EP3332204B1 - Échangeur de chaleur et système de conditionnement d'air de véhicule - Google Patents
Échangeur de chaleur et système de conditionnement d'air de véhicule Download PDFInfo
- Publication number
- EP3332204B1 EP3332204B1 EP16744709.3A EP16744709A EP3332204B1 EP 3332204 B1 EP3332204 B1 EP 3332204B1 EP 16744709 A EP16744709 A EP 16744709A EP 3332204 B1 EP3332204 B1 EP 3332204B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tubes
- coolant
- heat exchanger
- cross
- exchanger according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004378 air conditioning Methods 0.000 title claims description 10
- 239000002826 coolant Substances 0.000 claims description 86
- 230000000712 assembly Effects 0.000 claims description 18
- 238000000429 assembly Methods 0.000 claims description 18
- 238000005192 partition Methods 0.000 claims description 6
- 230000000630 rising effect Effects 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05391—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05383—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0246—Arrangements for connecting header boxes with flow lines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2210/00—Heat exchange conduits
- F28F2210/08—Assemblies of conduits having different features
Definitions
- the invention concerns a heat exchanger for vehicle air-conditioning systems, with which in particular air is cooled by means of an evaporating coolant, wherein to increase the efficiency, the design of the heat exchanger takes into account the fact that the reduction in density of the coolant on evaporation leads to a reduction in the further heat absorption capacity. This is achieved in that the flat tubes form assemblies with different cross-section areas of the individual tubes for the coolant flow.
- heat exchanger is used synonymously with "evaporator” or "vaporiser”.
- the invention furthermore concerns a vehicle air-conditioning system.
- Air-conditioning systems in particular for vehicles, are normally equipped with heat exchangers in which a coolant, cooled and liquefied by pressure reduction, evaporates in thin pipes, whereby it extracts heat from the air passing over the pipes containing the coolant and thus lowers the temperature of the air.
- Heat exchangers for air-conditioning systems in vehicles must fulfil a number of requirements. In particular, they must be able to transfer up to 9 kW heating power within a short time; they must be as small as possible so that they can be arranged below the dashboard of the vehicle; the coolant flow may be up to 10 kg/min; and for the air route, the pressure fall should be as low as possible. Also, splash water protection is necessary because splash water, which occurs in particular as condensation water on the evaporator, can be transferred to the heater, where it evaporates and later condenses on the (relatively) cold windscreen, misting this up. The condensation water from the air to be cooled must therefore be securely discharged, and must not even temporarily enter the passenger compartment via the air-conditioning system.
- US 2007/0215331 A1 discloses a heat exchanger in which the coolant is guided, falling and rising, in parallel flat tubes of the same design, wherein in the falling channels at the back, the coolant first meets the (already cooled) outlet air and only finally, in the rising channels at the front, meets the (warmer) inlet air (contra-flow process).
- the coolant loses heat absorption capacity on its route through the heat exchanger because of its reduction in density, is not taken into account.
- DE 195 15 526 C1 discloses a heat exchanger which cools air in a total of six passes in the contra-flow process. These passes consist of a number of flat tubes of uniform design. The density-dependency of the heat absorption capacity of the coolant is taken into account here in that, in the successive passes, the number of groups of flat tubes forming the passes rises monotonously from two to five, and thus the total cross-section of the coolant flow is increased in steps, wherein the flow speed of the coolant is reduced accordingly (progressive circuiting).
- the disadvantage here is that, in operation with a higher pressure fall or on superheating, at the coolant outlet a smaller temperature difference from the inlet air temperature can exist in contra-flow systems than in co-flow operation.
- WO 2014/068842 describes a heat exchanger according to the preamble of claim 1.
- the invention starts from this prior art and its object is to provide an additional parameter, which can be influenced for optimizing the heat exchanger and which can be used to slow down the coolant flow in the outlet region, in order thus to increase the achievable temperature difference and hence the effectiveness of the heat exchanger while retaining the same external dimensions.
- the heat exchanger has a coolant inlet and a coolant outlet, with parallel-guided flat tubes which are intended to conduct a coolant which evaporates. Fins are arranged between the tubes which form air guide slots in the direction perpendicular to the course of the tubes and thus define the flow direction of air flowing through.
- the tubes form at least two assemblies through which coolant flows successively and which are arranged behind each other in the air flow direction, and these assemblies differ in the size of the inner cross-section area of the respective tubes of the assemblies.
- the tubes adjacent to the coolant inlet have a larger cross-section area than the tubes adjacent to the coolant outlet.
- an additional parameter is provided, namely the variation in inner free cross-section area of the tubes.
- the further knowledge is used that a division into two or a few different tube types is sufficient for practical purposes.
- the enlargement of the tube cross-section with increasing flow length can be adapted much more precisely to the lower density of the coolant than a stepped increase in the number of identical tubes as in the prior art.
- Embodiments of the invention utilize this optimisation parameter to take into account, more precisely than in the prior art, the fact that during the passage of the coolant through the heat exchanger, the reducing density of the coolant on evaporation leads to a reduction in the further heat absorption capacity.
- the heat exchanger has a lower and an upper collector which each consist of a base part and a cover.
- the coolant inlet of the heat exchanger is arranged on one of the collectors, and the coolant outlet on the same or on the other collector.
- the ends of the flat tubes are welded into openings in these collectors.
- Each of the two collectors forms either just one region or several regions separated from each other by partition walls, such that the tubes form at least two passes through which coolant flows successively, wherein at least some of the passes differ in the cross-section of the tubes and in some cases also in the number of tubes through which coolant flows.
- the sum of the individual cross-sections of the tubes is greater than in the pass which starts at the coolant inlet.
- this optimisation not only leads to better cooling of the through-flowing air, but because of the reduced pressure drop, also to a lower dew point and hence to better drying of the air.
- the cross-section area of the tubes of the second assembly should be 1.1 to 2.5 times, and in particular 1.2 to 1.6 times, the cross-section area of the tubes of the first assembly.
- the number of tubes of the assemblies arranged behind each other in the flow direction may differ, and hence the area of the fins assigned to the flow. In this way, the active fin area may be optimised independently of the flow cross-section of the coolant.
- all constituents of the heat exchanger are welded economically in a single work process.
- the heat exchanger consists of precisely two passes, wherein the first pass has tubes with a smaller cross-section area and the second pass has tubes with a larger cross-section area, and wherein the tubes of each pass are formed by an assembly with tubes which have a mutually uniform cross-section.
- the coolant flow may be optimised further if the tubes form more than two passes through which coolant flows successively.
- the flow cross-sections of the passes calculated as the product of the number of tubes which contribute to the pass and the cross-section area of one of the identical tubes of this pass, form a monotonously rising sequence in the coolant flow direction.
- Another aspect of the invention concerns the production of a plurality of heat exchangers with different nominal power. This can be optimised in that an assembly of tubes in a heat exchanger of higher performance is used as an assembly with smaller cross-section area, and the same assembly in a heat exchanger of lower performance is used as an assembly with larger cross-section area.
- the heat exchanger may be optimised in that the exchange of heat between the coolant and air flows takes place in co-flow, and therefore on installation the side of the heat exchanger facing the coolant inlet is facing the air inlet. If optimisation however takes place for contra-flow, on installation the side of the heat exchanger facing the coolant inlet is facing the air outlet.
- the increased efficiency of the heat exchanger according to the invention in comparison with the prior art contributes in particular to fulfilling the particularly high requirements for use in air-conditioning systems in vehicles.
- FIGS 1 to 3 show a first embodiment of a heat exchanger according to the invention for an evaporator of an air-conditioning system of a vehicle.
- the heat exchanger has a plurality of parallel-guided flat tubes 1 - arranged vertically in figure 1 - which are intended to conduct coolant which evaporates.
- Fins 2 are welded between adjacent tubes and form air guide slots in the direction perpendicular to the course of the tubes 1, which in figure 1 run from the rear left to the front right.
- the air flows in this direction as indicated by the arrow 3, wherein however it is primarily the structure of the heat exchanger which determines whether the air flow is oriented in conformity with the layout of the heat exchanger, i.e. as shown in figure 1 in co-flow, or in contra-flow to the coolant flow.
- Collectors 4 and 5 are arranged at the top and bottom of the heat exchanger and have openings (not shown in figure 1 ) in which the ends of the tubes 1 are welded, wherein each of the two collectors may form several regions separated from each other by partition walls (also not shown in the figure), such that the tubes form at least two passes through which coolant flows successively.
- the collectors 4, 5 each comprise a trough-like base part and a cover closing the respective chamber.
- the upper collector 4 in figure 1 is divided by a single partition wall into a rear region for the coolant flowing in via an inlet 8, and a front region for the coolant flowing out via an outlet 9, while the lower collector 5, as a connecting chamber of the passes, requires no partition walls.
- two passes are formed through which coolant flows successively, namely in figure 1 a rear pass in a first assembly 11 with flow direction from top to bottom, and a front pass in a second assembly 12 with flow direction from bottom to top.
- the chambers 7 of the collectors 4 and 5 always contain firstly the openings of tubes from which coolant flows into the chambers, and secondly further inlets of tubes into which coolant flows, wherein these tubes not only include some of the flat tubes 1 but in some cases also the inlet 8 or outlet 9 of the coolant.
- Figure 2 shows a cross-section of the heat exchanger in figure 1 . It is evident that the tubes 1, which run perpendicular to the drawing plane, form two assemblies 11 and 12 which are arranged behind each other in the air flow direction 3, namely a smaller assembly 11 at the top and a larger one at the bottom. The size of the assemblies is determined by the number of tubes 1 lying in the flow direction 3 and forming the units 15. In figure 2 , there are eight tubes each forming a unit 15 in the first smaller assembly 11 (first in the flow direction), and eleven units 15 in the second larger assembly 12 (second in the flow direction) (see also figure 3 ).
- FIG 3 shows an extract enlargement of figure 2 which clarifies this further. Only here is it evident that the assemblies 11 and 12 consist of tubes 1a, 1b of different inner cross-section area.
- the assembly to which the coolant outlet 9 of the heat exchanger leads uses coolant tubes 1a which each have a larger cross-section area W 1 than those of the assembly 12 adjacent to the coolant inlet 8 (tubes 1b; cross-section area W 2 ).
- the difference in cross-section is only slight.
- the preferred ratio of cross-section areas W 2 /W 1 of the tubes of assemblies 12 and 11 is 1.1 to 2.5, and in particular 1.2 to 1.6.
- a cross-section value for the tubes can be selected which lies between those of its neighbouring assemblies.
- the width of the tubes 1a, 1b is the same.
- the first and last tubes 1a, 1b of each unit 15 are slightly rounded on the outside.
- the other tubes 1a, 1b of each unit 15 have identical inner cross-section areas W 1 or W 2 .
- the co-flow process indicated by the arrow 3 is optimised, because on average over the entire heat exchanger, greater temperature differences occur between coolant and air than with contra-flow processes. Whether contra-flow or co-flow is preferred in other configurations must be examined afresh in each case.
- Figure 4 shows an embodiment of the invention with four passes P1, P2, P3 and P4.
- P1 and P2 have tubes of smaller cross-section area
- P3 and P4 have tubes of larger cross-section area.
- This embodiment is particularly suitable for superheated operation.
- the coolant flows through four tubes, two times 1a and two times 1b.
- the optimisation shows that the contra-flow process is preferred, here indicated by arrow 3 from below.
- the features explained in connection with figures 2 and 3 apply, for example the cross-section ratios and the tube widths.
- Figure 5 shows a further embodiment of the invention with four passes P1 to P4 with successive flows, wherein P1, P2 and P3 lie next to each other transversely to the flow direction 3 and are as a whole fully covered by P4 in the flow direction.
- Three passes P1 to P3 coming from inlet 8 transverse the region 11 with tubes of smaller cross-section W 1 , comprising twelve tubes per unit 15 in the air flow direction 3 (shown above each other in figure 5 ).
- the first pass P1 contains eight units 15 of tubes lying next to each other, the second pass P2 has eleven units 15 of tubes, and the third pass P3 has fifteen units 15 of tubes.
- the fourth pass P4 utilizes the entire region 12 with nine tubes per unit 15, and there all 34 adjacent units 15 have tubes with the larger cross-section W 2 of the tubes used.
- the flow cross-sections of the passes in the coolant flow direction form a monotonously rising sequence in order to take into account the decreasing heat absorption capacity of the coolant: in each pass, the coolant flows more slowly than in the preceding pass, and thus compensates for the lower heat absorption capacity.
- Use of the entire region 12 for the fourth pass with a total of 306 tubes allows the greatest cooling to be concentrated there close to the coolant outlet, which for this embodiment leads to optimum cooling in co-flow.
- the invention thus allows implementation of the knowledge that on passage through an evaporator, the gas proportion in the coolant increases and its density reduces for a constant pressure.
- the heat absorption capacity of the coolant is however proportional to the density, so that for a constant and effective heat transmission, an increasing volume and therefore an increasing cross-section of the coolant flow is required.
- this is achieved by means of additional channels, which however increases the dimensions of the heat exchanger by the space required for these additional channels.
- this additional space can at least partly be saved in that due to the increased tube cross-section, only additional tube volume is provided but not additional tube length and fins fitted.
- Heat exchangers of the same power can thus be constructed smaller, or they work more effectively for the same size.
- the increased heat transmission at the coolant outlet in particular with slight superheating, means that cooling may be more effective in co-flow than in contra-flow.
- Figure 6 shows an upper collector 4 of figure 5 , the interior of which is divided by partition walls 6 into chambers 7 in order to divide the coolant flow into an increasing number in the flow direction.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Air-Conditioning For Vehicles (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Claims (13)
- Echangeur de chaleur, comprenant:une entrée d'agent de refroidissement (8) et une sortie d'agent de refroidissement (9),des tubes plats guidés parallèlement (1; 1a, 1b) qui sont destinés à conduire un agent de refroidissement qui s'évapore, etdes ailettes (2) agencées entre les tubes (1; 1a, 1b) et qui forment des fentes de guidage d'air dans la direction perpendiculaire à la course des tubes (1) et qui définissent ainsi la direction d'écoulement (3) de l'air qui s'écoule à travers ceux-ci,dans lequel les tubes (1) forment au moins deux ensembles (11, 12) à travers lesquels un agent de refroidissement s'écoule successivement et qui sont agencés l'un derrière l'autre dans la direction d'écoulement d'air (3), etcaractérisé en ce que les ensembles (11, 12) diffèrent quant à la taille de la surface de section transversale intérieure (W1, W2) des tubes respectifs (1a, 1b) des ensembles, et les tubes (1a) situés à proximité de la sortie d'agent de refroidissement (9) présentent une surface de section transversale (W2) plus grande que celle des tubes situés à proximité de l'entrée d'agent de refroidissement (1b).
- Echangeur de chaleur selon la revendication 1, comprenant un collecteur supérieur et inférieur (4, 5) entre lesquels les tubes (1) s'étendent, dans lequel les tubes (1) avec un écoulement parallèle forment un passage (P1-P4) et l'agent de refroidissement s'écoule à travers les passages (P1-P4) successivement, dans lequel l'entrée d'agent de refroidissement (8) et la sortie d'agent de refroidissement (9) sont de préférence agencées sur l'un des collecteurs (4, 5).
- Echangeur de chaleur selon la revendication 2, caractérisé en ce que les collecteurs (4, 5) comportent des ouvertures dans lesquelles les extrémités des tubes (9) sont hermétiquement soudées.
- Echangeur de chaleur selon la revendication 2 ou la revendication 3, caractérisé en ce que chacun des deux collecteurs forme une chambre (7) ou plusieurs chambres (7) séparées les unes des autres par des parois de séparation (6), de telle sorte que les tubes (1; 1a, 1b) forment au moins deux passages (P1-P4) à travers lesquels l'agent de refroidissement s'écoule successivement.
- Echangeur de chaleur selon l'une quelconque des revendications 2 à 4, caractérisé en ce que les passages (P1-P4) diffèrent quant au nombre de tubes (1) et/ou quant à la section transversale des tubes (1a, 1b) à travers lesquels un agent de refroidissement s'écoule, dans lequel, dans le passage qui est situé à proximité de la sortie d'agent de refroidissement (9), la somme des surfaces de section transversale (W2) des tubes (1a) qui contribuent à ce passage présentant une valeur plus élevée comparativement au passage qui est situé à proximité de l'entrée d'agent de refroidissement (8), en particulier de 1,1 à 2,5 fois, en particulier en outre de 1,2 à 1,6 fois.
- Echangeur de chaleur selon la revendication 3 ou 4, caractérisé en ce que le nombre de tubes (1a, 1b) agencés les uns derrière les autres dans la direction d'écoulement d'air (3) est différent dans le premier (11) et dans le second ensemble (12).
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les tubes (1a, 1b) forment précisément deux passages à travers lesquels un agent de refroidissement s'écoule successivement, dans lequel un premier passage comprend des tubes (1b) présentant une surface de section transversale (W1) plus petite et un second passage comprenant des tubes (1a) présentant une surface de section transversale plus grande (W2).
- Echangeur de chaleur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les tubes (1) forment plus de deux passages (P1-P4) à travers lesquels un agent de refroidissement s'écoule successivement, et en ce que dans la direction d'écoulement de l'agent de refroidissement, les sommes des surfaces de section transversales des passages respectifs forment une séquence à croissance monotone.
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les tubes (1) d'un ensemble (11, 12) présentent la même section transversale.
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un ensemble (11, 12) présente une pluralité de passages (P1-P4) avec un écoulement successif, et les passages successifs comprennent plus de tubes (1) que les passages précédents, de telle sorte que la somme des surfaces de section transversale des tubes augmente.
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que plusieurs tubes (1) sont joints ensemble en une unité structurale (15), dans lequel les unités présentent une forme de section transversale oblongue et les ailettes (2) sont agencées entre des unités voisines (15).
- Système de conditionnement d'air de véhicule équipé d'un échangeur de chaleur selon l'une quelconque des revendications 1 à 11, caractérisé en ce que l'air et l'agent de refroidissement s'écoulent de façon concourante, et le côté de l'échangeur de chaleur qui fait face à l'entrée d'agent de refroidissement est agencé en face de l'entrée d'air.
- Système de conditionnement d'air de véhicule équipé d'un échangeur de chaleur selon l'une quelconque des revendications 1 à 11, caractérisé en ce que l'air et l'agent de refroidissement s'écoulent à contre-courant, et le côté de l'échangeur de chaleur qui fait face à la sortie d'agent de refroidissement est agencé en face de l'entrée d'air.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015112833.0A DE102015112833A1 (de) | 2015-08-05 | 2015-08-05 | Wärmetauscher sowie Fahrzeugklimaanlage |
PCT/EP2016/067573 WO2017021180A1 (fr) | 2015-08-05 | 2016-07-22 | Échangeur de chaleur et système de conditionnement d'air de véhicule |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3332204A1 EP3332204A1 (fr) | 2018-06-13 |
EP3332204B1 true EP3332204B1 (fr) | 2019-08-07 |
Family
ID=56551388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16744709.3A Active EP3332204B1 (fr) | 2015-08-05 | 2016-07-22 | Échangeur de chaleur et système de conditionnement d'air de véhicule |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180231320A1 (fr) |
EP (1) | EP3332204B1 (fr) |
JP (1) | JP2018526605A (fr) |
CN (1) | CN108027215A (fr) |
DE (1) | DE102015112833A1 (fr) |
WO (1) | WO2017021180A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018209775A1 (de) * | 2018-06-18 | 2019-12-19 | Mahle International Gmbh | Sammler für einen Wärmetauscher |
EP4328534A4 (fr) * | 2021-04-20 | 2024-06-05 | Mitsubishi Electric Corporation | Échangeur de chaleur |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4829780A (en) | 1988-01-28 | 1989-05-16 | Modine Manufacturing Company | Evaporator with improved condensate collection |
US5163507A (en) * | 1992-04-06 | 1992-11-17 | General Motors Corporation | Tank partition design for integral radiator/condenser |
DE19515526C1 (de) | 1995-04-27 | 1996-05-23 | Thermal Werke Beteiligungen Gm | Flachrohrwärmetauscher mit mindestens zwei Fluten für Kraftfahrzeuge |
DE19719252C2 (de) * | 1997-05-07 | 2002-10-31 | Valeo Klimatech Gmbh & Co Kg | Zweiflutiger und in Luftrichtung einreihiger hartverlöteter Flachrohrverdampfer für eine Kraftfahrzeugklimaanlage |
US6536517B2 (en) * | 2000-06-26 | 2003-03-25 | Showa Denko K.K. | Evaporator |
KR100382523B1 (ko) * | 2000-12-01 | 2003-05-09 | 엘지전자 주식회사 | 마이크로 멀티채널 열교환기의 튜브 구조 |
JP2003222436A (ja) * | 2002-01-29 | 2003-08-08 | Toyo Radiator Co Ltd | ヒートポンプ型空調用熱交換器 |
JP2003294338A (ja) * | 2002-03-29 | 2003-10-15 | Japan Climate Systems Corp | 熱交換器 |
JP2004163036A (ja) * | 2002-11-14 | 2004-06-10 | Japan Climate Systems Corp | 複列型熱交換器 |
KR100532053B1 (ko) * | 2002-12-31 | 2005-12-01 | 모딘코리아 유한회사 | 증발기 |
JP4667077B2 (ja) * | 2004-03-09 | 2011-04-06 | 昭和電工株式会社 | ジョイントプレート半製品、ジョイントプレート、ジョイントプレートの製造方法および熱交換器 |
US7080683B2 (en) * | 2004-06-14 | 2006-07-25 | Delphi Technologies, Inc. | Flat tube evaporator with enhanced refrigerant flow passages |
JP2006337005A (ja) * | 2005-06-06 | 2006-12-14 | Calsonic Kansei Corp | 熱交換器用チューブ |
US8234881B2 (en) * | 2008-08-28 | 2012-08-07 | Johnson Controls Technology Company | Multichannel heat exchanger with dissimilar flow |
US20150096311A1 (en) * | 2012-05-18 | 2015-04-09 | Modine Manufacturing Company | Heat exchanger, and method for transferring heat |
JP5998854B2 (ja) * | 2012-10-31 | 2016-09-28 | 株式会社デンソー | 冷媒蒸発器 |
JP2014219175A (ja) * | 2013-05-10 | 2014-11-20 | 株式会社デンソー | 冷媒蒸発器 |
KR102148724B1 (ko) * | 2013-10-21 | 2020-08-27 | 삼성전자주식회사 | 열교환기 및 이를 갖는 공기조화기 |
-
2015
- 2015-08-05 DE DE102015112833.0A patent/DE102015112833A1/de not_active Withdrawn
-
2016
- 2016-07-22 EP EP16744709.3A patent/EP3332204B1/fr active Active
- 2016-07-22 WO PCT/EP2016/067573 patent/WO2017021180A1/fr active Application Filing
- 2016-07-22 CN CN201680051498.1A patent/CN108027215A/zh active Pending
- 2016-07-22 JP JP2018505629A patent/JP2018526605A/ja active Pending
- 2016-07-22 US US15/750,395 patent/US20180231320A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20180231320A1 (en) | 2018-08-16 |
WO2017021180A1 (fr) | 2017-02-09 |
EP3332204A1 (fr) | 2018-06-13 |
DE102015112833A1 (de) | 2017-02-09 |
CN108027215A (zh) | 2018-05-11 |
JP2018526605A (ja) | 2018-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1167911B1 (fr) | Evaporateur | |
US9958218B2 (en) | Heat exchanger, housing, and air-conditioning circuit comprising such an exchanger | |
CN107816824B (zh) | 热交换器 | |
US20060162917A1 (en) | Heat exchanger | |
JP5585543B2 (ja) | 車両用冷却装置 | |
EP3183528B1 (fr) | Échangeur de chaleur à micro-canal à faible charge de réfrigérant | |
US20170038104A1 (en) | Evaporator having vertical arrangement of header pipe for vehicle air conditioner | |
CN107636886A (zh) | 用于蓄能器的冷却装置 | |
US20140151006A1 (en) | Connecting Reinforcement For Between The Plates Of A Heat Exchanger | |
US20220153085A1 (en) | Temperature control device, in particular cooling device for a motor vehicle | |
US20170036509A1 (en) | Integrated module of evaporator-core and heater-core for air conditioner | |
EP3332204B1 (fr) | Échangeur de chaleur et système de conditionnement d'air de véhicule | |
EP3971508B1 (fr) | Échangeur de chaleur | |
CN216432588U (zh) | 热调节装置 | |
US10408510B2 (en) | Evaporator | |
EP2724107B1 (fr) | Échangeur de chaleur à enveloppe et à tubes avec microcanaux | |
US20060266502A1 (en) | Multi-flow condenser for air conditioning systems | |
JP2012197974A5 (fr) | ||
US11437670B2 (en) | Battery module having a flow-directing configuration in the module housing | |
US9683764B2 (en) | Multi-layer evaporator for motor vehicle air-conditioning circuit | |
CN107208948B (zh) | 制冷剂蒸发器 | |
EP3690377B1 (fr) | Échangeur de chaleur, boîtier et circuit de conditionnement d'air comprenant un tel échangeur de chaleur | |
JP4547205B2 (ja) | 蒸発器 | |
JP2012032129A (ja) | エバポレータ | |
JP2016023815A (ja) | エバポレータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180209 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F28D 1/053 20060101AFI20190102BHEP Ipc: F28F 9/02 20060101ALI20190102BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190305 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1164527 Country of ref document: AT Kind code of ref document: T Effective date: 20190815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016018224 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191209 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191107 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191107 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1164527 Country of ref document: AT Kind code of ref document: T Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191207 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191108 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016018224 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200722 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200722 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20210622 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220722 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230629 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240712 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240725 Year of fee payment: 9 |