EP3296662B1 - Collecteur thermique solaire - Google Patents

Collecteur thermique solaire Download PDF

Info

Publication number
EP3296662B1
EP3296662B1 EP16792434.9A EP16792434A EP3296662B1 EP 3296662 B1 EP3296662 B1 EP 3296662B1 EP 16792434 A EP16792434 A EP 16792434A EP 3296662 B1 EP3296662 B1 EP 3296662B1
Authority
EP
European Patent Office
Prior art keywords
heat collection
pipe
heat
reflective mirror
mirror group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16792434.9A
Other languages
German (de)
English (en)
Other versions
EP3296662A1 (fr
EP3296662A4 (fr
Inventor
Yoshinobu Kato
Kiyoshi SATAKE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Publication of EP3296662A1 publication Critical patent/EP3296662A1/fr
Publication of EP3296662A4 publication Critical patent/EP3296662A4/fr
Application granted granted Critical
Publication of EP3296662B1 publication Critical patent/EP3296662B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/455Horizontal primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention relates to a solar heat collector.
  • PATENT LITERATURE 1 describes inventions of a metal pipe for solar light collection, a vacuum tube type solar light collection pipe, and a solar power generation apparatus.
  • a heat collection pipe 30 described in the paragraphs 0059 and 0060 includes a light-selective absorbing film 12 and a glass lining layer 13.
  • the heat collection pipe 30 includes a metal pipe 11, which is formed of a metal pipe inside of which a heating medium flows, and a glass pipe 31, which is disposed so as to cover the metal pipe 11 with a predetermined interval.
  • an airtightly sealed region 33 is formed between the metal pipe 11 and the glass pipe 31, an airtightly sealed region 33 is formed. It is described that the sealed region 33 is usually in a vacuum state of, for example, 1 ⁇ 10 -3 Pa or less.
  • the light-selective absorbing film 12 preferably absorbs solar radiation energy efficiently, that is, absorbs light of 400 to 900 nm, the light-selective absorbing film 12 can reduce thermal radiation to the outside.
  • PATENT LITERATURE 2 describes an invention of a solar heat-combined power generation apparatus for teaching material.
  • the paragraphs 0012 to 0015 describe the use of a wavelength-selective reflection film to separate solar light into a light component (a short wavelength side) and a thermal component (a long wavelength side).
  • PATENT LITERATURES 3 and 4 describe inventions of solar heat collectors.
  • PATENT LITERATURE 5 describes an invention of a heat collection pipe (a heat collection pipe with a double-pipe structure) used to collect heat from solar heat.
  • PATENT LITERATURE 6 discloses a solar collector with a single-axial tracking solar type reflective mirror group, a dual-axial tracking solar type reflective mirror group and heat collection means comprising a heat collection pipe.
  • NON-PATENT LITERATURE 1 e-NEXI (issued in October, 2010), issuing body: issued and edited by Nippon Export and Investment Insurance (NEXI), General Management and Public Relations Group, Overseas group, "Solar Heat Use"
  • An object of the present invention is to provide a solar heat collector whose heat collection efficiency is enhanced.
  • a combination of a reflective mirror group including a single-axial tracking solar type reflective mirror group and a dual-axial tracking solar type reflective mirror group or only a dual-axial tracking solar type reflective mirror group is used as reflection means of this solar heat collector, a combination of heat collection pipes having different degrees of concentration (a magnification of concentration of solar light) and amounts of heat collection per unit is used as the heat collection means.
  • a first embodiment of the invention provides a solar heat collector comprising: a dual-axial tracking solar type reflective mirror group; and heat collection means configured to collect light from the reflective mirror group to obtain heat, wherein: a heating medium is caused to move from a first end of the heat collection means on an upstream to a second end on an opposite side on a downstream, the heat collection means includes a continuous heating medium flow passage including a combination of a first heat collection pipe and a second heat collection pipe, the first heat collection pipe having a small amount of heat collection per unit area, and the first heat collection pipe and the second heat collection pipe have a double-pipe structure including an inner metal pipe, a glass pipe, and a vacuum space, the heating medium flowing through the metal pipe, the glass pipe being disposed outside the metal pipe, the vacuum space being disposed between the metal pipe and the glass pipe, wherein the second heat collection pipe has an amount of heat collection per unit area larger than the first heat collection pipe, and this is achieved by forming different wavelength-selective films on the respective surfaces of the metal pipes, the number (N
  • a second embodiment of the invention provides a solar heat collector comprising: a reflective mirror group including a single-axial tracking solar type reflective mirror group and a dual-axial tracking solar type reflective mirror group; and heat collection means configured to collect light from the reflective mirror group to obtain heat, wherein: a heating medium is caused to move from a first end of the heat collection means on an upstream to a second end on an opposite side on a downstream, the single-axial tracking solar type reflective mirror group includes a combination of reflective mirrors selected from Fresnel reflective mirrors and trough reflective mirrors, the dual-axial tracking solar type reflective mirror group includes a combination of dual-axial tracking solar type reflective mirrors, the dual-axial tracking solar type reflective mirror having a surface area 5 to 20% of a surface area of the one single-axial tracking solar type reflective mirror, the heat collection means includes a continuous heating medium flow passage including a combination of a first heat collection pipe and a second heat collection pipe, the first heat collection pipe having a small amount of heat collection per unit area, the first heat collection pipe and the second heat collection
  • a solar heat collector comprising: a dual-axial tracking solar type reflective mirror group; and heat collection means configured to collect light from the reflective mirror group to obtain heat, wherein: a heating medium is caused to move from a first end of the heat collection means on an upstream to a second end on an opposite side on a downstream, the heat collection means includes a combination of heat collection pipes, the heat collection pipes have a double-pipe structure including an inner metal pipe, a glass pipe, and a vacuum space, the heating medium flowing through the metal pipe, the glass pipe being disposed outside the metal pipe, the vacuum space being disposed between the metal pipe and the glass pipe, and the combination of the heat collection pipes includes the heat collection pipes coupled to one another.
  • a third embodiment of the invention provides a solar heat collector comprising: a reflective mirror group including a single-axial tracking solar type reflective mirror group and a dual-axial tracking solar type reflective mirror group; and heat collection means configured to collect light from the reflective mirror group to obtain heat, wherein: a heating medium is caused to move from a first end of the heat collection means on an upstream to a second end on an opposite side on a downstream, the single-axial tracking solar type reflective mirror group includes a combination of a reflective mirrors selected from Fresnel reflective mirrors and trough reflective mirrors, the dual-axial tracking solar type reflective mirror group includes a combination of dual-axial tracking solar type reflective mirrors, the dual-axial tracking solar type reflective mirror having a surface area 5 to 20% of a surface area of the one single-axial tracking solar type reflective mirror, the heat collection means includes a continuous heating medium flow passage including a combination of a first heat collection pipe and a second heat collection pipe, the first heat collection pipe having a small amount of heat collection per unit area, the first heat collection pipe and the second
  • the solar heat collector of the present invention uses a dual-axial tracking solar type reflective mirror group or a combination of a single-axial tracking solar type reflective mirror group and a dual-axial tracking solar type reflective mirror group as a reflective mirror group.
  • a first embodiment, a second embodiment, and a third embodiment use a first heat collection pipe having a small amount of heat collection per unit area and a second heat collection pipe (a heat collection pipe of a first example) having an amount of heat collection per unit area larger than the first heat collection pipe.
  • the first embodiment, the second embodiment and the third embodiment can reduce the used part of the second heat collection pipe, which is comparatively expensive. Additionally, higher heat collection effect can be obtained.
  • the first example uses the dual-axial tracking solar type reflective mirror group and a plurality of heat collection pipes equivalent to the second heat collection pipe in combination. This ensures shorting the entire length of the heat collection pipes. Accordingly, the heat collection effect is enhanced. Additionally, an amount of heat dissipation from the heat collection pipe can be reduced. Therefore, the highest heat collection effect can be obtained.
  • a solar heat collector 1A illustrated in Fig. 1 includes a reflective mirror group and heat collection means.
  • the reflective mirror group includes a dual-axial tracking solar type reflective mirror group 30.
  • the dual-axial tracking solar type reflective mirror group 30 includes a combination of a required number of reflective mirrors 31.
  • the dual-axial tracking solar type reflective mirror group 30 may have the number adjustable as necessary according to an amount of heat collection, a situation of an installation site, and the like.
  • the reflective mirror 31 for example, a reflective mirror with a size of around 2 ⁇ 2 m is applicable. Note that, as long as dual-axis control can be performed with the reflective mirror, the size is not limited to the above-described size.
  • Fig. 1 illustrates the square reflective mirrors as the reflective mirrors 31. Note that, the reflective mirrors 31 may have another shape.
  • Heat collection means 10 includes a combination of first heat collection pipes 11, which have the small amount of heat collection per unit area, and second heat collection pipes 12, which have the amount of heat collection per unit area larger than that of the first heat collection pipes 11.
  • the plurality of respective first heat collection pipes 11 and second heat collection pipes 12 are coupled in alternation in the longitudinal direction.
  • the first heat collection pipes 11 and the second heat collection pipes 12 receive reflected light from the dual-axial tracking solar type reflective mirror group 30 to collect the heat.
  • Both the first heat collection pipe 11 and the second heat collection pipe 12 are double-structure pipes that include an inner metal pipe through which a heating medium flows, a glass pipe outside the metal pipe, and a vacuum space between the metal pipe and the glass pipe.
  • the heat collection pipe having the above-described double-pipe structure itself is publicly known as the heat collection pipe (the above-described PATENT LITERATURES 1 and 5 and NON-PATENT LITERATURE 1).
  • the first heat collection pipe 11 and the second heat collection pipe 12 have outer diameters of different sizes.
  • the heat collection pipes with identical dimensions are also applicable.
  • the first heat collection pipes 11 with the small amount of heat collection per unit area and the second heat collection pipes 12 with the amount of heat collection per unit area larger than that of the first heat collection pipes 11 are adjusted such that the second heat collection pipes 12 have the larger amount of heat collection (amount of heat energy) when identical areas are irradiated with solar light.
  • the "wavelength-selective film” means a film having an effect identical to a "light-selective absorbing film 12" in PATENT LITERATURE 1 and a “wavelength-selective reflection film” in PATENT LITERATURE 2.
  • a method for setting a relationship between a transmission amount (X1) of a thermal component (a long wavelength side) of the wavelength-selective film formed on the surface of the metal pipe of the first heat collection pipe 11 and a transmission amount (X2) of a thermal component (a long wavelength side) of the wavelength-selective film formed on the surface of the metal pipe of the second heat collection pipe 12 to X2 > X1 is applicable.
  • SCHOTT PTR 70Advance As the first heat collection pipe 11 and the second heat collection pipe 12, SCHOTT PTR 70Advance, SCHOTT PTR 70 Premium, SCHOTT PTR 70, and the like, which are double-structure pipes for solar light heat collection sold by SCHOTT in Germany, are also applicable. Among these double-structure pipes, SCHOTT PTR 70Advance has the maximum amount of heat collection. Therefore, the SCHOTT PTR 70Advance is applicable as the second heat collection pipe.
  • the first heat collection pipes 11 and the second heat collection pipes 12 are coupled with coupling means (not illustrated).
  • the coupling means may be any means as long as the coupling means can couple the metal pipe and the glass pipe of the first heat collection pipe 11 to the metal pipe and the glass pipe of the second heat collection pipe 12.
  • a method for using a metallic adapter a method for using a coupling structure and a coupling method illustrated in Figs. 3 to 6 in PATENT LITERATURE 1 ( JP-A-2014-6018 ), a coupling structure and a coupling method illustrated in Figs. 1 and 2 in PATENT LITERATURE 5 ( JP-A-2015-14444 ), and the like, the first heat collection pipes 11 and the second heat collection pipes 12 can be coupled.
  • the first heat collection pipes 11 and the second heat collection pipes 12, which constitute the heat collection means 10, include a continuous heating medium flow passage (a continuous metal pipe) from a first end 10a to a second end 10b.
  • the first end 10a side which is positioned upstream on the heat collection means 10, is coupled to an inlet-side transport pipe 71 for the heating medium.
  • the second end 10b side which is positioned downstream, is coupled to an outlet-side transport pipe 72 for the heating medium.
  • the inlet-side transport pipe 71 and the outlet-side transport pipe 72 are formed of a metal pipe. As necessary, to keep the temperature, a heat insulating material and the like can be wound around the outsides of the inlet-side transport pipe 71 and the outlet-side transport pipe 72.
  • the following describes a method for operating a solar heat collector 1 of the present invention with the power generation system illustrated in Fig. 1 , which includes the solar heat collector 1A.
  • the heating medium passing through the first heat collection pipes 11 and the second heat collection pipes 12 publicly known liquid (such as molten salt, hot oil, and water) and gas (such as air, nitrogen, and carbon dioxide) are applicable.
  • gas such as air, nitrogen, and carbon dioxide
  • the water is delivered from the transport pipe 71 to the first water collection pipe 11 of the first end 10a, which is on the upstream of the heat collection means 10.
  • the water is fed from a water source (not illustrated) at the beginning of the operation.
  • the dual-axial solar type reflective mirror group 30 reflects and sends the received solar heat to the first heat collection pipes 11 and the second heat collection pipes 12.
  • a part of the reflective mirrors 31 may send the solar heat to the first heat collection pipes 11 and the remaining reflective mirrors 31 may send the solar heat to the second heat collection pipes 12.
  • the water as the heating medium flows from the upstream (the first end 10a) to the downstream (the second end 10b), the water is heated and turns into high-temperature water vapor (energy).
  • the amount of heat collection per unit area of the second heat collection pipes 12 is larger than that of the first heat collection pipes 11. Therefore, the second heat collection pipes 12 receive the heat energy larger than the first heat collection pipes 11. Accordingly, compared with the case of only the first heat collection pipes 11, the second heat collection pipes 12 can obtain the water vapor at a higher temperature.
  • the combination of the first heat collection pipes 11 and the second heat collection pipes 12 as the heat collection means ensures decreasing the used parts of the second heat collection pipes 12, which are more expensive than the first heat collection pipes 11. Additionally, compared with the case of using only the first heat collection pipes 11, this allows obtaining the considerably large amount of energy.
  • the water vapor is supplied from the water vapor supply pipe 72 to an electric generation apparatus 50 that includes a turbine and an electric generator.
  • the water vapor supplied to the electric generation apparatus 50 rotates the turbine. A power generated by the rotation of the turbine is transmitted to the electric generator, and thus the electricity is generated.
  • the water vapor used to rotate the turbine is sent from a vapor return line 73 to a condenser 60. Then, a condensation process is performed on the water vapor, thus returning the water vapor to the water. Afterwards, the water deliver line (the transport pipe) 71 supplies the water to the heat collection means 10.
  • the electric generation using the heat stored in a heat storage body and the like during daytime is also possible.
  • a solar heat collector 1B includes the reflective mirror group and the heat collection means.
  • the reflective mirror group includes a single-axial tracking solar type reflective mirror group 20 and dual-axial tracking solar type reflective mirror groups 30 and 40.
  • the single-axial tracking solar type reflective mirror group 20 includes a combination of a required number of linear Fresnel type reflective mirrors 21.
  • the linear Fresnel type reflective mirrors 21 are disposed spaced in the width direction such that the respective long axes face an identical direction (for example, a north-south direction, but the direction is not limited to this direction).
  • the dual-axial tracking solar type reflective mirror group is disposed separated into the first dual-axial tracking solar type reflective mirror group 30 and the second dual-axial tracking solar type reflective mirror group 40 on both sides in the long axis direction of the single-axial tracking solar type reflective mirrors 21.
  • the first dual-axial tracking solar type reflective mirror group 30 and the second dual-axial tracking solar type reflective mirror group 40 are disposed in the directions in which the light is efficiently collected such that a site where the amount of heat collection becomes large is generated at a heat-receiving pipe at the outside of the single-axial tracking solar type reflective mirrors.
  • the first dual-axial tracking solar type reflective mirror group 30 includes the combination of the required number of reflective mirrors 31.
  • the second dual-axial tracking solar type reflective mirror group 40 includes a combination of a required number of reflective mirrors 41.
  • the first dual-axial tracking solar type reflective mirror group 30 and the second dual-axial tracking solar type reflective mirror group 40 may have the identical numbers or the different numbers.
  • the first dual-axial tracking solar type reflective mirror group 30 and the second dual-axial tracking solar type reflective mirror group 40 have the numbers adjustable as necessary according to an amount of heat collection, a situation of an installation site, or the like.
  • the surface area of the one reflective mirror 31 and the one reflective mirror 41 (the area on the front surface side exposed to the solar light) is about 10% of the surface area of the one linear Fresnel type reflective mirror 21.
  • the reflective mirror 31 and the reflective mirror 41 for example, a reflective mirror with a size of around 2 ⁇ 2 m is applicable. Note that, as long as dual-axis control can be performed with the reflective mirror, the size is not limited to the above-described size.
  • Figs. 2 and 3 illustrate the square reflective mirrors as the reflective mirrors 31 and the reflective mirrors 41. Note that, the reflective mirrors may have another shape.
  • the heat collection means 10 includes a combination of the first heat collection pipes 11, which have the small amount of heat collection per unit area, and the second heat collection pipes 12, which have the amount of heat collection per unit area larger than that of the first heat collection pipes 11.
  • the plurality of respective first heat collection pipes 11 and second heat collection pipes 12 are coupled in alternation in the longitudinal direction.
  • the first heat collection pipes 11 are heat collection pipes that receive the reflected light from only the single-axial tracking solar type reflective mirror group 20 to collect the heat.
  • the second heat collection pipes 12 are heat collection pips that receive the reflected light from the single-axial tracking solar type reflective mirror group 20 and the dual-axial tracking solar type reflective mirror groups 30 and 40 to collect the heat.
  • Both the first heat collection pipe 11 and the second heat collection pipe 12 are double-structure pipes that include an inner metal pipe through which a heating medium flows, a glass pipe outside the metal pipe, and a vacuum space between the metal pipe and the glass pipe.
  • the heat collection pipe having the above-described double-pipe structure itself is publicly known as the heat collection pipe (the above-described PATENT LITERATURES 1 and 5 and NON-PATENT LITERATURE 1).
  • the first heat collection pipe 11 and the second heat collection pipe 12 have outer diameters of different sizes.
  • the heat collection pipes with identical dimensions are also applicable.
  • the first heat collection pipes 11 with the small amount of heat collection per unit area and the second heat collection pipes 12 with the amount of heat collection per unit area larger than that of the first heat collection pipes 11 are adjusted such that the second heat collection pipes 12 have the larger amount of heat collection (amount of heat energy) when identical areas are irradiated with solar light.
  • the "wavelength-selective film” means a film having an effect identical to a "light-selective absorbing film 12" in PATENT LITERATURE 1 and a “wavelength-selective reflection film” in PATENT LITERATURE 2.
  • a method for setting a relationship between a transmission amount (X1) of a thermal component (a long wavelength side) of the wavelength-selective film formed on the surface of the metal pipe of the first heat collection pipe 11 and a transmission amount (X2) of a thermal component (a long wavelength side) of the wavelength-selective film formed on the surface of the metal pipe of the second heat collection pipe 12 to X2 > X1 is applicable.
  • SCHOTT PTR 70Advance As the first heat collection pipe 11 and the second heat collection pipe 12, SCHOTT PTR 70Advance, SCHOTT PTR 70 Premium, SCHOTT PTR 70, and the like, which are double-structure pipes for solar light heat collection sold by SCHOTT in Germany, are also applicable. Among these double-structure pipes, SCHOTT PTR 70Advance has the maximum amount of heat collection. Therefore, the SCHOTT PTR 70Advance is applicable as the second heat collection pipe.
  • the first heat collection pipes 11 and the second heat collection pipes 12 are coupled with coupling means (not illustrated).
  • the coupling means may be any means as long as the coupling means can couple the metal pipe and the glass pipe of the first heat collection pipe 11 to the metal pipe and the glass pipe of the second heat collection pipe 12.
  • a method for using a metallic adapter a method for using a coupling structure and a coupling method illustrated in Figs. 3 to 6 in PATENT LITERATURE 1 ( JP-A-2014-6018 ), a coupling structure and a coupling method illustrated in Figs. 1 and 2 in PATENT LITERATURE 5 ( JP-A-2015-14444 ), and the like, the first heat collection pipes 11 and the second heat collection pipes 12 can be coupled.
  • the first heat collection pipes 11 and the second heat collection pipes 12, which constitute the heat collection means 10, include a continuous heating medium flow passage (a continuous metal pipe) from a first end 10a to a second end 10b.
  • the first end 10a side which is positioned upstream on the heat collection means 10, is coupled to an inlet-side transport pipe 71 for the heating medium.
  • the second end 10b side which is positioned downstream, is coupled to an outlet-side transport pipe 72 for the heating medium.
  • the inlet-side transport pipe 71 and the outlet-side transport pipe 72 are formed of a metal pipe. As necessary, to keep the temperature, a heat insulating material and the like can be wound around the outsides of the inlet-side transport pipe 71 and the outlet-side transport pipe 72.
  • the following describes a method for operating a solar heat collector 1 of the present invention with the power generation system illustrated in Fig. 2 , which includes the solar heat collector 1B.
  • the heating medium passing through the first heat collection pipes 11 and the second heat collection pipes 12 publicly known liquid (such as molten salt, hot oil, and water) and gas (such as air, nitrogen, and carbon dioxide) are applicable.
  • gas such as air, nitrogen, and carbon dioxide
  • the water is delivered from the transport pipe 71 to the first water collection pipe 11 of the first end 10a, which is on the upstream of the heat collection means 10.
  • the water is fed from a water source (not illustrated) at the beginning of the operation.
  • the single-axial solar type reflective mirror group 20 reflects and sends the received solar heat to the first heat collection pipes 11 and the second heat collection pipes 12.
  • the first dual-axial tracking solar type reflective mirror group 30 and the second dual-axial tracking solar type reflective mirror group 40 reflect and send the received solar heat to the second heat collection pipes 12.
  • the second heat collection pipes 12 receive the solar heat from the single-axial tracking solar type reflective mirror group 20, the first dual-axial tracking solar type reflective mirror group 30, and the second dual-axial tracking solar type reflective mirror group 40.
  • the dual-axial tracking reflective mirrors 31 and 41 performing point concentration can further precisely adjust the positional relationship between the sun and the reflective mirrors. Therefore, the heat collection efficiency (a heat collection power per unit area of the reflective mirror) and a reaching temperature are increased.
  • the second heat collection pipe 12 has the amount of heat collection per unit area larger than that of the first heat collection pipe 11.
  • the second heat collection pipes 12 receive the larger heat energy.
  • the water as the heating medium flows from the upstream (the first end 10a) to the downstream (the second end 10b)
  • the water is heated and turns into the high-temperature water vapor (the energy).
  • the combination of the first heat collection pipes 11 and the second heat collection pipes 12 as the heat collection means ensures reducing the used parts of the second heat collection pipes 12, which are more expensive than the first heat collection pipes 11. Additionally, as the result, compared with the case of using only the first heat collection pipes 11, this allows obtaining the considerably large amount of energy.
  • the water vapor is supplied from the water vapor supply pipe 72 to an electric generation apparatus 50 that includes a turbine and an electric generator.
  • the water vapor supplied to the electric generation apparatus 50 rotates the turbine. A power generated by the rotation of the turbine is transmitted to the electric generator, and thus the electricity is generated.
  • the water vapor used to rotate the turbine is sent from a vapor return line 73 to a condenser 60. Then, a condensation process is performed on the water vapor, thus returning the water vapor to the water. Afterwards, the water deliver line (the transport pipe) 71 supplies the water to the heat collection means 10.
  • the electric generation using the heat stored in a heat storage body and the like during daytime is also possible.
  • the heat collection means in a solar heat collector 100A illustrated in Fig. 5 includes a combination of heat collection pipes 112.
  • the heat collection pipes 112 are mutually coupled with a transport pipe 171 for the heating medium.
  • a dual-axial tracking solar type reflective mirror group 130 is a reflective mirror identical to the single-axial tracking solar type reflective mirror group 30 illustrated in Fig. 1 .
  • a required number of reflective mirrors 131 are in combination.
  • the heat collection pipe 112 is a heat collection pipe identical to the second heat collection pipe 12 illustrated in Fig. 1 .
  • the heat collection pipe 112 instead of the heat collection pipe identical to the second heat collection pipe 12 illustrated in Fig. 1 , the heat collection pipe identical to the first heat collection pipe 11 illustrated in Fig. 1 is also applicable.
  • the use of the heat collection pipes identical to the first heat collection pipes 11 and the second heat collection pipes 12 illustrated in Fig. 1 in combination is also possible.
  • the heat collection pipes are selected according to the amount of solar light collected at the reflective mirrors per unit area of the heat-receiving pipe.
  • the five heat collection pipes identical to the first heat collection pipes 11 illustrated in Fig. 1 and the five heat collection pipes identical to the second heat collection pipes 12 illustrated in Fig. 1 can be combined in alternation.
  • the heat collection pipes 112 with the length of less than 2 m in average are coupled with a transport pipe (an intermediate transport pipe 172) for the heating medium with a length of 3 m or more in average.
  • a transport pipe an intermediate transport pipe 172 for the heating medium with a length of 3 m or more in average.
  • covering the transport pipe with the heat insulating material and the like also ensures keeping the temperature.
  • the following describes a method for operating a solar heat collector 100 of the present invention with the power generation system illustrated in Fig. 5 , which includes the solar heat collector 100A.
  • the heating medium passing through the combination of the heat collection pipes 112 publicly known liquid (such as molten salt, hot oil, and water) and gas (such as air, nitrogen, and carbon dioxide) are applicable.
  • gas such as air, nitrogen, and carbon dioxide
  • the water is delivered from the transport pipe 171 to the combination of the heat collection pipes 112, which is on the upstream of the heat collection means 10.
  • the water is fed from a water source (not illustrated) at the beginning of the operation.
  • the dual-axial solar type reflective mirror group 130 each reflects and sends the received solar heat to the combination of the heat collection pipes 112.
  • the dual-axial tracking type reflective mirrors 131 performing the point concentration can further precisely adjust the positional relationship between the sun and the reflective mirrors. Therefore, the heat collection efficiency (the heat collection power per unit area of the heat-receiving pipe) and the reaching temperature are increased.
  • the heat collection pipe 112 As the heat collection pipe 112, the heat collection pipe having the high amount of heat collection per unit area is used.
  • the dual-axial tracking solar type reflective mirror group 130 is used in combination only with the plurality of heat collection pipes identical to the second heat collection pipes 12 used in the first invention and the second invention. Accordingly, the entire length of the heat collection pipes can be shortened.
  • the water vapor is supplied from the water vapor supply pipe 173 to an electric generation apparatus 50 that includes a turbine and an electric generator.
  • the water vapor supplied to the electric generation apparatus 50 rotates the turbine. A power generated by the rotation of the turbine is transmitted to the electric generator, and thus the electricity is generated.
  • the water vapor used to rotate the turbine is sent from a vapor return line 173 to a condenser 60. Then, a condensation process is performed on the water vapor, thus returning the water vapor to the water. Afterwards, the water deliver line (the transport pipe) 171 supplies the water to the first heat collection means 111.
  • the electric generation using the heat stored in a heat storage body and the like during daytime is also possible.
  • Heat collection means in a solar heat collector 100B illustrated in Fig. 6 includes a combination of a first heat collection pipe 111 and the second heat collection pipes 112. Note that, unlike the solar heat collector 1B illustrated in Fig. 2 , the combination of the first heat collection pipe 111 and a single-axial tracking solar type reflective mirror group 120 is disposed on the upstream. Furthermore, a combination of the second heat collection pipes 112 and the dual-axial tracking solar type reflective mirror group 130 are disposed on the downstream.
  • the single-axial tracking solar type reflective mirror group 120 is reflective mirrors identical to those of the single-axial tracking solar type reflective mirror group 20 illustrated in Fig. 1 .
  • a required number of reflective mirrors 121 are in combination.
  • the dual-axial tracking solar type reflective mirror group 130 is a reflective mirror identical to the single-axial tracking solar type reflective mirror groups 30 and 40 illustrated in Fig. 1 .
  • the required number of reflective mirrors 131 is in combination.
  • the first heat collection pipe 111 is a heat collection pipe identical to the first heat collection pipe 11 illustrated in Fig. 2 .
  • the second heat collection pipe 112 is a heat collection pipe identical to the second heat collection pipe 12 illustrated in Fig. 2 .
  • the first heat collection pipes 11 and the second heat collection pipes 12 are combined and disposed in alternation.
  • the first heat collection pipe 111 is disposed separately from the second heat collection pipes 112.
  • the first heat collection pipe 111 may include one heat collection pipe.
  • the first heat collection pipes 111 may include a plurality of coupled heat collection pipes.
  • the second heat collection pipes 112 with the length of less than 2 m in average are coupled with the transport pipe (the intermediate transport pipe 172) for the heating medium with a length of 3 m or more in average.
  • the following describes a method for operating a solar heat collector 100 of the present invention with the power generation system illustrated in Fig. 6 , which includes the solar heat collector 100B.
  • the publicly known liquid such as the molten salt, the hot oil, and the water
  • gas such as the air, the nitrogen, and the carbon dioxide
  • the water is delivered from the inlet-side transport pipe 171 to the first water collection pipe 111, which is on the upstream of the heating medium flow.
  • the water is fed from the water source (not illustrated) at the beginning of the operation.
  • the single-axial tracking solar type reflective mirror group 120 reflects and sends the received solar heat to the first heat collection pipe 111.
  • the water in the first heat collection pipe 111 is heated and turns into the water vapor (the energy).
  • the intermediate transport pipe 172 sends the water vapor to the second heat collection pipes 112.
  • the dual-axial solar type reflective mirror group 130 reflects and sends the received solar heat to the heat collection pipes 112.
  • the dual-axial tracking reflective mirrors 131 performing the point concentration can further precisely adjust the positional relationship between the sun and the reflective mirrors. Therefore, the heat collection efficiency (the heat collection power per unit area of the heat-receiving pipe) and the reaching temperature are increased. Further, the second heat collection pipe 112 has the amount of heat collection per unit area larger than that of the first heat collection pipe 111.
  • the water vapor sent from the first heat collection pipe 111 is heated at the second heat collection pipes 112 and turns into the water vapor at a higher temperature.
  • the combination of the first heat collection pipe 111 and the second heat collection pipes 112 as the heat collection means ensures decreasing the used parts of the second heat collection pipes 112, which are more expensive than the first heat collection pipe 111. Additionally, compared with the case of using only the first heat collection pipe 111, this allows shorting the length of the heat-receiving pipe at the second heat collection pipe 112 and additionally allows decreasing the heat loss. Consequently, the considerably large amount of energy can be obtained.
  • the water vapor is supplied from the water vapor supply pipe 173 to the electric generation apparatus 50 that includes the turbine and the electric generator.
  • the water vapor supplied to the electric generation apparatus 50 rotates the turbine.
  • the power generated by the rotation of the turbine is transmitted to the electric generator, and thus the electricity is generated.
  • the water vapor used to rotate the turbine is sent from the vapor return line 173 to the condenser 60. Then, the condensation process is performed on the water vapor, thus returning the water vapor to the water. Afterwards, the water deliver line (the transport pipe) 171 supplies the water to the first heat collection means 111.
  • the electric generation using the heat stored in the heat storage body and the like during the daytime is also possible.
  • a solar heat collector of the present invention is applicable to a solar power generation. Besides, the solar heat collector of the present invention is also applicable as a supply system of warm water or a heating system using vapor; or warm water or hot air.
  • the solar heat collector of the present invention can increase a proportion of local procurement of materials and machinery. This is important to progress measures for spreading the solar energy use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (7)

  1. Collecteur thermique solaire comprenant:
    un groupe de miroirs réfléchissants (30) de type capteur solaire à double axe; et
    un moyen de collecte de chaleur (10) configuré pour collecter la lumière du groupe de miroirs réfléchissants (30) pour obtenir de la chaleur,
    dans lequel:
    un milieu chauffant est amené à se déplacer d'une première extrémité (10a) du moyen de collecte de chaleur (10) du côté amont à une deuxième extrémité (10b) opposée du côté aval,
    le moyen de collecte de chaleur (10) comporte un passage de circulation en continu de fluide chauffant comportant une combinaison d'un premier tuyau de collecte de chaleur (11) et d'un deuxième tuyau de collecte de chaleur (12),
    dans lequel
    le premier tuyau de collecte de chaleur (11) et le deuxième tuyau de collecte de chaleur (12) présentent une structure à deux tuyaux comportant un tuyau métallique intérieur, un tuyau en verre et un espace sous vide, le milieu de chauffage circulant à travers le tuyau métallique, le tuyau en verre étant disposé à l'extérieur du tuyau métallique, l'espace sous vide étant disposé entre le tuyau métallique et le tuyau en verre,
    dans lequel le deuxième tuyau de collecte de chaleur (12) présente une quantité de collecte de chaleur par surface unitaire plus grande que le premier tuyau de collecte de chaleur (11), et cela est obtenu en formant des films différents de manière sélective en longueur d'onde sur les surfaces respectives des tuyaux métalliques, et
    le nombre (N) de miroirs réfléchissants de type capteur solaire à double axe (31) inclus dans le groupe de miroirs réfléchissants (30), le nombre (n1) des miroirs réfléchissants envoyant de la lumière solaire vers le premier tuyau de collecte de chaleur (11) et le nombre (n2) de miroirs réfléchissants envoyant de la lumière solaire vers le deuxième tuyau de collecte de chaleur (12) remplissent les conditions de rapport de N=n1+n2 et n2>n1.
  2. Collecteur thermique solaire selon la revendication 1, dans lequel n1+n2 = 100, remplissant les conditions n1 = 10 à 20 et n2 = 90 à 80.
  3. Collecteur thermique solaire comprenant:
    un groupe de miroirs réfléchissants comprenant un groupe de miroirs réfléchissants de type capteur solaire à un seul axe (20) et un groupe de miroirs réfléchissants de type capteurs solaire à double axe (30); et
    un moyen de collecte de chaleur (10) configuré pour collecter la lumière du groupe de miroirs réfléchissants pour obtenir de la chaleur,
    dans lequel:
    un milieu chauffant est amené à se déplacer d'une première extrémité (10a) du moyen de collecte de chaleur (10) du côté amont à une deuxième extrémité (10b) opposée du côté aval,
    le groupe de miroirs réfléchissants de type capteur solaire à un seul axe (20) comporte une combinaison de miroirs réfléchissants choisis parmi les miroirs réfléchissants de Fresnel et les miroirs réfléchissants en forme d'auge,
    le groupe de miroirs réfléchissants de type capteur solaire à double axe (30) comporte une combinaison de miroirs réfléchissants de type capteur solaire à double axe, le miroir réfléchissant de type capteur solaire à double axe présentant une superficie de 5 à 20% de la superficie du miroir réfléchissant de type capteur solaire à un seul axe,
    le moyen de collecte de chaleur (10) comporte un passage de circulation en continu de milieu chauffant comportant une combinaison d'un premier tuyau de collecte de chaleur (11) et d'un deuxième tuyau de collecte de chaleur (12), où le premier tuyau de collecte de chaleur (11) et le deuxième tuyau de collecte de chaleur (12) présentent une structure à double tuyau comportant un tuyau métallique intérieur, un tuyau en verre et un espace sous vide, le milieu chauffant circulant à travers le tuyau métallique, le tuyau en verre étant disposé à l'extérieur du tuyau métallique, l'espace sous vide étant disposé entre le tuyau métallique et le tuyau en verre,
    dans lequel le deuxième tuyau de collecte de chaleur (12) présente une quantité de collecte de chaleur par surface unitaire plus grande que le premier tuyau de collecte de chaleur (11) et cela est obtenu en formant des films différents de manière sélective en longueur d'onde sur les surfaces respectives des tuyaux métalliques,
    le premier tuyau de collecte de chaleur (11) reçoit la lumière réfléchie uniquement du groupe de miroirs réfléchissants (20) de type capteur solaire à un seul axiale pour collecter la chaleur, et
    le deuxième tuyau de collecte de chaleur (12) reçoit la lumière réfléchie du groupe de miroirs réfléchissants de type capteur solaire a un seul axe (20) et du groupe de miroirs réfléchissants de type capteur solaire à double axe (30) pour collecter la chaleur.
  4. Collecteur thermique solaire selon l'une quelconque des revendications 1 à 3, dans lequel
    le moyen de collecte de chaleur (10) comportant la combinaison du premier tuyau de collecte de chaleur (11) et du deuxième tuyau de collecte de chaleur (12) comporte le premier tuyau de collecte de chaleur (11) et le deuxième tuyau de collecte de chaleur (12) couplés en alternance dans une direction longitudinale.
  5. Collecteur thermique solaire comprenant: un groupe de miroirs réfléchissants comportant un groupe de miroirs réfléchissants de type capteur solaire à un seul axe (120) et un groupe de miroirs réfléchissants de type capteur solaire à double axe (130); et un moyen de collecte de chaleur configuré pour collecter la lumière du groupe de miroirs réfléchissants pour obtenir de la chaleur, dans lequel: un milieu chauffant est amené à se déplacer d'une première extrémité du moyen de collecte de chaleur du côté amont à une deuxième extrémité opposée du côté aval, le groupe de miroirs réfléchissants de type capteur solaire à un seul axe (120) comporte une combinaison de miroirs réfléchissants choisis parmi les miroirs réfléchissants de Fresnel et les miroirs réfléchissants en forme d'auge, le groupe de miroirs réfléchissants de type capteur solaire à double axe (130) comporte une combinaison de miroirs réfléchissants de type capteur solaire à double axe, le miroir réfléchissant de type capteur solaire à double axe présentant une superficie de 5 à 20% d'une superficie du miroir réfléchissant de type capteur solaire à un seul axe, le moyen de collecte de chaleur comporte un passage de circulation en continu de milieu chauffant comportant une combinaison d'un premier tuyau de collecte de chaleur (111) et d'un deuxième tuyau de collecte de chaleur (112), le premier tuyau de collecte de chaleur (111) et le deuxième tuyau de collecte de chaleur (112) présentent une structure à double tuyau comportant un tuyau métallique intérieur, un tuyau en verre et un espace sous vide, le milieu chauffant circulant à travers le tuyau métallique, le tuyau en verre étant disposé à l'extérieur du tuyau métallique, l'espace sous vide étant disposé entre le tuyau métallique et le tuyau en verre, le deuxième tuyau de collecte de chaleur (112) présentant une quantité de collecte de chaleur par superficie unitaire plus grande que le premier tuyau de collecte de chaleur (111), où cela est obtenu en formant des films différents de manière sélective en longueur d'onde sur les surfaces respectives des tuyaux métalliques,
    dans lequel
    le premier tuyau de collecte de chaleur (111) est disposé du côté amont, le deuxième tuyau de collecte de chaleur (112) étant disposé du côté aval par rapport au premier tuyau de collecte de chaleur (111), le premier tuyau de collecte de chaleur (111) étant couplé au deuxième tuyau de collecte de chaleur (112) avec un tuyau de transport (172) pour le milieu chauffant,
    le premier tuyau de collecte (111) reçoit la lumière réfléchie uniquement du groupe de miroirs réfléchissants (120) de type capteur solaire à un seul axe pour collecter la chaleur, et
    le deuxième tuyau de collecte de chaleur (112) reçoit la lumière réfléchie uniquement du groupe de miroirs réfléchissants de type capteur solaire à double axe (130) pour collecter la chaleur.
  6. Collecteur thermique solaire selon la revendication 5, dans lequel:
    le premier tuyau de collecte de chaleur est une pluralité des premiers tuyaux de collecte de chaleur (111) couplés l'un à l'autre,
    le deuxième tuyau de collecte de chaleur est une pluralité des deuxièmes tuyaux de collecte de chaleur (112) couplés au tuyau de transport pour le milieu chauffant, et
    les premiers tuyaux de collecte de chaleur (111) disposés du côté amont et les deuxièmes tuyaux de collecte de chaleur (112) disposés du côté aval sont couplés au tuyau de transport (172) pour le fluide chauffant.
  7. Collecteur thermique solaire selon la revendication 5, dans lequel:
    le premier tuyau de collecte de chaleur est une pluralité des premiers tuyaux de collecte de chaleur (111) couplés l'un à l'autre,
    le deuxième tuyau de collecte de chaleur est une pluralité des deuxièmes tuyaux de collecte de chaleur (112) d'une longueur inférieure à 2 m, les deuxièmes tuyaux de collecte de chaleur (112) étant couplés l'un à l'autre au tuyau de transport (172) pour le fluide chauffant d'une longueur de 3 m ou plus, et
    les premiers tuyaux de collecte de chaleur (111) disposés du côté amont et les deuxièmes tuyaux de collecte de chaleur (112) disposés du côté aval sont couplés au tuyau de transport (172) du fluide chauffant.
EP16792434.9A 2015-05-14 2016-03-22 Collecteur thermique solaire Active EP3296662B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015099166A JP6553401B2 (ja) 2015-05-14 2015-05-14 太陽熱集熱装置
PCT/JP2016/059071 WO2016181709A1 (fr) 2015-05-14 2016-03-22 Collecteur thermique solaire

Publications (3)

Publication Number Publication Date
EP3296662A1 EP3296662A1 (fr) 2018-03-21
EP3296662A4 EP3296662A4 (fr) 2018-11-14
EP3296662B1 true EP3296662B1 (fr) 2021-01-13

Family

ID=57248072

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16792434.9A Active EP3296662B1 (fr) 2015-05-14 2016-03-22 Collecteur thermique solaire

Country Status (7)

Country Link
US (1) US10480827B2 (fr)
EP (1) EP3296662B1 (fr)
JP (1) JP6553401B2 (fr)
CN (1) CN108541299A (fr)
AU (1) AU2016261529A1 (fr)
SA (1) SA517390323B1 (fr)
WO (1) WO2016181709A1 (fr)

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545366A (en) * 1984-09-24 1985-10-08 Entech, Inc. Bi-focussed solar energy concentrator
US6498290B1 (en) * 2001-05-29 2002-12-24 The Sun Trust, L.L.C. Conversion of solar energy
US7296410B2 (en) * 2003-12-10 2007-11-20 United Technologies Corporation Solar power system and method for power generation
US20100051018A1 (en) * 2008-08-26 2010-03-04 Ammar Danny F Linear solar energy collection system with secondary and tertiary reflectors
US20100051015A1 (en) * 2008-08-26 2010-03-04 Ammar Danny F Linear solar energy collection system
US20100205963A1 (en) 2008-08-26 2010-08-19 Ammar Danny F Concentrated solar power generation system with distributed generation
JP5605531B2 (ja) 2008-09-22 2014-10-15 独立行政法人 宇宙航空研究開発機構 教材用太陽光熱複合発電装置
WO2010099516A1 (fr) * 2009-02-28 2010-09-02 Richard Welle Concentrateur solaire de fresnel segmenté
US8978641B2 (en) * 2009-03-16 2015-03-17 B. Shawn Buckley Solar energy module
US9057537B2 (en) * 2009-06-08 2015-06-16 Siemens Concentrated Solar Power Ltd. Heat collection element support element
JP2010286200A (ja) * 2009-06-12 2010-12-24 Mitsubishi Heavy Ind Ltd 太陽熱集光器
WO2011041717A2 (fr) * 2009-10-02 2011-04-07 Genie Lens Technologies, Llc Système de lentilles avec séparateur de rayon directionnel pour concentration d'énergie solaire
JP5898674B2 (ja) 2010-10-01 2016-04-06 国立大学法人東京工業大学 クロスライン型太陽熱集光装置
CN102072563B (zh) 2010-12-29 2014-03-12 李忠双 均匀聚焦式太阳能收集系统
CN102252441B (zh) 2011-05-31 2013-01-02 中海阳新能源电力股份有限公司 高次聚焦集成光热收集系统
US9605662B2 (en) 2011-06-30 2017-03-28 Mitsubishi Hitachi Power Systems, Ltd. Solar heat boiler and solar heat electric power generation plant
WO2013020541A1 (fr) 2011-08-06 2013-02-14 Neumayer Tekfor Holding Gmbh Frein de stationnement
CH705824B1 (de) * 2011-11-21 2013-08-30 Emil Baechli Energietechnik Ag Solaranlage mit einachsiger und zweiachsiger Sonnennachführung.
JP2013228184A (ja) 2012-03-26 2013-11-07 Ricoh Co Ltd 線形太陽光集光装置、および太陽光集光発電システム
JP2014006018A (ja) 2012-06-26 2014-01-16 Asahi Glass Co Ltd 太陽光集熱管用金属管、真空管式太陽光集熱管および太陽熱発電装置
US9212829B1 (en) * 2012-06-27 2015-12-15 Lockheed Martin Corporation Solar heat collector with internal focal points
CN202815299U (zh) 2012-08-17 2013-03-20 浙江中控太阳能技术有限公司 一种光斑可调的新型定日镜
EP2910868B1 (fr) 2012-10-18 2018-02-28 SolarFlame Corporation Dispositif de collecte de chaleur solaire et procédé de collecte de chaleur solaire
JP6220518B2 (ja) * 2013-01-09 2017-10-25 株式会社SolarFlame 太陽熱集熱装置
JP2014092086A (ja) 2012-11-05 2014-05-19 Hitachi Ltd 太陽熱発電プラント及び太陽熱蓄熱放熱装置
CN102967055B (zh) 2012-11-09 2015-02-11 青海中控太阳能发电有限公司 一种小面积平面定日镜与大型汇聚式定日镜结合的镜场
JP2015014444A (ja) 2013-07-08 2015-01-22 株式会社豊田自動織機 集熱管
JP6304975B2 (ja) * 2013-09-03 2018-04-04 株式会社東芝 太陽熱集熱装置
JP2016031184A (ja) 2014-07-29 2016-03-07 東洋エンジニアリング株式会社 太陽熱集熱装置
CN104296396B (zh) 2014-10-29 2016-04-13 武汉鑫博茗科技发展有限公司 太阳能高温集热设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2016217546A (ja) 2016-12-22
US10480827B2 (en) 2019-11-19
US20180112892A1 (en) 2018-04-26
AU2016261529A1 (en) 2017-12-14
SA517390323B1 (ar) 2021-09-20
WO2016181709A1 (fr) 2016-11-17
EP3296662A1 (fr) 2018-03-21
EP3296662A4 (fr) 2018-11-14
JP6553401B2 (ja) 2019-07-31
CN108541299A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
Kasaeian et al. Cavity receivers in solar dish collectors: A geometric overview
Kim et al. Efficient stationary solar thermal collector systems operating at a medium-temperature range
Romero et al. Solar thermal CSP technology
Wang et al. Thermal design of a solar hydrogen plant with a copper–chlorine cycle and molten salt energy storage
Alexopoulos et al. Advances in solar tower technology
EP2829820A1 (fr) Récepteur solaire à plaques
AU2023201439A1 (en) Concentrated solar photovoltaic and photothermal system
Zarza-Moya Concentrating solar thermal power
Khalil et al. Modeling a thermoplate conical heat exchanger in a point focus solar thermal collector
Lindquist et al. A novel modular and dispatchable CSP Stirling system: Design, validation, and demonstration plans
EP3296662B1 (fr) Collecteur thermique solaire
Qenawy et al. Design and thermal performance analysis of concentrating solar power tower for water heating systems
WO2014052902A1 (fr) Collecte de rayonnement utilisant la réflexion interne totale et d'autres techniques pour permettre la production d'électricité acheminable et d'autres utilisations
US10739038B2 (en) Solar heat collecting device
Wilk Liquid metal based high temperature concentrated solar power: Cost considerations
Collares-Pereira et al. Linear Fresnel reflector (LFR) plants using superheated steam, molten salts, and other heat transfer fluids
WO2013024458A2 (fr) Récepteur solaire
Craig et al. Computational fluid dynamics analysis of parabolic dish tubular cavity receiver
Romero et al. Advanced salt receiver for solar power towers
VISWANATHAN Solar Thermal Power Sector
JP2015014248A (ja) 発電方法
PLANT CHAPTER THIRTY-TWO MODELLING THE PRIMARY LOOP OF A CONCENTRATING SOLAR POWER PLANT SILVANO VERGURA1
Martinez-Val et al. A cost-effective way of exploiting concentrating solar power (CSP)
Prengle et al. Sizing and costing solar/fuel-fired cogeneration plants for Texas. Draft final report
KR20150021939A (ko) 홈통형 컬렉터를 위한 흡열기 장치

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602016051445

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F24J0002240000

Ipc: F24S0010700000

A4 Supplementary search report drawn up and despatched

Effective date: 20181016

RIC1 Information provided on ipc code assigned before grant

Ipc: F24S 10/70 20180101AFI20181010BHEP

Ipc: F24S 50/20 20180101ALI20181010BHEP

Ipc: F24S 23/70 20180101ALI20181010BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: F24S 10/70 20180101AFI20181010BHEP

Ipc: F24S 23/70 20180101ALI20181010BHEP

Ipc: F24S 50/20 20180101ALI20181010BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200827

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016051445

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1354866

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1354866

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210113

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210413

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016051445

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

26N No opposition filed

Effective date: 20211014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210322

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210322

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210113

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240320

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113