EP3326190B1 - Induit magnétique, contacteur avec induit magnétique et procédé de commutation d'un contacteur - Google Patents

Induit magnétique, contacteur avec induit magnétique et procédé de commutation d'un contacteur Download PDF

Info

Publication number
EP3326190B1
EP3326190B1 EP16731162.0A EP16731162A EP3326190B1 EP 3326190 B1 EP3326190 B1 EP 3326190B1 EP 16731162 A EP16731162 A EP 16731162A EP 3326190 B1 EP3326190 B1 EP 3326190B1
Authority
EP
European Patent Office
Prior art keywords
magnet armature
spring element
stop
movement
end position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16731162.0A
Other languages
German (de)
English (en)
Other versions
EP3326190A1 (fr
Inventor
Peter Bobert
Thomas Westebbe
Frank Werner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
TDK Electronics AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Electronics AG filed Critical TDK Electronics AG
Publication of EP3326190A1 publication Critical patent/EP3326190A1/fr
Application granted granted Critical
Publication of EP3326190B1 publication Critical patent/EP3326190B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • H01H50/20Movable parts of magnetic circuits, e.g. armature movable inside coil and substantially lengthwise with respect to axis thereof; movable coaxially with respect to coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/44Magnetic coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/56Contact spring sets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/64Driving arrangements between movable part of magnetic circuit and contact
    • H01H50/645Driving arrangements between movable part of magnetic circuit and contact intermediate part making a resilient or flexible connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/02Non-polarised relays
    • H01H51/04Non-polarised relays with single armature; with single set of ganged armatures
    • H01H51/06Armature is movable between two limit positions of rest and is moved in one direction due to energisation of an electromagnet and after the electromagnet is de-energised is returned by energy stored during the movement in the first direction, e.g. by using a spring, by using a permanent magnet, by gravity
    • H01H51/065Relays having a pair of normally open contacts rigidly fixed to a magnetic core movable along the axis of a solenoid, e.g. relays for starting automobiles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/086Structural details of the armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/64Driving arrangements between movable part of magnetic circuit and contact

Definitions

  • the invention relates to magnet armatures, e.g. B. Magnetic armature for electromagnetic contactors, contactors with magnetic armature and method for switching a contactor.
  • a magnetic armature In electromagnetically operated contactors, a magnetic armature is generally a moving part that can electrically connect two electrodes by moving a contact stamp. Contactors are used to switch strong electrical currents and/or high electrical voltages, possibly in a protective gas atmosphere. The immediate processes of closing or opening the switch and the arcs that occur in the process represent a great stress when high electrical power is to be switched, particularly for the material of the electrodes and the contact stamp. The risk of these electrical contacts sticking increases with the number of switching operations.
  • the magnet armature comprises a first spring element with a first spring stiffness k1, a second spring element with a second stiffness k2, a rest position, an end position and a middle position which is located between the rest position and the end position.
  • the first spring element is intended to be elastically deformed during a switching process during the transition from the rest position to the middle position, but not during the transition from the middle position to the end position.
  • the second element is intended to be elastically deformed during the transition from the middle position to the end position, but not during the transition from the rest position to the middle position.
  • the rest position, the middle position and the end position represent positions of the magnet armature relative to its surroundings, e.g. B. within an electromagnetic switch.
  • the middle position does not necessarily have to be the same distance from the rest position as from the end position.
  • the rest position indicates the position in which the magnet armature is when no magnetic force is acting on it.
  • the end position indicates the equilibrium position when the magnetic force intended to close a switch acts on the magnet armature and the electrical contact to be closed is permanently closed.
  • the first stiffness k1 of the first spring element and the second stiffness k2 of the second spring element can be different.
  • the fact that the magnet armature moves against the restoring force of the first spring element when moving from the rest position to the middle position and against the spring force of the second element when moving from the middle position to the end position can reduce the switching time.
  • the spring stiffness k1 of the first spring element is less than the spring stiffness k2 of the second spring element, the magnet armature works against a smaller resistance force when tightening, so that greater acceleration and thus a shortening of the switching time is achieved.
  • the restoring force of the second spring element essentially causes rapid opening when the magnetic force on the magnet armature (i.e. when opening the switch) is eliminated.
  • a magnetic armature is therefore specified which experiences a non-linear resistance force when closing and opening. Rather, a magnet armature is specified, the resistance force acting on it can increase successively due to different spring stiffnesses.
  • first spring element and the second spring element are arranged in series.
  • spring elements When spring elements are arranged in series, there is a resulting spring stiffness of the combination of the two springs, the reciprocal of which corresponds to the sum of the reciprocals of the individual spring stiffnesses.
  • Two spring elements arranged in series therefore behave like a single spring element with the corresponding one Replacement stiffness.
  • additional technical precautions are required, e.g. B. mechanical stops and / or applying a spring preload to individual spring elements and / or the provision of a displaceable bushing, as described below, is necessary.
  • the magnet armature additionally comprises a bushing which is arranged between the first spring element and the second spring element.
  • the socket can touch the one end of the first spring element directed towards the socket and the one end of the second spring element directed towards the socket.
  • the magnet armature additionally includes a cylindrical section.
  • the first spring element, the bushing and the second spring element surround the cylindrical section - or each have their own cylindrical section with possibly a different radius - coaxially.
  • the end of the first spring element pointing towards the socket is intended to move relative to the cylindrical section during the transition from the rest position to the middle position, but not during the transition from the middle position to the end position.
  • the bushing and the end of the second spring element pointing towards the bushing are intended to move relative to the cylindrical section during the transition from the middle position to the end position, but not during the transition from the rest position to the middle position.
  • the distance h from the rest position to the end position is the full stroke that the magnet armature covers when activated in order to connect two electrodes of a contactor with a contact stamp.
  • the stroke h can be, for example, 2 mm.
  • the middle position can be in an interval between 40% and 60% of the full stroke h.
  • the spring stiffness of one of the two spring elements is approximately 3.3-3.6 times the spring stiffness of the other.
  • the second spring element can have the higher spring stiffness: 3.3 ⁇ k2/k1 ⁇ 3.6.
  • the spring stiffness of the first spring element is between 0.5 N/mm and 0.9 N/mm.
  • the stiffness of the second spring element can be between 2.3 N/mm and 2.7 N/mm.
  • the magnet armature may further comprise a contact stamp and/or a magnetizable material in addition to at least one cylindrical section.
  • the contact stamp is arranged at one end of the area of the armature with the one or more cylindrical sections.
  • the optional magnetizable material may be located at the opposite end.
  • the contact stamp comprises an electrically conductive material and is intended to connect two electrical contacts in the end position of the magnet armature.
  • the magnetizable material may include or consist of iron, cobalt and/or nickel. Via the magnetizable material, the magnet armature can interact magnetically with its surroundings (e.g. an adjacent magnetic coil in a yoke), in particular to enable displacement between the three positions, i.e. H. a
  • the cylindrical section has a first section and a second section.
  • the first section has a first diameter and the second section has a second diameter.
  • the cylindrical section and thus the diameter has a step.
  • the step between the two sections represents a stop for the bushing, which is referred to below as the magnet armature stop.
  • the bushing touches the magnet armature stop when moving from the rest position to the middle position (MP), but not when moving from the middle position to the end position.
  • a contactor can include a magnet armature as described above with a socket between the two spring elements, a yoke with an integrated coil and a guide with a first mechanical stop.
  • the magnet armature and the yoke form an electromagnetic actuator intended to move the magnet armature relative to the yoke and the guide. In positions between the rest position and the middle position, the bushing does not touch the first mechanical stop. In positions between the middle position and the end position, the bushing touches the first mechanical stop.
  • the middle position is therefore defined as the position from which the bushing touches the stop during closing. From the rest position to the middle position, the first spring element essentially counteracts a closing force: If the magnet armature moves from its rest position to the middle position, the first spring element is essentially compressed. The second spring element can be subjected to a preload that is greater than the tension on the first spring element in the middle position. This will make the second spring element Transition from the rest position to the middle position is not compressed.
  • the contactor in the yoke includes one or more coils that can generate a magnetic field and, together with the magnetizable material of the armature, form an electromagnet.
  • the contactor can further comprise a cavity in which the contact stamp on the magnet armature and two electrodes spaced apart from one another are arranged.
  • the cavity can be filled with a gas, e.g. a noble gas.
  • the distance between the electrodes and the contact stamp is preferably smaller than the total stroke h of the magnet armature.
  • the magnet armature can also have another spring element that can compensate for manufacturing tolerances in the distance between the electrodes and the contact stamp and generates the actual contact force. This is particularly important when the material of the electrodes or the contact stamp is worn away by repeated switching operations at high electrical power.
  • the electromagnet of such a contactor can be operated with an operating voltage of 12 V, 24 V, 48 V or any other voltage available.
  • the contactor can have a cavity, e.g. a cavity filled with an inert gas in which the contacts to be switched are located.
  • a cavity e.g. a cavity filled with an inert gas in which the contacts to be switched are located.
  • the service life which is increased by the non-linear counterforce, can be further increased by the gas filling in the cavity.
  • the contactor has a guide with a third stop.
  • the third stop can represent a limitation for the movement of the magnet armature.
  • the magnet armature can touch the third stop in its rest position.
  • the third stop can in particular absorb the force of the first spring in the rest position.
  • the position of the third stop therefore determines the position of the magnet armature relative to the guide in the rest position, a defined rest position.
  • the cylindrical section should have the mechanical magnet armature stop, which can be achieved as described above by two different diameters on the cylindrical section and the corresponding step. This allows the second, e.g. stiffer, spring element to be dimensioned independently of the first, e.g. softer, spring element and to be connected via the bushing and the mechanical Magnetic armature stop with defined preload must be installed.
  • the ratio of the spring rates is not limited.
  • the numerical values depend on the size, among other things, and are only intended as examples.
  • a series connection of the two spring elements is possible but not mandatory.
  • the mechanical stops in particular the first stop and the magnet armature stop, can decouple the springs.
  • a method for switching an electromagnetic contactor which has an electromagnet, a contact stamp, a first spring element and a second spring element, is defined according to claim 11.
  • Figure 1 shows the cross-section of a magnetic armature MA in its rest position RP.
  • the magnetic armature MA has a first spring element F1 and a second spring element F2.
  • the two spring elements F1, F2 determine the restoring forces during the transition from its rest position to its end position.
  • the first spring element F1 determines the restoring force during the transition from the rest position to the middle position.
  • the restoring force during the transition from the middle position to the end position is determined by the spring stiffness of the second spring element F2.
  • h1 is the length of the path covered during the transition from the rest position to the middle position.
  • Figure 1 shows, in addition to the magnet armature MA, a guide FÜ which limits the movement of the armature to a displacement along an axis when moving between the positions.
  • the guide FÜ can thus represent a guide rail with a first stop A1.
  • a bushing B is arranged between the first spring element F1 and the second spring element F2.
  • the magnet armature MA has a cylindrical section ZA.
  • the first spring element F1, the second spring element F2 and the bushing B are arranged coaxially around the cylindrical section ZA.
  • the contact stamp KS is arranged at one end of the cylindrical section ZA.
  • a magnetizable material M is arranged at the other end of the cylindrical section ZA.
  • the spring element with the lower spring stiffness here the first spring element F1
  • the second spring element F2 has a significantly higher spring stiffness or if the second spring element F2 is under a preload that is greater than the tension of the first spring element F1 in the middle position
  • the second spring element F2 is not compressed or is only compressed insignificantly during the transition from the rest position RP to the middle position MP.
  • the bushing B moves by the distance h1 until the bushing B hits the first stop A1.
  • the restoring force acting on the magnet armature MA is essentially or exclusively determined by the spring stiffness of the first spring element F1.
  • Figure 2 shows the magnet armature in its middle position MP.
  • the socket B touches the first stop A1. If the magnet armature is moved further to the left relative to the guide FÜ, the bushing B is supported on the first stop A1, so that the first spring element F1 cannot be compressed any further. During further movement, the second spring element F2 is inevitably compressed.
  • the magnet armature is now in a position in which an electrical switch belonging to the magnet armature is closed by touching the contact stamp of two electrodes.
  • a magnet armature which enables both quick closing and quick opening and which, in particular, reduces the burning time of an arc that occurs and the risk of the contacts sticking.
  • Figure 4 shows an embodiment of the magnet armature MA, in which a movable bushing B is also arranged between a first spring element with a first spring stiffness k1 and a second spring element with a second spring stiffness k2.
  • the rear end of the magnet armature MA has a conical elevation arranged coaxially around a cylindrical section of the contact stamp in the direction of the contact stamp KS.
  • the associated guide has a correspondingly shaped conical recess that points towards the end of the armature. When the switch is closed, a self-centering guide is thus obtained.
  • a further spring element FTA is arranged between the contact stamp KS and the remaining section of the armature MA, which has height tolerances can compensate and generates the actual contact force.
  • a section made of an insulating material IM is arranged between the further spring element FTA and the remaining section of the armature in order to galvanically isolate the electrical contacts to be switched via the contact stamp KS and the magnetic armature.
  • Figure 5 shows a cross section through a possible embodiment of a contactor SCH in its rest position RP.
  • the contactor SCH has a yoke J in which electrical windings of a coil SP are arranged.
  • Figure 5 additionally shows a cavity HR, in which ends of a first electrode and a second electrode face the contact stamp KS. If the stomach tanker is first moved against the resistance force of the first spring element and then against the stronger resistance force of the second spring element, the contact stamp KS is pressed against the ends of the two electrodes EL1, EL2, whereby the two electrodes EL1, EL2 are connected to one another.
  • a gas in the HR cavity e.g. B. a noble gas, in order to extinguish an arc as quickly as possible, especially when opening the contact, in order to protect the material of the electrodes and the contact stamp KS.
  • Figure 6 shows an embodiment of the magnet armature MA with a magnet armature stop A4 and an embodiment of the contactor SCH with a third stop A3, each in the rest position RP.
  • the position of anchor MA and guide FÜ in the rest position RP is determined by the third stop A3.
  • Figure 7 shows an embodiment of the magnet armature MA with a magnet armature stop A4 and the contactor SCH with a third stop A3 in the middle position MP. This position represents a moment in the movement sequence in which the second spring element F2 becomes active.
  • Figure 8 shows an embodiment of the magnet armature MA with a magnet armature stop A4 and the contactor SCH with a third A3 stop in the end position EP.
  • the position of anchor MA and guide FÜ in the end position EP is determined by the second stop A2.
  • the cylindrical section ZA has the mechanical magnet armature stop A4 in the form of a step in the diameter.
  • the second spring element F2 and the first spring element F1 are decoupled during a phase during activation until the contactor SCH reaches the middle position.
  • the mechanical stops one A1 and four A4 decouple the springs F1, F2.
  • Magnetic armature with additional stops, devices for preloading the second spring element in particular and other measures to reduce the load the electrodes of a contactor represent objects according to the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Claims (11)

  1. Induit magnétique (MA), comprenant
    - un premier élément à ressort (F1) présentant une première raideur k1,
    - un deuxième élément à ressort (F2) présentant une deuxième raideur k2,
    - une douille (B) située entre le premier élément à ressort (F1) et le deuxième élément à ressort (F2),
    - une portion cylindrique (ZA), la portion cylindrique (ZA) comportant une première sous-portion (ZA1) d'un premier diamètre, une deuxième sous-portion (ZA2) d'un deuxième diamètre et un gradin situé entre les deux sous-portions (ZA1, ZA2),
    - le gradin situé entre les deux sous-portions (ZA1, ZA2) représentant une butée d'induit magnétique (A4) et
    - l'induit magnétique pouvant se déplacer entre une position de repos (RP), une position finale (EP) et une position médiane (MP) située entre la position de repos (RP) et la position finale (EP), la position de repos étant la position dans laquelle l'induit magnétique se trouve lorsqu'aucune force magnétique n'agit sur lui, caractérisé en ce que
    - la butée d'induit magnétique (A4) représente une butée destinée à la douille (B),
    - la douille (B) vient en contact avec la butée d'induit magnétique (A4) lors du passage de la position de repos (RP) à la position médiane (MP) et
    - la douille (B) ne vient pas en contact avec la butée d'induit magnétique (A4) lors du passage de la position médiane (MP) à la position finale (EP),
    - le deuxième élément à ressort est précontraint ou la rigidité du deuxième élément à ressort est nettement supérieure à celle du premier élément à ressort, de sorte que :
    - le premier élément à ressort (Fl) se déforme élastiquement lors du passage de la position de repos (RP) à la position médiane (MP) mais ne se déforme pas lors du passage de la position médiane (MP) à la position finale (EP), et
    - le deuxième élément à ressort (F2) se déforme élastiquement lors du passage de la position médiane (MP) à la position finale (EP) mais ne se déforme pas ou ne se déforme que faiblement lors du passage de la position de repos (RP) à la position médiane (MP).
  2. Induit magnétique selon la revendication précédente, le premier élément à ressort (F1) et le deuxième élément à ressort (F2) étant disposés en série.
  3. Induit magnétique selon l'une des revendications précédentes,
    - un passage de la position de repos (RP) à la position finale (EP) correspondant à un déplacement d'une distance h = h1 + h2 d'une longueur comprise entre 1,5 et 2,5 mm, et
    - le passage de la position de repos (RP) à la position médiane (MP) représentant un déplacement de h1 et
    - le passage de la position médiane (MP) à la position finale (EP) représentant un déplacement de h2.
  4. Induit magnétique selon l'une des revendications précédentes, un passage de la position de repos (RP) à la position médiane (MP) correspondant à un déplacement d'une distance h1 qui est située dans un intervalle compris entre 0,4 fois et 0,6 fois la distance h = h1 + h2 du déplacement de la position de repos (RP) à la position finale (EP).
  5. Induit magnétique selon l'une des revendications précédentes, k1 et K2 étant tels que 3,3 ≤ k2/k1 ≤ 3,6.
  6. Induit magnétique selon l'une des revendications précédentes, k1 et K2 étant tels que 0,5 N/mm ≤ k1 ≤ 0,9 N/mm et 2,3 N/mm ≤ k2 ≤ 2,7 N/mm.
  7. Induit magnétique selon l'une des revendications précédentes, comprenant en outre
    - un poinçon de contact (KS) et un matériau magnétisable (M),
    - le poinçon de contact (KS) comprenant un matériau électriquement conducteur et, dans sa position finale (EP), étant prévu pour relier deux contacts électriques (EL1, EL2) et
    - le matériau magnétisable (M) comprenant du fer, du cobalt et/ou du nickel.
  8. Induit magnétique selon l'une des revendications précédentes,
    - la douille (B) découplant les deux ressorts (F1, F2) au moins dans une position (RP, MP, EP).
  9. Contacteur (SCH), comprenant
    - un induit magnétique (MA) selon l'une des revendications précédentes pourvu d'une douille (B) entre les deux éléments à ressort (F1, F2),
    - une culasse (J) et
    - un guide (FÜ) pourvu d'une butée mécanique (AI),
    - l'induit magnétique (MA) et la culasse (J) formant un actionneur électromagnétique qui est prévu pour déplacer l'induit magnétique (MA) par rapport à la culasse (J) et au guide (FÜ),
    - dans les positions situées entre la position de repos (RP) et la position médiane (MP), la douille (B) ne venant pas en contact avec la butée mécanique (A1),
    - dans les positions situées entre la position médiane (MP) et la position finale (EP), la douille (B) venant en contact avec la butée mécanique (A1).
  10. Contacteur selon la revendication précédente,
    - le guide (FÜ) comportant une troisième butée (A3),
    - la troisième butée (A3) représentant une limite pour le mouvement de l'induit magnétique (MA) et
    - dans sa position de repos (RP), l'induit magnétique (MA) venant en contact avec la troisième butée (A3).
  11. Procédé de commutation d'un contacteur électromagnétique (SCH) selon la revendication 9 ou 10 comprenant un électroaimant, un poinçon de contact (KS), un premier élément à ressort (F1) et un deuxième élément à ressort (F2), ledit procédé comprenant les étapes suivantes :
    - activer l'électroaimant dans une position de repos (RP),
    - accélérer le poinçon de contact (KS) contre la force de rappel du premier élément à ressort (Fl) jusqu'à une position médiane (MP),
    - déplacer le poinçon de contact (KS) contre la force de rappel du deuxième élément à ressort (F2) jusqu'à une position finale (FP).
EP16731162.0A 2015-07-23 2016-06-22 Induit magnétique, contacteur avec induit magnétique et procédé de commutation d'un contacteur Active EP3326190B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015112052 2015-07-23
DE102015121033.9A DE102015121033A1 (de) 2015-07-23 2015-12-03 Magnetanker, Schütz mit Magnetanker und Verfahren zum Schalten eines Schützes
PCT/EP2016/064467 WO2017012816A1 (fr) 2015-07-23 2016-06-22 Induit magnétique, contacteur avec induit magnétique et procédé de commutation d'un contacteur

Publications (2)

Publication Number Publication Date
EP3326190A1 EP3326190A1 (fr) 2018-05-30
EP3326190B1 true EP3326190B1 (fr) 2024-04-03

Family

ID=57738733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16731162.0A Active EP3326190B1 (fr) 2015-07-23 2016-06-22 Induit magnétique, contacteur avec induit magnétique et procédé de commutation d'un contacteur

Country Status (7)

Country Link
US (1) US10804059B2 (fr)
EP (1) EP3326190B1 (fr)
JP (1) JP6643456B2 (fr)
KR (1) KR102046266B1 (fr)
CN (1) CN108140515B (fr)
DE (1) DE102015121033A1 (fr)
WO (1) WO2017012816A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016107127A1 (de) * 2016-01-29 2017-08-03 Epcos Ag Relais
DE102018110919A1 (de) 2018-05-07 2019-11-07 Tdk Electronics Ag Schaltvorrichtung
CN112002611B (zh) * 2020-08-19 2022-06-28 厦门理工学院 一种动触点推进结构及其继电器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19814504A1 (de) * 1997-11-18 1999-06-02 Bosch Gmbh Robert Einrückrelais für Starter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB646670A (en) * 1948-10-25 1950-11-29 Cav Ltd Improvements relating to electric starting motors for internal combustion engines
US3323086A (en) * 1965-05-03 1967-05-30 Texas Instruments Inc Solenoid type relay with two piece housing held together with the coil
US3444490A (en) * 1966-09-30 1969-05-13 Westinghouse Electric Corp Electromagnetic structures for electrical control devices
DE2835407A1 (de) * 1978-08-12 1980-02-21 Bosch Gmbh Robert Elektromagnetischer schalter, insbesondere fuer andrehvorrichtungen von brennkraftmaschinen
DE3537598A1 (de) * 1985-10-23 1987-05-27 Bosch Gmbh Robert Elektromagnetischer schalter, insbesondere fuer andrehvorrichtungen von brennkraftmaschinen
ATE176083T1 (de) * 1993-06-18 1999-02-15 Philippe Pointout Stromstossschalter
US6360707B1 (en) 1997-11-08 2002-03-26 Robert Bosch Gmbh Solenoid switch for starters
FR2798506B1 (fr) * 1999-09-15 2001-11-09 Schneider Electric Ind Sa Actionneur electromagnetique muni de deux ressorts de rappel
JP2005276592A (ja) * 2004-03-24 2005-10-06 Toyota Motor Corp 電磁継電器
JP2006019148A (ja) * 2004-07-01 2006-01-19 Matsushita Electric Works Ltd 電磁開閉装置
FR2959862B1 (fr) * 2010-05-07 2015-01-02 Valeo Equip Electr Moteur Contacteur electromagnetique a double contact et demarreur pour moteur thermique l'incorporant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19814504A1 (de) * 1997-11-18 1999-06-02 Bosch Gmbh Robert Einrückrelais für Starter

Also Published As

Publication number Publication date
WO2017012816A1 (fr) 2017-01-26
US10804059B2 (en) 2020-10-13
KR20180032617A (ko) 2018-03-30
JP6643456B2 (ja) 2020-02-12
CN108140515B (zh) 2020-10-09
CN108140515A (zh) 2018-06-08
KR102046266B1 (ko) 2019-11-18
JP2018522382A (ja) 2018-08-09
DE102015121033A1 (de) 2017-01-26
US20180204698A1 (en) 2018-07-19
EP3326190A1 (fr) 2018-05-30

Similar Documents

Publication Publication Date Title
EP3464968B1 (fr) Dispositif soupape électromagnétique et système
EP3239572B1 (fr) Dispositif destine a la regulation du debit d'un fluide
EP3326190B1 (fr) Induit magnétique, contacteur avec induit magnétique et procédé de commutation d'un contacteur
EP2880696A1 (fr) Dispositif d'actionnement
DE102016203602A1 (de) Elektromagnetischer Aktor und Ventil
DE102014114212A1 (de) Membranventil
DE202007008281U1 (de) Hubmagnet
DE202008015303U1 (de) Hubanker-Antrieb
EP0329138A1 (fr) Relais électromagnétique
DE102012111851A1 (de) Elektromagnetische Stellvorrichtung
EP1573766B1 (fr) Actionneur electromagnetique
DE102020202970B4 (de) Hochvoltschütz
EP0810398B1 (fr) Robinets-vannes électriques
DE102015119352B4 (de) Elektromechanischer schutzschalter
WO2019076549A1 (fr) Dispositif actionneur électromagnétique et son utilisation
DE102014106957A1 (de) Relais
DE102014211735A1 (de) Elektromechanisches Relais
DE102018206054B4 (de) Schaltschütz
WO2019215093A1 (fr) Dispositif de commutation
DE102018216223B3 (de) Aktor und Verfahren zur Betätigung eines Hochspannungsschalters
DE3000681C2 (de) Kontaktbetätigungsvorrichtung insbesondere für Relais
WO2005088659A2 (fr) Interrupteur, en particulier interrupteur de securite pour une connexion batterie/reseau de bord
EP1780740B1 (fr) Electrovanne pilote pour sectionneur hydromécanique
DE102006053840B3 (de) Elektrisches Schaltelement, insbesondere Relais, zum gleichzeitigen Schalten mehrerer Stromkreise
DE102007020944A1 (de) Magnetantrieb

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TDK ELECTRONICS AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210223

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016016449

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01H0050200000

Ipc: H01F0007160000

Ref country code: DE

Free format text: PREVIOUS MAIN CLASS: H01H0050200000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 7/16 20060101AFI20231023BHEP

INTG Intention to grant announced

Effective date: 20231113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016016449

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN