EP3303707B1 - Procédé de fabrication d'une dalle de tablier pour un pont - Google Patents

Procédé de fabrication d'une dalle de tablier pour un pont Download PDF

Info

Publication number
EP3303707B1
EP3303707B1 EP16728596.4A EP16728596A EP3303707B1 EP 3303707 B1 EP3303707 B1 EP 3303707B1 EP 16728596 A EP16728596 A EP 16728596A EP 3303707 B1 EP3303707 B1 EP 3303707B1
Authority
EP
European Patent Office
Prior art keywords
bridge
carriage
concrete layer
prefabricated plates
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16728596.4A
Other languages
German (de)
English (en)
Other versions
EP3303707A1 (fr
Inventor
Johann Kolleger
Kerstin Fuchs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kollegger Johann
Original Assignee
Kollegger Johann
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kollegger Johann filed Critical Kollegger Johann
Publication of EP3303707A1 publication Critical patent/EP3303707A1/fr
Application granted granted Critical
Publication of EP3303707B1 publication Critical patent/EP3303707B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • E01D21/10Cantilevered erection
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • E01D21/10Cantilevered erection
    • E01D21/105Balanced cantilevered erection

Definitions

  • the invention relates to a method for producing a carriageway slab with underlying precast slabs and an overburden layer of in-situ concrete arranged therebetween for a bridge, as well as slab slabs produced by this method.
  • From the DE 195 44 557 C1 is a formwork carriage for the production of a concrete platform of a composite bridge known.
  • a disadvantage of this design is at least that the formwork carriage is constructed consuming and has a plurality of lifting devices, which are designed as a thrust piston engine with piston rods.
  • the formwork carriages must be raised or lowered.
  • a disadvantage of the in the KR 20110127629 A illustrated method for producing a cantilever is that on the support structure and the tension members in the construction state a torsional moment is initiated in the longitudinal beam as planned. The absorption of this torsional moment by the longitudinal beam and the derivative of the pillars or on Abutment causes additional costs.
  • reinforced concrete slabs are constructed so that due to the dead weight of the carriageway slab no or only small torsional moments are introduced into the side members.
  • the according to the KR 20110127629 A obliquely arranged tension members disadvantageous for the laying of the reinforcement and the production of in-situ concrete layer.
  • Another disadvantage is that between the upstand, in which the anchors of the precast panels are arranged for the tension members, and the in-situ concrete layer a continuous working joint at the top of the deck plate in the longitudinal direction of the bridge is formed. In this construction joint, cracking may occur which allows water to seep into the deck plate.
  • the method steps -a to -i relate essentially to the formation of support structures on the upper side of the bridge longitudinal members, the assembly or production of a movable carriage and the mounting of the carriage on the support structures.
  • the subsequent method steps -j- to -q- relate essentially to a sequence of the production steps in order to transport prefabricated panels with the aid of the carriage to the intended installation location of the prefabricated panels and to place them there in such a way that a precast concrete layer of in-situ concrete can be applied to the prefabricated panels ,
  • the fasteners of the precast slabs are released at the lower end points of the tension members and the carriage is moved to the original or another assembly site to accommodate there optionally further prefabricated panels.
  • the carriage is essentially moved in the longitudinal direction of the bridge to a mounting location at which the attachment of prefabricated panels in raised, elevated position takes place at the lower end points of the tension members.
  • the carriage is moved to the intended installation location of the prefabricated panels, wherein the lowering of the prefabricated panels takes place on a bridge longitudinal member at the corresponding installation location.
  • a reinforced concrete layer of in-situ concrete is applied to the precast panels and there is a release of the attachment of the lower end points of the tension members after hardening of the concrete layer.
  • the inventive method has at least two major advantages: It is no construction of orthogonally arranged steel beams under the deck plate required and in the construction state, either none or only low torsional moments introduced into the bridge longitudinal members. Another advantage is that the method according to the invention is equally suitable for bridge longitudinal members of steel, reinforced concrete or prestressed concrete.
  • This method is also particularly advantageous because in addition to the bridge no lifting device, such as a tower crane or a mobile crane, for mounting the precast panels is required. If necessary, additional lifting equipment is only required on the assembly site.
  • the movable carriage for the Longitudinal transport of reinforcement, concrete and other building materials used on the bridge may be advantageous to arrange one or more lifters on the car, so as to accelerate, for example, the laying of the reinforcement.
  • the required for laying the prefabricated panels cart may consist of a steel structure, which is assembled on site from pre-fabricated elements by means of screw and / or plug connections.
  • the framework of the frame can be designed as a frame or truss structure or as a combination of frame and truss structures. After completion of the deck slab, the wagon can be dismantled and the items can be reassembled into a wagon on another bridge construction site.
  • connection of the prefabricated panels can also be advantageous in this case in order to avoid that the prefabricated panels abut one another during the longitudinal transport along the bridge longitudinal member. It may also be advantageous to connect some prefabricated panels with temporary retaining devices to the cart.
  • the design of the support structures is an essential part of the method according to the invention.
  • the support structures have the task to initiate the normal forces from the dead weight of the car, the precast slabs and the concrete layer in the bridge side members. Bending moments, for example from a wind load of the car, must also be introduced via the support structures into the longitudinal bridge members.
  • the support structures serve to avoid the direct contact between the in-situ concrete layer of concrete and the carriage to allow reuse of the car in the next phase of construction.
  • a support structure is formed from a concrete prism and the concrete prism is mounted on a bridge side rail such that the top of the concrete prism is equidistant or slightly higher than the surface of the concrete layer and the top of the concrete prism is approximately parallel to the surface of the concrete layer.
  • a support structure can also be designed as a steel profile, which is rigidly connected to a bridge longitudinal beam made of steel by a welded connection.
  • the length of the steel profile should be selected so that the upper end point of the steel profile in installation position is equal to or higher than the surface of the concrete layer. This ensures that the Verschublager mounted at the upper end of the steel profile is not contaminated by concrete during the manufacture of the concrete layer and thus remains functional. After making the concrete layer and disassembling the carriage, all steel profiles near the surface of the concrete layer are cut off.
  • a support structure can also be designed as a hollow profile so that the dimensions of the hollow profile enable the insertion of a steel profile.
  • the hollow profile is mounted on the bridge longitudinal member so that the heavy axis of the hollow profile is parallel to the axis of gravity of the steel profile to be inserted and the length of the hollow profile is chosen so that the upper edge of the hollow profile in installation position is equal to or higher than the surface of the concrete layer.
  • An advantage of the manufacturing method according to the invention is the vertical arrangement of the tension members.
  • the work required to produce the concrete layer which consists mainly of the laying of the reinforcement, the production of a Randabschalung and from the introduction and smoothing of in-situ concrete, hampered only to a small extent.
  • An oblique arrangement of the tension members causes, compared to vertically mounted tension members, greater obstruction for the people working on the bridge.
  • the arrangement of individual diagonally arranged tension members may also be advantageous, since an undesired horizontal movement of the precast slabs during transport from the installation site to the installation location can be avoided as far as possible by the oblique arrangement.
  • tension members On obliquely arranged tension members can be omitted if the vertically arranged tension members are rigidly connected to the car and they have such a high bending stiffness that unwanted horizontal movements or vibrations of precast panels are reduced when starting or braking the car to a tolerable level.
  • square steel hollow profiles having a side length of 60 mm, a wall thickness of 5 mm, a moment of inertia of 54.1 cm 4, and a modulus of elasticity of 20,000 kN / cm 2 are used as tension members Bending stiffness obtained by multiplying moment of inertia and Young's modulus, 1,082,000 kN cm 2 .
  • At least individual obliquely arranged tension members can be used, which are made of a material with high bending stiffness.
  • the formation of the anchors of precast slabs for secure connection to the lower end points of the tension members can be done in different ways.
  • the formation of anchors within the precast slabs for example, by reinforcing bars, anchor heads or threaded rods with nuts, because this work for making the connection of tension member and precast slab can be performed from the top of the precast slabs.
  • the anchors may be advantageous to arrange the anchors on the underside of the precast slabs.
  • the tension members must be performed through holes arranged in the precast panels. Dismantling of anchors mounted on the underside of the precast slabs by persons positioned on the surface of the concrete layer is possible when the anchors are connected, for example, with a rope led from the underside of the precast slabs to the surface of the facing layer. After loosening the anchorages, the rope prevents the anchors from falling down and allows controlled retrieval of the anchorages.
  • connection between a prefabricated panel and a tension member can be effected by a mutual rotation between the threaded tension member and a nut, which serves to anchor the tension member takes place.
  • a faster solution of the connections between prefabricated panels and tension members takes place when parts of the load-bearing structure of the wagon, to which the upper end points of the tension members are anchored, are lowered by means of hydraulic presses.
  • end anchors and deflection points for transverse tendons can be installed on and / or in the precast slabs.
  • the prestressing of the transverse tensioning members can already take place with a low strength of the concrete layer because the transverse tensioning members run in a straight line between the end anchorages and the deflection points.
  • the ducts for the transverse tendons, if a post-tensioned post-tensioning is used, may be laid in part on the prefabricated slabs on the assembly site, along with the reinforcing steel reinforcement.
  • a bridge longitudinal beam is made of reinforced concrete or prestressed concrete, it may be advantageous to mount a plate edge of a precast slab in a recess arranged in a side face of the bridge longitudinal beam.
  • a carriage for producing a roadway slab with a method according to the invention wherein the carriage comprises two Verschubtrager, at least four supports, at least two cross members and tension members, which are joined together to form a spatial frame structure, each cross member by means of the supports is attached to each two Verschubyn, and the two Verschuby are arranged such that they rest on connected to the at least one bridge longitudinal beams Verschublagern in the longitudinal direction of the bridge movable, the carriage preferably has hydraulic presses for raising and lowering of prefabricated panels, as well as the car is provided to transport prefabricated panels from a mounting station to a mounting location along the bridge, and the carriage additionally the weight of a concrete layer during the concreting process and during the hardening of the concrete layer aufnimm t, thereby introducing this weight into the at least one bridge longitudinal member of the bridge.
  • a carriageway slab with underlying prefabricated slabs and an overburden layer of in-situ concrete disposed therebetween for a bridge with at least one bridge longitudinal member which is produced by a method according to one of claims 1 to 19 with the aid of a carriage having the features of claim 20, is further specified ,
  • a first embodiment of the method according to the invention is in Fig. 1 to Fig. 9 shown.
  • Fig. 1 four supports 6, two cross members 9, two frame members 28, 29 and two Verschub within 25, 26 are joined together to form a spatial frame structure 31.
  • the spatial frame construction 31 according to Fig. 1 serves as a carriage 27, which can be moved on the upper end points 20 of support structures 15 permanently mounted Verschublagern 24 longitudinally along two bridge longitudinal members 5 of a bridge 4.
  • the supports 6 are attached with their upper end points 7 to one of the cross member 9 and connect them to the two Verschublen 25, 26, which are respectively secured to lower end points 8 of the supports.
  • prefabricated panels 2 are attached by means of tension members 11 on the carriage 27.
  • each precast panel 2 is held by two tension members 11.
  • the prefabricated panels 2 are connected by connecting structures 39 together.
  • Fig. 3 The prefabricated panels 2 are then by means of a lifting device, which in Fig. 3 is not shown, raised in an elevated position, that a distance between the bottom 56 of the precast panels 2 and the upper chords 32 of the bridge rails 5 remains.
  • Fig. 5 illustrates the in Fig. 3 marked detail view A.
  • Fig. 4 By increasing the lengths of the tension members 11, which change in length can be realized for example by threaded rods 49 with nuts or by lowering devices with hydraulic presses 30, it is according to Fig. 4 possible to store the prefabricated panels 2 at their plate edges 10 on the upper chords 32 of the bridge longitudinal members 5. On the lowered prefabricated panels 2, a reinforcement is then laid and then a Aufbeton Mrs 3 applied.
  • Fig. 6 shows the detail B of Fig. 4 ,
  • the supports 6 are connected in this embodiment of the method according to the invention with their lower end points 8 on Verschublen 25, 26 with welds 34 rigid.
  • the Verschub portions 25, 26 are mounted on Verschublagern 24.
  • the Verschublager 24 are designed, for example, as a roller bearing or as sliding bearing so that the Verschublic 25, 26 can be moved in the longitudinal direction along the bridge longitudinal member 5 of the bridge 4.
  • the Verschublager 24 are attached to the upper end points 20 of support structures 15.
  • the support structures 15, the are formed here as steel profiles 44 are rigidly connected to the upper chords 32 of the bridge longitudinal beams 5.
  • the prefabricated panels 2 are in Fig. 5 in raised or elevated position and in Fig. 6 shown in lowered position.
  • the prefabricated panels 2 In the elevated position, the prefabricated panels 2 must be arranged so high that it is possible to overtravel the concrete layer 3 of already completed construction sections. In the lowered position according to 4 and FIG. 6 the plate edges 10 of the prefabricated panels 2 are supported on the upper chords 32 of the bridge longitudinal members 5.
  • the steel profiles 44 are concreted in the application of the concrete layer 3.
  • the tension members 11 are protected by sheaths 36 from direct contact with the concrete layer 3. This allows removal of the tension members 11 after hardening of the concrete layer 3 and reuse of the tension members 11 in the next construction period.
  • the steel profiles 44 are cut off after the hardening of the concrete layer 3 and after the disassembly of the Verschublager 24 in the vicinity of the surface 18 of the concrete layer 3.
  • a tension member 11 formed from a threaded rod 49 is performed through a hole 35 which is arranged in the precast slab 2 and anchored 14 on the underside 56 of the precast slab 2 with a washer and a nut.
  • this anchor 14 which is formed by the hole 35, the washer and the nut, a portion of the dead weight of the precast plate 2 and a portion of the weight of the concrete layer 3 is introduced into the tension member 11.
  • a cladding tube 36 is fixed in the hole 35 prior to assembly of the tension member 11.
  • the washer and the associated nut of the anchor 14 are connected to a rope 37.
  • connection of the cable 37 is optionally sufficient with the washer or the nut to prevent accidental dropping of the anchor 14 during disassembly of the tension members 11.
  • tension member 11 is rotated out of the top of the hole 35.
  • the dropping of the nut, which is here connected to the washer is prevented by the cable 37, because the other end of the cable 37 is attached to the carriage 27.
  • the reinforcement is not shown in this embodiment.
  • a part of the reinforcement is arranged in the prefabricated panels 2. Part of the reinforcement will be applied before applying the Concrete layer 3 installed.
  • the installation of the reinforcement of the concrete layer can already be done to a large extent on a mounting place 42, as in Fig. 7 is illustrated. At the respective installation location 43, only the upper reinforcement in the transverse direction in the region of the negative moments when connecting the cantilevers must be added.
  • FIG. 3 and FIG. 5 show that the prefabricated panels 2, two cantilevered plates and a plate arranged between the bridge longitudinal members plate are formed. These three plates must be separated from each other to allow the carriage 27 to move longitudinally of the bridge 4 and to lower the precast slabs.
  • the reinforcement which is required to connect the cantilevered plates and the plate arranged between the bridge longitudinal members 5 plate, therefore, can be installed only at the installation site 43.
  • a bridge 4 comprising two abutments 40, five pillars 41 and two bridge longitudinal members 5 is shown in the figures FIGS. 7 to 9 shown.
  • support structures 15 are mounted on the bridge rails 5 and on one of the two abutments 40.
  • the carriage 27, which in this case comprises four supports 6, two transverse supports 9, two frame supports 28, 29 and two transfer supports 25, 26, is moved by means of winches to the assembly station 42, which is arranged here above one of the two abutments 40.
  • the prefabricated panels 2 are suspended by means of tension members 11 on the cross members 9 of the carriage 27.
  • the prefabricated panels 2 are mounted in raised, elevated position to avoid contact with the upper chords 32 of the bridge longitudinal members 5 in the process of the carriage 27 in the longitudinal direction of the bridge 4 and to allow a run over the concrete layer 3 of already completed construction sections of a carriageway panel 1.
  • the carriage 27 and the prefabricated panels 2 suspended therefrom are moved from the assembly site 42 to the intended installation location 43 in the next method step.
  • the precast slabs 2 are lowered until the slab edges 10 of the precast slabs 2 rest on the upper chords 32 of the longitudinal bridge girders 5.
  • the concrete layer 3 can be applied.
  • the tension members 11 are released from the anchors 14 of the precast slabs and the carriage 27 is moved to the assembly station 42, so that there the precast panels 2 can be mounted on the carriage 27 for the next construction period.
  • the assembly station 42 is located in this embodiment on an abutment 40. It may also be advantageous to move the assembly station 42 onto the bridge 4 after the first sections of the carriageway panel 1 have been produced.
  • Fig. 9 After the production of the deck 1, all the support structures 15 are removed by cutting off the steel profiles 44 in the vicinity of the surface 18 of the facing layer 3. Subsequently, the bridge 4 is completed in a conventional manner by the application of a seal on the surface 18 of the concrete layer 3 and the subsequent application of a road surface.
  • a second embodiment of the method according to the invention is shown in the figures 10 to FIG. 13 shown.
  • bridge 4 corresponds to the bridge shown in the first embodiment 4.
  • the in Fig. 10 shown carriage 27 includes in this embodiment, eight supports 6, four cross member 9, two frame members 28, 29 and two Verschuble 25, 26.
  • the carriage 27 is stiffened by bandages 38 in the longitudinal direction.
  • FIG. 12 shows according to the in each case in Fig. 10 as in Fig. 11 Plotted sectional planes XII-XII that a hollow section 16 is rigidly connected by welds 34 with the upper flange 32 of the bridge longitudinal member 5.
  • a steel profile 44 is arranged in a vertical position and fixed in position.
  • the precast panels are supported along their plate edges 10 on the upper chords 32 of the bridge longitudinal member 5.
  • the length of the hollow profile 16 is carried out so that the upper edge 17 of the hollow section 16 is above the surface 18 of the concrete layer 3, in order to prevent penetration of the in-situ concrete during application of the concrete layer 3 in the hollow section 16.
  • Fig. 13 shows that the prefabricated panels 2 may have a cross-sectional shape with kinks 57.
  • the shape of the final roadway panel 1, which is formed from the precast panels 2 and the concrete layer 3, can thereby be advantageously adapted to the statically required cross-sectional dimensions.
  • Fig. 13 also shows that the thickness of the prefabricated panels 2 can be variable.
  • FIG. 13 illustrated sectional view according to each in Fig. 10 as in Fig. 11 Plotted sectional planes XIII-XIII is arranged at a position in which a transverse tension member 59 is located in the carriageway plate 1.
  • the end anchors 60 and the deflection points 61 of the transverse tension member 59 are already formed during the production of the precast panels 2. This has the advantage that the anchoring and deflecting forces occurring during the tensioning of the transverse tensioning member 59 are introduced into the already completely hardened end anchors 60 and deflection points 61 and the tensioning of the transverse tensioning member 59 can already take place with a low concrete strength of the concrete layer 3.
  • a cube compressive strength of the concrete in the end anchor 60 having values of 30 MPa to 50 MPa is required.
  • the tensioning of the transverse tensioning member can already be carried out at a cube compressive strength of the concrete layer, for example, 10 MPa.
  • a cube compressive strength of the concrete layer for example, 10 MPa.
  • FIGS. 14 to 18 A third embodiment of the method according to the invention is shown in the figures FIGS. 14 to 18 shown.
  • the bridge longitudinal member 5 is made here with a hollow box section of prestressed concrete.
  • the projecting prefabricated panels 2 are suspended with tension members 11 from the carriage 27.
  • the carriage 27 additionally serves to suspend pressure struts 58, which in the final state support the cantilevered parts of the carriageway panel 1.
  • the carriage 27 has a raising and lowering device for raising and lowering the precast slabs 2, which is formed by hydraulic presses 30. By extending the piston of the hydraulic press 30, the cross member 9, the tension members 11, the precast panels 2 and the pressure struts 58 are raised.
  • the raised upper portion of the carriage is stabilized by additional constructions to avoid undue transverse stresses on the extended pistons of the hydraulic presses 30. These additional constructions are in Fig. 14 for the sake of clarity not shown.
  • a plate edge 10 of each finished part plate 2 is mounted on the bridge longitudinal member 5.
  • a working platform 46 is attached to a railing 47.
  • a lateral formwork 48 is fastened to the plate edge 10 on the left-hand side of the projecting prefabricated slab 2.
  • the attachment of a lateral formwork 48 is advantageous because a working joint 21 between the prefabricated panels 2 and the in Fig. 14
  • the concrete layer 3, which is not shown, does not thereby come to lie in the plane of the surface 18 of the concrete layer 3.
  • a further improvement in the durability of the roadway slab 1 can be achieved by arranging the work joint 21 between the precast slabs 2 and the facing layer 3 on the underside 56 of the precast slab 2. To accomplish this, is done according to Fig.
  • the lateral formwork 48 is arranged on the work platform 46 at a distance from the plate edge 10 of the precast panel 2 and a part of the working platform 46 is formed as a lower formwork for the concrete layer 3. This is on the right edge of the picture Fig. 14 shown.
  • bridge longitudinal member 5 arise in the in Fig. 14 shown construction state only small torsional moments caused by the eccentric arrangement of the working platform 46 on the here in Fig. 14 right side of the bridge 4 are caused. Because of the symmetrical in cross-section arrangement of bridge longitudinal beams 5, prefabricated panels 2 and 3 Aufbeton Anlagen, causes the weight of these components in. The substantial stresses on the bridge longitudinal member 5 Sum of torsional moments, but only bending moments in the bridge longitudinal beam 5. This is advantageous because it is known that bridge longitudinal beams 5 are made of prestressed concrete much better for absorbing bending moments than for absorbing torsional moments.
  • the design of the support structure 15 for this embodiment of the method according to the invention is in Fig. 15 representing the detail C of Fig. 14 shows.
  • the lower end point of a steel profile 44 is according to Fig. 15 stored on steel plates 45. With the steel plates 45 a positionally accurate positioning of the Verschublager 24 is possible.
  • the concreting of the hollow sections 16 in the bridge longitudinal member 5 allows a cost-rigid mounting of the support structure 15 on the bridge longitudinal member 5, which is produced by the insertion of the steel profile 44 in the hollow section 16.
  • Steel wedges 55 are thereby taken from the upper edge 17 of the hollow section 16 in the gaps between the hollow section 16 and the steel profile 44, thereby fixing the steel profile 44 in its position in the hollow section 16.
  • Fig. 16 illustrates detail D of Fig. 14
  • the introduction of the compressive forces of precast panels 2 in the bridge longitudinal member 5 is carried out according to Fig. 16 in that the plate edges 10 of the precast plates 2 are mounted in a recess 53.
  • a leveling layer 54 of epoxy resin or mortar is advantageously applied between the precast slab 2 and the bridge longitudinal beam 5.
  • FIG. 17 One possibility for forming the anchoring 14 of the precast slab 2 is in Fig. 17 represented, which the in Fig. 14 marked detail E in a large view shows.
  • a reinforcing bar 52 is embedded in concrete in the prefabricated slab 2.
  • transverse bars 51 are welded in order to be able to better initiate the tensile force taken over by the reinforcing bar 52 into the concrete of the precast slab 2.
  • a sleeve 50 is attached at the protruding from the precast plate 2 end of the reinforcing bar 52.
  • the tension member 11 is formed as a threaded rod 49.
  • the lower end 13 of the tension member 11 is fixed by screwing the threaded rod 49 in the sleeve 50.
  • FIG Fig. 18 An alternative embodiment of the support structure 15 is shown in FIG Fig. 18 shown.
  • a concrete prism 22 is mounted on the bridge side member 5.
  • a compensation layer 54 between the concrete prism 22 and the bridge longitudinal member 5.
  • the Verschublager 24 is mounted on the top 23 of the concrete prism 22.
  • FIG Fig. 19 A fourth embodiment of the method according to the invention is shown in FIG Fig. 19 shown.
  • the tension members 11 of the cantilevered plates are mounted in an inclined position.
  • horizontal movements of the precast panels 2, for example, when starting or braking of the carriage 27 due to Mass inertia forces would occur, significantly reduced in size.
  • tension members 11 When tension members 11 are installed in a vertical position, as in Fig. 19 is shown in the region between the bridge longitudinal members 5, the tension members 11 must have a sufficient bending stiffness to prevent disturbing horizontal movements of the precast slabs 2 during startup and braking of the carriage 27.
  • the prefabricated panels 2 connected by joint structures 39 may be connected to the carriage 27 by temporary fasteners 19 to achieve sufficient stabilization during the carriage 27 process.
  • two temporary retaining devices 19 are shown, which can be connected to the prefabricated panels 2 after lifting the prefabricated panels 2 arranged between the bridge longitudinal members 5.
  • FIG Fig. 20 A fifth embodiment of the method according to the invention is shown in FIG Fig. 20 shown.
  • the cross member 9 are formed as a truss structure 33.
  • a truss structure 33 has the advantage of a higher rigidity compared to a purely bending-stressed supporting structure, which corresponds for example to the cross member 9 of the first embodiment.
  • the bridge longitudinal members 5 are made of rectangular reinforced concrete beams.
  • the projecting prefabricated panels 2 are placed on the bridge longitudinal beams 5.
  • the arranged between the bridge longitudinal members 5 finished part plate 2 is superimposed on the left side in a recess 53 in the bridge longitudinal member 5.
  • On the right side the plate edge 10 of the precast plate 2 at a distance from the bridge longitudinal member 5. This results in the connection of the prefabricated slab 2 to the right bridge side member 5 in the longitudinal direction of the bridge 4 extending working joint 21st
  • welded connections shown in the examples can be replaced by screwed, riveted, glued and / or clamped connections.
  • the anchors 14 of the precast slabs 2 shown in the examples may also be replaced by other equivalent embodiments, such as by concreted threaded rods 49 with end plates or by conical anchors.
  • the prefabricated panels 2 shown in the examples are advantageously industrially produced products made of reinforced concrete.
  • the prefabricated panels 2 can also be made of prestressed concrete, textile-reinforced concrete, fiber concrete or ultra-high-strength concrete. It may also be advantageous to produce the prefabricated panels 2 directly on site or at least in the vicinity of the bridge 4 to be erected.
  • the tension members 11 are attached with their upper end points 12 to cross members 9 of the carriage 27. It may also be advantageous to attach the tension members 11 to other structural parts of the carriage 27, such as the frame rails 28, 29.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Claims (21)

  1. Procédé de fabrication d'une dalle de tablier (1), sous laquelle sont situées des dalles préfabriquées (2) et sur laquelle est agencée une couche supérieure de béton (3) faite de béton coulé sur place pour un pont (4) ayant au moins un support longitudinal de pont (5), caractérisé par le fait que
    - a - sur la face supérieure dudit au moins un support longitudinal de pont (5), sont formées des structures d'appui (15) ;
    - b - sur des points d'extrémité supérieurs (20) espacés les uns des autres des structures d'appui (15), sont montés des paliers de lançage (24) ;
    - c - les paliers de lançage (24) sont orientés dans la direction longitudinale du pont (4) de telle sorte que ceux-ci agissent comme appui pour des déplacements uniquement dans la direction longitudinale du pont (4) ;
    - d - un premier support de lançage (25) et un deuxième support de lançage (26), chacun ayant une longueur de support, laquelle est plus grande que le double de la distance entre des paliers de lançage (24) voisins dans la direction longitudinale du pont (4), sont montés déplaçables dans le sens longitudinal du pont (4), chacun sur au moins deux paliers de lançage (24) ;
    - e - les deux supports de lançage (25, 26) sont montés de telle sorte que l'axe de gravité du deuxième support de lançage (26) est parallèle à l'axe de gravité du premier support de lançage (25), et les deux supports de lançage (25, 26) dans un plan en coupe normal à l'axe longitudinal du pont (4) sont espacés l'un de l'autre et les deux supports de lançage (25, 26) sont disposés sensiblement le long de la même section longitudinale du pont (4) ;
    - f - au moins deux supports (6) espacés l'un de l'autre sont reliés chacun par leurs points d'extrémité inférieurs (8) en position sensiblement verticale avec le premier support de lançage (25) ; et
    - g - au moins deux autres supports (6) espacés l'un de l'autre sont reliés par leurs points d'extrémité inférieurs (8) en position sensiblement verticale avec le deuxième support de lançage (26) ;
    - h - sur les points d'extrémité supérieurs (7) des supports (6), sont fixés des supports transversaux (9) en position sensiblement horizontale, chaque support transversal (9) étant fixé respectivement sur un premier support (6) relié au premier support de lançage (25) et sur un deuxième support (6) relié au deuxième support de lançage (26) ; et
    - i - des organes de traction (11) sont fixés chacun aux supports transversaux (9), après quoi
    - j - une structure de cadre spatiale (31), obtenue par la liaison des supports de lançage (25, 26), des supports (6) et des supports transversaux (9), forme un chariot (27), qui est déplaçable dans la direction longitudinale du pont (4) et est déplacé jusqu'à un site de montage (42) ;
    - k - sur le site de montage (42), des dalles préfabriquées (2) sont fixées en position surélevée sur les points d'extrémité inférieurs (13) des organes de traction (11), et ensuite
    - l - le chariot (27) avec les dalles préfabriquées (2), est déplacé jusqu'au site d'installation prévu (43) des dalles préfabriquées (2), après quoi
    - m - les dalles préfabriquées (2) sont abaissées jusqu'à ce qu'au moins un bord de dalle (10) d'au moins une dalle préfabriquée (2) s'appuie sur un support longitudinal de pont (5) ; et
    - n - une armature à disposer dans la couche supérieure de béton (3) est posée ; et
    - o - sur les dalles préfabriquées (2), est appliquée une couche supérieure de béton (3) faite de béton coulé sur place, les points d'extrémité supérieurs (20) des structures d'appui (15) en position d'installation se situant à la même hauteur ou plus haut que la surface (18) de la couche supérieure de béton (3) ; et
    - p - après le durcissement de la couche supérieure de béton (3), la fixation des dalles préfabriquées (2) sur les points d'extrémité inférieurs (13) des organes de traction (11) est libérée, et enfin
    - q - le chariot (27) est déplacé jusqu'à un site de montage (42) afin d'y recevoir, le cas échéant, d'autres dalles préfabriquées (2).
  2. Procédé selon la revendication 1, caractérisé par le fait que
    - au moins une structure d'appui (15) est formée d'un profilé en acier (44) ; et
    - le profilé en acier (44) est relié rigidement en flexion avec le support longitudinal de pont (5) de telle sorte que l'axe de gravité du profilé en acier (44) s'étend sensiblement parallèlement à l'axe de gravité des supports (6) ;
    - la longueur du profilé en acier (44) est choisie de telle sorte que le point d'extrémité supérieur du profilé en acier (44) se situe, en position d'installation, à la même hauteur ou plus haut que la surface (18) de la couche supérieure de béton (3) ; et
    - pour le démontage de la structure d'appui (15), le profilé en acier (44) est coupé près de la surface (18) de la couche supérieure de béton (3).
  3. Procédé selon la revendication 1, caractérisé par le fait que
    - au moins une structure d'appui (15) est formée d'un prisme de béton (22),
    - le prisme de béton (22) est monté sur le support longitudinal de pont (5) de telle sorte que la face supérieure (23) du prisme de béton (22) est disposée à la même hauteur ou légèrement plus haut que la surface (18) de la couche supérieure de béton (3), la face supérieure (23) du prisme de béton (22) étant sensiblement parallèle à la surface (18) de la couche supérieure de béton (3) ; et
    - le prisme de béton (22) reste dans la couche supérieure de béton (3).
  4. Procédé selon la revendication 1, caractérisé par le fait que
    - au moins une structure d'appui (15) est formée d'un profilé creux (16) et d'un profilé en acier (44) ;
    - les dimensions du profilé creux (16) sont mesurées de telle sorte que l'introduction du profilé en acier (44) dans le profilé creux (16) est permise ; et
    - le profilé creux (16) est relié rigidement en flexion avec le support longitudinal de pont de telle sorte que l'axe de gravité du profilé creux (16) s'étend approximativement parallèlement aux axes de gravité des supports (6) ;
    - la longueur du profilé creux (16) est choisie de telle sorte que le bord supérieur (17) du profilé creux (16), en position d'installation, se situe à la même hauteur ou plus haut que la surface (18) de la couche supérieure de béton (3) ; et
    - pour le démontage de la structure d'appui (15), le profilé en acier (44) est retiré et le profilé creux (16) est coupé au voisinage de la surface (18) de la couche supérieure de béton (3).
  5. Procédé selon l'une des revendications 1 à 4, caractérisé par le fait que le chariot (27) comporte une structure en acier, qui se compose d'éléments fabriqués au préalable sur le chantier de construction de pont au moyen de liaisons par vis et/ou par emboîtement.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé par le fait que le chariot (27) est démonté après achèvement de la dalle de tablier (1) et le cas échéant est réutilisé pour la fabrication d'une dalle de tablier (1) dans le cas d'un autre pont (4).
  7. Procédé selon l'une des revendications 1 à 6, caractérisé par le fait qu'une structure de cadre spatiale (31) du chariot (27) est au moins partiellement constituée de structures de charpente (33).
  8. Procédé selon l'une des revendications 1 à 4, caractérisé par le fait qu'après la fixation des dalles préfabriquées (2) sur les points d'extrémité inférieurs (13) des organes de traction (11), les dalles préfabriquées (2) sont reliées les unes aux autres par des structures de liaison (39) disposées dans la région des bords de dalle (10) .
  9. Procédé selon l'une des revendications 1 à 8, caractérisé par le fait que les dalles préfabriquées (2) sont élevées sur le site de montage (42) au moyen de presses hydrauliques (30) montées sur le chariot (27) et sont abaissées sur le site d'installation (43).
  10. Procédé selon l'une des revendications 1 à 8, caractérisé par le fait que les dalles préfabriquées (2) sont abaissées sur le site d'installation (43) par une rotation mutuelle des organes de traction (11) dotés d'un filetage et des écrous fixés sur le point d'extrémité supérieur (12).
  11. Procédé selon l'une des revendications 1 à 10, caractérisé par le fait que les dalles préfabriquées (2) sont fixées sur des organes de traction (11) disposés obliquement sur le chariot (27), ce par quoi des mouvements horizontaux des dalles préfabriquées (2) sont évités autant que possible pendant le déplacement du chariot (27).
  12. Procédé selon l'une des revendications 1 à 11, caractérisé par le fait que des organes de traction (11) ayant une rigidité en flexion élevée sont utilisés, ce par quoi des mouvements horizontaux des dalles préfabriquées (2) sont évités autant que possible pendant le déplacement du chariot (27).
  13. Procédé selon l'une des revendications 1 à 9, caractérisé par le fait que les dalles préfabriquées (2) sont fixées sur le chariot (27) à l'aide de dispositifs de retenue temporaires (19), ce par quoi des mouvements horizontaux des dalles préfabriquées (2) sont évités autant que possible pendant le déplacement du chariot (27).
  14. Procédé selon l'une des revendications 1 à 13, caractérisé par le fait que l'armature pour la couche supérieure de béton (3) est posée sur le site de montage (42) sur les dalles préfabriquées (2) montées sur les organes de traction (11), et le chariot (27), avec les dalles préfabriquées (2) y compris l'armature posée pour la couche supérieure de béton (3), est déplacé jusqu'au site d'installation prévu (43) des dalles préfabriquées (2).
  15. Procédé selon l'une des revendications 1 à 14, caractérisé par le fait que l'armature pour la couche supérieure de béton (3) est posée sur le site de montage (42) au moins partiellement sur les dalles préfabriquées (2) .
  16. Procédé selon l'une des revendications 1 à 15, caractérisé par le fait que sont utilisées des dalles préfabriquées (2) sur lesquelles des ancrages d'extrémité (60) et des points de déviation (61) sont formés pour des organes de serrage transversaux (59).
  17. Procédé selon l'une des revendications 1 à 16, caractérisé par le fait qu'au moins une dalle préfabriquée (2) est en appui dans un évidement (53) disposé dans un support longitudinal de pont (5) en béton armé ou en béton précontraint.
  18. Procédé selon l'une des revendications 1 à 17, caractérisé par le fait qu'un organe de traction (11) est amené à traverser un trou (35) d'une dalle préfabriquée (2), et l'organe de traction (11) est ancré par un ancrage (14) sur la face inférieure (56) de la dalle préfabriquée (2) .
  19. Procédé selon l'une des revendications 1 à 18, caractérisé par le fait qu'un point d'extrémité inférieur (13) d'un organe de traction (11) est ancré dans un ancrage (14) disposé à l'intérieur de la hauteur de section transversale de la dalle préfabriquée (2).
  20. Chariot (27) pour la fabrication d'une dalle de tablier (1) par un procédé selon l'une des revendications 1 à 19,
    caractérisé par le fait que
    - le chariot (27) comporte deux supports de lançage (25, 26), au moins quatre supports (6), au moins deux supports traversaux (9) ainsi que des organes de traction (11), qui sont assemblés pour former une structure de cadre spatiale (31) ;
    - chaque support transversal (9) est fixé au moyen des supports (6) respectivement sur les deux supports de lançage (25, 26) ; et
    - les deux supports de lançage (25, 26) sont disposés de telle sorte que ceux-ci (25, 26) s'appuient, de manière déplaçable dans la direction longitudinale du pont (4), sur des paliers de lançage (24) reliés audit au moins un support longitudinal de pont (5) ;
    - le chariot (27) présente, de préférence, des presses hydrauliques (30) pour élever et abaisser des dalles préfabriquées (2) ; et
    - le chariot (27) est prévu pour transporter des dalles préfabriquées (2) d'un site de montage (42) à un site d'installation (43) le long du pont (4) ; et
    - le chariot (27) reçoit en plus le poids d'une couche supérieure de béton (3) pendant le bétonnage ainsi que pendant le durcissement de la couche supérieure de béton (3) et à cette occasion introduit ce poids dans ledit au moins un support longitudinal de pont (5) du pont (4).
  21. Dalle de tablier (1) sous laquelle sont situées des dalles préfabriquées (2) et sur laquelle est agencée une couche supérieure de béton (3) en béton coulé sur place pour un pont (4) avec au moins un support longitudinal de pont (5), fabriquée par un procédé selon l'une des revendications 1 à 19 à l'aide d'un chariot (27) selon la revendication 20.
EP16728596.4A 2015-05-27 2016-05-24 Procédé de fabrication d'une dalle de tablier pour un pont Active EP3303707B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA332/2015A AT517231B1 (de) 2015-05-27 2015-05-27 Verfahren zur Herstellung einer Fahrbahnplatte für eine Brücke
PCT/AT2016/050158 WO2016187634A1 (fr) 2015-05-27 2016-05-24 Procédé de fabrication d'une dalle de tablier pour un pont

Publications (2)

Publication Number Publication Date
EP3303707A1 EP3303707A1 (fr) 2018-04-11
EP3303707B1 true EP3303707B1 (fr) 2019-06-26

Family

ID=56119239

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16728596.4A Active EP3303707B1 (fr) 2015-05-27 2016-05-24 Procédé de fabrication d'une dalle de tablier pour un pont

Country Status (3)

Country Link
EP (1) EP3303707B1 (fr)
AT (1) AT517231B1 (fr)
WO (1) WO2016187634A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT520614B1 (de) * 2017-11-07 2019-12-15 Prof Dr Ing Johann Kollegger Verfahren zur Herstellung einer Fahrbahnplatte mit untenliegenden Fertigteilplatten
WO2019090374A1 (fr) 2017-11-07 2019-05-16 Kollegger Gmbh Procédé de fabrication d'une poutre de pont d'un pont en béton précontraint
EP4133130A1 (fr) 2020-04-08 2023-02-15 Kollegger GmbH Procédé de fabrication d'un tablier de chaussée pour un pont
AT524664B1 (de) * 2021-06-09 2022-08-15 Kollegger Gmbh Verfahren zur Herstellung einer Brücke aus Fertigteilträgern und Fahrbahnplattenelementen
CN114482565B (zh) * 2022-03-02 2022-09-02 中国建筑第二工程局有限公司 一种带有室内冰场的毗邻式多层体育馆修建方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19544557C1 (de) * 1995-11-29 1997-01-23 Geruestbau Broecking Gmbh Schalwagen
DE102007047439A1 (de) * 2007-10-04 2009-04-16 Doka Industrie Gmbh Schalungsanrodnung für den Freivorbau von Brücken
CN104631343B (zh) * 2015-02-15 2016-08-24 河海大学 自走行菱形销结桁架式挂篮结构及挂篮走行和施工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2016187634A1 (fr) 2016-12-01
AT517231B1 (de) 2016-12-15
AT517231A4 (de) 2016-12-15
EP3303707A1 (fr) 2018-04-11

Similar Documents

Publication Publication Date Title
EP3303707B1 (fr) Procédé de fabrication d'une dalle de tablier pour un pont
EP2914790B1 (fr) Procédé de construction d'une tour en béton armé
EP2088244B1 (fr) Pont en béton armé ou pont de construction composite et methode pour sa fabrication
EP2143843A2 (fr) Auge composite en acier-béton formant tablier de pont et son procédé de fabrication
EP0133850A1 (fr) Procédé et appareil pour la construction d'un tablier de pont en béton précontraint
WO2022256851A1 (fr) Procédé de fabrication d'un pont à partir de poutres en pièces finies et d'éléments de plaques de chaussée
WO2019090374A1 (fr) Procédé de fabrication d'une poutre de pont d'un pont en béton précontraint
AT520614B1 (de) Verfahren zur Herstellung einer Fahrbahnplatte mit untenliegenden Fertigteilplatten
DE2247609B1 (de) Verfahren zum herstellen eines brueckenbauwerks aus spannbeton im abschnittsweisen freien vorbau
EP0350525B1 (fr) Procédé pour la réalisation de murs de constructions et système de coffrage
DE102011102987A1 (de) Das Taktschiebeverfahren mit Stützweitenreduzierung für Strassen- und Bahnbrücken mit Plattenbalkenquerschnitt
WO2021203150A1 (fr) Procédé de fabrication d'un tablier de chaussée pour un pont
AT521261B1 (de) Verfahren zur Herstellung eines Brückenträgers einer Spannbetonbrücke
DE19629029A1 (de) Verfahren zur rationellen Herstellung von Brückentragwerken für Verkehrswege aller Art einschl. biegesteifer Rahmeneckverbindungen zwischen Fertigteil- und örtlich hergestellten Elementen
DE1256671C2 (de) Verfahren zum Herstellen eines mehrfeldrigen vorgespannten Brueckentragwerks aus Spannbetonfertigbalken
AT526142B1 (de) Verfahren zur Herstellung einer Brücke aus Längsträgern und Fahrbahnplattenelementen
DE920013C (de) Verfahren zum Herstellen von Stehlbauwerken in Verbundbauweise, insbesondere von Balkenbruecken und Schalendaechern
AT520193B1 (de) Verfahren zur Herstellung eines Brückenträgers einer Spannbetonbrücke
DE19903310A1 (de) Verbundfertigteilträger sowie Verfahren zur Herstellung von Trägern, insbesondere für Brückenbauwerke
AT526252B1 (de) Verfahren zur herstellung einer fahrbahnplatte für eine brücke
AT344780B (de) Spannbeton-fahrbahnplatte
EP0056422A1 (fr) Procédé et faux-oeuvre pour la construction de ponts en béton armé
DE10239661A1 (de) Fahrweg in modularer Bauweise, inbesondere für eine Magnetbahn
DE2451574C3 (de) Spannbeton-Fahrbahnplatte für Brückentragwerke sowie Verlegegerät und Verfahren zu deren Herstellung
DE2212898C3 (de) Großflächige Brückenplattform aus Ortbeton und Bauverfahren zu deren Herstellung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1148427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016005275

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190926

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190927

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190926

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191028

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191026

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016005275

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016005275

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200524

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1148427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210524