EP3308455A1 - Convertisseur continu-continu pour le pilotage d'un onduleur de ventilateur d'aéronef, procédé de commande et ventilateur associés - Google Patents
Convertisseur continu-continu pour le pilotage d'un onduleur de ventilateur d'aéronef, procédé de commande et ventilateur associésInfo
- Publication number
- EP3308455A1 EP3308455A1 EP16731243.8A EP16731243A EP3308455A1 EP 3308455 A1 EP3308455 A1 EP 3308455A1 EP 16731243 A EP16731243 A EP 16731243A EP 3308455 A1 EP3308455 A1 EP 3308455A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- controllable
- state
- transistor
- converter
- controllable transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims description 10
- 238000004804 winding Methods 0.000 claims abstract description 60
- 238000009423 ventilation Methods 0.000 claims abstract description 7
- 230000003071 parasitic effect Effects 0.000 claims description 25
- 230000007704 transition Effects 0.000 claims description 8
- 230000005669 field effect Effects 0.000 claims description 7
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 description 12
- 230000001276 controlling effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/337—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/083—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D13/00—Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/008—Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/38—Means for preventing simultaneous conduction of switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/06—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
- H02M7/10—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
- H02M7/103—Containing passive elements (capacitively coupled) which are ordered in cascade on one source
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- CONTINUOUS-CONTINUOUS CONVERTER FOR STEERING AN AIRCRAFT FAN INVERTER, CONTROL METHOD AND FAN THEREFOR
- the invention relates to the optimization of a structure of a DC-DC converter.
- the invention relates to a DC-DC converter for controlling a three-phase inverter, in particular a three-phase inverter driving a fan of a ventilation system of an aircraft.
- the ventilation systems for regulating the air circulation within an aircraft comprise at least one fan adapted to ensure air circulation in the aircraft, in particular in the cabin of the aircraft.
- Each fan is controlled by a three-phase inverter.
- the three-phase inverter comprises three supply arms, each of these arms comprising two isolated-gate bipolar transistors (IGBT for Insulated Gate Bipolar Transistor).
- IGBT Insulated Gate Bipolar Transistor
- the driving voltage requirements of the IGBT transistors are conventionally +15 V in positive bias voltage and -7.5 V in negative bias voltage. These voltages are provided by at least one DC-DC converter (DC-DC for Direct Current) and in general one IGBT transistor converter.
- the invention aims to overcome at least some of the disadvantages of known DC-DC converters.
- the invention aims to provide, in at least one embodiment of the invention, a DC-DC converter comprising a reduced number of components.
- the invention also aims to provide, in at least one embodiment of the invention, a DC-DC converter comprising few complex components.
- the invention also aims to provide, in at least one embodiment of the invention, a DC-DC converter having a footprint and a reduced weight.
- the invention also aims to provide, in at least one embodiment of the invention, a DC-DC converter having a high efficiency.
- the invention also aims to provide, in at least one embodiment of the invention, a DC-DC converter whose heating is reduced. 4. Presentation of the invention
- the invention relates to a DC-DC converter, adapted to be powered by a primary voltage source and to supply a control electronics of a three-phase inverter, said three-phase inverter being configured to drive a fan of a ventilation system of an aircraft, characterized in that it comprises:
- a transformer comprising two primary windings and at least one secondary winding
- a primary circuit comprising a supply input adapted to be connected to a first terminal of the primary voltage source, said supply input being connected to two switching loops each comprising one of the primary windings of the transformer and a controllable transistor comprising a parasitic capacitance and thus forming a symmetrical arrangement,
- At least one secondary circuit comprising a secondary winding of the transformer, said secondary winding comprising two terminals connected on the one hand to a capacitive rectification bridge, adapted to supply the inverter control electronics with an equal positive output voltage at twice the peak voltage across the secondary winding, and secondly to a branch of the circuit adapted to supply the inverter control electronics with a negative output voltage equal to the opposite of the voltage peak at the terminals of the secondary winding,
- controllable transistors are adapted to each be controlled by a driving signal between an on state and a off state, so that when a controllable transistor is in an on state, the other controllable transistor is in a state blocked and that when a controllable transistor is switched from the off state to the off state, the two controllable transistors are held in the off state for a dead time so as to perform a zero voltage switching.
- control voltage of a transistor designates the voltage between the gate and the source for a field effect transistor
- the output voltage at the terminals of a transistor indicates the voltage between the drain and the transistor.
- source for a field effect transistor and the current flowing through the transistor means the current between the drain and the source for a field effect transistor.
- the conducting state of the controllable transistors corresponds to a state in which a current flows through the transistor and the blocked state of the controllable transistors corresponds to a state in which the current flowing through the transistor is zero or negligible.
- the controllable transistors thus behave as controllable switches with parasitic capacitance in parallel, the on state corresponding to a closed switch and the off state corresponding to an open switch.
- a DC-DC converter according to the invention thus makes it possible to control a control electronics of a three-phase inverter with a reduced number of components.
- the primary circuit comprises a symmetrical mounting (also called push-pull assembly) comprising only two transistors instead of four transistors in frequently used full-bridge structures.
- the structure of the secondary circuit of the DC-DC converter makes it possible to obtain two voltages at the output of the secondary circuit with a single secondary winding.
- the DC-DC converter does not include magnetic components, which generally have a large footprint.
- the DC-DC converter according to the invention therefore has a smaller footprint than current solutions.
- the primary circuit comprises a symmetrical mounting controlled so as to perform a switching of the Zero Volt Switching transistors (or ZVS, for Zero Volt Switching in English).
- ZVS Zero Volt Switching in English
- each controllable transistor is alternately in an on or off state, but when a controllable transistor goes from the on state to the off state, the other controllable transistor remains in the off state for a dead time, then passes in the passing state.
- This dead time is a time interval which makes it possible to minimize the switching losses due, in the prior art, to a voltage-current switching with non-zero values.
- the dead time during which the two transistors are blocked allows voltage-current switching to very low values, resulting in very low switching losses.
- the efficiency of the DC-DC converter is improved and heating is reduced.
- Zero voltage switching is ensured during the dead time and by a particular combination of the primary windings and parasitic capacitances of the controllable transistors.
- a first controllable transistor is in the off state, the voltage at its terminals is at its maximum level and its parasitic capacitance is charged
- a second controllable transistor is in the on state, the voltage at its terminals is at its minimum level and its parasitic capacitance is discharged.
- the two transistors are in the off state and the primary windings are no longer supplied with current by the primary voltage source.
- a magnetizing current of the transformer makes it possible to discharge the parasitic capacitance of the first controllable transistor and to charge the parasitic capacitance of the second controllable transistor.
- the switching can be done without loss: in fact, the transistor comprises a diode which is spontaneously initiated during the dead time.
- the primary windings and the controllable transistors are thus chosen so that their characteristics allow the switching to zero voltage.
- the parasitic capacitances of the transistors, the magnetizing current and the duration of the dead time are chosen so as to obtain zero voltage switching without addition of components.
- the DC / DC converter according to the invention is therefore, in particular thanks to the combination of a push-pull arrangement, a capacitive rectification bridge and a zero voltage switching, perfectly adapted to the constraints of the new generations of Aircraft ventilation system fan, especially in terms of size, weight and thermal efficiency. In addition, its cost is reduced.
- the three-phase inverter comprising a plurality of insulated gate bipolar transistor
- the DC-DC electrical converter is characterized in that it comprises a plurality of secondary circuits each comprising a secondary winding of the transformer, each circuit secondary circuit being adapted to supply at least one insulated gate bipolar transistor of the control electronics of the three-phase inverter.
- the DC-DC converter supplies a plurality of insulated gate bipolar transistors of the three-phase inverter with a single primary power source.
- Each insulated gate bipolar transistor of the three-phase inverter requiring a secondary winding to obtain a positive and negative voltage, duplicate the number of secondary windings on the same transformer can drive a complete three-phase inverter, which allows a reduction of the size, weight and price of all DC-DC converters necessary for the control of a fan.
- controllable transistors are field effect transistors.
- controllable transistors of the DC-DC converter are metal oxide-oxide field effect transistors (also called MOSFETs for Metal Oxide Semiconductor Field Effect Transistors).
- MOSFETs Metal Oxide Semiconductor Field Effect Transistors
- Other components may also be used, provided that they are supplemented by a free-wheeling diode.
- the invention also relates to an aircraft system fan, characterized in that it is controlled by a three-phase inverter comprising a control electronics adapted to be powered by at least one DC-DC converter according to the invention.
- control electronics of the three-phase inverter comprises three supply arms, each arm being controlled by a DC-DC electrical converter according to the invention.
- control electronics of the three-phase inverter comprises three supply arms, and in that it comprises an electric converter according to the invention comprising six secondary circuits adapted to control the three arms of the three-phase inverter. food.
- the invention also relates to a control method of a DC-DC converter according to the invention, characterized in that it comprises controlling the two controllable transistors, said first controllable transistor and second controllable transistor, according to the following steps:
- a third step of controlling the second transistor controllable in the on state and the first transistor controllable in the off state a fourth step of transition of the second transistor controllable in the off state and the maintenance of the first transistor controllable in the state blocked during the timeout.
- the method according to the invention therefore allows control of the DC-DC converter comprising two transition stages in which the two transistors are in a locked state in order to allow a zero-switching of voltage.
- the invention also relates to a DC-DC converter, a fan and a control method characterized in combination by all or some of the characteristics mentioned above or below.
- FIG. 1 is a schematic view of a DC-DC electrical converter according to a first embodiment of the invention
- FIGS. 2a, 2b, 2c and 2d are diagrammatic views of a DC-DC converter according to the first embodiment of the invention during different stages of a method according to one embodiment of the invention
- FIG. 3 represents curves a, b, c respectively representing the control voltages of the controllable transistors, the voltages at the terminals of the controllable transistors and the intensities through the controllable transistors of a DC-DC converter according to the first embodiment of FIG. the invention
- FIG. 4 is a schematic view of a DC-DC converter according to a second embodiment of the invention.
- Figure 5 is a schematic view of a supply chain comprising three DC-DC converters according to the second embodiment of the invention and a fan according to one embodiment of the invention.
- FIG. 1 shows schematically a DC-DC converter 10 according to a first embodiment.
- the DC-DC converter comprises a primary circuit 12, a secondary circuit 14 and a transformer 16.
- the transformer 16 makes the connection between the primary circuit 12 and the secondary circuit 14.
- the transformer 16 comprises two perfectly coupled primary windings, a first primary winding L P1 and a second primary winding L P2 , and a secondary winding L s .
- the primary windings L P1 and L P2 form part of the primary circuit 12 and the secondary winding L s is part of the secondary circuit 14.
- the primary circuit 12 is powered by a primary voltage source whose terminals are respectively connected to a supply input V, N so as to supply the DC-DC converter.
- the supply input V, N is connected to two parallel switching loops, a first loop and a second loop.
- the first loop comprises the first primary winding L P1 and a first controllable transistor M 1
- the second loop comprises the second primary winding L P2 and a second controllable transistor M 2 .
- the two loops thus form a symmetrical assembly, also called push-pull assembly.
- the secondary winding L s recovers a ratio of the primary voltage present at the two primary windings.
- the secondary winding L s has a voltage V SE c at its terminals.
- the terminals of the secondary winding L s are connected on the one hand to a first branch comprising a capacitive rectification bridge, comprising two capacitors C s and C P and two diodes D x and D 3 forming a circuit called a Schenkel doubler and secondly to a second branch comprising a diode D 2 and a capacitor C N.
- Capacitor C s acts as a capacitive doubler.
- the first branch is adapted to provide a device, here represented by a resistor R 0U TI, a first output voltage V 0U TP equal to twice the peak voltage across the secondary winding L s .
- a device here represented by a resistor R 0U TI
- V 0U TP a first output voltage V 0U TP equal to twice the peak voltage across the secondary winding L s .
- the voltage V 0U TP is equal to the sum of the voltage V SEC , the voltage across the capacitor C s and the voltage across the diode Gold
- the voltage across the capacitor C s is equal to sum of the voltage V SEC and the voltage across the diode D 3 .
- V TP 0U 2xV SEC.
- the second branch is adapted to provide a device, here represented by a resistor 0 UT2, a second output voltage V 0 UTN equal to the opposite of the peak voltage across the secondary winding L s .
- a resistor 0 UT2 a second output voltage V 0 UTN equal to the opposite of the peak voltage across the secondary winding L s .
- the output voltage V 0 UTN is equal to the sum of the opposite of the voltage V SE c and the voltage across the diode D 2 .
- V SE c peak 7.5 V
- V 0 UTP 15V
- V 0 UTN -7.5 V
- FIGS. 2a, 2b, 2c, 2d show a DC-DC electrical converter according to the first embodiment of the invention during different steps of a method according to one embodiment of the invention. These figures make it possible to see in more detail the operation of the DC / DC converter according to different stages related to the states of the two controllable transistors Mi, M 2 .
- controllable transistors Mi, M 2 are each represented, for simplification and for the sake of clarity, by a closed switch (representing a transistor controllable in the on state) or open (representing a controllable transistor in the state blocked), at the terminals of which is connected in parallel a parasitic capacitance of each controllable transistor, respectively a first parasitic capacitance C DS1 of the first controllable transistor M 1 and a second parasitic capacitance C DS2 of the second controllable transistor M 2 .
- the method comprises the following steps:
- FIGS. 2a and 2c show the DC-DC converter during the first and third stages respectively, in which a controllable transistor is in the on state and the other controllable transistor is in the off state.
- the push-pull circuit of the primary circuit alternately feeds the first primary winding L P1 or the second primary winding L P2 .
- the current flowing in the secondary winding L s changes direction according to the primary winding supplied.
- the first primary winding L P1 is powered by the push-pull assembly when the first controllable transistor M 1 is in the on state and the second controllable transistor M 2 is in the off state, as shown with reference to FIG. 2a.
- the second primary winding L P2 is energized when the first controllable transistor Mi is in the off state and the second controllable transistor M 2 is in the on state, as shown with reference to FIG. 2c.
- a first charging current passing through the resistor 0 UTI and a second charging current passing through the resistor 0 UT2 are provided differently depending on the direction of the current flowing through the secondary winding L s .
- the capacitor C s charges up to V SEC C
- the capacitor C P supplies the first charging current
- the capacitor C N is charged up to V SEC crest and the secondary winding L s provides the second charging current.
- the capacitor C s discharges into the capacitor C P and supplies the first current of load
- the capacitor C N provides the second charging current.
- FIGS. 2b and 2d show the DC / DC converter during the second and fourth stages respectively, in which the two controllable transistors are in the off state.
- steps are transition steps, making it possible to obtain a zero-voltage switching by keeping the two controllable transistors in the off state during a dead time.
- the second step follows the first step in which the first controllable transistor Mi was conducting.
- the first parasitic capacitance C DS i of the first controllable transistor Mi is discharged and the output voltage across the first controllable transistor Mi is at its minimum level, that is to say close to zero.
- the second controllable transistor M 2 being blocked in the first and the second step, the second parasitic capacitance C of the second controllable transistor M 2 is charged and the output voltage across the second controllable transistor M 2 is at its maximum level.
- the two primary windings are no longer powered by the primary voltage source and a magnetizing current propagates in the direction indicated by the arrows on the two loops in Figure 2b.
- This magnetising current causes the charge of the first parasitic capacitance C DS1 and the discharge of the second parasitic capacitance C DS2 .
- the output voltage across the first controllable transistor M 1 increases gradually and the output voltage across the second controllable transistor M 2 decreases gradually.
- the parasitic capacitance consists only of that of the controllable transistor.
- the first parasitic capacitance C DS i discharges, the output voltage at the terminals of the first controllable transistor Mi gradually decreases, the second parasitic capacitance C DS2 is charged and the output voltage across the second controllable transistor M 2 increases gradually.
- the second step and the fourth step last during a predefined dead time depending on the characteristics of the primary windings and parasitic capacitors, so that the end of the dead time, the voltages across the transistors can reach the maximum value if the voltage increases during the step, or the minimum value if the voltage decreases during the step.
- FIG. 3 represents three curves a, b and c respectively representing, as a function of time, the control voltages V gs _ M1 and V gs _ M2 respectively of the first controllable transistor M 1 and the second controllable transistor M 2 (curves 30 and 32 ), the output voltages V ds _ M1 and V ds _ M2 across respectively the first controllable transistor M 1 and the second controllable transistor M 2 (curves 34 and 36), and the intensities l d _ M1 and l d _M2 respectively passing through the first controllable transistor M 1 and the second controllable transistor M 2 (curves 38 and 40) of a DC-DC converter according to the first embodiment of the invention.
- the curves 30, 34, 38 in solid lines are associated with the first controllable transistor Mi, and the curves 32, 36, 40 in dashed lines are associated with the second controllable transistor M 2 .
- Curve a thus represents the commands sent to the controllable transistors, the high level representing a control of the transistor that can be controlled in the on state and the low level representing a control of the controllable transistor in the off state.
- the commands are transmitted for example by a dedicated circuit (not shown), or by an already existing control card, for example an FPGA.
- the first controllable transistor M 1 is controlled in the on state: the output voltage V ds _ M1 at its terminals is therefore zero, and the intensity l d _ M1 of current passing through it non-zero.
- the second controllable transistor M 2 is controlled in the off state: the output voltage V ds _ M2 to its terminals is therefore non-zero and the intensity l d _ M2 of the current passing through it is zero (or negligible).
- the two controllable transistors are controlled in the off state: the output voltage V ds _ M1 across the first controllable transistor M 1 progressively increases because of the charge of the first parasitic capacitance C DS1 , and the output voltage across the second controllable transistor M 2 decreases due to the discharge of the second parasitic capacitance C DS 2.
- the intensities of the currents flowing through the transistors controllables are close to zero, corresponding to the magnetizing currents crossing parasitic capacitances.
- the intensity l d MI of the current flowing through the first controllable transistor Mi is brought to a zero or negligible value before the progressive increase of the output voltage V ds _ M1 across the first controllable transistor Mi. There are therefore no losses due to the switching of the first controllable transistor M 1 from the off state to the off state of the first step.
- the intensity l d _ M2 of the current flowing through the second controllable transistor M 2 is zero or negligible and the output voltage V ds _ M2 across the second controllable transistor M 2 has progressively reached a zero value. or negligible.
- the third and fourth steps are similar to the first and second steps, the role of the two controllable transistors being reversed.
- the efficiency of the DC-DC converter according to the invention is greater than 85% when the DC-DC converter is subjected to a temperature of between -50 ° C. and 115 ° C., which is superior to the converters of the prior art.
- FIG. 4 diagrammatically represents a DC / DC converter 10 'according to a second embodiment.
- the DC-DC converter comprises, identically to the first embodiment described previously, a primary circuit and a first secondary circuit 42 comprising a first secondary winding, providing voltages V 0U TP_HS and V 0U T N _HS-
- the DC-DC converter further comprises a second secondary circuit 44, identical to the first secondary circuit 42, comprising a second secondary winding.
- the transformer 16 'thus comprises the two primary windings described above, as well as the first secondary winding L S i and the second secondary winding L S 2-
- the second secondary circuit 44 makes it possible to obtain new output voltages, a voltage VO U TP_LS and a voltage V 0U T N _LS, with a single primary circuit and a single primary power source. A possible use of these new output voltages is described below with reference to FIG.
- FIG. 5 shows a supply chain comprising three DC-DC converters 10a, 10b, 10c according to the second embodiment of the invention and a fan 50 according to one embodiment of the invention.
- the fan 50 is powered by a three-phase inverter 52 comprising three supply arms 54a, 54b, 54c, the supply arms 54a, 54b, 54c forming a control electronics.
- Each power supply arm 54a, 54b, 54c comprises two IGBT transistors (not shown), a high-level IGBT transistor (HS) and a low-floor (LS) transistor. .
- each IGBT transistor of each branch had to be fed by a DC-DC converter, the three-phase inverter being fed by six DC-DC converters.
- the three low-floor IGBT transistors are powered by a single power supply, the three-phase inverter being fed by four DC-DC converters.
- the 10 'DC-DC converter according to the second embodiment previously described with reference to FIG. 4 makes it possible to simultaneously power a high-stage IGBT transistor, by virtue of the output voltages V 0U TP_HS and V 0U T N _HS, and a low stage IGBT transistor a feed arm, through the output voltages V and V 0U 0U TP_LS T N _LS-
- the three-phase inverter therefore requires only three converters 10a, 10b, 10c DC-DC.
- each supply arm 54a, 54b, 54c is powered by a converter 10a, 10b, 10c continuous, each converter 10a, 10b, 10c DC-DC being supplied by a source 56a, 56b, 56c primary power supply.
- the DC-DC converter comprises six secondary circuits, thus making it possible to supply all of the power supply arms of the control electronics of a three-phase inverter.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Inverter Devices (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- Aviation & Aerospace Engineering (AREA)
Abstract
L'invention concerne un convertisseur électrique continu-continu, adapté pour être alimenté par une source de tension primaire et pour alimenter une électronique de pilotage d'un onduleur triphasé, ledit onduleur triphasé étant configuré pour piloter un ventilateur d'un système de ventilation d'un aéronef. Le convertisseur continu-continu est caractérisé en ce qu'il comprend un transformateur (16), un circuit primaire (12) comprenant deux boucles formant un montage symétrique, au moins un circuit secondaire (14) comprenant un enroulement secondaire (LS), adapté pour fournir d'une part à l'onduleur une tension de sortie égale au double de la tension crête aux bornes de l'enroulement secondaire (LS), et d'autre part à une branche du circuit adaptée pour fournir à l'onduleur une tension de sortie égale à l'opposé de la tension crête aux bornes de l'enroulement secondaire (LS), et en ce que les transistors pilotables (M1, M2) sont adaptés pour être chacun commutés à zéro de tension.
Description
CONVERTISSEUR CONTINU-CONTINU POUR LE PILOTAGE D'UN ONDULEUR DE VENTILATEUR D'AÉRONEF, PROCÉDÉ DE COMMANDE ET VENTILATEUR ASSOCIÉS
1. Domaine technique de l'invention
L'invention concerne l'optimisation d'une structure d'un convertisseur électrique continu-continu. En particulier, l'invention concerne un convertisseur électrique continu-continu destinés au pilotage d'un onduleur triphasé, notamment d'un onduleur triphasé pilotant un ventilateur d'un système de ventilation d'un aéronef.
2. Arrière-plan technologique
Les systèmes de ventilation pour réguler la circulation d'air au sein d'un aéronef comprennent au moins un ventilateur adapté pour assurer la circulation de l'air dans l'aéronef, notamment dans la cabine de l'aéronef. Chaque ventilateur est piloté par un onduleur triphasé. L'onduleur triphasé comprend trois bras d'alimentation, chacun de ces bras comprenant deux transistors bipolaires à grille isolée (IGBT pour Insulated Gâte Bipolar Transistor en anglais). Les besoins en tension de pilotage des transistors IGBT sont classiquement +15 V en tension de polarisation positive et -7,5 V en tension de polarisation négative. Ces tensions sont fournies par au moins un convertisseur continu- continu (DC-DC pour Direct Current - Direct Current en anglais) et en général un convertisseur par transistor IGBT.
Néanmoins, des nouvelles générations de ventilateur ont été développées, dont la masse et le volume ont été réduits de façon importante. Ainsi, afin de bénéficier de ces réductions de masse et de volume, il est nécessaire d'utiliser des convertisseurs continu-continu adaptés. Notamment, les convertisseurs continu-continu utilisés actuellement présentent un encombrement et un poids importants et un grand nombre de composants. Ainsi, ils ne sont plus adaptés aux nouvelles générations de ventilateur dans lesquels l'espace dédié à l'installation du convertisseur continu-continu est réduit. De plus, du fait de la réduction de cet espace, de nouvelles contraintes thermiques apparaissent, auxquelles les convertisseurs continu-continu actuels ne sont pas adaptés car leur rendement est trop faible et provoque des échauffements thermiques non acceptables dans cet espace réduit.
Il est donc nécessaire de proposer un nouveau type de convertisseur continu- continu adapté aux nouvelles générations de ventilateur de systèmes de ventilation d'aéronef.
3. Objectifs de l'invention
L'invention vise à pallier au moins certains des inconvénients des convertisseurs continu-continu connus.
En particulier, l'invention vise à fournir, dans au moins un mode de réalisation de l'invention, un convertisseur continu-continu comprenant un nombre réduit de composants.
L'invention vise aussi à fournir, dans au moins un mode de réalisation de l'invention, un convertisseur continu-continu comprenant peu de composants complexes.
L'invention vise aussi à fournir, dans au moins un mode de réalisation de l'invention, un convertisseur continu-continu présentant un encombrement et un poids réduit.
L'invention vise aussi à fournir, dans au moins un mode de réalisation de l'invention, un convertisseur continu-continu ayant un rendement élevé.
L'invention vise aussi à fournir, dans au moins un mode de réalisation de l'invention, un convertisseur continu-continu dont réchauffement est réduit. 4. Exposé de l'invention
Pour ce faire, l'invention concerne un convertisseur électrique continu-continu, adapté pour être alimenté par une source de tension primaire et pour alimenter une électronique de pilotage d'un onduleur triphasé, ledit onduleur triphasé étant configuré pour piloter un ventilateur d'un système de ventilation d'un aéronef, caractérisé en ce qu'il comprend :
un transformateur, comprenant deux enroulements primaires et au moins un enroulement secondaire,
un circuit primaire, comprenant une entrée d'alimentation adaptée pour être connectée à une première borne de la source de tension primaire, ladite entrée d'alimentation étant reliée à deux boucles de commutation comprenant chacune un des enroulements primaires du transformateur
et un transistor pilotable comprenant une capacité parasite et formant ainsi un montage symétrique,
au moins un circuit secondaire, comprenant un enroulement secondaire du transformateur, ledit enroulement secondaire comprenant deux bornes reliées d'une part à un pont de redressement capacitif, adapté pour fournir à l'électronique de pilotage de l'onduleur une tension de sortie positive égale au double de la tension crête aux bornes de l'enroulement secondaire, et d'autre part à une branche du circuit adaptée pour fournir à l'électronique de pilotage de l'onduleur une tension de sortie négative égale à l'opposé de la tension crête aux bornes de l'enroulement secondaire,
et en ce que les transistors pilotables sont adaptés pour être chacun commandés par un signal de pilotage entre un état passant et un état bloqué, de sorte que lorsqu'un transistor pilotable est dans un état passant, l'autre transistor pilotable est dans un état bloqué et que lorsqu'un transistor pilotable est commuté de l'état passant à l'état bloqué, les deux transistors pilotables sont maintenus dans l'état bloqué pendant un temps mort de façon à réaliser une commutation à zéro de tension.
Dans la suite de la description, la tension de commande d'un transistor désigne la tension entre la grille et la source pour un transistor à effet de champ, la tension de sortie aux bornes d'un transistor désigne la tension entre le drain et la source pour un transistor à effet de champ et le courant traversant le transistor désigne le courant entre le drain et la source pour un transistor à effet de champ. L'état passant des transistors pilotables correspond à un état dans lequel un courant traverse le transistor et l'état bloqué des transistors pilotables correspond à un état dans lequel le courant traversant le transistor est nul ou négligeable. Les transistors pilotables se comportent donc comme des interrupteurs pilotables avec une capacité parasite en parallèle, l'état passant correspondant à un interrupteur fermé et l'état bloqué correspondant à un interrupteur ouvert.
Un convertisseur continu-continu selon l'invention permet donc de piloter une électronique de pilotage d'un onduleur triphasé avec un nombre réduit de composant. Notamment, le circuit primaire comprend un montage symétrique (aussi appelé
montage push-pull) comprenant uniquement deux transistors au lieu de quatre transistors dans les structures à pont complet fréquemment utilisés. En outre, la structure du circuit secondaire du convertisseur continu-continu permet d'obtenir deux tensions en sortie du circuit secondaire avec un seul enroulement secondaire. Hormis les enroulements primaire et secondaire, le convertisseur continu-continu ne comprend pas de composant magnétique, qui présentent généralement un encombrement important. Le convertisseur continu-continu selon l'invention présente donc un encombrement inférieur aux solutions actuelles.
Le circuit primaire comprend un montage symétrique commandé de façon à réaliser une commutation des transistors pilotables à zéro de tension (ou ZVS, pour Zéro Volt Switching en anglais). Ainsi, chaque transistor pilotable est alternativement dans un état passant ou bloqué, mais lorsqu'un transistor pilotable passe de l'état passant à l'état bloqué, l'autre transistor pilotable reste à l'état bloqué pendant un temps mort, puis passe dans l'état passant. Ce temps mort est un intervalle de temps qui permet de minimiser les pertes de commutation, dues, dans l'art antérieur, à une commutation tension - courant à valeurs non nulles. Le temps mort pendant lequel les deux transistors sont bloqués permet une commutation tension - courant à des valeurs très faibles d'où des pertes par commutation très faibles. Ainsi, le rendement du convertisseur continu-continu est amélioré et réchauffement est réduit.
La commutation à zéro de tension est assurée pendant le temps mort et par une combinaison particulière des enroulements primaires et des capacités parasites des transistors pilotables. Un premier transistor pilotable est à l'état bloqué, la tension à ses bornes est à son niveau maximum et sa capacité parasite est chargée, un deuxième transistor pilotable est à l'état passant, la tension à ses bornes est à son niveau minimum et sa capacité parasite est déchargée. Lors du temps mort, les deux transistors sont dans l'état bloqué et les enroulements primaires ne sont plus alimentés en courant par la source de tension primaire. Un courant magnétisant du transformateur permet de décharger la capacité parasite du premier transistor pilotable et de charger la capacité parasite du deuxième transistor pilotable. Une fois cette charge et cette décharge des capacités parasites terminées, la commutation peut se faire sans perte : en effet, le transistor comprend une diode qui est amorcée spontanément durant le temps mort.
Les enroulements primaires et les transistors pilotables sont donc choisis de façon à ce que leurs caractéristiques permettent la commutation à zéro de tension. Notamment, les capacités parasites des transistors, le courant magnétisant et la durée du temps mort sont choisis de façon à obtenir la commutation à zéro de tension sans ajout de composants.
Le convertisseur continu-continu selon l'invention est donc, notamment grâce à la combinaison d'un montage push-pull, d'un pont de redressement capacitif et d'une commutation à zéro de tension, parfaitement adapté aux contraintes des nouvelles générations de ventilateur de système de ventilation d'aéronef, notamment en termes d'encombrement, de poids et d'efficacité thermique. De plus, son coût est réduit.
Avantageusement et selon l'invention, l'onduleur triphasé comprenant une pluralité de transistor bipolaires à grille isolée, le convertisseur électrique continu- continu est caractérisé en ce qu'il comprend une pluralité de circuit secondaire comprenant chacun un enroulement secondaire du transformateur, chaque circuit secondaire étant adapté pour alimenter au moins un transistor bipolaire à grille isolée de l'électronique de pilotage de l'onduleur triphasé.
Selon cet aspect de l'invention, le convertisseur continu-continu permet d'alimenter une pluralité de transistors bipolaires à grille isolée de l'onduleur triphasé avec une seule source d'alimentation primaire. Chaque transistor bipolaire à grille isolée de l'onduleur triphasé nécessitant un enroulement secondaire pour obtenir une tension positive et négative, dupliquer le nombre d'enroulements secondaires sur le même transformateur permet de piloter un onduleur triphasé complet, ce qui permet une réduction de l'encombrement, du poids et du prix de l'ensemble des convertisseurs continu-continu nécessaires pour le pilotage d'un ventilateur.
Avantageusement et selon l'invention, les transistors pilotables sont des transistors à effet de champ.
De préférence, les transistors pilotables du convertisseur continu-continu sont des transistors à effet de champ à grille métal-oxyde (aussi appelés MOSFET pour Métal Oxide Semiconductor Field Effect Transistor en anglais). D'autres composants peuvent
aussi être utilisés, sous condition d'être complétés par une diode de roue libre.
L'invention concerne également un ventilateur de système d'aéronef, caractérisé en ce qu'il est piloté par un onduleur triphasé comprenant une électronique de pilotage adaptée pour être alimentée par au moins un convertisseur électrique continu-continu selon l'invention.
Avantageusement et selon ce dernier aspect de l'invention, l'électronique de pilotage de l'onduleur triphasé comprend trois bras d'alimentation, chaque bras étant piloté par un convertisseur électrique continu-continu selon l'invention.
Avantageusement et selon l'invention, l'électronique de pilotage de l'onduleur triphasé comprend trois bras d'alimentation, et en ce qu'il comprend un convertisseur électrique selon l'invention comprenant six circuits secondaires adaptés pour piloter les trois bras d'alimentation. L'invention concerne également un procédé de commande d'un convertisseur électrique continu-continu selon l'invention, caractérisé en ce qu'il comprend la commande des deux transistors pilotables, dits premier transistor pilotable et deuxième transistor pilotable, selon les étapes suivantes :
une première étape de commande du premier transistor pilotable dans l'état passant et du deuxième transistor pilotable dans l'état bloqué, une deuxième étape de transition du premier transistor pilotable dans l'état bloqué et du maintien du deuxième transistor pilotable dans l'état bloqué pendant le temps mort,
une troisième étape de commande du deuxième transistor pilotable dans l'état passant et du premier transistor pilotable dans l'état bloqué, une quatrième étape de transition du deuxième transistor pilotable dans l'état bloqué et du maintien du premier transistor pilotable dans l'état bloqué pendant le temps mort.
Le procédé selon l'invention permet donc une commande du convertisseur continu-continu comprenant deux étapes de transition dans lesquelles les deux transistors sont dans un état bloqué afin de permettre une commutation à zéro de
tension.
L'invention concerne également un convertisseur électrique continu-continu, un ventilateur et un procédé de commande caractérisés en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci-après.
5. Liste des figures
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante donnée à titre uniquement non limitatif et qui se réfère aux figures annexées dans lesquelles :
- la figure 1 est une vue schématique d'un convertisseur électrique continu-continu selon un premier mode de réalisation de l'invention,
les figures 2a, 2b, 2c et 2d sont des vues schématiques d'un convertisseur électrique continu-continu selon le premier mode de réalisation de l'invention durant différentes étapes d'un procédé selon un mode de réalisation de l'invention,
la figure 3 représente des courbes a, b, c représentant respectivement les tensions de commande des transistors pilotables, les tensions aux bornes des transistors pilotables et les intensités traversant les transistors pilotables d'un convertisseur électrique continu-continu selon le premier mode de réalisation de l'invention,
la figure 4 est une vue schématique d'un convertisseur électrique continu-continu selon un deuxième mode de réalisation de l'invention,
La figure 5 est une vue schématique d'une chaîne d'alimentation comprenant trois convertisseurs continu-continu selon le deuxième mode de réalisation de l'invention et un ventilateur selon un mode de réalisation de l'invention.
6. Description détaillée d'un mode de réalisation de l'invention
Les réalisations suivantes sont des exemples. Bien que la description se réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas nécessairement que chaque référence concerne le même mode de réalisation, ou que les caractéristiques s'appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées pour fournir
d'autres réalisations. Sur les figures, les échelles et les proportions ne sont pas strictement respectées et ce, à des fins d'illustration et de clarté.
La figure 1 représente schématiquement un convertisseur 10 électrique continu- continu selon un premier mode de réalisation. Le convertisseur 10 continu-continu comprend un circuit primaire 12, un circuit secondaire 14 et un transformateur 16. Le transformateur 16 fait le lien entre le circuit primaire 12 et le circuit secondaire 14. Notamment, le transformateur 16 comprend deux enroulements primaires parfaitement couplés, un premier enroulement primaire LP1 et un deuxième enroulement primaire LP2, et un enroulement secondaire Ls. Les enroulements primaires LP1 et LP2 font partie du circuit primaire 12 et l'enroulement secondaire Ls fait partie du circuit secondaire 14.
Le circuit primaire 12 est alimenté par une source de tension primaire dont les bornes sont respectivement connectées à une entrée d'alimentation V,N de façon à alimenter le convertisseur 10 continu-continu. L'entrée d'alimentation V,N est reliée à deux boucles de commutation parallèles, une première boucle et une deuxième boucle. La première boucle comprend le premier enroulement primaire LP1 et un premier transistor M1 pilotable, et la deuxième boucle comprend le deuxième enroulement primaire LP2 et un deuxième transistor M2 pilotable. Les deux boucles forment ainsi un montage symétrique, aussi appelé montage push-pull.
L'énergie délivrée par le circuit primaire 12 au niveau des deux enroulements primaire est transmise au circuit secondaire 14 via le transformateur 16 : l'enroulement secondaire Ls récupère un ratio de la tension primaire présente au niveau des deux enroulements primaires. Notamment, l'enroulement secondaire Ls a une tension VSEc à ses bornes. Les bornes de l'enroulement secondaire Ls sont reliées d'une part à une première branche comprenant un pont de redressement capacitif, comprenant deux condensateurs Cs et CP et deux diodes Dx et D3 formant un montage appelé doubleur de Schenkel et d'autre part à une deuxième branche comprenant une diode D2 et un condensateur CN. Le condensateur Cs joue le rôle de doubleur capacitif.
La première branche est adaptée pour fournir à un équipement, ici représenté par une résistance R0UTI, une première tension de sortie V0UTP égale au double de la tension crête aux bornes de l'enroulement secondaire Ls. En effet, comme visible sur la
figure 1, la tension V0UTP est égale à la somme de la tension VSEC, de la tension aux bornes du condensateur Cs et de la tension aux bornes de la diode Or, la tension aux bornes du condensateur Cs est égale à somme de la tension VSEC et de la tension aux bornes de la diode D3. En négligeant les tensions des diodes D1 et D3, on obtient V0UTP = 2xVSEC.
La deuxième branche est adaptée pour fournir à un équipement, ici représenté par une résistance 0UT2, une deuxième tension de sortie V0UTN égale à l'opposé de la tension crête aux bornes de l'enroulement secondaire Ls. En effet, comme visible sur la figure 1, la tension de sortie V0UTN est égale à la somme de l'opposé de la tension VSEc et de la tension aux bornes de la diode D2. En négligeant la tension de la diode D2, on obtient V0UTN = -VSEc-
En dimensionnant VSEc crête = 7,5 V, on obtient donc V0UTP = 15V et V0UTN = -7,5 V, correspondant aux tensions de polarisation généralement nécessaire à des transistors de type IGBT utilisés dans les onduleurs triphasé. Pour des besoins de tension différents, il est possible d'obtenir d'autres valeurs en dimensionnant le nombre de spire de l'enroulement secondaire en conséquence.
Les figures 2a, 2b, 2c, 2d représentent un convertisseur 10 électrique continu- continu selon le premier mode de réalisation de l'invention durant différentes étapes d'un procédé selon un mode de réalisation de l'invention. Ces figures permettent de voir plus en détail le fonctionnement du convertisseur 10 continu-continu selon différentes étapes liées aux états des deux transistors pilotables Mi, M2. Sur ces figures, les transistors pilotables Mi, M2 sont chacun représentés, par simplification et pour des raisons de clarté, par un interrupteur fermé (représentant un transistor pilotable dans l'état passant) ou ouvert (représentant un transistor pilotable dans l'état bloqué), aux bornes duquel est connectée en parallèle une capacité parasite de chaque transistor pilotable, respectivement une première capacité parasite CDS1 du premier transistor pilotable M1 et une deuxième capacité parasite CDS2 du deuxième transistor pilotable M2.
Le procédé comprend les étapes suivantes :
- une première étape de commande du premier transistor pilotable M1 dans l'état passant et du deuxième transistor pilotable M2 dans l'état
bloqué,
une deuxième étape de transition du premier transistor pilotable M1 dans l'état bloqué et du maintien du deuxième transistor pilotable M2 dans l'état bloqué pendant un temps mort,
- une troisième étape de commande du deuxième transistor pilotable M2 dans l'état passant et du premier transistor pilotable M1 dans l'état bloqué,
une quatrième étape de transition du deuxième transistor pilotable M2 dans l'état bloqué et du maintien du premier transistor pilotable Mi dans l'état bloqué pendant un temps mort.
Les figures 2a et 2c représentent le convertisseur 10 continu-continu durant respectivement la première et la troisième étape, dans lesquelles un transistor pilotable est dans l'état passant et l'autre transistor pilotable est dans l'état bloqué.
Le montage push-pull du circuit primaire alimente alternativement le premier enroulement primaire LP1 ou le deuxième enroulement primaire LP2. Ainsi, le courant circulant dans l'enroulement secondaire Ls change de sens selon l'enroulement primaire alimenté. Le premier enroulement primaire LP1 est alimenté par le montage push-pull lorsque le premier transistor pilotable M1 est dans l'état passant et le deuxième transistor pilotable M2 est dans l'état bloqué, comme représenté en référence avec la figure 2a. Le deuxième enroulement primaire LP2 est alimenté lorsque le premier transistor pilotable Mi est dans l'état bloqué et le deuxième transistor pilotable M2 est dans l'état passant, comme représenté en référence avec la figure 2c.
Un premier courant de charge traversant la résistance 0UTI et un deuxième courant de charge traversant la résistance 0UT2 sont fournis différemment selon le sens du courant traversant l'enroulement secondaire Ls. Lorsque le deuxième enroulement primaire LP2 est alimenté, comme représenté en référence avec la figure 2c, le condensateur Cs se charge jusqu'à VSEC Crête, le condensateur CP fournit le premier courant de charge, le condensateur CN est chargé jusqu'à VSEC crête et l'enroulement secondaire Ls fournit le deuxième courant de charge. Lorsque le premier enroulement primaire LP1 est alimenté, comme représenté en référence avec la figure 2a, le condensateur Cs se décharge dans le condensateur CP et fournit le premier courant de
charge, le condensateur CN fournit le deuxième courant de charge.
Les figures 2b et 2d représentent le convertisseur 10 continu-continu durant respectivement la deuxième et la quatrième étape, dans lesquelles les deux transistors pilotables sont dans l'état bloqué.
Ces étapes sont des étapes de transition, permettant d'obtenir une commutation à zéro de tension en maintenant les deux transistors pilotables dans l'état bloqué pendant un temps mort.
La deuxième étape suit la première étape dans laquelle le premier transistor pilotable Mi était passant. Ainsi, au début de la deuxième étape, la première capacité parasite CDSi du premier transistor pilotable Mi est déchargée et la tension de sortie aux bornes du premier transistor pilotable Mi est à son niveau minimum, c'est-à-dire proche de zéro. Le deuxième transistor pilotable M2 étant bloqué dans la première et la deuxième étape, la deuxième capacité parasite C du deuxième transistor pilotable M2 est chargée et la tension de sortie aux bornes du deuxième transistor pilotable M2 est à son niveau maximum. Les deux enroulements primaires ne sont plus alimentés par la source de tension primaire et un courant magnétisant se propage dans le sens indiqué par les flèches sur les deux boucles sur la figure 2b. Ce courant magnétisant entraînant la charge de la première capacité parasite CDS1 et la décharge de la deuxième capacité parasite CDS2. Ainsi, la tension de sortie aux bornes du premier transistor pilotable M1 croît progressivement et la tension de sortie aux bornes du deuxième transistor pilotable M2 décroît progressivement. Pour régler la vitesse de croissance ou de décroissance des tensions, la capacité parasite est seulement constitué de celle du transistor pilotable.
De façon symétrique, dans la quatrième étape représentée en référence avec la figure 2d, la première capacité parasite CDSi se décharge, la tension de sortie aux bornes du premier transistor pilotable Mi décroît progressivement, la deuxième capacité parasite CDS2 se charge et la tension de sortie aux bornes du deuxième transistor pilotable M2 croît progressivement.
La deuxième étape et la quatrième étape durent pendant un temps mort prédéfini dépendant des caractéristiques des enroulements primaires et des capacités parasites, de façon à ce que la fin du temps mort, les tensions aux bornes des transistors
pilotables atteignent la valeur maximale si la tension croît pendant l'étape, ou la valeur minimale si la tension décroît pendant l'étape.
En pratique, le temps mort TM optimal pour une commutation à zéro de tension optimale d'un transistor pilotable est exprimé par la formule :
Avec TON le temps de commande dans l'état passant du transistor pilotable, CDS la capacité parasite du transistor pilotable et LP l'inductance de l'enroulement primaire situé dans la même boucle que le transistor pilotable considéré.
La figure 3 représente trois courbes a, b et c représentant respectivement en fonction du temps les tensions Vgs _M1 et Vgs_M2 de commande de respectivement le premier transistor pilotable M1 et le deuxième transistor pilotable M2 (courbes 30 et 32), les tensions de sortie Vds_M1 et Vds _M2 aux bornes de respectivement le premier transistor pilotable M1 et le deuxième transistor pilotable M2 (courbes 34 et 36), et les intensités ld_M1 et ld _M2 traversant respectivement le premier transistor pilotable M1 et le deuxième transistor pilotable M2 (courbes 38 et 40) d'un convertisseur électrique continu-continu selon le premier mode de réalisation de l'invention.
Les courbes 30, 34, 38 en traits pleins sont associées au premier transistor pilotable Mi, et les courbes 32, 36, 40 en traits pointillés sont associées au deuxième transistor pilotable M2.
Les zones temporelles numérotées 1, 2, 3 et 4 correspondent respectivement à la première, la deuxième, la troisième et la quatrième étape du procédé de commande selon l'invention. La courbe a représente ainsi les commandes envoyées aux transistors pilotables, le niveau haut représentant une commande du transistor pilotable dans l'état passant et le niveau bas représentant une commande du transistor pilotable dans l'état bloqué. Les commandes sont transmises par exemple par un circuit dédié (non représenté), ou bien par une carte de contrôle déjà existante, par exemple un FPGA.
Lors de la première étape, dans la zone temporelle 1, le premier transistor pilotable M1 est commandé dans l'état passant : la tension de sortie Vds _M1 à ses bornes est donc nulle, et l'intensité ld _M1 du courant le traversant non nulle. Le deuxième transistor pilotable M2 est commandé dans l'état bloqué : la tension de sortie Vds _M2 à
ses bornes est donc non nulle et l'intensité ld_M2 du courant le traversant est nulle (ou négligeable).
Lors de la deuxième étape, dans la zone temporelle 2 d'une durée égale au temps mort décrit précédemment, les deux transistors pilotables sont commandés à l'état bloqué : la tension de sortie Vds_M1 aux bornes du premier transistor pilotable M1 augmente progressivement du fait de la charge de la première capacité parasite CDS1, et la tension de sortie aux bornes du deuxième transistor pilotable M2 diminue du fait de la décharge de la deuxième capacité parasite CDS2. Les intensités des courants traversant les transistors pilotables sont proches de zéro, correspondant aux courants magnétisants traversant les capacités parasites. Au début du temps mort, l'intensité ld MI du courant traversant le premier transistor pilotable Mi est amenée à une valeur nulle ou négligeable avant l'augmentation progressive de la tension de sortie Vds _M1 aux bornes du premier transistor pilotable Mi. Il n'y a donc pas de pertes dues à la commutation du premier transistor pilotable M1 de l'état passant à l'état bloqué à la fin de la première étape. À la fin du temps mort, l'intensité ld_M2 du courant traversant le deuxième transistor pilotable M2 est nulle ou négligeable et la tension de sortie Vds _M2 aux bornes du deuxième transistor pilotable M2 a progressivement atteint une valeur nulle ou négligeable. Il n'y a donc pas de pertes dus à la commutation du deuxième transistor pilotable M2 de l'état bloqué à l'état passant au début de la troisième étape. Les commutations des deux transistors pilotables sont donc bien des commutations à zéro de tension ZVS (pour Zéro Voltage Switching).
La troisième et la quatrième étape sont similaires aux première et deuxième étapes, le rôle des deux transistors pilotables étant inversés.
Grâce à cette commutation à zéro de tension, le rendement du convertisseur continu-continu selon l'invention est supérieur à 85% lorsque le convertisseur continu- continu est soumis à une température comprise entre -50°C et 115°C, ce qui est supérieur aux convertisseurs de l'art antérieur.
La figure 4 représente schématiquement un convertisseur 10' électrique continu-continu selon un deuxième mode de réalisation. Le convertisseur continu- continu comprend, de manière identique au premier mode de réalisation décrit
précédemment, un circuit primaire et un premier circuit secondaire 42 comprenant un premier enroulement secondaire, fournissant des tensions V0UTP_HS et V0UTN_HS-
Dans ce mode de réalisation, le convertisseur continu-continu comprend en outre un deuxième circuit secondaire 44, identique au premier circuit secondaire 42, comprenant un deuxième enroulement secondaire. Le transformateur 16' comprend ainsi les deux enroulements primaires décrits précédemment, ainsi que le premier enroulement secondaire LSi et le deuxième enroulement secondaire LS2- Le deuxième circuit secondaire 44 permet l'obtention de nouvelles tensions de sorties, une tension VOUTP_LS et une tension V0UTN_LS, avec un seul circuit primaire et une seule source d'alimentation primaire. Une utilisation possible de ces nouvelles tensions de sorties est décrit ci-après en référence avec la figure 5.
La figure 5 représente une chaîne d'alimentation comprenant trois convertisseurs 10a, 10b, 10c continu-continu selon le deuxième mode de réalisation de l'invention et un ventilateur 50 selon un mode de réalisation de l'invention. Le ventilateur 50 est alimenté par un onduleur 52 triphasé comprenant trois bras 54a, 54b, 54c d'alimentation, les bras 54a, 54b, 54c d'alimentation formant une électronique de pilotage. Chaque bras 54a, 54b, 54c d'alimentation comprend deux transistors IGBT (non représentés), un transistor IGBT d'étage haut (en anglais High Side ou HS) et un transistor IGBT d'étage bas (en anglais Low Side ou LS). Dans l'art antérieur, chaque transistor IGBT de chaque branche devait être alimenté par un convertisseur continu- continu, l'onduleur triphasé étant donc alimenté par six convertisseurs continu-continu. Dans certaines solutions de l'art antérieur, les trois transistors IGBT d'étage bas sont alimentés par une seule alimentation, l'onduleur triphasé étant donc alimenté par quatre convertisseurs continu-continu. Le convertisseur 10' continu-continu selon le deuxième mode de réalisation décrit précédemment en référence avec la figure 4 permet d'alimenter simultanément un transistor IGBT d'étage haut, grâce aux tensions de sorties V0UTP_HS et V0UTN_HS, et un transistor IGBT d'étage bas d'un bras d'alimentation, grâce aux tensions de sorties V0UTP_LS et V0UTN_LS- L'onduleur triphasé nécessite donc seulement trois convertisseurs 10a, 10b, 10c continu-continu.
Ainsi, chaque bras 54a, 54b, 54c d'alimentation est alimenté par un
convertisseur 10a, 10b, 10c continu, chaque convertisseur 10a, 10b, 10c continu-continu étant alimenté par une source 56a, 56b, 56c d'alimentation primaire.
Selon un mode de réalisation alternatif non représenté, le convertisseur continu- continu comprend six circuits secondaires, permettant ainsi d'alimenter l'ensemble des bras d'alimentations de l'électronique de pilotage d'un onduleur triphasé.
Claims
1. Convertisseur électrique continu-continu, adapté pour être alimenté par une source de tension (56a, 56b, 56c) primaire et pour alimenter une électronique de pilotage d'un onduleur (52) triphasé, ledit onduleur (52) triphasé étant configuré pour piloter un ventilateur (50) d'un système de ventilation d'un aéronef, caractérisé en ce qu'il comprend :
un transformateur (16, 16'), comprenant deux enroulements primaires (LP1, LP2) et au moins un enroulement secondaire (Ls, LS1, LS2),
- un circuit primaire (12), comprenant une entrée (V,N) d'alimentation adaptée pour être connectée à une première borne de la source de tension primaire, ladite entrée (V,N) d'alimentation étant reliée à deux boucles de commutation comprenant chacune un des enroulements primaires du transformateur (16, 16') et un transistor pilotable (Mi, M2) comprenant une capacité parasite (CDSi, C et formant ainsi un montage symétrique,
au moins un circuit secondaire (14, 42, 44), comprenant un enroulement secondaire (Ls, LSi, L du transformateur, ledit enroulement secondaire (Ls, LS1, LS2) comprenant deux bornes reliées d'une part à un pont de redressement capacitif, adapté pour fournir à l'électronique de pilotage de l'onduleur (52) une tension de sortie positive égale au double de la tension crête aux bornes de l'enroulement secondai re (Lj, Lsi, et d'autre part à une branche du circuit adaptée pour fournir à l'électronique de pilotage de l'onduleur (52) une tension de sortie négative égale à l'opposé de la tension crête aux bornes de l'enroulement secondaire (Ls, LSi, L
et en ce que les transistors pilotables (Mi, M2) sont adaptés pour être chacun commandés par un signal de pilotage entre un état passant et un état bloqué, de sorte que lorsqu'un transistor pilotable est dans un état passant, l'autre transistor pilotable est dans un état bloqué et que lorsqu'un transistor pilotable est commandé de l'état passant à l'état bloqué, les deux transistors pilotables (Mi, M2) sont maintenus dans
l'état bloqué pendant un temps mort de façon à réaliser une commutation à zéro de tension.
2. Convertisseur électrique continu-continu selon la revendication 1, l'onduleur (52) triphasé comprenant une pluralité de transistor bipolaires à grille isolée, le convertisseur électrique continu-continu étant caractérisé en ce qu'il comprend une pluralité de circuit secondaire (42, 44) comprenant chacun un enroulement secondaire (Lsi, 2) du transformateur (16, 16'), chaque circuit secondaire étant adapté pour alimenter au moins un transistor bipolaire à grille isolée de l'électronique de pilotage de l'onduleur triphasé.
3. Convertisseur électrique continu-continu selon l'une des revendications 1 ou 2, caractérisé en ce que les transistors pilotables (Mi, M2) sont des transistors à effet de champ.
4. Ventilateur de système d'aéronef, caractérisé en ce qu'il est piloté par un onduleur (52) triphasé comprenant une électronique de pilotage adaptée pour être alimenté via au moins un convertisseur électrique (10, 10', 10a, 10b, 10c) continu- continu selon l'une des revendications 1 à 3.
5. Ventilateur de système d'aéronef selon la revendication 4, caractérisé en ce que l'électronique de pilotage de l'onduleur (52) triphasé comprend trois bras (54a, 54b, 54c) d'alimentation, chaque bras étant piloté par un convertisseur électrique (10', 10a, 10b, 10c) continu-continu selon l'une des revendications 1 à 3.
6. Ventilateur de système d'aéronef selon la revendication 4, caractérisé en ce que l'électronique de pilotage de l'onduleur (52) triphasé comprend trois bras (54a, 54b, 54c) d'alimentation, et en ce qu'il comprend un convertisseur électrique (10', 10a, 10b, 10c) selon l'une des revendications 1 à 3 comprenant six circuits secondaires (14, 42, 44) adaptés pour piloter les trois bras d'alimentation (54a, 54b, 54c).
7. Procédé de commande d'un convertisseur (10, 10', 10a, 10b, 10c) électrique continu-continu selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend la commande des deux transistors pilotables, dits premier transistor pilotable (Μχ) et deuxième transistor pilotable (M2), selon les étapes suivantes :
une première étape de commande du premier transistor pilotable (Μχ) dans l'état passant et du deuxième transistor pilotable (M2) dans l'état bloqué,
une deuxième étape de transition du premier transistor pilotable (Mi) dans l'état bloqué et du maintien du deuxième transistor pilotable (M2) dans l'état bloqué pendant le temps mort,
une troisième étape de commande du deuxième transistor pilotable (M2) dans l'état passant et du premier transistor pilotable (Μχ) dans l'état bloqué,
une quatrième étape de transition du deuxième transistor pilotable (M2) dans l'état bloqué et du maintien du premier transistor pilotable (Μχ) dans l'état bloqué pendant le temps mort.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1555330A FR3037453B1 (fr) | 2015-06-11 | 2015-06-11 | Convertisseur continu-continu pour le pilotage d'un onduleur de ventilateur d'aeronef, procede de commande et ventilateur associes |
PCT/FR2016/051361 WO2016198783A1 (fr) | 2015-06-11 | 2016-06-07 | Convertisseur continu-continu pour le pilotage d'un onduleur de ventilateur d'aéronef, procédé de commande et ventilateur associés |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3308455A1 true EP3308455A1 (fr) | 2018-04-18 |
Family
ID=54145824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16731243.8A Withdrawn EP3308455A1 (fr) | 2015-06-11 | 2016-06-07 | Convertisseur continu-continu pour le pilotage d'un onduleur de ventilateur d'aéronef, procédé de commande et ventilateur associés |
Country Status (5)
Country | Link |
---|---|
US (1) | US10396650B2 (fr) |
EP (1) | EP3308455A1 (fr) |
CN (1) | CN107852097A (fr) |
FR (1) | FR3037453B1 (fr) |
WO (1) | WO2016198783A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10291122B2 (en) * | 2015-06-29 | 2019-05-14 | Semiconductor Components Industries, Llc | Input voltage detection circuit and power supply including the same |
AT518423B1 (de) * | 2016-05-06 | 2017-10-15 | Zkw Group Gmbh | Kraftfahrzeug-Beleuchtungseinrichtung |
CN108880257A (zh) * | 2017-05-09 | 2018-11-23 | 通用电气公司 | 发电系统及方法 |
KR102569566B1 (ko) * | 2018-07-18 | 2023-08-23 | 현대모비스 주식회사 | 저전압 직류변환장치 및 그 구동방법 |
US10807730B2 (en) * | 2018-12-21 | 2020-10-20 | General Electric Company | Motor driven propulsor of an aircraft |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8706275D0 (en) * | 1987-03-17 | 1987-04-23 | Rca Corp | Gate circuit |
JPH04230988A (ja) * | 1990-07-26 | 1992-08-19 | Sharp Corp | インバータ電子レンジの駆動回路 |
JPH06335247A (ja) * | 1993-05-20 | 1994-12-02 | Canon Inc | 電源装置 |
US5790391A (en) * | 1996-11-29 | 1998-08-04 | General Signal Corporation | Standby power system |
US6166927A (en) * | 1999-07-23 | 2000-12-26 | Ericsson Inc. | Push-pull power converter circuit |
TWI243530B (en) * | 2003-07-30 | 2005-11-11 | Delta Electronics Inc | Zero-voltage switching push-pull converter |
US7352596B2 (en) * | 2004-12-23 | 2008-04-01 | Astec International Limited | Method of operating a resonant push-pull converter in an above resonant frequency mode |
US8964413B2 (en) * | 2010-04-22 | 2015-02-24 | Flextronics Ap, Llc | Two stage resonant converter enabling soft-switching in an isolated stage |
EP2480049A3 (fr) * | 2011-01-20 | 2013-07-03 | OSRAM GmbH | Dispositif de fourniture d'énergie pour sources lumineuses |
CN102624245A (zh) * | 2011-01-28 | 2012-08-01 | 联正电子(深圳)有限公司 | 准谐振推挽变换器及其控制方法 |
DE102011078579A1 (de) * | 2011-07-04 | 2013-01-10 | Robert Bosch Gmbh | Ansteuerungsschaltung und Verfahren zur Ansteuerung der Eingangsschaltstufe einer Transformatorschaltung |
CN102231595B (zh) * | 2011-07-06 | 2013-08-07 | 深圳市英威腾电气股份有限公司 | 一种绝缘栅双极型晶体管驱动电路 |
BR112014004195B1 (pt) * | 2011-08-22 | 2021-02-23 | Franklin Electric Co., Inc | Sistema de conversão de energia, e, método de operação de um sistemade conversão de energia |
TWI456885B (zh) * | 2011-12-06 | 2014-10-11 | Ind Tech Res Inst | 一種直流轉直流的電壓調節裝置及其操作方法 |
JP5831275B2 (ja) * | 2012-02-10 | 2015-12-09 | 日産自動車株式会社 | 電力変換装置及びその駆動方法 |
CN103078514A (zh) * | 2013-01-05 | 2013-05-01 | 浙江大学 | 一种具有倍压谐振能力的推挽变换器 |
-
2015
- 2015-06-11 FR FR1555330A patent/FR3037453B1/fr active Active
-
2016
- 2016-06-07 WO PCT/FR2016/051361 patent/WO2016198783A1/fr active Application Filing
- 2016-06-07 EP EP16731243.8A patent/EP3308455A1/fr not_active Withdrawn
- 2016-06-07 CN CN201680038689.4A patent/CN107852097A/zh active Pending
- 2016-06-07 US US15/580,155 patent/US10396650B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
FR3037453B1 (fr) | 2017-06-02 |
FR3037453A1 (fr) | 2016-12-16 |
US20180138800A1 (en) | 2018-05-17 |
WO2016198783A1 (fr) | 2016-12-15 |
CN107852097A (zh) | 2018-03-27 |
US10396650B2 (en) | 2019-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016198783A1 (fr) | Convertisseur continu-continu pour le pilotage d'un onduleur de ventilateur d'aéronef, procédé de commande et ventilateur associés | |
EP3748831A1 (fr) | Un convertisseur et son systeme de controle de courant | |
EP2011220A2 (fr) | Dispositif de transfert de puissance isole perfectionne | |
FR2858136A1 (fr) | Convertisseur continu-continu | |
EP3422554B1 (fr) | Convertisseur ac/dc réversible à thyristors | |
EP2770636B1 (fr) | Dispositif de commande employé dans un système d'alimentation à découpage | |
EP2355331A1 (fr) | Dispositif convertisseur et alimentation sans interruption équipée d'un tel dispositif | |
EP2232687A2 (fr) | Convertisseur alternatif/continu a isolement galvanique | |
EP3381114B1 (fr) | Systeme modulaire de conversion d'une puissance electrique continue en puissance electrique triphasee | |
EP2645569A1 (fr) | Dispositif de commande employé dans un système d'alimentation électrique à découpage | |
EP3182571A1 (fr) | Circuit de redressement à thyristors | |
EP3369166B1 (fr) | Système de conversion d'une puissance électrique continue en puissance électrique alternative avec module récuperateur d'énergie | |
EP3381113B1 (fr) | Circuit amortisseur undeland régénerative pour demi-bras d'un onduleur | |
JP6983355B2 (ja) | 集積バスブースト回路を有する電流パルス発生器 | |
EP1873896B1 (fr) | Dispositif de conversion électrique, convertisseur et alimentation électrique sans interruption comportant un tel dispositif | |
EP2550728B1 (fr) | Convertisseur alternatif/continu a isolement galvanique | |
EP1685643A1 (fr) | Convertisseur elevateur de tension | |
FR3063191A1 (fr) | Dispositif et procede de charge d'une batterie reduisant les courants de mode commun dudit dispositif | |
EP3270515B1 (fr) | Commutateur ultra-rapide à haute tension | |
EP1710913B1 (fr) | Source d'alimentation à découpage | |
EP3476036B1 (fr) | Système et procédé de conversion d'une puissance électrique continue en puissance électrique alternative triphasee avec radiateur a air | |
WO2023110643A1 (fr) | Module de conversion comprenant un circuit de recuperation d'energie electrique | |
FR3001843A1 (fr) | Dispositif et procede correspondant de gestion de batteries de vehicule automobile, en particulier une batterie basse tension et une batterie haute tension | |
WO2017081386A1 (fr) | Dispositif de conversion d'energie a tension continue reversible | |
EP3276810B1 (fr) | Convertisseur dc-dc isolé et batterie électrique comprenant un convertisseur dc-dc isolé |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20180103 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20200225 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20200707 |