takes the abovementioned condensed accompanying substances with it. When they reach the condensate reservoir 7, these are pushed into the same.
  • the position measuring means 6 can determine the position of the reamer 12 based on the defined thread pitch of the threaded spindle 3 from the number of measured revolutions of the drive motor 4. As soon as the position of the condensate reservoir 7 is reached, the direction of rotation of the drive motor 4 is reversed, so that the scraper 12 moves back to its rest position. It is useful if the rest position represents the upper end position and the position of the condensate reservoir 7 represents the lower end position of the scraper 12 when the heat exchanger is in a vertical position.
  • the collected condensate is heated by the heating element 9 and thus melted.
  • the accompanying substances can be drained off through a condensate drain 18.
  • the cleaning of the heat-exchanging surfaces of the heat exchanger 13 takes place, for example, after empirically determined period durations or when an externally measured maximum permissible differential pressure is reached, which suggests a reduction in the free flow cross-section in the work space due to deposited accompanying substances. As a result of the cleaning, the highest possible and constant heat transfer value is achieved. In comparison to the systems according to the prior art, the heat exchanger 13 takes up a smaller structural volume due to the effectively used heat transfer surfaces.
  • the segmental structure of the heat exchanger 13 enables a modular structure.
  • the heat transfer capacity is thus determined by the enlargement or Reduction of the heat transfer surfaces variable.
  • the actual position of the scraper 12 is always monitored. Any seizure can be detected at an early stage by measuring the slip.
  • the heat exchanger 13 explained here can be adapted and used not only for liquefying natural gas, but also for a large number of industrial applications with corresponding working media.
  • the scraper 12 can be adapted to the needs of the respective areas of use and quickly replaced in the event of damage.
  • Figure 3 shows a scraper 12 or a cleaning element 12, as it can be used in the heat exchanger 13.
  • the internal thread 121 of the reamer 12 corresponds to the thread of the threaded spindle 3.
  • the reamer 12 has recesses or millings 123.
  • the reamer 12 contains “teeth” or “claws” that prevent deposits from collecting in the thread and blocking the reamer 12.
  • the deposits can namely enter the space through the recesses or millings 123 and, when the heat exchanger is in a vertical position, fall downward in the direction of the condensate reservoir 7.
  • the inside diameter of the reamer 12, which increases in the direction of movement of the cleaning serves for easier introduction into the contaminated threaded spindle at the beginning of the cleaning process.
  • Figure 4 finally shows an alternative embodiment of a threaded spindle 3 ', which is a cross-threaded spindle 3'.
  • the cross-threaded shaft is designated 31.
  • the reamer 12 is connected to the sliding block 32 and moves in the axial direction when the threaded spindle 3 'rotates.
  • the threaded spindle 3 ' enables a more energy-efficient process, since the electric motor does not have to be braked and restarted.
  • a position measurement of the reamer 12 and thus the in Figure 1 position measuring means 6 shown are omitted.
  • the cleaning process of the heat exchanger 13 is further shortened by the omission of the direction reversal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Transmission Devices (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Wärmetauscher, insbesondere für Erdgas als Arbeitsmedium zum Zwecke der Trocknung und Reinigung des Erdgases.
  • Stand der Technik
  • Wärmetauscher zum Wärmen oder zum Abkühlen eines Arbeitsmediums sind aus dem Stand der Technik vielfältig bekannt. Ohne Beschränkung der Allgemeinheit soll im Folgenden das Arbeitsmedium Erdgas näher betrachtet werden. Erdgas aus Bodenspeichern weist häufig einen besonders hohen Prozentsatz an unerwünschten Begleitstoffen und besonders hohe Wasseranteile auf. Es ist wünschenswert, die Begleitstoffe sowie den Wasseranteil aus dem Erdgas zu entfernen, bevor es für weitere Zwecke eingesetzt wird. Eine Möglichkeit hierzu stellt die Kühlung des Erdgases in einem oder mehreren Schritten auf geeignete tiefe Temperaturen dar. Insbesondere kann hierbei eine Verflüssigung des Erdgases zweckmäßig sein.
  • Bei der Abkühlung von Erdgas kommt es durch die genannten Begleitstoffe im Wärmetauscher zumeist zu Ablagerungen auf den Wärmeübertragungsflächen, wobei der zeitliche Verlauf solcher Ablagerungen von den Betriebsbedingungen und der jeweiligen Erdgaszusammensetzung abhängt. Die Wärmeübertragungsflächen müssen daher in bestimmten Intervallen gereinigt werden. Wärmetauscher mit Reinigungsvorrichtungen sind beispielsweise in der GB375132 oder der DE29724316U beschrieben. Aus den genannten Gründen ist es allerdings schwierig, allgemein gültige Reinigungsintervalle für die betreffenden Wärmetauscher anzugeben. Bekannte Gas-Trocknersysteme arbeiten beispielsweise mit Schüttungen aus porösen Materialien wie beispielsweise Kieselgel. Ein anderes Verfahren verwendet zur Entfeuchtung des Arbeitsgases Triethylenglykol, wobei der Prozess meist mehrstufig gehalten werden muss, um die gewünschte Reinheit erreichen zu können. Feuchte Arbeitsgase sind die Ursache für Hydratbildung und Korrosion. In den Gastransportnetzen gelten daher Grenzwerte bezüglich des Wassergehalts. Verdichterstationen und nachgeschaltete Verdichterstationen und nachgeschaltete Elemente, wie Rohrleitungen, Ventile etc., sind grundsätzlich für einen Betrieb mit trockenem Arbeitsgas ausgelegt, weshalb neben Begleitstoffen auch Wasser aus dem Arbeitsmedium entfernt werden sollte. Der Prozess der Gastrocknung kann beispielsweise mechanische Schritte (mechanisches Abscheiden von freiem Wasser) und thermodynamische Schritte (Abscheiden durch Druckreduktion) und schließlich den Schritt der Absorption, beispielsweise durch stark hygroskopische Substanzen wie das genannte Triethylenglykol umfassen. Das Triethylenglykol, kann in den Gasstrom eingesprüht werden und absorbiert das verbliebene Wasser.
  • Kondensierende und gefrierende Begleitstoffe wie Wasser, CO2 sowie Kohlenwasserstoffverbindungen scheiden sich an den Wärmeübertragungsflächen ab und reduzieren somit den Wärmeübergang. Auch bei Betriebstemperaturen über dem Gefrierpunkt von Wasser kommt es an den Wärmeübertragungsflächen zu Bildung von Methanhydrat.
  • Die porösen Schüttungen in Trockneranlagen nach dem Stand der Technik benötigen prinzipbedingt ein sehr großes Volumen. Weiters absorbieren die Schüttungen lediglich den Flüssigkeitsanteil, vornehmlich den Wasseranteil, aus dem Arbeitsgas. Bei Regeneration der Schüttung, die beispielsweise mittels Durchströmen mit einem trockenen ungesättigten Inertgas und/oder Ausheizen und/oder Setzen der Schüttung erfolgt, wird ein großer Anteil an Arbeitsgas ungenutzt abgelassen. Beim Ersetzen der Schüttung ist bei bekannten Trocknern gemäß Stand der Technik ein Öffnen des Behälters notwendig, um die Schüttung restlos ersetzen zu können. Dies ist kosten- und arbeitsintensiv und führt zu einer Unterbrechung des Produktionszyklus.
  • Die genannten Prozesse zur Trocknung und Reinigung von Gasen als Arbeitsmedium erweisen sich als aufwändig. Es ist wünschenswert, die Anzahl der Prozessschritte zu verringern, ohne dabei die oben genannten Nachteile in Kauf nehmen zu müssen.
  • Kurzfassung der Erfindung
  • Die Erfindung schlägt einen Wärmetauscher mit den Merkmalen des Anspruchs 1. Dieses Reinigungselement dient zur Reinigung von Ablagerungen auf den Wärmeübertragungsflächen zwischen der Innenfläche des ersten Zylinderrohrs und der Gewindespindel. Dieses Reinigungselement ist entweder in Form eines Mitnehmers direkt auf der Gewindespindel angebracht oder an einem solchen Mitnehmer befestigt, der seinerseits direkt an der Gewindespindel angebracht ist. Ein Arbeitsmedium, das zum Wärmetausch in einem Zwischenraum zwischen dem ersten Zylinderrohr und der Gewindespindel strömt, wird - wie eingangs erläutert - insbesondere beim Abkühlen Ablagerungen auf den Wärmeübertragungsflächen hinterlassen. Bei Erdgas als Arbeitsmedium bestehen diese Ablagerungen insbesondere aus Begleitstoffen und Wasser. Die genannten Ablagerungen können von dem Reinigungselement aufgenommen und/oder wegtransportiert bzw. mitgenommen werden. Zur Reinigung wird also die Gewindespindel betätigt, wodurch das Reinigungselement in axialer Richtung innerhalb des ersten Zylinderrohrs verschoben wird, wodurch es Ablagerungen von den wärmeübertragenden Flächen entfernen kann. Solche Ablagerungen entstehen insbesondere an der Gewindespindel sowie an den axial verlaufenden Führungsnuten des Wärmetauschers. Das Reinigungselement reinigt diese Flächen ab. Für das Reinigungselement können vorzugsweise Stähle, im speziellen Vergütungsstähle und Legierungen aus Buntmetallen, ferner kaltzähe Nickel-Legierungen (wie Inconel) sowie Gusswerkstoffe, verwendet werden.
  • Bei Normalbetrieb des Wärmetauschers befindet sich das Reinigungselement in einer Ruheposition, in der es den Wärmetausch zwischen Arbeitsmedium und Kühlmittel geringstmöglich oder gar nicht beeinflusst. Statt eines Kühlmittels ist selbstverständlich auch die Verwendung eines Wärmemittels möglich, wenn das Arbeitsmedium erwärmt werden soll. Die Reinigung erfolgt beispielsweise nach empirisch ermittelten Periodendauern oder bei Erreichen eines extern gemessenen maximal zulässigen Differenzdrucks, der auf eine Verkleinerung des freien Strömungsquerschnitts für das Arbeitsmedium bedingt durch Ablagerungen schließen lässt.
  • Der erfindungsgemäße Wärmetauscher mit Reinigungselement erlaubt eine effektive Reinigung der Wärmeübertragungsflächen, ohne manuell geöffnet werden zu müssen. Der geschilderte Reinigungsprozess ist einfach ausführbar. Hierzu muss lediglich die Gewindespindel gedreht werden, um das Reinigungselement in axialer Richtung zu verschieben. Weitere Prozessschritte sind nicht erforderlich. Es ist insbesondere vorteilhaft, wenn das Reinigungselement vorhandene Ablagerungen mitnimmt bzw. wegtransportiert. Auf diese Weise kann eine Veränderung und somit Abnutzung bzw. Alterung des Reinigungselements verhindert werden.
  • Das ohne Beschränkung der Allgemeinheit zum Wärmetausch genutzte Kühlmittel umströmt eine Außenfläche des ersten Zylinderrohrs. Erfindungsgemäss weist der Wärmetauscher ein zweites Zylinderrohr auf, das koaxial zu dem ersten Zylinderrohr angeordnet ist. In diesem Zusammenhang ist es weiterhin zweckmäßig, wenn eine Ein- und eine Austrittsöffnung für das Kühlmittel vorhanden ist, um Kühlmittel in einen bzw. aus einem Zwischenraum zwischen zweitem und erstem Zylinderrohr ein- bzw. auszulassen. In gleicher Weise ist es zweckmäßig, wenn eine Ein- und eine Austrittsöffnung für ein Arbeitsmedium vorhanden ist, um das Arbeitsmedium in einen bzw. aus einem Zwischenraum zwischen erstem Zylinderrohr und Gewindespindel ein- bzw. auszulassen.
  • Es ist vorteilhaft, wenn das Reinigungselement als im Wesentlichen hohlzylindrisch geformtes Reinigungselement ausgebildet ist, wobei die Innenfläche des Reinigungselements ein Innengewinde korrespondierend zum Gewinde der Gewindespindel aufweist und wobei die Außenfläche des Reinigungselements Außennuten korrespondierend zu den Führungsnuten der Innenfläche des ersten Zylinderrohrs aufweist. Auf diese Weise kann das Reinigungselement in einfacher Weise (ohne gesonderten Mitnehmer) an der Gewindespindel angebracht werden und möglichst gründlich vorhandene Ablagerungen auf wärmeübertragenden Innenflächen im Zwischenraum zwischen Innenfläche des ersten Zylinderrohrs und Gewindespindel abräumen.
  • Es ist zweckmäßig, wenn das Reinigungselement Aussparungen im ansonsten im Wesentlichen zylindrisch geformten Umfang des Reinigungselements aufweist, wobei sich diese Aussparungen parallel zur axialen Richtung erstrecken. Diese Aussparungen sind insbesondere im Reinigungselement in Umfangsrichtung äquidistant angeordnet. Die Aussparungen bzw. Einfräsungen erzeugen "Zähne" oder "Klauen" im Reinigungselement, die insbesondere ein Festfressen oder eine Blockade des Reinigungselements beim Reinigen vermeiden helfen. Von der Gewindespindel gelöste Ablagerungen können in die genannten Aussparungen bzw. Einfräsungen gelangen und von dort aus bei vertikalem Betrieb des Wäremtauschers zumindest in der Reinigungsphase nach unten (in Bewegungsrichtung des Reinigungselements) fallen. Auf diese Weise kann effektiv eine Blockade des Reinigungselements durch sich ansammelnde Ablagerungen vermieden werden.
  • Weiterhin ist es zweckmäßig, wenn das Innengewinde des Reinigungselements einen in axialer Richtung sich vergrößernden Durchmesser aufweist. Durch diese Ausgestaltung wird erzielt, dass die Abreinigung der Gewindenuten nicht so abrupt erfolgt wie beispielsweise bei einem Reinigungselement, das in axialer Richtung über seine gesamte Ausdehnung auf den Gewindenuten aufsitzt. Hierdurch wird ein mögliches Festklemmen des Reinigungselements vermieden. In Verbindung mit der oben genannten Ausführungsform, bei der das Reinigungselement axiale Aussparungen aufweist, werden die hierdurch erzeugten einzelnen "Klauen" oder "Zähne" elastischer und pressen sich besser an die Außenwandung bzw. an die Gewindenuten an. Ein weiterer Vorteil ist der hierdurch gebildete Freiraum, vergleichbar mit einem Spankanal eines spanenden Bearbeitungsverfahrens.
  • Gemäss der Erfindung weist die Außenfläche des ersten Zylinderrohrs eine in axialer Richtung spiralförmig verlaufende Wendel auf. Diese Wendel ist Bestandteil der Außenfläche des ersten Zylinderrohrs und ist auf diese Außenfläche aufgebracht oder durch Fräsen erzeugt. In den Zwischenräumen dieser Wendel kann dann das Kühlmittel spiralförmig in axialer Richtung fließen. Dieses erste Zylinderrohr mit dieser Wendel kann daher auch als Kühlwendel bezeichnet werden.
  • Es ist vorteilhaft, wenn ein Ablagerungsspeicher für mittels des Reinigungselements ausgereinigte Ablagerungen/Verunreinigungen mit dem Zwischenraum zwischen Gewindespindel und Innenfläche des ersten Zylinderrohrs/Kühlwendel insbesondere thermisch entkoppelt verbunden ist. In dieser vorteilhaften Ausgestaltung transportiert das Reinigungselement Verunreinigungen in den Ablagerungsspeicher, der insbesondere von den genannten wärmeübertragenden Flächen, also dem Zwischenraum zwischen Gewindespindel und Innenfläche des ersten Zylinderrohrs, thermisch entkoppelt ist. Diese thermische Entkopplung erlaubt eine thermische Behandlung der im Ablagerungsspeicher gesammelten Begleitstoffe oder sonstige Ablagerungen ohne Einfluss auf den weiteren Betrieb des Wärmetauschers. Hierzu ist vorteilhafterweise ein Heizelement in oder am Wärmetauscher vorhanden und derart angeordnet, dass im Ablagerungsspeicher vorhandene Begleitstoffe/Verunreinigungen erwärmt werden können. Bei einer Abkühlung des Arbeitsmediums kommt es zu einem Auskondensieren der im Arbeitsmedium vorhandenen Verunreinigungen, wie Begleitstoffe und Wasser. Das Reinigungselement kann die auskondensierten Verunreinigungen in den Ablagerungsspeicher, der dann beispielsweise auch als Kondensatreservoir bezeichnet werden kann, transportieren. Das gesammelte Kondensat kann anschließend mittels des genannten Heizelements erwärmt werden. Das erwärmte, zum Schmelzen gebrachte Kondensat kann durch Öffnen eines nachgeschalteten Ventils über einen Kondensatablass abgelassen werden. Auf diese Weise kann zu gegebenen Zeiten der Ablagerungsspeicher seinerseits von vorhandenen Verunreinigungen befreit werden.
  • Es ist sinnvoll, während des Reinigungsvorgangs Kenntnis von der Position des Reinigungselements zu erhalten. Zu diesem Zweck ist vorteilhafterweise ein Positionsmessmittel vorhanden und derart angeordnet, dass die Position des Reinigungselements in axialer Richtung gemessen werden kann. Eine solche Positionsmessung ermöglicht bzw. vereinfacht es, die Drehrichtung der Gewindespindel an einer bestimmten vorgegebenen Position umzukehren, damit sich das Reinigungselement in entgegengesetzte Richtung zurückbewegt. Auch kann das Erreichen einer vorbestimmten Ruheposition mittels des Positionsmessers in einfacher Weise detektiert werden.
  • Zum Antrieb der Gewindespindel ist es vorteilhaft, einen Antriebsmotor einzusetzen, wobei zwischen Antriebsmotor und dem Zwischenraum zwischen Gewindespindel und Innenfläche des ersten Zylinderrohrs, also zwischen Antriebsmotor und den wärmeleitenden Flächen des Wärmetauschers eine Partikelbarriere vorhanden ist. Eine solche Partikelbarriere verhindert das Eindringen von Fremdstoffen in den Raum, in dem das Arbeitsmedium zum Wärmetauscher fließt, und dient umgekehrt zum Schutz des Antriebsmotors bzw. dessen Lagers vor Partikeln.
  • Zusammenfassend lässt sich folgender bevorzugter Aufbau eines erfindungsgemäßen Wärmetauschers festhalten, wobei die einzelnen Merkmale nicht zwingend in der hier angegeben Kombination verwirklicht sein müssen. Die innenliegende Gewindespindel ist von einem ersten Zylinderrohr bzw. der Kühlwendel umgeben. Letztere ist ihrerseits von einem zweiten Zylinderrohr bzw. einem Außenzylinderrohr umgeben. Der Zwischenraum zwischen Gewindespindel und Kühlwendel bildet den Arbeitsraum für das Arbeitsmedium, das über eine Eintrittsöffnung diesem Raum zugeführt und über ein Austrittsöffnung von diesem Raum nach Wärmetausch entfernt wird. Es kann zweckmäßig sein, die Strömungsrichtung umzukehren, wobei hierzu die genannte Eintrittsöffnung als Austrittsöffnung und die genannte Austrittsöffnung als Eintrittsöffnung verwendet wird. Es ist in einem solchen Fall jedoch vorteilhaft, auf der Seite der genannten Eintrittsöffnung eine weitere Austrittsöffnung und auf der Seite der genannten Austrittsöffnung eine weitere Eintrittsöffnung für das Arbeitsmedium am Wärmetauscher vorzusehen. In diesem Fall stehen zwei gegenüberliegende Anschlüsse jeweils für den Eintritt und für den Austritt des Arbeitsmediums zur Verfügung, die im Folgenden auch als "beidseitige" Eintrittsöffnung bzw. als "beidseitige" Austrittsöffnung bezeichnet werden.. Ein Kühlmittel wird über eine Kühlmitteleintrittsöffnung dem Zwischenraum zwischen Kühlwendel und Außenzylinderrohr zugegeben und durchströmt diesen Zwischenraum zu einer Kühlmittelaustrittsöffnung, um diesen Zwischenraum wieder zu verlassen. Für die Kühlmitteleintritts- und -austrittsöffnung gilt in analoger Weise das für die Eintritts- und Austrittsöffnung für das Arbeitsmedium gesagte, das heißt es ist vorteilhaft, einen beidseitigen Kühlmittel-Eintritt und -Austritt vorzusehen. Es ist sinnvoll, wenn die Strömung des Kühlmittels im Gegenstrom zur Strömung des Arbeitsmediums erfolgt. Es kann auch sinnvoll sein, wenn die Strömung des Kühlmittels im Gleichstrom zur Strömung des Arbeitsmediums erfolgt.
  • Auf einer Seite des Wärmetauschers befindet sich ein Antriebsmotor, der die Gewindespindel in Drehung versetzt. Die Gewindespindel ist in einem Lager gelagert. An diesem Lager befindet sich ein Positionsmessmittel, das anhand der Anzahl von Umdrehungen des Antriebsmotors bei bekannter Steigung des Gewindes der Gewindespindel eine Information zur Position des von der Gewindespindel bewegten Reinigungselements liefern kann. Das Reinigungselement, das auch als Räumer bezeichnet werden kann, befindet sich in seiner Ruheposition bevorzugt auf der gleichen Seite wie der Antriebsmotor und ist von diesem durch eine Partikelbarriere getrennt. Eine solche Partikelbarriere kann beispielsweise aus PTFE gefertigt sein und ist dann auch bei niedrigen Temperaturen so weich, dass sich Partikel darin akkumulieren können. Der radiale Abstand zur Welle ist möglichst klein, idealerweise wenige Zehntel mm, vorzugsweise weniger als 0,4 mm, weiter vorzugsweise weniger als 0,3 mm, weiter vorzugsweise etwa gleich 0,2 mm.
  • Auf der anderen Seite des Wärmetauschers befindet sich am Ende des Arbeitsraums, durch den das Arbeitsmedium fließt, ein Ablagerungsspeicher bzw. ein Kondensatreservoir, das insbesondere von diesem Arbeitsraum thermisch entkoppelt ist. Hieran anschließend folgt ein Heizelement, das mit dem Kondensatreservoir thermisch gekoppelt ist, um dieses zu erhitzen. Das Kondensatreservoir ist über einen Kondensatablass mit der Umgebung des Wärmetauschers verbunden, um den Inhalt des Kondensatreservoirs entleeren zu können. Ebenfalls an diesem Ende des Wärmetauschers befindet sich eine Gleitlagerbuchse für die Gewindespindel.
  • Im Folgenden sei die Betriebsweise eines solchen vorteilhaften erfindungsgemäßen Wärmetauschers näher beschrieben: Je nach Strömungsrichtung strömt durch die jeweilige Arbeitsmedium-Eintrittsöffnung feuchtes, verschmutztes Arbeitsmedium in den Raum zwischen Gewindespindel und Kühlwendel ein und fließt in Richtung der gegenüberliegenden Austrittsöffnung. Das Arbeitsmedium strömt dabei in den Führungsnuten der Innenfläche der Kühlwendel entlang der Drehachse der Gewindespindel. Der Kühlwendel wird durch ein Kühlmittel Wärme entzogen, wobei dieses Kühlmittel vorzugsweise im Gegenstrom zum Arbeitsmedium in dem Raum fließt, der zwischen Kühlwendel und Außenzylinderrohr gebildet ist. Bedingt durch diese Kühlung fällt die Temperatur des Arbeitsmediums ab und Begleitstoffe bzw. Verunreinigungen fallen entsprechend ihrer Verflüssigungs- bzw. Erstarrungstemperaturen an den Wärmeübertragungsflächen aus. Diese Verunreinigungen verringern die Wärmeübertragungskapazität zwischen Arbeitsmedium und Kühlwendel.
  • Zum Zweck der Reinigung der Wärmeübertragungsflächen wird die Gewindespindel durch den Antriebsmotor in Rotation versetzt. Das Gehäuse des Antriebsmotors ist dabei vorzugsweise mit dem Zwischenraum, durch den das Arbeitsmedium strömt, verbunden und somit mit dem Betriebsdruck belastet. Das Gewinde der Gewindespindel ist dabei vorzugsweise als Rechtsgewinde mit Trapezprofil ausgeführt, wobei prinzipiell auch Linksgewinde und auch andere Flankenformen denkbar und vorteilhaft sein können. Hierzu sei auch auf das weiter unten stehende verwiesen. Das Reinigungselement bzw. der Räumer greift einerseits in das Gewinde der Gewindespindel ein und andererseits in die Führungs- bzw. Profilnuten der Kühlwendel, wodurch das Reinigungselement in eine Translationsbewegung versetzt wird.
  • Aufgrund der definierten Gewindesteigung der Gewindespindel kann mit Hilfe der durch das Positionsmittel gemessenen Anzahl von Umdrehungen des Antriebsmotors die Position des Reinigungselements erfasst werden. Das Reinigungselement gleitet dabei bis zu dem thermisch entkoppelten Kondensatreservoir bzw. Ablagerungsspeicher am Ende des Arbeitsraums. Das Reinigungselement schiebt somit die vorhandenen mitgeführten Ablagerungen in das Kondensatreservoir. Sobald die entsprechende Position erreicht ist, wird die Drehrichtung des Antriebsmotors umgekehrt und das Reinigungselement wandert zurück in seine Ruheposition neben der Partikelbarriere. Das gesammelte Kondensat kann von dem Heizelement erwärmt werden und je nach Aggregatzustand zum Schmelzen oder zum Verdampfen gebracht und anschließend durch Öffnen eines nachgeschalteten Ventils durch den vorzugsweise beidseitigen Kondensatablass abgelassen werden.
  • Es ist insbesondere vorteilhaft, mehrere in Serie geschaltete Wärmetauscher zu einer Wärmetauscheranlage zu kombinieren. Durch einen solchen stufenweisen Aufbau können Verunreinigungen "ausgefroren" werden, wenn die einzelnen Stufen jeweils bei tieferen Temperaturen betrieben werden.
  • Alternativ zu der genannten Gewindespindel mit Trapezprofil kann mit Vorteil eine Gewindespindel mit Kreuzgewinde eingesetzt werden. Solche Gewindespindeln sind an sich bekannt und werden als Kreuzgewindespindeln bezeichnet. Gewindespindeln mit Trapezprofilen können entsprechend ihrer Rotationsrichtung immer nur eine zugeordnete Bewegungsrichtung abbilden, die sich in Folge dessen bei der Umkehr der Rotationsrichtung ebenfalls umkehrt. Die Umkehrung der Drehrichtung bedarf eines Schaltelements in der elektrischen Anspeisung des Antriebsmotors bzw. einem Wechselgetriebe. Um ein Überfahren von definierten Endlagen auf Gewindespindeln gleitenden Elementen, wie das Reinigungselement, zu vermeiden, sind diese häufig mit einem Positionsanschlag ausgestattet. Alternativ wird die Position des gleitenden Elements mit einem Positionserfassungsmittel erfasst.
  • Der Einsatz von Kreuzgewindespindeln überwindet diese Nachteile. Ein Kreuzgewinde ist derart aufgebaut, dass auf einer Spindel sowohl ein Links- als auch ein Rechtsgewindegang vorzugsweise jeweils gleicher Steigung abgebildet ist, der in seinen jeweiligen Endlagen eine Umkehrstelle besitzt, in der wenigstens ein in der Gewindenut gleitender Gleitstein von einer ersten Bewegungsrichtung in eine zweite Bewegungsrichtung überführt wird. Die Rotationsrichtung der Welle der Gewindespindel bleibt somit stets gleich. Somit entfällt bei Verwendung einer Kreuzgewindespindel auch die Notwendigkeit des oben erläuterten Positionsmessmittels für die Position des Reinigungselements. Hierzu muss die obere Endlagenbestimmung, also die Bestimmung der Ruheposition des Reinigungselements über ein alternatives Verfahren erfolgen. Hierzu ist beispielsweise eine Drehmomentmessung möglich, die markante Änderungen des Drehmoments in den beiden Endlagen des Reinigungselements registriert. Zusätzlich oder alternativ können die Endlagen oder zumindest die obere Endlage der Ruheposition mittels Initiatoren, also Endlagenschalter, ermittelt werden.
  • In einer vereinfachten Ausgestaltung verfügt der erfindungsgemäße Wärmetauscher folglich über eine Kreuzgewindespindel mit wenigstens einem Gleitstein, der in den Gewindegängen gleitet und einen mit dem Gleitstein beispielsweise über einen Bolzen verbundenen Räumer bzw. Reinigungselement.
  • Die Vorteile der Verwendung der Kreuzgewindespindel liegen in einer automatischen Umkehr der Bewegungsrichtung, ohne die Drehrichtung der Welle zu ändern, sodass ein Abbremsen und erneutes Anfahren des Elektromotors obsolet wird, was wiederum einen energetisch sparsameren Prozess zur Folge hat. Weiterhin muss, wie bereits ausgeführt, keine elektrische Einrichtung zur Drehrichtungsumkehr vorgesehen werden bzw. entfällt ein entsprechender Programmteil in der Steuerung. Insgesamt wird der Reinigungsvorgang des Wärmetauschers durch die entfallene Richtungsumkehr verkürzt. Die Endlagenpositionen des Reinigungselements werden durch den Umkehrschliff des Kreuzgewindes automatisch definiert und können somit nicht überfahren werden. Schließlich können die oben beschriebenen Positionsmessmittel entfallen.
  • Die Erfindung betrifft weiterhin eine Verwendung des erfindungsgemäßen Wärmetauschers zur Verflüssigung eines Gases. Hierbei ist koaxial zum ersten Zylinderrohr des Wärmetauschers ein zweites Zylinderrohr angeordnet, wobei zwischen erstem und zweitem Zylinderrohr ein Kühlmittel strömt. Weiterhin strömt zwischen erstem Zylinderrohr und Gewindespindel ein Arbeitsmedium, welches das zu verflüssigende Gas enthält. Beim oben beschriebenen Beispiel von Erdgas kann das zu verflüssigende Gas beispielsweise Stickstoff sein. Das Kühlmedium strömt bei einer niedrigeren Temperatur als das Arbeitsmedium, wobei der Druck und die Temperatur des Kühlmediums sowie der Druck des Arbeitsmediums derart eingestellt werden, dass durch den Wärmetausch mit dem Kühlmedium das zu verflüssigende Gas im Arbeitsmedium sich verflüssigt. Im oben genannten Beispiel von Erdgas kann beispielsweise als Kühlmedium verflüssigter Stickstoff bei einem Druck von 1 bar und einer Temperatur von -196°C eingesetzt werden. Das Arbeitsmedium (Erdgas) wird, insbesondere nach entsprechender Vorkühlung durch vorgeschaltete Wärmetauscher mit einem Druck von beispielsweise 10 bar eingeleitet. Durch Wärmetausch mit dem Kühlmedium kann sich der im Erdgas enthaltene Stickstoff auf eine Temperatur von - 170°C und darunter abkühlen, so dass er bei einem Druck von 10 bar sich verflüssigt.
  • Das genannte Verfahren kann analog zur Verflüssigung von Helium, Sauerstoff und/oder Wasserstoff als ein oder mehrere Bestandteile in einem Arbeitsmedium eingesetzt werden. Konkrete Beispiele für die Verflüssigung von Helium, Wasserstoff und Sauerstoff sind im Folgenden angegeben:
    Verflüssigung von verschiedenen Gasen beispielsweise zum Zweck der Abscheidung aus Gasgemischen
  • Verflüssigung von O 2 :
    • Kühlmedium vorzugsweise Flüssigstickstoff zwischen 1 und 15bar;
    • Temperaturbereich des Kühlmediums -163°C@15bar bis -196°C@1bar;
    • Druck des zu verflüssigenden O2 1bar-50bar;
    • erste Verflüssigungstemperatur @ 1bar -183°C;
    • zweite Verflüssigungstemperatur @ 50bar -119°C;
  • Der Druck des Kühlmediums wird jeweils so gewählt, dass die Temperatur des Kühlmediums stets geringer ist als die des Arbeitsmediums.
  • Verflüssigung von H 2 :
    • Kühlmedium vorzugsweise Flüssighelium zwischen 1 und 2,2bar;
    • Temperaturbereich des Kühlmediums -267°C@2,2bar bis -268°C@1bar;
  • Der Druck des Kühlmediums wird jeweils so gewählt, dass die Temperatur des Kühlmediums stets geringer ist als die des Arbeitsmediums.
  • Alternatives Kühlmedium Flüssigwasserstoff zwischen 1 und 13bar; Temperaturbereich des Kühlmediums -240°C@13bar bis -253°C@1bar. Im speziellen Fall, dass als Kühlmedium das gleiche Medium wie das zu verflüssigende Medium verwendet wird, muss der Druck im Kühlmedium geringer sein als der Druck des Arbeitsmediums, sodass die Kühlmitteltemperatur aufgrund des niedrigeren Gleichgewichtspunkts geringer ist.
    • Druck des zu verflüssigenden H2 1bar - 13bar;
    • erste Verflüssigungstemperatur @ 1bar -253°C;
    • zweite Verflüssigungstemperatur @ 13bar -240°C;
    Verflüssigung von He:
    • Kühlmedium vorzugsweise Flüssighelium zwischen 1 und 2,2bar;
    • Temperaturbereich des Kühlmediums -267°C@2,2bar bis -268°C@1bar;
  • Im speziellen Fall, dass als Kühlmedium das gleiche Medium wie das zu verflüssigende Medium verwendet wird, muss der Druck im Kühlmedium geringer sein als der Druck des Arbeitsmediums, sodass die Kühlmitteltemperatur aufgrund des niedrigeren Gleichgewichtspunkts geringer ist.
    • Druck des zu verflüssigenden He 1bar - 2,2bar;
    • erste Verflüssigungstemperatur @ 1bar -268°C;
    • zweite Verflüssigungstemperatur @ 2,2bar -267°C;
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Die Erfindung ist anhand eines Ausführungsbeispiels in der Zeichnung schematisch dargestellt und wird im Folgenden unter Bezugnahme auf die Zeichnung beschrieben.
  • Kurze Beschreibung der Figuren
  • Figur 1
    zeigt schematisch einen in Längsschnitt einer vorteilhaften Ausführungsform eines erfindungsgemäßen Wärmetauschers,
    Figur 2
    zeigt eine Kühlwendel als erstes Zylinderrohr des in Figur 1 dargestellten Wärmetauschers,
    Figur 3
    zeigt ein Reinigungselement, wie es bei dem Wärmetauscher gemäß Figur 1 eingesetzt ist, und
    Figur 4
    zeigt schematisch den Ausschnitt einer Gewindespindel mit einem Kreuzgewinde.
    Ausführliche Beschreibung der Figuren
  • Figur 1 zeigt schematisch einen Längsschnitt durch eine Ausführungsform eines Wärmetauschers 13, wie er insbesondere zur Kühlung von Erdgas verwendet werden kann. In dieser einfachen Ausgestaltung weist der Wärmetauscher 13 ein Außenzylinderrohr 1 auf, das eine Kühlwendel 2 umgibt. Diese Kühlwendel 2 ist ihrerseits als Zylinderrohr ausgeführt und weist wenigstens einen, vorzugsweise spiralförmigen Kanal 23 an ihrer Außenfläche auf, der der Führung eines Kühlmittels dient. Wie in Figur 2 dargestellt, wird dieser Kanal 23 durch eine entsprechende Wendel 21 auf der Außenfläche der Kühlwendel 2 erzeugt. Die Innenfläche der hohlzylindrischen Kühlwendel weist Führungs- bzw. Profilnuten 22 auf. Diese wenigstens eine Führungsnut 22 dient der Führung eines Reinigungselements oder Räumers 12.
  • Im Inneren der Kühlwendel 2 befindet sich koaxial zu dieser eine Gewindespindel 3. Die Gewindespindel 3 wird von einem Antriebsmotor 4 angetrieben und ist in einer Lagerstelle gelagert, die vorzugsweise als Axial-/Radial-Mischlager 5 ausgeführt ist. Am anderen Ende der Gewindespindel 3 ist diese in einer radialen Lagerstelle, die vorzugsweise als Gleitlagerbuchse 8 ausgeführt ist, gelagert. An diesem Ende des Wärmetauschers 13 ist außerdem ein thermisch entkoppeltes Kondensatreservoir 7 sowie ein Heizelement 9 zur Erhitzung von Kondensat in dem Kondensatreservoir 7 vorhanden.
  • Am anderen Ende des Wärmetauschers 13 trennt eine Partikelbarriere 11 den Antriebsmotor 4 von dem Arbeitsraum für das Arbeitsmedium. Die Partikelbarriere 11 dient außerdem zum Schutz des Antriebsmotors 4 und des Lagers 5 vor groben Partikeln, agiert aber nicht als Gasdichtung.
  • In der hier dargestellten Ausführungsform gemäß Figur 1 sind mehrere Außenzylinderrohre 1 durch eine Klemmvorrichtung 10 verbunden. Die Klemmvorrichtung 10 ist so aufgebaut, dass zwei Überwurfringe mit einem Innengewinde auf das Außenzylinderrohr 1, das wiederum mit einem Außengewinde versehen ist, aufgeschraubt werden. Die Überwurfringe werden mittels Schrauben zusammengezogen und die einzelnen Segmente werden aneinander gepresst und durch eine Dichtung abgedichtet. Auch mehrere solcher Außenzylinderrohre können als ein "Außenzylinderrohr" verstanden und bezeichnet werden.
  • Ein Reinigungselement oder Räumer 12 ist neben der Partikelbarriere 11 in seiner Ruheposition angeordnet. Bei Inbetriebnahme des Antriebsmotors 4 wird die Gewindespindel 3 in Drehung versetzt, sodass der Räumer 12 auf der Gewindespindel entlang den Führungs- bzw. Profilnuten 22 der Kühlwendel 2 in axialer Richtung verschoben wird. Im vorliegenden Beispiel wird eine Gewindespindel 3 beispielsweise mit Trapezprofil eingesetzt. Eine Umkehr der Bewegungsrichtung des Räumers 12 setzt eine Umkehr der Rotationsrichtung der Gewindespindel 3 voraus. Eine andere Ausführungsart der Gewindespindel 3 ist weiter unten im Zusammenhang mit Figur 4 erläutert.
  • Im Betrieb des Wärmetauschers 13 wird über eine Arbeitsmedium-Eintrittsöffnung 14 beispielsweise feuchtes, verschmutztes Arbeitsmedium in den Zwischenraum zwischen Gewindespindel 3 und zwischen Kühlwendel 2 geführt und strömt in axialer Richtung zu der Arbeitsmedium-Austrittsöffnung 15 am anderen Ende des Wärmetauschers 13. Das Arbeitsmedium strömt dabei in den Profilnuten 22 auf der Innenfläche der hohlzylindrischen Kühlwendel 2 (vgl. Figur 2) entlang der Drehachse der Gewindespindel 3. Über eine Kühlmittel-Eintrittsöffnung 16 wird dem Raum zwischen Kühlwendel 2 und Außenzylinderrohr 1 Kühlmittel zugeführt, das zum anderen Ende des Wärmetauschers 13 fließt und diesen durch die Kühlmittel-Austrittsöffnung 17 verlässt. Das Kühlmittel strömt dabei in dem zwischen Außenzylinderrohr 1 und Kühlwendel 2 gebildeten Kanal 23 spiralförmig in axialer Richtung. Das Kühlmittel entzieht der Kühlwendel 2 Wärme, sodass wiederum dem Arbeitsmedium Wärme entzogen wird.
  • In einem speziellen Anwendungsfall wird Erdgas mit einem Druck von 4 bis maximal 220 bar aus einer unterirdischen Kaverne auf eine Temperatur von ca. 20°C temperiert. In einem ersten Wärmetauscher wird das Arbeitsmedium auf vorzugsweise 1°C abgekühlt. In einem zweiten Wärmetauscher, der mit dem ersten Wärmetauscher in Serie geschaltet ist, wird das Arbeitsmedium auf vorzugsweise -40°C bis -60°C abgekühlt. In einer dritten Stufe wird das Arbeitsmedium auf vorzugsweise -80°C bis - 150°C abgekühlt und in einer letzten Stufe wird das Arbeitsmedium über einen wiederum in Serie geschalteten Wärmetauscher verflüssigt. Die Temperatur des Erdgases wird dabei auf bis zu -196°C abgesenkt, wobei es zur Unterkühlung des Erdgases kommt. Die erste Stufe fällt dabei einen Großteil des Wasseranteils aus, die nächsten Stufen hauptsächlich die höheren Kohlenwasserstoffe, CO2 sowie weitere Begleitstoffe. Durch die in den jeweiligen Stufen der Wärmetauscher 13 vorhandenen Räumer 12 können auskondensierte Bestandteile jeweils von den wärmeübertragenden Flächen abgereinigt werden.
  • Die ersten beiden Wärmetauscherstufen werden in diesem konkreten Anbindungsfall durch Kältemaschinen gekühlt, die beiden weiteren durch Flüssigstickstoff, tiefkaltes flüssiges CNG oder durch tiefkalten gasförmigen Stickstoff. Der maximale Betriebsdruck des Wärmetauschers ist 300 bar, die zulässigen Betriebstemperaturen betragen 100°C bis -200°C.
  • Durch die unterschiedlichen Druckverhältnisse zwischen dem Kühlmedium, beispielsweise Stickstoff bei maximal 10 bar, und dem Arbeitsmedium, hier CNG mit Begleitstoffen unter anderem von Stickstoff von 4 bis 220 bar, kann Stickstoff als Begleitstoff bei hohem Druck (bspw. bei 10 bar) durch Flüssigstickstoff bei niedrigem Druck (bspw. bei 1 bar), bedingt durch die unterschiedlichen druckabhängigen Phasenübergänge zum Verflüssigen gebracht und abgeschieden werden. Der hier vorgeschlagene Wärmetauscher 13 kann somit auch zur Verflüssigung von Stickstoff eingesetzt werden.
  • Zum Zwecke der Reinigung der Wärmeübertragungsflächen, beispielsweise von Wasser bzw. Eis in der ersten Stufe bzw. von höheren Kohlenwasserstoffen, CO2 und weiteren Begleitstoffen in der zweiten und weiteren Stufe, wird die Gewindespindel 3 einer Stufe durch den Antriebsmotor 4 in Rotation versetzt. Der Räumer 12, der einerseits in das Gewinde der Gewindespindel 3 und andererseits in die Profilnuten 22 der Kühlwendel 2 eingreift, wird hierdurch in eine Translationsbewegung versetzt. Auf seinem Weg in Richtung Kondensatreservoir 7 nimmt der Räumer 12 die genannten auskondensierten Begleitstoffe mit. Diese werden bei Erreichen des Kondensatreservoirs 7 in das selbige geschoben. Das Positionsmessmittel 6 kann aufgrund der definierten Gewindesteigung der Gewindespindel 3 aus der Anzahl der gemessenen Umdrehungen des Antriebsmotors 4 die Position des Räumers 12 bestimmen. Sobald die Position des Kondensatreservoirs 7 erreicht ist, wird die Drehrichtung des Antriebsmotors 4 umgekehrt, sodass der Räumer 12 zurück in seine Ruheposition wandert. Es ist zweckmäßig, wenn die Ruheposition die obere Endposition und die Position des Kondensatreservoirs 7 die untere Endposition des Räumers 12 bei vertikaler Stellung des Wärmetauschers darstellt.
  • Das gesammelte Kondensat wird über das Heizelement 9 erwärmt und somit zum Schmelzen gebracht. Durch Öffnen eines nachgeschalteten Ventils können die Begleitstoffe durch einen Kondensatablass 18 abgelassen werden.
  • Die Reinigung der wärmetauschenden Flächen des Wärmetauschers 13 erfolgt beispielsweise nach empirisch ermitteltem Periodendauern oder bei Erreichen eines extern gemessenen maximal zulässigen Differenzdrucks, der auf eine Verkleinerung des freien Strömungsquerschnitts im Arbeitsraum bedingt durch abgelagerte Begleitstoffe schließen lässt. Durch die Abreinigung wird ein möglichst hoher und konstanter Wärmeübertragungswert erzielt. Im Vergleich zu den Systemen nach dem Stand der Technik beansprucht der Wärmetauscher 13 aufgrund der effektiv genutzten Wärmeübertragungsflächen ein geringeres Bauvolumen.
  • Der segmentweise Aufbau des Wärmeübertragers 13 ermöglicht einen modularen Aufbau. Die Wärmeübertragungsleistung ist somit über die Vergrößerung bzw. Verkleinerung der Wärmeübertragungsflächen variierbar.
  • Durch den Einsatz des genannten Positionserfassungsmittels 6 wird stets die IstPosition des Räumers 12 überwacht. Ein etwaiges Festfressen kann durch Messung des Schlupfs frühzeitig erkannt werden.
  • Es sei darauf hingewiesen, dass der hier erläuterte Wärmetauscher 13 nicht nur für die Erdgasverflüssigung, sondern für eine Vielzahl industrieller Anwendungen mit entsprechenden Arbeitsmedien adaptierbar und einsetzbar ist. Der Räumer 12 kann als wenig komplexes Austauschteil an die Bedürfnisse der jeweiligen Einsatzgebiete angepasst und im Schadensfall rasch ersetzt werden.
  • Figur 3 zeigt einen Räumer 12 bzw. ein Reinigungselement 12, wie es in dem Wärmetauscher 13 zum Einsatz kommen kann. Dargestellt sind die Außennuten 122 des Räumers 12, die den Führungsnuten 22 der Kühlwendel 2 entsprechen. Das Innengewinde 121 des Räumers 12 entspricht dem Gewinde der Gewindespindel 3. Der Räumer 12 weist Aussparungen bzw. Einfräsungen 123 auf. Durch letztere enthält der Räumer 12 "Zähne" bzw. "Klauen", die vermeiden, dass sich Ablagerungen im Gewinde ansammeln und zu einem Blockieren des Räumers 12 führen. Die Ablagerungen können nämlich durch die Aussparungen bzw. Einfräsungen 123 in den Zwischenraum eintreten und bei vertikaler Lage des Wärmetauschers nach unten Richtung Kondensatreservoir 7 fallen. Weiterhin dient der in Bewegungsrichtung des Abreinigens sich vergrößernde Innendurchmesser des Räumers 12 zum leichteren Einführen in die verunreinigte Gewindespindel bei Beginn des Reinigungsprozesses.
  • Figur 4 zeigt schließlich eine alternative Ausgestaltung einer Gewindespindel 3', bei der es sich um eine Kreuzgewindespindel 3' handelt. Die Welle mit Kreuzgewinde ist mit 31 bezeichnet. Der darin laufende Gleitstein mit 32. Bei dieser Ausgestaltung ist der Räumer 12 mit dem Gleitstein 32 verbunden und bewegt sich bei Rotation der Gewindespindel 3' in axialer Richtung.
  • Vorteil ist hier, wie oben bereits erläutert, dass der in der Gewindenut gleitende Gleitstein 32 bei Drehung der Gewindespindel 3' in einer einzigen Rotationsrichtung von einer ersten Bewegungsrichtung in eine zweite, entgegengesetzte Bewegungsrichtung überführt wird, ohne die Rotationsrichtung der Welle 31 zu ändern. Durch die Überlagerung des Links- und Rechtsgewindegangs bildet sich auf der Welle 32 ein typisch deltoid-förmiges Muster aus.
  • Wie ebenfalls oben beschrieben, ermöglicht die Gewindespindel 3' ein energetisch sparsameren Prozess, da der Elektromotor nicht abgebremst und erneut gestartet werden muss. Außerdem kann eine Positionsmessung des Räumers 12 und somit das in Figur 1 dargestellte Positionsmessmittel 6 entfallen. Der Abreinigungsvorgang des Wärmetauschers 13 wird durch den Entfall der Richtungsumkehr nochmals verkürzt.
  • Bezuqszeichenliste
  • 1
    Außenzylinderrohr, zweites Zylinderrohr
    2
    Kühlwendel, erstes Zylinderrohr
    3, 3'
    Gewindespindel
    4
    Antriebsmotor
    5
    Axial-/Radiallager
    6
    Positionsmessmittel
    7
    Kondensatreservoir, Ablagerungsspeicher
    8
    Gleitlagerbuchse
    9
    Heizelement
    10
    Klemmvorrichtung
    11
    Partikelbarriere
    12
    Räumer, Reinigungselement
    13
    Wärmetauscher
    14
    Arbeitsmedium-Eintrittsöffnung
    15
    Arbeitsmedium-Austrittsöffnung
    16
    Kühlmittel-Eintrittsöffnung
    17
    Kühlmittel-Austrittsöffnung
    18
    Kondensatablass
    21
    Wendel
    22
    Führungsnut, Profilnut
    23
    Kanal
    121
    Innengewinde des Reinigungselements
    122
    Außennut
    123
    Aussparung, Einfräsung
    31
    Welle der Gewindespindel 3'
    32
    Gleitstein

Claims (15)

  1. Wärmetauscher mit
    einem ersten Zylinderrohr (2) und einer koaxial im ersten Zylinderrohr (2) verlaufenden Gewindespindel (3),
    wobei die Innenfläche des ersten Zylinderrohrs (2) Führungsnuten (22) aufweist und wobei auf der Gewindespindel (3) ein Reinigungselement (12) derart angebracht ist, dass das Reinigungselement (12) durch Drehung der Gewindespindel (3) in axialer Richtung entlang der Führungsnuten (22) verschoben wird
    dadurch gekennzeichnet, dass ein zweites Zylinderrohr (1), koaxial zu dem ersten Zylinderrohr (2) angeordnet ist und wobei
    die Außenfläche des ersten Zylinderrohrs (2) eine in axialer Richtung spiralförmig verlaufende Wendel (21) aufweist.
  2. Wärmetauscher nach einem der vorangehenden Ansprüche, wobei das Reinigungselement (12) als im Wesentlichen hohlzylindrisch geformtes Reinigungselement (12) ausgebildet ist, wobei die Innenfläche des Reinigungselements (12) ein Innengewinde (121) korrespondierend zum Gewinde der Gewindespindel (3) aufweist und wobei die Außenfläche des Reinigungselements (12) Außennuten (122) korrespondierend zu den Führungsnuten (22) der Innenfläche des ersten Zylinderrohrs (2) aufweist.
  3. Wärmetauscher nach Anspruch 2, bei dem das Reinigungselement (12) Aussparungen (123) im ansonsten im Wesentlichen zylindrisch geformten Umfang aufweist, die sich parallel zur axialen Richtung erstrecken.
  4. Wärmetauscher nach Anspruch 3, bei dem die Aussparungen (123) im Reinigungselement (12) in Umfangsrichtung äquidistant angeordnet sind.
  5. Wärmetauscher nach einem der Ansprüche 2-4, bei dem das Innengewinde (121) des Reinigungselements (12) einen in axialer Richtung sich vergrößernden Durchmesser aufweist.
  6. Wärmetauscher nach einem der vorangehenden Ansprüche, wobei ein Ablagerungsspeicher (7) für mittels des Reinigungselements (12) ausgereinigte Verunreinigungen mit dem Zwischenraum zwischen Gewindespindel (3) und Innenfläche des ersten Zylinderrohrs (2) insbesondere thermisch entkoppelt verbunden ist.
  7. Wärmetauscher nach Anspruch 6, bei dem ein Heizelement (9) vorhanden und
    derart angeordnet ist, dass im Ablagerungsspeicher (7) vorhandene Verunreinigungen erwärmt werden können.
  8. Wärmetauscher nach einem der vorangehenden Ansprüche, bei dem ein Positionsmessmittel (6) vorhanden und derart angeordnet ist, dass die Position des Reinigungselements (12) in axialer Richtung gemessen werden kann.
  9. Wärmetauscher nach einem der vorangehenden Ansprüche, wobei zum Antrieb der Gewindespindel (3) ein Antriebsmotor (4) vorhanden ist, und wobei eine Partikelbarriere (11) zwischen Antriebsmotor (4) und dem Zwischenraum zwischen Gewindespindel (3) und Innenfläche des ersten Zylinderrohrs (2) vorhanden ist.
  10. Wärmetauscher nach einem der vorangehenden Ansprüche, wobei die Gewindespindel (3) als Gewindeprofil ein Trapezprofil aufweist.
  11. Wärmetauscher nach einem der Ansprüche 1 bis 9, wobei die Gewindespindel (3') als Gewinde ein Kreuzgewinde aufweist.
  12. Wärmetauscher nach Anspruch 11, bei dem in der Gewindenut des Kreuzgewindes der Gewindespindel (3') ein Gleitstein (32) gleitend gelagert ist, der mit dem Reinigungselement (12) verbunden ist.
  13. Wärmetauscheranlage mit mehreren in Serie geschalteten Wärmetauschern nach einem der Ansprüche 1 bis 12.
  14. Verwendung eines Wärmetauschers gemäß einem der Ansprüche 1-12 zur Verflüssigung eines Gases, bei dem
    koaxial zum ersten Zylinderrohr (2) ein zweites Zylinderrohr (1) angeordnet ist, wobei zwischen erstem und zweitem Zylinderrohr ein Kühlmittel strömt, wobei zwischen erstem Zylinderrohr (2) und Gewindespindel (3) ein Arbeitsmedium strömt, welches das zu verflüssigende Gas enthält, und wobei das Kühlmedium bei einer niedrigeren Temperatur als das Arbeitsmedium strömt, wobei Druck und Temperatur des Kühlmediums sowie der Druck des Arbeitsmediums derart eingestellt werden, dass durch den Wärmetausch mit dem Kühlmedium das zu verflüssigende Gas im Arbeitsmedium sich verflüssigt.
  15. Verwendung nach Anspruch 14, wobei als Kühlmedium das gleiche Medium wie das zu verflüssigende Gas eingesetzt wird, wobei der Druck des Kühlmediums geringer als der des Arbeitsmediums gewählt wird.
EP16747730.6A 2015-08-11 2016-08-02 Wärmetauscher Active EP3334995B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16747730T PL3334995T3 (pl) 2015-08-11 2016-08-02 Wymiennik ciepła

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015010455.1A DE102015010455A1 (de) 2015-08-11 2015-08-11 Wärmetauscher
PCT/EP2016/001328 WO2017025173A1 (de) 2015-08-11 2016-08-02 Wärmetauscher

Publications (2)

Publication Number Publication Date
EP3334995A1 EP3334995A1 (de) 2018-06-20
EP3334995B1 true EP3334995B1 (de) 2020-10-21

Family

ID=56571290

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16747730.6A Active EP3334995B1 (de) 2015-08-11 2016-08-02 Wärmetauscher

Country Status (15)

Country Link
US (1) US10780460B2 (de)
EP (1) EP3334995B1 (de)
JP (1) JP6890579B2 (de)
KR (1) KR102601037B1 (de)
CN (1) CN107923721B (de)
CA (1) CA2992959C (de)
DE (1) DE102015010455A1 (de)
DK (1) DK3334995T3 (de)
ES (1) ES2843527T3 (de)
HU (1) HUE053288T2 (de)
PL (1) PL3334995T3 (de)
PT (1) PT3334995T (de)
RU (1) RU2715128C2 (de)
SA (1) SA518390886B1 (de)
WO (1) WO2017025173A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3485959A1 (de) 2017-11-15 2019-05-22 Linde Aktiengesellschaft Verfahren und vorrichtung zur reinigung oder zerlegung und kühlung eines gasgemisches
EP3567333A1 (de) 2018-05-09 2019-11-13 Linde Aktiengesellschaft Antriebsvorrichtung für eine reinigungsvorrichtung für einen wärmetauscher
EP3567329A1 (de) 2018-05-09 2019-11-13 Linde Aktiengesellschaft Kondensatextraktionsvorrichtung und wärmetauscher
EP3566794A1 (de) 2018-05-09 2019-11-13 Linde Aktiengesellschaft Schmierstoff, verwendung eines schmierstoffs und wärmetauscher
CN110763072A (zh) * 2019-12-04 2020-02-07 石国庆 内插组件及可智能控制其旋转的系统装置
EP4323479A1 (de) * 2021-04-16 2024-02-21 Gregio Energie AG System und verfahren zur hydrothermalen karbonisierung
CN113750746A (zh) * 2021-09-22 2021-12-07 吕发奎 一种二氯苯酚生产的尾气净化处理系统
EP4423444A1 (de) 2021-10-25 2024-09-04 Chart Energy & Chemicals, Inc. Gasreinigungs- und verflüssigungssystem und verfahren mit flüssigem stickstoff
CN114018072B (zh) * 2021-11-02 2023-09-22 连城凯克斯科技有限公司 一种单晶炉用高导热性水冷热屏换热器
CN115971176A (zh) * 2022-12-06 2023-04-18 江苏核电有限公司 一种稳压器电加热器电热元件管口清理装置
CN115638573B (zh) * 2022-12-26 2023-02-28 河北春凯龙智慧冷链设备有限公司 一种节能型冷凝器
CN117329533B (zh) * 2023-12-01 2024-04-23 山东金拓热能科技有限公司 一种便于清理真空乏汽中灰尘的真空相变余热冷却器
CN118423255A (zh) * 2024-07-03 2024-08-02 厦门东亚机械工业股份有限公司 一种大型空压机的给油装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB375132A (en) 1931-08-28 1932-06-23 Thomas Thompson Brown Improvements in tubular heat exchangers for use in oil fuel installations and applicable also for use as feed water heaters, evaporators, condensers and coolers
GB714926A (en) * 1951-05-10 1954-09-08 Swinney Brothers Ltd Improvements in or relating to heat exchangers
US2890862A (en) * 1955-09-15 1959-06-16 Ro An Heat Reclaimer Corp Apparatus for cleaning tubes of heat exchanger
US3171472A (en) * 1962-03-26 1965-03-02 Arthur G Bauer Sweeper mechanism for heat exchanger
US3585808A (en) * 1969-02-17 1971-06-22 Deltech Eng Inc Method and apparatus for drying compressed gases
SU435015A1 (ru) * 1971-11-19 1974-07-05 М. В. Чипизубов, В. И. Худ ков , И. А. Прокопьев Устройство для очистки внутреннетт поверхности труб
DE2936176A1 (de) * 1979-09-07 1981-03-26 Gruber & Weber, 76593 Gernsbach Waermetauscher zur anordnung in stroemenden medien und gasen mit sich abscheidenden inhaltsstoffen
AU571845B2 (en) * 1983-08-19 1988-04-28 Barry Bros. Specialised Services Pty Ltd Pig, launcher and catcher for tube or pipe cleaning
JPS59164862U (ja) * 1983-04-20 1984-11-05 コニカ株式会社 ヘリコイド装置
DE3539884A1 (de) * 1985-11-11 1987-05-21 Duesterloh Gmbh Seilwickelvorrichtung
JPH0420550Y2 (de) * 1986-12-05 1992-05-11
GB8802778D0 (en) * 1988-02-08 1988-03-09 Progressive Technical Services Improvements in cleaning of interior of elongate passages
JPH0560475A (ja) * 1991-09-02 1993-03-09 Nkk Corp 低温液化ガスの冷熱回収装置
JPH0665759U (ja) * 1993-01-19 1994-09-16 石川島播磨重工業株式会社 バヨネット型熱交換器
RU2121122C1 (ru) * 1996-10-08 1998-10-27 Научно-исследовательский и проектно-конструкторский институт охраны окружающей среды в угольной промышленности Теплообменник
DE29724316U1 (de) * 1997-07-11 2000-11-30 Höcker, Hans-Peter, Dipl.-Ing. (FH), 91091 Großenseebach Vorrichtung zum Austausch von Wärme (Segmentwendel)
DE19822293C2 (de) * 1998-05-18 2002-05-08 Gea Maschinenkuehltechnik Gmbh Ladeluftkühler für einen Großmotor
CN2442219Y (zh) * 2000-08-02 2001-08-08 李宗军 一种除垢电加热锅炉
RU47432U1 (ru) * 2002-10-17 2005-08-27 Закрытое акционерное общество Научно-производственная фирма "ДЖЕТ СИСТЕМС" Устройство для очистки внутренних полостей труб от парафиновых и других отложений
GB0704619D0 (en) * 2007-03-09 2007-04-18 E D C Uk Ltd Waste management system
JP5178675B2 (ja) * 2009-09-28 2013-04-10 日立建機株式会社 リニアアクチュエータ
ES2387169B1 (es) * 2009-10-02 2013-08-20 Xlg Garpey Ingenieria, S.L. Intercambiador de calor de superficie rascada
CN202032922U (zh) * 2011-01-26 2011-11-09 龙显杏 刮壁式换热器
JP5435605B1 (ja) * 2012-12-05 2014-03-05 小林工業株式会社 掻取式熱交換器
CN202973986U (zh) * 2012-12-11 2013-06-05 宁波科宁达工业有限公司 一种换热器
CN106568345B (zh) * 2014-06-17 2018-08-21 北京市润华给水设备厂 一种壳管换热设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
SA518390886B1 (ar) 2021-09-08
JP6890579B2 (ja) 2021-06-18
RU2018102560A (ru) 2019-09-12
KR20180038537A (ko) 2018-04-16
RU2715128C2 (ru) 2020-02-25
PL3334995T3 (pl) 2021-04-19
DK3334995T3 (da) 2021-01-18
WO2017025173A1 (de) 2017-02-16
EP3334995A1 (de) 2018-06-20
US10780460B2 (en) 2020-09-22
ES2843527T3 (es) 2021-07-19
PT3334995T (pt) 2021-01-22
CA2992959A1 (en) 2017-02-16
US20190009306A1 (en) 2019-01-10
CN107923721B (zh) 2020-05-22
CA2992959C (en) 2023-10-17
KR102601037B1 (ko) 2023-11-09
CN107923721A (zh) 2018-04-17
RU2018102560A3 (de) 2020-01-17
JP2018525600A (ja) 2018-09-06
HUE053288T2 (hu) 2021-06-28
DE102015010455A1 (de) 2017-02-16

Similar Documents

Publication Publication Date Title
EP3334995B1 (de) Wärmetauscher
EP0553706A1 (de) Vorrichtung zum Kühltrocknen von Gasen
DE19517273C1 (de) Verfahren und Vorrichtung zur Abgasreinigung mit Wärmetauschern
EP1743688B1 (de) Verfahren und Vorrichtung zur Kryokondensation
EP1887301A1 (de) Verfahren und Vorrichtung zur Kryokondensation
EP0783658B1 (de) Verfahren und vorrichtung zum kühlen von gasen
EP1674140B1 (de) Verfahren und Vorrichtung zur Partialkondensation
DE102017007031B3 (de) Vorrichtung und Verfahren zum Abscheiden von Dämpfen aus einem Gasstrom
EP3791125B1 (de) Kondensatextraktionsvorrichtung und wärmetauscher
DE102008053846A1 (de) Verfahren zum Abtrennen unerwünschter Komponenten aus einem Helium-Strom
DE19703681A1 (de) Verfahren und Vorrichtung zur Entfernung von kondensierbaren Komponenten aus Gasen und/oder Gasgemischen
EP3710134B1 (de) Verfahren und vorrichtung zur reinigung oder zerlegung und kühlung eines gasgemischs
DE202005008751U1 (de) Kälte-Trockner für ein Gas
EP3790682B1 (de) Verwendung eines schmierstoffs und wärmetauscher
DE3827813A1 (de) Verfahren und vorrichtung zur reinigung eines mit daempfen eines fremdstoffs beladenen abgases unter rueckgewinnung des fremdstoffs
EP3790671B1 (de) Antriebsvorrichtung für eine reinigungsvorrichtung für einen wärmetauscher
EP0491338B1 (de) Verfahren und Vorrichtung zur Rückgewinnung von Lösungs- mitteln
DE102020114585A1 (de) Kondensatorvorrichtung zum Verflüssigen eines Kältemittels und Klimaanlage
DEA0018811MA (de)
DE1132160B (de) Verfahren zum Abtauen einer Einrichtung zur Kuehlung von Gasen zwecks Ausscheidung von Fremdkomponenten

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GMBH

INTG Intention to grant announced

Effective date: 20200602

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016011504

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1326251

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210111

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3334995

Country of ref document: PT

Date of ref document: 20210122

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210118

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 36153

Country of ref document: SK

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210122

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E053288

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2843527

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016011504

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230823

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230728

Year of fee payment: 8

Ref country code: NO

Payment date: 20230822

Year of fee payment: 8

Ref country code: IT

Payment date: 20230831

Year of fee payment: 8

Ref country code: IE

Payment date: 20230821

Year of fee payment: 8

Ref country code: GB

Payment date: 20230824

Year of fee payment: 8

Ref country code: FI

Payment date: 20230823

Year of fee payment: 8

Ref country code: ES

Payment date: 20230918

Year of fee payment: 8

Ref country code: CZ

Payment date: 20230721

Year of fee payment: 8

Ref country code: CH

Payment date: 20230902

Year of fee payment: 8

Ref country code: AT

Payment date: 20230818

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230721

Year of fee payment: 8

Ref country code: SE

Payment date: 20230823

Year of fee payment: 8

Ref country code: PT

Payment date: 20230721

Year of fee payment: 8

Ref country code: PL

Payment date: 20230720

Year of fee payment: 8

Ref country code: HU

Payment date: 20230803

Year of fee payment: 8

Ref country code: FR

Payment date: 20230821

Year of fee payment: 8

Ref country code: DK

Payment date: 20230823

Year of fee payment: 8

Ref country code: DE

Payment date: 20230822

Year of fee payment: 8

Ref country code: BE

Payment date: 20230822

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MT

Payment date: 20230823

Year of fee payment: 8

Ref country code: LV

Payment date: 20230818

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021