EP3292223B1 - Verfahren zur herstellung von feinblech aus einem nichtrostenden, austenitischen crmnni-stahl - Google Patents

Verfahren zur herstellung von feinblech aus einem nichtrostenden, austenitischen crmnni-stahl Download PDF

Info

Publication number
EP3292223B1
EP3292223B1 EP16723248.7A EP16723248A EP3292223B1 EP 3292223 B1 EP3292223 B1 EP 3292223B1 EP 16723248 A EP16723248 A EP 16723248A EP 3292223 B1 EP3292223 B1 EP 3292223B1
Authority
EP
European Patent Office
Prior art keywords
steel
cold
thin sheet
cold rolling
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP16723248.7A
Other languages
English (en)
French (fr)
Other versions
EP3292223A1 (de
Inventor
Andreas WEISS
Christina SCHRÖDER
Torsten Enders
Volker Schubert
Marcus BÖNKENDORF
Steffen GIESEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dbi Gas - und Umwelttechnik GmbH
Watas Warmetauscher Sachsen GmbH
Technische Universitaet Bergakademie Freiberg
Gesmex GmbH
Original Assignee
Dbi Gas - und Umwelttechnik GmbH
Watas Warmetauscher Sachsen GmbH
Technische Universitaet Bergakademie Freiberg
Gesmex GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dbi Gas - und Umwelttechnik GmbH, Watas Warmetauscher Sachsen GmbH, Technische Universitaet Bergakademie Freiberg, Gesmex GmbH filed Critical Dbi Gas - und Umwelttechnik GmbH
Publication of EP3292223A1 publication Critical patent/EP3292223A1/de
Application granted granted Critical
Publication of EP3292223B1 publication Critical patent/EP3292223B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0468Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a method for the production of sheet from a stainless, austenitic CrMnNi steel, as well as its use. Furthermore, the invention relates to a stainless austenitic steel.
  • Stainless austenitic steels are used in many ways. Preferably, stretched and deep-drawn components can be produced that are exposed to elevated temperatures and corrosive aqueous media, such as heat exchangers.
  • the efficiency of heat exchangers is determined inter alia by the heat transfer coefficient. This is proportional to the specific thermal conductivity of the material and inversely proportional to the material thickness.
  • austenitic steels have poorer thermal conductivity, they are very easy to stretch and deep draw in contrast to ferritic or martensitic steels, and show greater resistance to corrosive media.
  • Austenitic thin sheets with material thicknesses of less than 1 mm are preferably used in the production of stretched and deep-drawn sheets. It is accepted that austenitic steels are costly to produce because of their relatively high alloy contents, especially nickel. There are numerous attempts to reduce especially the nickel content of austenitic steels while maintaining or improving the good cold workability and corrosion resistance of the austenitic steels. The development of nitrogen- and / or copper-alloyed austenitic CrMnNi steels takes into account these resource efficiency efforts.
  • the commercially available austenitic steels with the EN material numbers 1.4301 (X5CrNi18-10) and 1.4404 (X2CrNiMo17-12-2) are characteristic CrNi steels for the production of thin sheet from which, among other things components for deep-drawn sheets, such as heat exchangers and / or for Corrosion protection in aqueous and weakly acidic media are manufactured.
  • the production of austenitic stainless sheet with thicknesses of less than 1 mm requires a particularly high cold workability.
  • the cold workability of 1.4301 steel is higher than that of 1.4404 steel.
  • steel 1.4404 is characterized by a higher corrosion resistance.
  • JP 56146862 an austenitic CrMnNi steel containing only low nitrogen contents of less than 0.03%.
  • the reported steel has a carbon content of less than 0.03%, a silicon content of less than 0.5%, a manganese content of only 2.2 to 3.0%, a chromium content of 14 to 18%, a nickel content of 6.0 to 9.0%, a molybdenum content of 0.15 to 0.5% and a copper content of 1.0 to 3.0%.
  • the addition of more than 0.03% of nitrogen has been dispensed with since the steel contains not only high copper contents but also relatively high nickel contents.
  • austenitic CrMnNi steels is in WO 2010/029012 A1 described.
  • a stainless steel and a cold rolled product made therefrom which has 5 to 15% residual austenite ferrite in the cold rolled state.
  • the steel has 0.05 to 0.14% C, 0.1 to 1.0% Si, 4.0 to 12.0% Mn,> 17.5 to 22.0% Cr, 1.0 to 4, 0% Ni, maximum 0.5% Mo, 0.03 to 0.2% N and 1.0 to 3.0% Cu.
  • hot forming grades of up to 50% and cold forming degrees of as much as 50% are also desired. According to this document, stress cracks due to martensite formation should be avoided.
  • the alloy is modulated to retain 5 to 15 vol% ⁇ -ferrite in the steel.
  • the austenite is thus stabilized.
  • the 0.8 mm thick cold strip produced in this way has a higher strength compared to the 1.4301 cold strip but a lower elongation at break.
  • a steel with a very broad chemical composition is known. From this steel a stress crack-free molded part is produced by cold forming. To avoid stress cracks, martensite formation during cold forming is avoided.
  • the steel consists of a two-phase structure with ferrite and austenite. The presence of ferrite stabilizes austenite against martensite formation.
  • the ⁇ -ferrite content is at least 15 to a maximum of 40% by volume.
  • An example of such a steel is in the EP 1319091 B1 disclosed.
  • the steel described there has the following composition: maximum 5.0% Mo, 0.01 to 0.2% C, 5.0 to 12.0 % Mn, 15.0 to 24.0% Cr, at most 3.0% Ni, 0.10 to 0.60% N and at most 2.0% Cu.
  • the steel contains 0.30 to 3.0% aluminum and / or 0.50 to 3.00% silicon, wherein the sum of the contents of aluminum and silicon does not exceed 3.00%.
  • Chromium and molybdenum promote ferrite formation.
  • the disadvantage is that the Kaltumformcre is limited by the ferrite.
  • the sum amount of chromium and molybdenum and other ferrite-stabilizing elements must be limited.
  • Copper has a similar austenite-stabilizing effect as nickel, but is less expensive.
  • hot rolling copper-alloyed austenitic steels there is a risk that copper-rich precipitates form, which can lead to hot cracks. This has resulted in limiting the maximum copper content and, in addition, matching the hot forming conditions to the copper content present in the steel.
  • nitrogen-alloyed austenitic CrMnNi steels are in most cases alloyed with copper.
  • the AISI 201 L steel has a carbon content of less than 0.03%, a silicon content of less than 0.75%, a manganese content of 5.5 to 7.5% and a chromium content of 16, 0 to 18.0%, a nickel content of 3.5 to 5.5% and a nitrogen content of less than 0.25%.
  • the steel is not alloyed with molybdenum, aluminum and copper.
  • the austenitic steel AISI 201 L has a very good combination of strength and toughness properties in the solution-annealed condition, which makes it easy to cold-form.
  • the 0.2% relievedehngrenze are 396 MPa, the tensile strength at 785 MPa and the elongation at break at 56%.
  • sheet and strip with a thickness of less than 3 mm are called thin sheet.
  • Cold-rolled sheet is predominantly produced in thicknesses of 0.4 to 3.0 mm and in widths of up to 2000 mm from hot-rolled strip with thicknesses of greater than 2 mm.
  • the hot strip is plastically deformed and thinned. In this case, the material is formed in several passes in each cold rolling stage.
  • the steel solidifies.
  • Cold work hardening restricts the cold workability, so that after each cold rolling stage an intermediate annealing above the recrystallization temperature of the steel is required.
  • the material softens and may undergo re-cold-forming.
  • the object of the invention is to provide a process for the production of sheet metal from a nitrogen-alloyed austenitic CrMnNi steel on an industrial scale. Furthermore, a cost-effective nitrogen-alloyed austenitic CrMnNi steel is available be used, which is used for the production of heat exchangers and corrosive stressed components.
  • This object is achieved with respect to the method by a method for the production of sheets and strips, in particular sheet, of austenitic stainless steel, having the following composition: Mn: 7.6 to 8.7 wt .-%; Cr: 16.50 to 16.99% by weight; Ni: 3.8 to 4.3% by weight; Mo: 0.51 to 1.0% by weight; N: 0.18 to 0.45 wt%, C: ⁇ 0.04 wt%; Si: ⁇ 0.5% by weight; P: ⁇ 0.04 wt%; S: ⁇ 0.01% by weight; The remainder being iron and unavoidable impurities, the process comprising the steps of: melting the steel by a conventional melting process, casting the molten steel in the billet or ingot, hot rolling the billet or billet into a slab, further processing the slab into one Vorband and then to a hot strip, optionally descaling and annealing of the hot strip and cold rolling to a cold strip, wherein the steel in the solution-annealed condition ⁇ -ferrite shares ⁇ 3 vol .
  • the process steps during cold rolling and intermediate annealing are specifically tailored to the steel. It has surprisingly been found that the steel with the concrete composition claimed has a higher cold workability with TRIP / TWIP properties compared to the known steels 1.4301 and 1.4404.
  • the cold forming conditions are chosen so that the required Bacumformgrad is achieved.
  • the cold rolling stages, including the cold forming passes within a cold rolling stage and the intermediate anneals, may be tuned to minimize the number of cold working stages and intermediate anneals, and not require trimming of the strip, thereby making the process as a whole less expensive.
  • the finished fine strip can be present in the annealed or in the cold-solidified state.
  • the finished sheet may have a thickness of 1.25 to 0.04 mm, i. a thickness that is commonly used in production.
  • the hot strip before the cold rolling and after descaling in the temperature range between 950 ° C to 1100 ° C are solution-annealed, the holding time at least 10 minutes.
  • the values have proven to be particularly suitable for the process according to the invention.
  • the hot strip is subjected to a cold forming at a forming temperature of less than 80 ° C, preferably at 40 ° C.
  • a TRIP and / or TWIP effect is triggered in each cold rolling stage.
  • the hot strip can be subjected to cold working with an overall degree of deformation ⁇ of up to 4.43, the cold forming being carried out in several cold rolling stages with a degree of cold working of approximately 0.75 each.
  • each cold rolling step with an approximately equal degree of cold work of 0.13 to 0.26, preferably 0.15 per stitch.
  • the recrystallization annealing can be omitted, which has an advantageous effect on the duration of the process as well as on the process costs.
  • the thin sheet after cooling may have a recrystallized structure and a passive layer.
  • the thin sheet After annealing under a nitrogen atmosphere as a protective gas and subsequent cooling, the thin sheet may have a recrystallized structure with a passive layer and a passivating chromium nitride layer in the edge region up to 30 ⁇ m.
  • the thin sheet after cooling, may have a work-hardened structure with a passive layer with or without a passivating chromium nitride layer. According to the invention, the desired properties of the thin sheet can thus be adjusted in a simple manner.
  • the sheet may have a 0.2% proof stress of 326 to 390 MPa, a tensile strength of 760 to 780 MPa, an elongation at break of 60 to 70%, a passivation current density in 0.5 M sulfuric acid of 0.013 to 0.017 mA / cm 2 , have a current density of 0.0025 mA / cm 2 at 400 mV and a breakdown potential at pitting test in 0.5 M NaCl solution of 317 mV.
  • the sheet having a degree of deformation of 0.3, a 0.2% proof stress of 940 to 1070 MPa, a tensile strength of 1187 to 1288 MPa and an elongation at break of 13 to 20%, a Passivitationsstrom Why in 0.5 M sulfuric acid of 0.005 to 0.010 mA / cm 2 , a current density of 0.0024 mA / cm 2 at 400 mV and a breakdown potential at pitting test in 0.5 M NaCl solution of 307 mV.
  • the object according to the invention can be achieved by determining suitable shaping conditions. This concerns in particular the setting of the forming temperature and the forming speed on the one hand and the cooling and lubrication of the rolling stock on the other hand.
  • a TRIP and / or TWIP effect is triggered.
  • the TRIP effect can be demonstrated by the detection of the a'-shaped martensite and the TWIP effect by the detection of twins.
  • the martensite fraction is measured by means of magnetic measurements.
  • the Feritscope is used for nondestructive measurement during ongoing production. These measurement results can be specified below by destructive measuring methods. Magnetic saturation methods using MSAT or the magnetic balance are used for this purpose. For the detection of deformation twins in austenite EBSD measurements are performed.
  • the invention is solved by a austenitic stainless steel having the following composition: Mn: 7.6 to 8.7% by weight; Cr: 16.5 to 16.99% by weight; Ni: 3.8 to 4.3% by weight; Mo: 0.51 to 1.0% by weight; N: 0.18 to 0.45 wt%, C: ⁇ 0.04 wt%; Si: ⁇ 0.5% by weight; P: ⁇ 0.04 wt%; S: ⁇ 0.01% by weight; Remaining iron and unavoidable impurities.
  • the steel according to the invention is not alloyed with copper, aluminum, niobium, titanium or vanadium and, unlike AISI 201 L steel, has a higher manganese and molybdenum content.
  • the inventive steel is also characterized by its low nickel content and the addition of nitrogen compared to the previously used austenitic stainless steels 1.4301 and 1.4404.
  • inventive steel compared to the steels mentioned has both an improved cold workability and an approximately equal or higher corrosion resistance in aqueous solutions.
  • the present invention furthermore relates to a thin sheet produced from the steel according to the invention.
  • the thin sheet is preferably produced in accordance with the method according to the invention.
  • the thin sheet produced according to the invention can be used with particular preference as a component for deep drawing sheets and stretch drawing sheets, in particular sheets and / or fins in heat exchangers.
  • the thin sheet produced according to the invention can be used particularly preferably for corrosive stressed components, in particular containers and panels.
  • the invention provides a stainless, nitrogen and molybdenum alloyed austenitic CrMnNi steel having higher levels of manganese and lower levels of nickel over the previously used 1.4301 (X5CrNi18-10) and 1.4404 (X2CrNiMo17-12-2) steels.
  • the innovative steel differs by its increased manganese content and its addition of molybdenum.
  • the inventive steel is not alloyed with copper, such as a variety of new nitrogen-alloyed austenitic CrMnNi steels.
  • the steel according to the invention is an austenitic steel with a ⁇ -ferrite content of not more than 3% by volume.
  • the alloy components of the inventive steel are chosen so that the structure has a ⁇ - ferrite content less than 3% after the solution annealing.
  • the metastable ⁇ -ferrite reduces with each recrystallization annealing, so that the steel has a ⁇ -ferrite content of less than 1% after about three intermediate anneals.
  • the structure also contains an a'-martensite content of up to 50%, preferably about 20%. This ⁇ '-martensite is a consequence of the ⁇ '-TRIP effect induced during cold working.
  • the Martensitanteil is dimensioned so that thereby a high cold workability is possible. This is the prerequisite for reducing the work steps to the finished sheet with respect to the necessary cold rolling stages and intermediate annealing, and producing a thin sheet with adjustable high strength and / or high toughness in the solution annealed and / or cold rolled condition.
  • the inventive steel has a better formability compared to the steels 1.4404, 1.4301 and AISI 201 L.
  • the inventive steel With its high strength and a nickel content of 3.8-4.3%, the inventive steel consequently represents a cost-effective alternative material in comparison with known steels, which can advantageously be processed by cold rolling to form thin sheet with thicknesses of up to 0.04 mm at present.
  • Chromium or molybdenum are added as ferrite stabilizing elements, which are added to the inventive steel to maintain and improve corrosion resistance at levels of 16.50 to 16.99% and 0.51 to 1.0%, respectively. If the chromium and molydengths are at the upper tolerance limit, the best corrosion properties are achieved.
  • chromium and molybdenum as well as all other alloying elements increase the austenite stability against the formation of ⁇ '-deformation martensite.
  • the strain-induced a'-martensite formation during cold rolling is made more difficult.
  • the alloying elements of ferrite and austenite stabilizing elements in the invention are coordinated so that under the given cold forming conditions during a cold rolling stage up to 50 vol .-% ⁇ '-deformation martensite, preferably about 20 vol -.% Arises.
  • Carbon and nitrogen are strong austenite formers that make it difficult to form a'-deformation martensite. Therefore, the carbon content is set at ⁇ 0.04 mass% and the nitrogen content at 0.18-0.45 mass%. In this case, nitrogen contents of up to 0.22% by mass can be added to the steel without special metallurgical measures; otherwise, pressure nitriding is necessary. It is desirable that carbon and nitrogen are dissolved in austenite. Above all, chromium carbide formation during cooling of annealing temperatures is to be suppressed in order to ensure intergranular corrosion resistance.
  • the inventive steel has silicon contents less than 0.5 mass%.
  • Manganese as austenite stabilizing element is alloyed in the inventive steel at contents of 7.6 to 8.7 mass%.
  • the manganese contents are raised compared to the manganese content in the steel AISI 201 L.
  • the manganese levels are in a range that is not considered by the metallurgist is viewed critically. Due to the manganese content, the nickel content can be reduced compared to steels 1.4301 and 1.4404.
  • Nickel is alloyed to the inventive steel as Austenitchanner.
  • the nickel content is determined only by a narrow concentration range of 3.8 to 4.3% by mass. If these nickel contents are not reached, the formation of a'-cooling martensite can be expected. At the same time, the ⁇ -ferrite content increases above 5% by volume. Both effects lead to a deterioration of the cold workability of the steel. If the nickel contents are exceeded, the austenite is relatively stable. The formation of a'-deformation martensite remains, which also reduces cold workability.
  • m % Cr + 2 % Mo + 1.5 % Si / 0.3 % Mn + % Ni + 15 % C + % N
  • the thin sheet according to the invention with a thickness of 1.25 to 0.04 mm is produced in the following working steps: “smelting of the steel”, “pouring of the melt in the strand or cast and production of a strand or ingot”, “hot rolling to the slab, to pre-and hot strip "," preparation (descaling / pickling, solution annealing) and cold rolling of the hot strip ".
  • the step of preparing (descaling / pickling, solution annealing) and cold rolling the hot strip comprises solution annealing and then cold rolling the hot strip to produce cold rolled and / or annealed sheet having a thickness of 1.25 to 0.04 mm.
  • Particularly suitable conditions are defined in the subclaims.
  • the forming temperature is in a temperature range of 20 ° C to 80 ° C, preferably at 40 ° C. In order to comply with this temperature range, a cooling of the rolling stock is usually required.
  • the forming a'-Umformmartensit is a maximum of about 50%.
  • the inventive steel is exposed to several cold rolling stages.
  • the total degree of deformation within a cold rolling stage is 0.75 to 1.00.
  • the required final thickness of the thin sheet determines the number of cold rolling stages.
  • Sheet with a thickness of e.g. 0.1 mm was prepared in 5 cold rolling stages.
  • the number of cold rolling stages is lower than commercially available austenitic CrNi or CrNiMn steels with the same sheet thickness, so that the production of the thin sheet can be carried out more cheaply.
  • the material is cold-formed in several passes. Conveniently, a degree of deformation of 0.15 to 0.26 per stitch should be selected.
  • each cold rolling stage is usually an intermediate or recrystallization annealing in the temperature range between 950 ° C and 1050 ° C, preferably at 1000 ° C.
  • This annealing can be carried out under protective gas in a continuous furnace or hood furnace with subsequent cooling in lead bath, water or in air. If the annealing is carried out as a final annealing of the fine strip, then the finished sheet is in the annealed, that is, in the recrystallized state.
  • the surface of the thin sheet has a passive layer.
  • the intermediate or recrystallization annealing can be carried out after each cold rolling stage in the temperature range between 950 ° C. and 1000 ° C., preferably at 980 ° C., under a nitrogen atmosphere in a continuous furnace with subsequent cooling in lead bath, water or in air. If this annealing takes place as an intermediate and final annealing of the fine strip, then the finished thin sheet is in the annealed, that is, in the recrystallized state, the near-surface region of the thin sheet has passivating chromium nitride precipitates to a depth of 30 ⁇ m.
  • the austenite softens and becomes finer.
  • the austenite is thereby cold formable again.
  • the formation of ⁇ '-Umformmartensit is difficult for each additional cold rolling stage.
  • the fine strip had a Umformmartensitanteil of 3 vol .-%.
  • the carriers of the plastic deformation of the austenite are then preferably induced twins and sliding processes. In these cases, the TRIP effect is replaced by the TWIP effect.
  • the interplay between the TRIP and TWIP effect is the prerequisite for achieving a higher overall degree of deformation unlike the previous procedure.
  • Annealing under nitrogen atmosphere in the temperature range below 1000 ° C causes the formation of chromium nitride precipitates, which brings both advantages and disadvantages.
  • the resistance to intergranular corrosion can be increased and, on the other hand, an increase in the strength properties and a decrease in the toughness properties are associated with it.
  • the TRIP effect is attenuated by stabilizing the austenite.
  • the intermediate or recrystallization annealing under protective gas or under nitrogen atmosphere after the last cold rolling stage can also be omitted.
  • the passive layer of the inventive thin sheet determines decisively the corrosion properties.
  • the passivating chromium nitride precipitates in the near-surface region also influence the gloss of the surface as well as the mechanical properties of the thin sheet. Compared to thin sheet with an unaffected passive layer, a higher corrosion resistance and a matt, dark gray gloss are registered.
  • the Passivitationsstrom ashamed of the steel according to the invention in the solution-annealed state in 0.05 M sulfuric acid 0.013-0.017 mA / cm 2 , at a voltage of +400 mV 0.0025 mA / cm 2 .
  • the breakdown potential of the pitting test in 0.5 M NaCl solution is 317 mV.
  • the sheet annealed under inert gas has a 0.2% proof stress of 330 to 390 MPa, a tensile strength of 760 to 830 MPa and an elongation at break of 60 to 83%.
  • the thin sheet annealed under a nitrogen atmosphere has a thickness of 0.27 mm after 4 rolling stages.
  • the 0.2% proof strength is 500 MPa
  • the average tensile strength is 843 MPa
  • the breaking elongation 25% There is a recrystallized austenitic ground structure with chromium nitride precipitates on the edge.
  • the cold-formed sheet of a thickness of 0.2 mm to 0.6 mm cold formed with a degree of deformation of 0.3 which was not subjected to a final annealing and depending on the number of intermediate anneals under nitrogen has chromium nitrides in the near-surface region between 15 and 30 microns depth, is characterized by an increasing with increasing proportion of chromium nitrite 0.2% proof strength of 940 to 1153 MPa and a tensile strength of 1187 MPa to 1288 MPa.
  • the elongation at break decreases with increasing proportion of chromium nitride from 20% to 14%.
  • the steel has a cold-strengthened austenitic matrix.
  • the proportion of Umformmartensit is in the work-hardened 0.6 mm thick band 5%, in the cold-worked 0.2 mm thick band about 1%.
  • the Passivitationsstrom ashamed in 0.05M sulfuric acid decreases by the Cr nitride formation to 0.0036 to 0.0038 mA / cm 2 , at a voltage of +400 mV, the passive current density is 0.0024 mA / cm 2 .
  • the breakdown potential of the pitting test in 0.5 M NaCl solution drops to 149 mV compared to the annealed material.
  • Components that are subject to deep drawing and stretching stresses can be produced economically from the thin sheet produced according to the invention.
  • the steel according to the invention is suitable for corrosive stressed components that are exposed to aqueous solutions, such as containers and linings.
  • the molten steel thus obtained had a chemical composition of 0.031 wt% C, 0.211 wt% Si, 8.306 wt% Mn, 16.91 wt% Cr, 3.88 wt% Ni, 0.599 Wt% Mo and 0.186 wt% N, remainder iron and unavoidable impurities.
  • the melt was poured into a mold rising to a cast block.
  • the dimensions of the mold were 450 mm * 450 mm * 1700 mm.
  • the solidification was due to the chemical composition of the steel primarily ferritic.
  • the ferrite transforms into austenite.
  • residual amounts of ferrite may be present in the austenitic structure.
  • two blocks with a total tonnage of 5400 kg were poured industrially.
  • each ingot was heated to 1200 ° C over a period of 8 hours and held at this temperature for 6 hours. This was followed by 19-23 (approximately 20) stitches, i. Rolling, the transformation into a slab with a width of 350-370 mm and 100-110 mm thickness.
  • the forming temperature should not fall below 1000 ° C.
  • the subsequent descaling of the hot strip was used to remove the oxide layer formed on the strip surfaces during the hot rolling process.
  • the tape was, if necessary, ground and pickled in a hydrochloric acid bath.
  • the subsequent cold rolling of the hot strip was carried out by the following method steps, according to the inventive method for producing cold-rolled and / or annealed sheet having a thickness of 1.25-0.04 mm.
  • the hot strip undergoes cold forming with aPolumformgrad of 4.43.
  • a degree of deformation of not more than 0.75 were carried out.
  • several passes were made with a degree of deformation of 0.15-0.26 per stitch.
  • the forming speed was between 50 and 100 m / min during rolling in the 20-roll rolling mill and is matched to the steel so that the forming temperature of 60 ° C was not exceeded. This ensures the formation of a'-Umformmartensit and / or deformation twins in each performed cold rolling stage and achieved the desired TRIP / TWIP effect.
  • the cold workability of the steel is improved, which manifests itself in the reduction of cold rolling stages.
  • an intermediate annealing was carried out under a nitrogen atmosphere in a continuous furnace in a temperature range of 950-980 ° C with subsequent cooling in the lead bath.
  • the final-formed and final-annealed sheet was in the recrystallized state after the annealing treatment.
  • chromium nitride precipitations smaller than 1 ⁇ m were produced on the surface of the strip down to a depth of 30 ⁇ m at the grain and twin boundaries.
  • the resulting passivation layer was positively influenced by chromium nitride precipitations.
  • the expression for this was a matt shiny surface or a gray tint and an increase in corrosion resistance and hardness.
  • the 0.2% proof stress was 385 MPa
  • the tensile strength was 760 MPa
  • the elongation at break was 61%.
  • the steel exhibited an austenitic, ferrite-free structure.
  • the TRIP / TWIP effect is triggered again.
  • up to 10% a'-shaped martensite can be detected after the tensile test.
  • the corrosion behavior of the steel according to the invention was tested electrolytically in comparison with the conventional steels 1.4301 and 1.4404.
  • the passivation in 0.05 M sulfuric acid at room temperature, both in the annealed state and in the work-hardened state ( ⁇ 0.3) of the strip thicknesses of 1.25 mm, 0.6 mm and 0.2 mm compared to compact samples of comparative steels faster.
  • the passivation current density of the steel according to the invention in the solution-annealed state in 0.05 M sulfuric acid was 0.013-0.017 mA / cm 2 .
  • the passive area was enlarged.
  • the current density in the passivation region was 0.0025 mA / cm 2 at +400 mV.
  • the passive layer was thus formed more rapidly and is more durable than the passive layers of steels 1.4301 and 1.4404 with current densities at +400 mV of 0.0030 mA / cm 2 and 0.0035 mA / cm 2 .
  • the Repassivation region of the steel according to the invention was more pronounced than the repassivation region of the two comparative steels. With chromium nitride precipitates in the edge region, the passivation current density dropped to 0.005-0.010 mA / cm 2 despite the work hardened state. The current density in the passivation region was almost unchanged at 0.0024 mA / cm 2 at +400 mV.
  • the breakdown potential of the pitting test in 0.5 M NaCl solution was 317 mV in annealed chromium nitride-free steel strip.
  • Cold-strengthened chromium nitride-containing sheet with a degree of deformation of 0.3 had a breakdown potential of 307 mV.
  • the steel according to the invention was more resistant than the conventional comparison steel 1.4301 with 159 mV in the annealed state and comparable to the properties of the steel 1.4404 with 318 mV in the annealed state.
  • the pitting resistance fell after cold working with a degree of deformation of 0.3 due to the Chromnitridausscheidungen only slightly compared to the annealed state.
  • the steel according to the invention was more resistant than the comparison steel 1.4301, and in the precipitation-free state has a pitting resistance comparable to that of steel 1.4404.
  • the use of the thin sheets according to the invention can be carried out as a less expensive component wherever, for example, sheets of the material 1.4301 and after examination of the corrosion conditions of the steel 1.4404 are used. These are, for example, containers and panels that are exposed to aqueous solutions.
  • the CrMnNi steel according to the invention is particularly suitable as a thin sheet for deep-drawn sheets, for example in heat exchangers, in particular for plates and / or fins in heat exchangers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Feinblech aus einem nichtrostenden, austenitischen CrMnNi-Stahl, sowie dessen Verwendung. Ferner betrifft die Erfindung einen nichtrostenden austenitischen Stahl.
  • Stand der Technik
  • Nichtrostende austenitische Stähle werden vielseitig eingesetzt. Bevorzugt lassen sich streck-und tiefgezogene Bauteile herstellen, die erhöhten Temperaturen und korrosiven wässrigen Medien ausgesetzt sind, wie beispielsweise Wärmetauscher. Der Wirkungsgrad von Wärmetauschern wird unter anderem vom Wärmedurchgangskoeffizienten bestimmt. Dieser verhält sich proportional zur spezifischen Wärmeleitfähigkeit des Werkstoffes und umgekehrt proportional zur Materialdicke. Obwohl austenitische Stähle eine schlechtere Wärmeleitfähigkeit aufweisen, lassen sie sich im Gegensatz zu ferritischen oder martensitischen Stählen sehr gut streck- und tiefziehen und zeigen eine höhere Beständigkeit gegenüber korrosiven Medien.
  • Austenitische Feinbleche mit Materialstärken von weniger als 1 mm werden bevorzugt bei der Herstellung von Streck-und Tiefziehblechen eingesetzt. Dabei wird in Kauf genommen, dass die austenitischen Stähle aufgrund ihrer relativ hohen Legierungsgehalte, besonders an Nickel, in ihrer Herstellung kostenintensiv sind. Es gibt zahlreiche Versuche, besonders den Nickelgehalt der austenitischen Stähle zu reduzieren und gleichzeitig die gute Kaltumformbarkeit und Korrosionsbeständigkeit der austenitischen Stähle beizubehalten bzw. zu verbessern. Die Entwicklung von stickstoff-und/oder kupferlegierten austenitischen CrMnNi-Stählen trägt diesen Ressourceneffizienzbestrebungen Rechnung.
  • Die handelsüblichen austenitischen Stähle mit den EN-Werkstoffennummern 1.4301 (X5CrNi18-10) und 1.4404 (X2CrNiMo17-12-2) sind charakteristische CrNi-Stähle für die Herstellung von Feinblech aus welchem u. a. Bauelemente für Tiefziehbleche, wie zum Beispiel Wärmetauscher und / oder für den Korrosionsschutz in wässrigen und schwach säurehaltigen Medien gefertigt werden. Die Herstellung von nichtrostendem austenitischen Feinblech mit Dicken kleiner 1 mm setzt eine besonders hohe Kaltumformbarkeit voraus. Das Kaltumformvermögen des Stahls 1.4301 ist höher als das des Stahls 1.4404. Jedoch zeichnet sich der Stahl 1.4404 aufgrund seines erhöhten Gehalts an Nickel und Molybdän durch eine höhere Korrosionsbeständigkeit aus.
  • Aus dem Stand der Technik sind bereits unterschiedlichste stickstoff- bzw. kupferlegierte CrMnNi-Stähle bekannt.
  • Beispielsweise beschreibt die JP 56146862 einen austenitischen CrMnNi-Stahl, der nur geringe Stickstoffgehalte kleiner 0,03 % enthält. Darüber hinaus beinhaltet der ausgewiesene Stahl einen Kohlenstoffgehalt kleiner 0,03 %, einen Siliziumgehalt kleiner 0,5 %, einen Mangangehalt von nur 2,2 bis 3,0 %, einen Chromgehalt von 14 bis 18 %, einen Nickelgehalt von 6,0 bis 9,0 %, einen Molybdängehalt von 0,15 bis 0,5 % und einen Kupfergehalt von 1,0 bis 3,0 %. Auf die Zugabe von mehr als 0,03 % Stickstoff ist verzichtet worden, da der Stahl neben hohen Kupfergehalten gleichzeitig relativ hohe Nickelgehalte enthält.
  • Ein weiteres Beispiel für austenitische CrMnNi-Stähle ist in der WO 2010/029012 A1 beschrieben. Insbesondere sind ein nichtrostender Stahl und ein daraus hergestelltes Kaltflachprodukt offenbart, das im kalt gewalzten Zustand 5 bis 15 % Ferrit mit restlichem Austenit aufweist. Der Stahl weist 0,05 bis 0,14 % C, 0,1 bis 1,0 % Si, 4,0 bis 12,0 % Mn, > 17,5 bis 22,0 % Cr, 1,0 bis 4,0 % Ni, maximal 0,5 % Mo, 0,03 bis 0,2 % N und 1, 0 bis 3,0 % Cu auf. Zur Herstellung eines Kaltbandes aus einem Warmband werden Warmumformgrade von maximal 50 % und Kaltumformgrade von ebenso maximal 50 % angestrebt. Gemäß dieser Druckschrift sollen Spannungsrisse durch Martensitbildung vermieden werden. Daher wird die Legierung so moduliert, dass 5 bis 15 Vol% δ-Ferrit im Stahl erhalten bleiben. Der Austenit wird somit stabilisiert. Das so erzeugte 0,8 mm starke Kaltband weist gegenüber dem Kaltband aus 1.4301 eine höhere Festigkeit, jedoch eine geringere Bruchdehnung auf.
  • Aus der EP1352982 B1 wird ein Stahl mit einer sehr breiten chemischen Zusammensetzung bekannt. Aus diesem Stahl wird ein spannungsrissfreies Formteil durch Kaltumformung erzeugt. Um Spannungsrisse zu vermeiden, wird die Martensitbildung während der Kaltumformung vermieden. Darüber hinaus besteht der Stahl aus einem zweiphasigen Gefüge mit Ferrit und Austenit. Durch die Anwesenheit von Ferrit wird der Austenit gegenüber der Martensitbildung stabilisiert. Der δ-Ferritanteil beträgt mindestens 15 bis maximal 40 Vol%.
  • In der Regel sind die kalt umformbaren, austenitischen CrMnNi-Stähle aus Kostengründen nicht mit Molybdän legiert bzw. ihr Molybdängehalt ist kleiner als 0,5 %. Nur in speziellen Anwendungsfällen, vor allem bei einer geforderten erhöhten Korrosionsbeständigkeit wird Molybdän zulegiert.
  • Ein Beispiel für einen solchen Stahl ist in der EP 1319091 B1 offenbart. Der dort beschriebene Stahl weist folgende Zusammensetzung auf: maximal 5,0 % Mo, 0,01 bis 0,2 % C, 5,0 bis 12,0 % Mn, 15,0 bis 24,0 % Cr, maximal 3,0 % Ni, 0,10 bis 0,60 % N und maximal 2,0% Cu. Darüber hinaus enthält der Stahl 0,30 bis 3,0 % Aluminium und/oder 0,50 bis 3,00 % Silizium, wobei die Summe der Gehalte an Aluminium und Silizium 3,00 % nicht überschreitet.
  • Durch steigende Chrom- und Molybdängehalte wird die Korrosionsbeständigkeit der austenitischen Stähle erhöht. In EP0969113 B1 wird ein solcher Stahl beschrieben. Dieser Stahl ist mit 1,0 bis 4,0 % Kupfer legiert und enthält keinen Stickstoff als Legierungselement.
  • Chrom und Molybdän fördern die Ferritbildung. Nachteilig ist, dass durch die Ferritbildung das Kaltumformvermögen eingeschränkt wird. Für die Herstellung von austenitischen Stählen muss deshalb der Summengehalt an Chrom und Molybdän und weiterer ferritstabilisierender Elemente begrenzt werden.
  • Kupfer hat eine ähnlich austenitstabilisierende Wirkung wie Nickel, ist aber weniger kostenintensiv. Beim Warmwalzen von kupferlegierten austenitischen Stählen besteht jedoch die Gefahr, dass sich kupferreiche Ausscheidungen bilden, die zu Warmrissen führen können. Das hat dazu geführt, den maximalen Kupfergehalt zu begrenzen und darüber hinaus die Warmumformbedingungen auf den im Stahl vorhandenen Kupfergehalt abzustimmen. Aus dem Stand der Technik leitet sich ab, dass stickstofflegierte austenitische CrMnNi-Stähle in den meisten Fällen mit Kupfer legiert sind.
  • Eine Ausnahme bezüglich des Kupfergehaltes stellt der Stahl AISI 201 L dar. Der Stahl AISI 201 L weist einen Kohlenstoffgehalt kleiner 0,03 %, einen Siliziumgehalt kleiner 0,75 %, einen Mangangehalt von 5,5 bis 7,5 %, einen Chromgehalt von 16, 0 bis 18,0 %, einen Nickelgehalt von 3,5 bis 5,5 % und einen Stickstoffgehalt kleiner 0,25 % auf. Der Stahl ist nicht mit Molybdän, Aluminium und Kupfer legiert. Der austenitische Stahl AISI 201 L weist im lösungsgeglühtem Zustand eine sehr gute Kombination von Festigkeit und Zähigkeitseigenschaften aus, weshalb er sich gut kalt umformen lässt. So liegen die 0,2 %-Mindestdehngrenze bei 396 MPa, die Zugfestigkeit bei 785 MPa und die Bruchdehnung bei 56 %.
  • Im Allgemeinen werden Bleche und Bänder mit einer Stärke von kleiner 3 mm als Feinblech bezeichnet. Kaltgewalztes Feinblech wird überwiegend in Dicken von 0,4 bis 3,0 mm und in Breiten bis 2000 mm aus Warmband mit Dicken von größer 2 mm hergestellt. Durch Kaltwalzen in mehreren Kaltwalzstufen wird das Warmband plastisch verformt und gedünnt. Dabei wird in jeder Kaltwalzstufe das Material in mehreren Stichen umgeformt.
  • Während der Kaltumformung verfestigt der Stahl. Durch die Kaltverfestigung wird die Kaltumformbarkeit eingeschränkt, so dass nach jeder Kaltwalzstufe eine Zwischenglühung oberhalb der Rekristallisationstemperatur des Stahles erforderlich ist. Während der Zwischenglühung entfestigt das Material und kann einer erneuten Kaltumformung unterzogen werden.
  • Dieses Wechselspiel von Kaltwalzen und Zwischenglühen kann mehrfach wiederholt werden. Das dadurch bedingte zunehmende Verfestigungsverhalten des Stahles setzt diesem Prozessablauf ein Ende. Bisher ist das Erreichen von Gesamtumformgraden von bis zu 1,14 durch Kaltwalzen üblich. Darüber hinaus nimmt gemäß des bekannten Verfahrens mit steigender Stichzahl innerhalb einer Kaltwalzstufe der Umformgrad ab.
  • Für austenitische Stähle ist eine Kaltwalztechnologie festgelegt, die nicht zwischen austenitischen Stählen mit und ohne TRIP/TWIP-Eigenschaften unterscheidet. Eine effektive Herstellungstechnologie von metastabilen austenitischen Stählen mit TRIP/TWIP-Eigenschaften wäre möglich, wird aber in der Praxis in der Regel nicht ausgeschöpft. Metastabile austenitische Stähle mit TRIP/TWIP-Eigenschaften verfügen über ein höheres Kaltumformvermögen.
  • In der DE 10052745 A1 wird offenbart, dass unabhängig von der Art der Kaltumformung der höchste Umformgrad erreicht wird, wenn die Kaltumformbedingungen so auf die chemische Zusammensetzung des Stahles abgestimmt werden, dass ca. 20 bis 25 % a'-Umformmartensit nach maximaler Beanspruchung entstehen. Sind allerdings mehrstufige Kaltumformungen mit Zwischenglühungen erforderlich, so wie es für die Herstellung dünner Bleche aus Warmband notwendig ist, so verbietet sich eine maximale Beanspruchung innerhalb einer Kaltbandstufe aus Gründen der vorzeitigen Bruchgefahr. Das geschilderte Verfahren ist deshalb nur auf eine Kaltumformung mit einer Kaltumformstufe anwendbar. Welcher Anteil an α'-Umformmartensit in höheren Kaltumformstufen anzustreben ist, um das optimale Kaltumformvermögen des Stahles auszuschöpfen, ist unbekannt.
  • Zusätzlich besteht bei der Fertigung von Feinblech aus austenitischem Stahl die Gefahr der Kantenrissbildung. Die Rissanfälligkeit ist bei relativ instabilen Stählen besonders ausgeprägt. Sie wird zusätzlich verstärkt, wenn Randentkohlungen während der Glühbehandlung aufgetreten sind. Glühungen unter Schutzgas mindern die Kantenrissbildung. Entstandene Risse müssen durch ein Besäumen des Kaltbandes vor seiner Weiterverarbeitung beseitigt werden.
  • Die Aufgabe der Erfindung besteht darin, ein Verfahren zur Herstellung von Feinblech aus einem stickstofflegierten austenitischen CrMnNi-Stahl im industriellen Maßstab bereitzustellen. Ferner soll ein kostengünstiger stickstofflegierter austenitischer CrMnNi-Stahl zur Verfügung gestellt werden, der zur Herstellung von Wärmetauschern und korrosiv beanspruchten Bauelementen verwendet wird.
  • Diese Aufgabe wird in Bezug auf das Verfahren durch ein Verfahren zur Herstellung von Blechen und Bändern, insbesondere von Feinblech, aus nichtrostendem austenitischen Stahl, mit folgender Zusammensetzung: Mn: 7,6 bis 8,7 Gew.-%; Cr: 16,50 bis 16,99 Gew.-%; Ni: 3,8 bis 4,3 Gew.-%; Mo: 0,51 bis 1,0 Gew.-%; N: 0,18 bis 0,45 Gew.-%, C: < 0,04 Gew.-%; Si: < 0,5 Gew.-%; P: < 0,04 Gew.-%; S: < 0,01 Gew.-%; Rest Eisen und unvermeidbare Verunreinigungen, gelöst, wobei das Verfahren die folgende Schritte umfasst: Erschmelzen des Stahles mit einem herkömmlichen Schmelzverfahren, Vergießen der Stahlschmelze im Strang- oder zu einem Gussblock, Warmwalzen des Stranges oder des Blockes zu einer Bramme, weiterverarbeiten der Bramme zu einem Vorband und anschließend zu einem Warmband, gegebenenfalls Entzundern und Glühen des Warmbands und Kaltwalzen zu einem Kaltband, wobei der Stahl im lösungsgeglühten Zustand δ-Ferritanteile < 3 Vol.-% aufweist und im kaltgewalzten Zustand zusätzlich einen α'-Martensitanteil von bis zu 50 Vol.-% enthält.
  • Die Verfahrensschritte während des Kaltwalzens und Zwischenglühens werden hierbei spezifisch auf den Stahl abgestimmt. Es hat sich überraschenderweise herausgestellt, dass der Stahl mit der konkret beanspruchten Zusammensetzung ein höheres Kaltumformvermögen mit TRIP/TWIP-Eigenschaften im Vergleich zu den bekannten Stählen 1.4301 und 1.4404 aufweist. Hierbei werden die Kaltumformbedingungen so gewählt, dass der erforderliche Gesamtumformgrad erreicht wird. Die Kaltwalzstufen, einschließlich der Kaltumformstiche innerhalb einer Kaltwalzstufe und die Zwischenglühungen können so aufeinander abgestimmt werden, dass die Anzahl der Kaltumformstufen und Zwischenglühungen minimiert werden und ein Besäumen des Bandes nicht erforderlich ist, wodurch das Verfahren als Gesamtes kostengünstiger ist. Das endgefertigte Feinband kann hierbei im geglühten oder im kalt verfestigten Zustand vorliegen.
  • Durch das erfindungsgemäße Verfahren kann der Mehraufwand des bekannten Verfahrens reduziert, Kosten und Material eingespart und die Wirtschaftlichkeit erhöht werden.
  • Gemäß einer bevorzugten Ausführungsform kann das endgefertigte Feinblech eine Dicke von 1,25 bis 0,04 mm aufweisen, d.h. eine Dicke die üblicherweise in der Produktion eingesetzt wird.
  • Ferner kann das Warmband vor dem Kaltwalzen und nach dem Entzundern im Temperaturbereich zwischen 950°C bis 1100°C lösungsgeglüht werden, wobei die Haltezeit mindestens 10 min beträgt. Die Werte haben sich für das erfindungsgemäße Verfahren als besonders geeignet erwiesen.
  • Gemäß einer weiteren Ausführungsform der Erfindung ist es bevorzugt, wenn das Warmband bei einer Umformtemperatur von weniger als 80°C, vorzugsweise bei 40°C, einer Kaltumformung unterworfen wird. Dabei wird in jeder Kaltwalzstufe ein TRIP- und/oder TWIP-Effekt ausgelöst.
  • Vorteilhafterweise kann das Warmband einer Kaltumformung mit einem Gesamtumformgrad ϕ von bis zu 4,43 unterworfen werden, wobei die Kaltumformung in mehreren Kaltwalzstufen mit einem Kaltumformgrad von jeweils ca. 0,75 durchgeführt wird.
  • Hierbei hat es sich als besonders bevorzugt erwiesen, wenn pro Kaltwalzstufe jeweils mehrere Stiche mit einem in etwa gleich hohem Kaltumformgrad von 0,13 bis 0,26, vorzugsweise 0,15 pro Stich durchgeführt werden.
  • Ferner hat es sich als vorteilhaft erwiesen, wenn nach jeder Kaltwalzstufe ein Rekristallisationsglühen unter Schutzgas im Temperaturbereich zwischen 950 °C und 1100°C, vorzugsweise bei 1050°C, mit nachfolgender Abkühlung durchgeführt wird.
  • Vorteilhafterweise kann nach der letzten Kaltwalzstufe das Rekristallisationsglühen entfallen, was sich vorteilhaft auf die Verfahrensdauer, wie auch auf die Verfahrenskosten auswirkt.
  • Nach einer weiteren bevorzugten Ausführungsform kann das Feinblech nach der Abkühlung ein rekristallisiertes Gefüge und eine Passivschicht aufweisen. Nach der Glühung unter Stickstoffatmosphäre als Schutzgas und anschließender Abkühlung kann das Feinblech ein rekristallisiertes Gefüge mit Passivschicht und eine passivierende Chromnitridschicht im Randbereich bis zu 30 µm aufweisen. Ferner kann das Feinblech nach der Abkühlung ein kaltverfestigtes Gefüge mit einer Passivschicht mit bzw. ohne einer passivierenden Chromnitridschicht aufweisen. Gemäß der Erfindung können somit auf einfache Weise die gewünschten Eigenschaften des Feinblechs eingestellt werden.
  • Hierbei kann das Feinblech eine 0,2 %-Dehngrenze von 326 bis 390 MPa, eine Zugfestigkeit von 760 bis 780 MPa, eine Bruchdehnung von 60 bis 70 %, eine Passivierungsstromdichte in 0,5 M Schwefelsäure von 0,013 bis 0,017 mA/cm2, eine Stromdichte von 0,0025 mA/cm2 bei 400mV und ein Durchbruchspotential bei Lochfraßprüfung in 0,5 M NaCl-Lösung von 317 mV aufweisen.
  • Vorzugsweise kann das Feinblech mit einem Umformgrad von 0,3 eine 0,2 %-Dehngrenze von 940 bis 1070 MPa, eine Zugfestigkeit von 1187 bis 1288 MPa und eine Bruchdehnung von 13 bis 20 %, eine Passivierungsstromdichte in 0,5 M Schwefelsäure von 0,005 bis 0,010 mA/cm2, eine Stromdichte von 0,0024 mA/cm2 bei 400 mV und ein Durchbruchspotential bei Lochfraßprüfung in 0,5 M NaCl-Lösung von 307 mV aufweisen.
  • Zusammenfassend lässt sich festhalten, dass die erfindungsgemäße Aufgabe erzielt werden kann, indem geeignete Umformbedingungen festgelegt werden. Das betrifft besonders die Einstellung der Umformtemperatur und der Umformgeschwindigkeit einerseits und die Kühlung und Schmierung des Walzgutes anderseits. In jeder Kaltwalzstufe wird ein TRIP- und/oder TWIP-Effekt ausgelöst. Der TRIP-Effekt kann durch den Nachweis des a'-Umformmartensits und der TWIP-Effekt durch den Nachweis von Verformungszwillingen belegt werden. Die Messung des Martensitanteils erfolgt mittels magnetischer Messungen. Für die zerstörungsfreie Messung während der laufenden Produktion wird das Feritscope eingesetzt. Diese Messergebnisse können nachfolgend durch zerstörende Messverfahren präzisiert werden. Zu diesem Zweck kommen magnetische Sättigungsverfahren mittels MSAT oder der magnetischen Waage zur Anwendung. Für den Nachweis von Verformungszwillingen im Austenit werden EBSD-Messungen durchgeführt.
  • Bezüglich des Stahles wird die Erfindung durch einen nichtrostenden austenitischen Stahl mit folgender Zusammensetzung gelöst: Mn: 7,6 bis 8,7 Gew.-%; Cr: 16,5 bis 16,99 Gew.-%; Ni: 3,8 bis 4,3 Gew.-%; Mo: 0,51 bis 1,0 Gew.-%; N: 0,18 bis 0,45 Gew.-%, C: < 0,04 Gew.-%; Si: < 0,5 Gew.-%; P: < 0,04 Gew.-%; S: < 0,01 Gew.-%; Rest Eisen und unvermeidbare Verunreinigungen.
  • Der erfindungsgemäße Stahl ist im Gegensatz zu den bekannten stickstofflegierten austenitischen CrMnNi-Stählen nicht mit Kupfer, Aluminium, Niob, Titan oder Vanadin legiert und weist im Unterschied zum Stahl AISI 201 L einen höheren Mangan-und Molybdängehalt auf. Der erfinderische Stahl zeichnet sich darüber hinaus durch seinen geringen Nickelgehalt und dem Zusatz an Stickstoff gegenüber den bisher gebräuchlichen austenitischen CrNi-Stählen 1.4301 und 1.4404 aus.
  • Es hat sich gezeigt, dass der erfinderische Stahl gegenüber den genannten Stählen sowohl ein verbessertes Kaltumformvermögen als auch eine annähernd gleiche bzw. höhere Korrosionsbeständigkeit in wässrigen Lösungen besitzt.
  • Die vorliegende Erfindung betrifft des Weiteren ein aus dem erfindungsgemäßen Stahl hergestelltes Feinblech. Vorzugsweise wird das Feinblech hierbei gemäß des erfindungsgemäßen Verfahrens hergestellt.
  • Das erfindungsgemäß hergestellte Feinblech kann besonders bevorzugt als Bauelement für Tief- und Streckziehbleche, insbesondere Platten und/oder Lamellen in Wärmetauschern verwendet werden.
  • Ferner kann das erfindungsgemäß hergestellte Feinblech insbesondere bevorzugt für korrosiv beanspruchte Bauelemente, insbesondere Behälter und Verkleidungen verwendet werden.
  • Es hat sich gezeigt, dass die Umformeigenschaften als auch das Passivierungsverhalten und die Lochfraßbeständigkeit des Feinbandes ähnlich oder höher sind als die der handelsüblichen CrNi-Stähle 1.4301 und 1.4404. Der Einsatz des erfinderischen Feinbleches stellt somit eine kostengünstige Alternative zum Einsatz von Feinblechen der Stähle 1.4404, 1.4301 und AISI 201 L dar.
  • Die Erfindung stellt einen nichtrostenden, stickstoff- und molybdänlegierten, austenitischen CrMnNi-Stahl mit höheren Gehalten an Mangan und niedrigeren Gehalten an Nickel gegenüber den bisher eingesetzten Stählen 1.4301 (X5CrNi18-10) und 1.4404 (X2CrNiMo17-12-2) zur Verfügung. Vom Stahl AISI 201 L unterscheidet sich der erfinderische Stahl durch seinen erhöhten Mangangehalt und seinen Molybdänzusatz. Der erfinderische Stahl ist nicht mit Kupfer legiert, wie eine Vielzahl der neuen stickstofflegierten austenitischen CrMnNi-Stähle.
  • Der erfindungsgemäße Stahl ist ein austenitischer Stahl mit einem δ- Ferritanteil von maximal 3 Vol.-%. Die Legierungsbestandteile des erfinderischen Stahles sind dabei so gewählt, dass das Gefüge nach dem Lösungsglühen einen δ- Ferritgehalt kleiner 3 % aufweist. Der metastabile δ-Ferrit reduziert sich bei jeder Rekristallisationsglühung, so dass der Stahl nach ca. drei Zwischenglühungen einen δ-Ferritgehalt kleiner 1 % besitzt. Im kalt gewalzten Zustand enthält das Gefüge darüber hinaus einen a'-Martensitanteil von bis zu 50 %, vorzugsweise ca. 20 %. Dieser α'-Martensitanteil ist eine Folge des während der Kaltumformung induzierten α'-TRIP-Effekts. Der Martensitanteil ist so bemessen, dass dadurch ein hohes Kaltumformvermögen ermöglicht wird. Das ist die Voraussetzung dafür, dass die Arbeitsschritte bis zum Fertigblech betreffs der notwendigen Kaltwalzstufen und Zwischenglühungen reduziert werden und ein Feinblech mit einstellbar hoher Festigkeit und / oder hoher Zähigkeit im lösungsgeglühten und / oder kalt gewalzten Zustand entsteht. Der erfinderische Stahl weist eine bessere Umformbarkeit gegenüber den Stählen 1.4404, 1.4301 und AISI 201 L auf.
  • Mit seiner hohen Festigkeit und einem Nickelgehalt von 3,8 - 4,3 % stellt der erfinderische Stahl folglich im Vergleich mit bekannten Stählen einen kostengünstigen Alternativwerkstoff dar, der sich vorteilhaft durch Kaltwalzen zu Feinblech mit Dicken bis derzeit 0,04 mm verarbeiten lässt.
  • Chrom bzw. Molybdän werden als ferritstabilisierende Elemente zugegeben, die zum Erhalt und zur Verbesserung der Korrosionsbeständigkeit in Gehalten von 16,50 bis 16,99 % bzw. 0,51 bis 1,0 % dem erfinderischen Stahl zulegiert werden. Liegen die Chrom- und Molydängehalte an der oberen Toleranzgrenze, so werden die besten Korrosionseigenschaften erzielt.
  • Darüber hinaus wird durch Chrom und Molybdän als auch alle weiteren Legierungselemente die Austenitstabilität gegenüber der Bildung von α'-Verformungsmartensit angehoben. Die verformungsinduzierte a'-Martensitbildung während des Kaltwalzens wird erschwert. Aus diesem Grund sind die Legierungselemente an ferrit- und austenitstabilisierenden Elementen in der Erfindung so aufeinander abgestimmt, dass unter den gegebenen Kaltumformbedingungen während einer Kaltwalzstufe bis zu 50 Vol.-% α'-Verformungsmartensit, vorzugsweise ca. 20 Vol-.%, entsteht.
  • Kohlenstoff und Stickstoff sind starke Austenitbildner, die die Bildung von a'-Verformungsmartensit erschweren. Daher werden der Kohlenstoffgehalt mit < 0,04 Masse-% und der Stickstoffgehalt mit 0,18 bis 0,45 Masse-% festgelegt. Hierbei können Stickstoffgehalte bis ca. 0,22 Masse-% dem Stahl ohne metallurgische Sondermaßnahmen zugegeben werden, anderenfalls ist eine Druckaufstickung nötig. Es wird angestrebt, dass Kohlenstoff und Stickstoff im Austenit gelöst vorliegen. Vor allem ist eine Chromkarbidbildung während der Abkühlung von Glühtemperaturen zu unterdrücken, um die interkristalline Korrosionsbeständigkeit zu gewährleisten.
  • Ferner ist zu berücksichtigen, dass Kohlenstoff- und Stickstoffatome im gelösten Zustand zu einer Mischkristallverfestigung des Austenits und gleichzeitig zu einer Verspannung des Martensits führen. Dadurch erhöht sich die Festigkeit des Stahles, während sich die Zähigkeitseigenschaften verschlechtern.
  • Silizium unterstützt die Bildung von Ferrit. Der erfinderische Stahl weist Siliziumgehalte kleiner 0,5 Masse-% auf.
  • Mangan als austenitstabilierendes Element ist im erfinderischen Stahl mit Gehalten von 7,6 bis 8,7 Masse-% zulegiert. Die Mangangehalte sind gegenüber dem Mangangehalt im Stahl AISI 201 L angehoben. Die Mangangehalte liegen in einem Bereich, der für den Metallurgen nicht als kritisch angesehen wird. Durch Gehalte an Mangan lässt sich der Nickelgehalt gegenüber den Stählen 1.4301 und 1.4404 reduzieren.
  • Da auf die Zugabe von Kupfer als Legierungselement verzichtet werden kann, werden Einsparungen von Legierungskosten sowohl gegenüber den herkömmlichen austenitischen CrNi-Stählen als auch gegenüber den aufgestickten kupferlegierten austenitischen Stählen erreicht. Darüber hinaus wird das Recyclingvermögen verbessert.
  • Nickel wird dem erfinderischen Stahl als Austenitbildner zulegiert. Der Nickelgehalt ist dabei nur durch einen schmalen Konzentrationsbereich von 3,8 bis 4,3 Masse-% festgelegt. Werden diese Nickelgehalte unterschritten, so ist mit der Bildung von a'-Abkühlmartensit zu rechnen. Gleichzeitig steigt der δ-Ferritanteil über 5 Vol.-%. Beide Effekte führen zu einer Verschlechterung der Kaltumformbarkeit des Stahles. Werden die Nickelgehalte hingegen überschritten, so ist der Austenit relativ stabil. Die Bildung von a'-Verformungsmartensit bleibt aus, wodurch die Kaltumformbarkeit gleichfalls reduziert wird.
  • Hinsichtlich der Festigkeits- und Zähigkeitseigenschaften des Feinbleches ist ein entsprechender Quotient m von ferritstabilisierenden zu austenitstabilisierenden Elementen entsprechend der angegebenen Beziehung einzuhalten. Der Wert m sollte in dem Bereich von 1,4 bis 1,5 liegen. Erfindungsgemäß lassen sich die Eigenschaften besonders sicher einstellen, wenn m in der Nähe von 1,46 liegt. m = % Cr + 2 % Mo + 1,5 % Si / 0,3 % Mn + % Ni + 15 % C + % N
    Figure imgb0001
  • Das erfindungsgemäße Feinblech mit einer Dicke von 1,25 bis 0,04 mm wird in folgenden Arbeitsschritten hergestellt: "Erschmelzen des Stahles", "Abgießen der Schmelze im Strang oder im Guss und Herstellung eines Strang- oder Gussblocks", "Warmwalzen zur Bramme, zu Vor- und Warmband", "Vorbereiten (Entzundern / Beizen, Lösungsglühen) und Kaltwalzen des Warmbandes".
  • Der Schritt des Vorbereitens (Entzundern / Beizen, Lösungsglühen) und Kaltwalzens des Warmbandes umfasst das Lösungsglühen und anschließende Kaltwalzen des Warmbandes zur Herstellung von kalt gewalztem und/oder geglühtem Feinblech mit einer Dicke von 1,25 bis 0,04 mm. Besonders geeignete Bedingungen sind in den Unteransprüchen definiert.
  • Ist eine mechanische Entzunderung erfolgt, so hat sich unter Umständen Martensit gebildet. In diesem Fall hat es sich als zweckmäßig erwiesen, wenn das Warmband lösungsgeglüht wird.
  • Damit ist gleichzeitig die Einstellung eines homogenen Austenits mit einem maximalen Gesamtumformgrad von ca. 4,43 für Kaltband verbunden.
  • Hierbei ist es notwendig die Umformbedingungen auf den Stahl abzustimmen. Das betrifft vor allem die Wahl der Umformtemperatur, die durchzuführenden Kaltwalzstufen und erforderlichen Zwischenglühungen nach erfolgter Kaltwalzstufe. Dadurch wird gewährleistet, dass in jeder Kaltwalzstufe die Bildung von a'-Umformmartensit und/oder Verformungszwillingen zu verzeichnen ist. Das heißt, es wird ein TRIP- und/oder TWIP-Effekt ausgelöst. Für den erfinderischen Stahl liegt die günstigste Umformtemperatur in einem Temperaturbereich von 20°C bis 80°C, vorzugsweise bei 40°C. Um diesen Temperaturbereich einzuhalten, ist in der Regel eine Kühlung des Walzgutes erforderlich. Der sich bildende a'-Umformmartensit liegt maximal bei ca. 50%.
  • Darüber hinaus wird der erfinderische Stahl mehreren Kaltwalzstufen ausgesetzt. Der Gesamtumformgrad innerhalb einer Kaltwalzstufe beträgt 0,75 bis 1,00. Die geforderte Enddicke des Feinbleches bestimmt die Anzahl der Kaltwalzstufen. Feinblech mit einer Dicke von z.B. 0,1 mm wurde in 5 Kaltwalzstufen hergestellt. Damit liegt die Anzahl der Kaltwalzstufen niedriger als bei handelsüblichen austenitischen CrNi- bzw. CrNiMn-Stählen mit gleicher Feinblechstärke, so dass die Herstellung des Feinblechs kostengünstiger durchgeführt werden kann. Innerhalb einer Kaltwalzstufe wird das Material darüber hinaus in mehreren Stichen kalt umgeformt. Zweckmäßigerweise sollte ein Umformgrad von 0,15 bis 0,26 pro Stich gewählt werden.
  • Nach jeder Kaltwalzstufe erfolgt in der Regel eine Zwischen- bzw. Rekristallisationsglühung im Temperaturbereich zwischen 950 °C und 1050°C, vorzugsweise bei 1000°C. Diese Glühung kann unter Schutzgas im Durchlaufofen oder Haubenofen mit nachfolgender Abkühlung in Bleibad, Wasser oder an Luft durchgeführt werden. Erfolgt die Glühung als Abschlussglühung des Feinbandes, so liegt das endgefertigte Feinblech im geglühten, das heißt, im rekristallisierten Zustand vor. Die Oberfläche des Feinbleches weist eine Passivschicht auf.
  • Zum anderen kann die Zwischen- bzw. Rekristallisationsglühung nach jeder Kaltwalzstufe im Temperaturbereich zwischen 950 °C und 1000°C, vorzugsweise bei 980°C, unter Stickstoffatmosphäre im Durchlaufofen mit nachfolgender Abkühlung in Bleibad, Wasser oder an Luft durchgeführt werden. Erfolgt diese Glühung als Zwischen- und Abschlussglühung des Feinbandes, so liegt das endgefertigte Feinblech im geglühten, das heißt, im rekristallisierten Zustand vor, der oberflächennahe Bereich des Feinbleches weist bis zu einer Tiefe von 30 µm passivierende Chromnitridausscheidungen auf.
  • Unabhängig von der gewählten Ofenatmosphäre während der Zwischen- bzw. der Rekristallisationsglühung entfestigt der Austenit und wird feiner. Der Austenit wird dadurch wieder kalt umformbar. Im Gegensatz zur ersten Kaltwalzstufe mit einem Umformgrad von 0,71, bei der bis zu 15 Vol.-% α'-Umformmartensit gebildet werden, wird bei jeder weiteren Kaltwalzstufe die Bildung von α'-Umformmartensit erschwert. Nach 5 Kaltwalzstufen und einem Umformgrad von 0,73 wies das Feinband einen Umformmartensitanteil von 3 Vol.-% auf. Träger der plastischen Deformation des Austenits sind dann bevorzugt induzierte Zwillingsbildungen und Gleitprozesse. In diesen Fällen wird der TRIP-Effekt durch den TWIP-Effekt abgelöst. Das Wechselspiel von TRIP- und TWIP-Effekt ist die Voraussetzung dafür, dass abweichend von der bisherigen Verfahrensweise ein höherer Gesamtumformgrad erreicht wird.
  • Eine Glühung unter Stickstoffatmosphäre im Temperaturbereich unter 1000 °C bedingt die Bildung von Chromnitrid-Ausscheidungen, was sowohl Vor- als auch Nachteile mit sich bringt. So kann zum einen die Widerstandsfähigkeit gegenüber interkristalliner Korrosion erhöht werden und zum anderen ist damit ein Anstieg der Festigkeitseigenschaften und eine Abnahme der Zähigkeitseigenschaften verbunden. Gleichzeitig wird der TRIP-Effekt durch Stabilisierung des Austenits abgeschwächt.
  • Die Zwischen- bzw. Rekristallisationsglühung unter Schutzgas bzw. unter Stickstoffatmosphäre nach der letzten Kaltwalzstufe kann auch weggelassen werden. In diesem Fall liegt ein kalt verfestigtes Feinblech mit entsprechender Passivschicht vor. Die Passivschicht des erfinderischen Feinbleches bestimmt maßgebend die Korrosionseigenschaften.
  • Die passivierenden Chromnitridausscheidungen im oberflächennahen Bereich beeinflussen darüber hinaus den Glanz der Oberfläche als auch die mechanischen Eigenschaften des Feinbleches. Im Vergleich zu Feinblech mit unbeeinflusster Passivschicht werden ein höherer Korrosionswiderstand und ein matter, dunkelgrauer Glanz registriert.
  • Die Passivierungsstromdichte des erfindungsgemäßen Stahles beträgt im lösungsgeglühten Zustand in 0,05 M Schwefelsäure 0,013-0,017 mA/cm2, bei einer Spannung von +400 mV 0,0025 mA/cm2. Das Durchbruchspotential der Lochfraßprüfung in 0,5M NaCl- Lösung beträgt 317 mV. Das unter Schutzgas geglühte Feinblech weist eine 0,2%- Dehngrenze von 330 bis 390 MPa, eine Zugfestigkeit von 760 bis 830 MPa und eine Bruchdehnung von 60 bis 83 % auf.
  • Das unter Stickstoffatmosphäre geglühte Feinblech weist nach 4 Walzstufen eine Dicke von 0,27 mm auf. Die 0,2%-Dehngrenze beträgt 500 MPa, die mittlere Zugfestigkeit 843 MPa und die Bruchdehnung 25 %. Es liegt ein rekristallisiertes austenitisches Grundgefüge mit Chromnitrid-Ausscheidungen am Rand vor.
  • Das mit einem Umformgrad von 0,3 kalt umgeformte Feinblech mit einer Dicke von 0,2 mm bis 0,6 mm, welches keiner Abschlussglühung unterzogen wurde und je nach Anzahl der Zwischenglühungen unter Stickstoff Chromnitride im oberflächennahen Bereich zwischen 15 und 30 µm Tiefe aufweist, zeichnet sich durch eine mit steigendem Chromnitridanteil steigende 0,2%-Dehngrenze von 940 bis 1153 MPa und eine Zugfestigkeit von 1187 MPa bis 1288 MPa aus. Die Bruchdehnung sinkt mit steigendem Chromnitridanteil von 20 % auf 14 %. Nach metallografischen Untersuchungen weist der Stahl ein kaltverfestigtes austenitisches Grundgefüge auf. Der Anteil an Umformmartensit beträgt im kaltverfestigten 0,6 mm dicken Band 5 %, im kaltverfestigten 0,2 mm dicken Band ca. 1 %.
  • Die Passivierungsstromdichte in 0,05M Schwefelsäure sinkt durch die Cr- Nitridbildung auf 0,0036 bis 0,0038 mA/cm2, bei einer Spannung von +400 mV beträgt die Passivstromdichte 0,0024 mA/cm2. Das Durchbruchspotential der Lochfraßprüfung in 0,5M NaCl-Lösung sinkt im Vergleich zum geglühten Material auf 149 mV.
  • Bauelemente, die Tief- und Streckziehbeanspruchungen unterliegen, wie zum Beispiel Platten und/oder Lamellen in Wärmetauschern, lassen sich aus dem erfindungsgemäß gefertigten Feinblech wirtschaftlich herstellen. Darüber hinaus eignet sich der erfindungsgemäße Stahl für korrosiv beanspruchte Bauelemente, die wässrigen Lösungen ausgesetzt sind, wie Behälter und Verkleidungen.
  • Zum Abschluss der Herstellung des Feinbleches erfolgt ein Endbearbeiten des Kaltbandes (Dressieren, Streckrichten, Besäumen). Jeder dieser Arbeitsschritte kann optionale Arbeitsschritte enthalten entsprechend der Anlagentechnik und den Kundenanforderungen.
  • Die vorliegende Erfindung wird im Folgenden anhand eines Ausführungsbeispiels näher erläutert, wobei dieses Ausführungsbeispiel lediglich beispielhaft verstanden werden soll und die Erfindung nicht auf das konkrete Beispiel beschränkt.
  • Beispiel
  • Zur Herstellung des erfindungsgemäßen Stahles wurde zunächst legierter und unlegierter Schrott und Ferrolegierungen in einem Elektrolichtbogenofen erschmolzen und eine Vorlegierung vorgenommen. In einer VOD-Anlage (Vacuum Oxygen Decarburisation) wurde die Schmelze einem Vakuum-Sauerstoff-Entkohlungsprozess unterzogen, um den geforderten relativ geringen Kohlenstoffgehalt bei gleichzeitig guter Chromausbringung zu ermöglichen. Das VOD-Verfahren bietet optimale Bedingungen zu Verbesserung der Homogenität und des Reinheitsgrades der Schmelze und ermöglicht durch weiteres Legieren die Anpassung an die erfindungsgemäße Stahlzusammensetzung.
  • Der solchermaßen erhaltene geschmolzene Stahl wies eine chemische Zusammensetzung von 0,031 Gew.-% C, 0,211 Gew.-% Si, 8,306 Gew.-% Mn, 16,91 Gew.-% Cr, 3,88 Gew.-% Ni, 0,599 Gew.-% Mo und 0,186 Gew.-% N, Rest Eisen und unvermeidbare Verunreinigungen auf.
  • Nachfolgend wurde die Schmelze in eine Kokille steigend zu einem Gussblock vergossen. Die Abmaße der Kokille betrugen 450 mm * 450 mm * 1700 mm. Die Erstarrung erfolgte aufgrund der chemischen Zusammensetzung des Stahles primär ferritisch. Während der Abkühlung auf Raumtemperatur wandelt sich der Ferrit in Austenit um. Es können jedoch unter Umständen Restanteile von Ferrit in dem austenitisch Gefüge vorhanden sein. Insgesamt wurden im Rahmen dieses Beispiels zwei Blöcke mit einer Gesamttonnage von 5400 kg industriell gegossen.
  • Für die nachfolgende Warmumformung wurde jeder Gussblock über einen Zeitraum von 8 Stunden auf 1200 °C erwärmt und auf dieser Temperatur für 6 Stunden gehalten. Anschließend erfolgte in 19-23 (ca. 20) Stichen, d.h. Walzvorgängen, die Umformung zu einer Bramme mit einer Breite von 350-370 mm und 100-110 mm Stärke. Die Umformtemperatur sollte hierbei 1000 °C nicht unterschreiten.
  • Nach dem Entzundern der Bramme wurde in einem kontinuierlichen Fertigungsprozess in einem Walzgerüst bei Temperaturen von 1200 °C bis 1050 °C zunächst ein 35 mm dickes Vorband und anschließend nach eventueller Wiedererwärmung in acht Warmwalzstichen ein 3,5 mm dickes kontinuierlich gewalztes Warmband hergestellt. Der Umformgrad der einzelnen Stiche des Warmwalzens sollte hierbei 0,35 nicht übersteigen. Der Gesamtumformgrad des Warmband betrug ausgehend vom Vorband 2,2. Der Ferritgehalt des Warmbandes betrug bis zu 17 Vol.-%.
  • Das nachfolgende Entzundern des Warmbandes diente der Entfernung der während des Warmwalzprozesses entstandenen Oxidschicht auf den Bandoberflächen. Das Band wurde dazu, sofern notwendig, geschliffen und in einem Salzsäure-Bad gebeizt.
  • Nach dem Entzundern folgte ein Austenitisieren bei 1100 °C für 10 Minuten unter Schutzgas (75 % H2/25 % N2) im Durchzugsglühofen. Dabei wurde der Stahl homogenisiert und der δ-Ferittanteil im Stahl auf maximal 3 Vol.-% reduziert. Darüber hinaus formt sich durch dieses Verfahren der Restferritanteil weitgehend ein, wodurch sich das Kaltumformvermögen verbesserte.
  • Hierbei ist es gemäß des erfindungsgemäßen Verfahrens wichtig, ein nachträgliches mechanisches Bearbeiten des Warmbandes nach dem Austenitisieren zu vermeiden, um eine vorzeitige Gefügeumwandlung des metastabilen Austenits in a'-Umformmartensit zu verhindern.
  • Das nachfolgende Kaltwalzen des Warmbandes erfolgte durch die folgenden Verfahrensschritte, gemäß des erfindungsgemäßen Verfahrens zur Herstellung von kaltgewalzt und/oder geglühtem Feinblech mit einer Dicke von 1,25-0,04 mm.
  • Zur Erzielung eines 0,04 mm dicken Feinbleches erfährt das Warmband eine Kaltumformung mit einem Gesamtumformgrad von 4,43. Entsprechend der geforderten Feinblechdicke wurden bis zu sieben Kaltwalzstufen mit einem Umformgrad von jeweils maximal 0,75 durchgeführt. Innerhalb einer jeden Kaltwalzstufe wurden mehrere Stiche mit einem Umformgrad von 0,15-0,26 pro Stich realisiert.
  • Die Umformgeschwindigkeit lag bei Walzung im 20-Rollen-Walzwerk zwischen 50 und 100 m/min und ist so auf den Stahl abgestimmt, dass die Umformtemperatur von 60 °C nicht überschritten wurde. Hierdurch wird die Bildung von a'-Umformmartensit und/oder Verformungszwillingen in jeder durchgeführten Kaltwalzstufe gewährleistet und der gewünschte TRIP/TWIP-Effekt erzielt. Das Kaltumformvermögen des Stahles wird verbessert, was sich in der Reduktion der Kaltwalzstufen äußert.
  • Nach jeder Kaltwalzstufe erfolgte eine Zwischenglühung unter Stickstoffatmosphäre im Durchlaufofen in einem Temperaturbereich von 950-980 °C mit anschließender Abkühlung im Bleibad. Das endumgeformte und abschlussgeglühte Feinblech lag nach der Glühbehandlung im rekristallisierten Zustand vor. Mit steigender Anzahl der Zwischenglühungen wurden an der Bandoberfläche bis in 30 µm Tiefe Chromnitridausscheidungen kleiner 1 µm an den Korn-und Zwillingsgrenzen erzeugt. Die entstehende Passivierungsschicht wurde durch Chromnitridausscheidungen positiv beeinflusst. Ausdruck hierfür war eine matt glänzende Oberfläche bzw. eine graue Tönung und ein Anstieg des Korrosionswiderstandes und der Härte.
  • Kalt umgeformtes, 0,6 mm dickes Feinblech mit einem Umformgrad von 0,3 und Chromnitriden im passivierten Randbereich, dass keiner Abschlussglühung unterzogen wurde, zeichnete sich durch eine 0,2 %-Dehngrenze von 1030 MPa und eine Zugfestigkeit von 1187 MPa aus. Die Bruchdehnung lag bei 20 %. Im Stahl wurde 5 Vol.-% α'-Umformmartensit gebildet.
  • Ähnliche Verfestigungseffekte durch Chromnitrid und Verringerung des TRIP/TWIP- Effektes waren bei 0,2 mm dickem Feinblech mit einem Umformgrad von 0,3 und Chromnitriden im passivierten Randbereich zu verzeichnen. Die 0,2 %-Dehngrenze betrug bei diesem Feinblech 940 MPa, die Zugfestigkeit 1288 MPa und die Bruchdehnung sank auf 14 %. Die Verringerung der Bruchdehnung lag daran, dass einige Chromnitride, die während der Zwischenglühungen unter Stickstoff wuchsen, zu Rissbildung neigten. Der Stahl weist in diesem Zustand kaltverfestigten Austenit auf, mit einem magnetisch bestimmten Anteil an a'-Umformmartensit von < 1 %.
  • Wurde das Feinblech einer 15-minütigen Schlussglühung im Temperaturbereich von 1050-1100 °C unterzogen, so gingen die Chromnitritausscheidungen weitgehend in Lösung. Das auf diese Art rekristallisierte Feinblech wies eine Passivschicht auf, die nicht durch Chromnitride beeinflusst ist. Feinbleche mit einer Dicke von 0,6 mm wiesen in diesem Zustand eine 0,2 %-Dehngrenze von 335 MPa und eine Zugfestigkeit von 830 MPa auf. Die Bruchdehnung betrug 83 %.
  • Für Feinbleche mit einer Dicke von 0,2 mm betrug nach dem Schlussglühen unter gleichen Bedingungen die 0,2 %-Dehngrenze 385 MPa, die Zugfestigkeit 760 MPa und die Bruchdehnung betrug 61 %. Nach metallographischen und magnetischen Messungen mittels MSAT wies der Stahl ein austenitisches, ferritfreies Gefüge auf. Bei einer nachfolgenden Umformung wird der TRIP/TWIP-Effekt erneut ausgelöst. Im kaltverfestigten Gefüge sind nach dem Zugversuch bis zu 10 % a'-Umformmartensit nachweisbar.
  • Ein 0,1 mm dickes, bei 1100 °C 20 Minuten schlussgeglühtes austenitisches Feinband besaß eine 0,2 %-Dehngrenze von 520 MPa und eine Zugfestigkeit von 866 MPa. Die Bruchdehnung betrug 36 %.
  • Das Korrosionsverhalten des erfindungsgemäßen Stahles wurde im Vergleich zu den herkömmlichen Stählen 1.4301 und 1.4404 elektrolytisch geprüft. Die Passivierung in 0,05 M Schwefelsäure bei Raumtemperatur setzt sowohl im geglühten Zustand als auch im kaltverfestigten Zustand (ϕ = 0,3) der Banddicken 1,25mm, 0,6 mm und 0,2 mm gegenüber Kompaktproben der Vergleichsstähle rascher ein. Die Passivierungsstromdichte des erfindungsgemäßen Stahles betrug im lösungsgeglühten Zustand in 0,05 M Schwefelsäure 0,013-0,017 mA/cm2. Der Passivbereich war vergrößert. Die Stromdichte im Passivierungsbereich betrug bei +400 mV 0,0025 mA/cm2. Die Passivschicht wurde somit rascher gebildet und ist beständiger als die Passivschichten der Stähle 1.4301 und 1.4404 mit Stromdichten bei +400 mV von 0,0030 mA/cm2 und 0,0035 mA/cm2. Der Repassivierungsbereich des erfindungsgemäßen Stahles war ausgeprägter als der Repassivierungsbereich der beiden Vergleichsstähle. Mit Chromnitridausscheidungen im Randbereich sank trotz kaltverfestigtem Zustand die Passivierungsstromdichte auf 0,005-0,010 mA/cm2. Die Stromdichte im Passivierungsbereich betrug nahezu unverändert 0,0024 mA/cm2 bei +400 mV.
  • Das Durchbruchspotential der Lochfraßprüfung in 0,5 M NaCl-Lösung betrug 317 mV in geglühtem chromnitridfreiem Bandstahl. Kaltverfestigtes chromnitridhaltiges Feinblech mit einem Umformungsgrad von 0,3 wies ein Durchbruchspotential von 307 mV auf. In beiden Zuständen war der erfindungsgemäße Stahl beständiger als der herkömmliche Vergleichsstahl 1.4301 mit 159 mV im geglühten Zustand und vergleichbar den Eigenschaften des Stahls 1.4404 mit 318 mV im geglühten Zustand. Die Lochfraßbeständigkeit fiel nach Kaltumformung mit einem Umformungsgrad von 0,3 aufgrund der Chromnitridausscheidungen nur geringfügig im Vergleich zum geglühten Zustand ab. Der erfindungsgemäße Stahl war beständiger als der Vergleichsstahl 1.4301, und besitzt im ausscheidungsfreien Zustand eine vergleichbar hohe Lochfraßbeständigkeit wie der Stahl 1.4404.
  • Die Verwendung der erfindungsgemäßen Feinbleche kann als kostengünstigeres Bauelement überall dort erfolgen, wo beispielsweise Bleche aus dem Werkstoff 1.4301 und nach Prüfung der Korrosionsbedingungen der Stahl 1.4404 Anwendung finden. Das sind beispielsweise Behälter und Verkleidungen, die wässrigen Lösungen ausgesetzt sind.
  • Insbesondere ist der erfindungsgemäße CrMnNi-Stahl als Feinblech für Tiefziehbleche zum Beispiel in Wärmeübertragern, insbesondere für Platten und/oder Lamellen in Wärmetauschern besonders geeignet.

Claims (19)

  1. Verfahren zur Herstellung von Blechen und Bändern, insbesondere von Feinblech, aus einem nichtrostenden austenitischen CrMnNi-Stahl, mit folgender Zusammensetzung:
    Mn: 7,6 bis 8,7 Gew.-%;
    Cr: 16,5 bis 16,99 Gew.-%;
    Ni: 3,8 bis 4,3 Gew.-%;
    Mo: 0,51 bis 1,0 Gew.-%;
    N: 0,18 bis 0,45 Gew.-%,
    C: < 0,04 Gew.-%;
    Si: < 0,5 Gew.-%;
    P: < 0,04 Gew.-%;
    S: < 0,01 Gew.-%;
    Rest Eisen und unvermeidbare Verunreinigungen,
    wobei das Verfahren die folgenden Schritte umfasst:
    Erschmelzen des Stahles mit einem herkömmlichen Schmelzverfahren,
    Vergießen der Stahlschmelze im Strang- oder zu einem Gussblock,
    Warmwalzen des Stranges oder des Blockes zu einer Bramme, weiterverarbeiten der Bramme zu einem Vorband und anschließend zu einem Warmband,
    Entzundern und Glühen des Warmbandes und
    Kaltwalzen zu einem Kaltband,
    wobei der Stahl im lösungsgeglühten Zustand δ-Ferritanteile < 3 Vol.-% aufweist und im kaltgewalzten Zustand zusätzlich einen α'-Martensitanteil von bis zu 50 Vol.-% enthält.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das endgefertigte Feinblech eine Dicke von 1,25 bis 0,04 mm aufweist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Warmband vor dem Kaltwalzen und nach dem Entzundern im Temperaturbereich zwischen 950°C bis 1100°C lösungsgeglüht wird, wobei die Haltezeit mindestens 10 min beträgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Warmband bei einer Umformtemperatur von weniger als 80°C, vorzugsweise bei 40°C, einer Kaltumformung unterworfen wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Warmband einer Kaltumformung mit einem Gesamtumformgrad ϕ von bis zu 4,43 unterworfen wird, wobei die Kaltumformung in mehreren Kaltwalzstufen mit einem Kaltumformgrad von jeweils ca. 0,75 durchgeführt wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass pro Kaltwalzstufe jeweils mehrere Stiche mit einem in etwa gleich hohem Kaltumformgrad von 0,13 bis 0,26, vorzugsweise 0,15 pro Stich durchgeführt werden.
  7. Verfahren nach einem der Ansprüche 5 bis 6, dadurch gekennzeichnet, dass mindestens während jeder Kaltwalzstufe ein TRIP- und/oder TWIP-Effekt ausgelöst wird.
  8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass nach jeder Kaltwalzstufe ein Rekristallisationsglühen unter Schutzgas im Temperaturbereich zwischen 950 °C und 1100°C, vorzugsweise bei 1050°C, mit nachfolgender Abkühlung durchgeführt wird.
  9. Verfahren nach Anspruch 1 bis 8 dadurch gekennzeichnet, dass nach der letzten Kaltwalzstufe kein Rekristallisationsglühen durchgeführt wird.
  10. Verfahren nach Anspruch 8 dadurch gekennzeichnet, dass das Feinblech nach der Abkühlung ein rekristallisiertes Gefüge und eine Passivschicht aufweist.
  11. Verfahren nach Anspruch 8 dadurch gekennzeichnet, dass das Feinblech nach der Glühung unter Stickstoffatmosphäre als Schutzgas und anschließender Abkühlung ein rekristallisiertes Gefüge mit Passivschicht und eine passivierende Chromnitridschicht im Randbereich bis zu 30 µm aufweist.
  12. Verfahren nach Anspruch 9 dadurch gekennzeichnet, dass das Feinblech nach der Abkühlung ein kaltverfestigtes Gefüge mit einer Passivschicht mit bzw. ohne einer passivierenden Chromnitridschicht aufweist.
  13. Verfahren nach Anspruch 8 und 10 dadurch gekennzeichnet, dass das Feinblech eine 0,2 %-Dehngrenze von 326 bis 390 MPa, eine Zugfestigkeit von 760 bis 780 MPa, eine Bruchdehnung von 60 bis 70 %, eine Passivierungsstromdichte in 0,5 M Schwefelsäure von 0,013 bis 0,017 mA/cm2, eine Stromdichte von 0,0025 mA/cm2 bei 400mV und ein Durchbruchspotential bei Lochfraßprüfung in 0,5 M NaCl-Lösung von 317 mV aufweist.
  14. Verfahren nach Anspruch 9 und 12 dadurch gekennzeichnet, dass das Feinblech mit einem Umformgrad von 0,3 eine 0,2 %-Dehngrenze von 940 bis 1030 MPa, eine Zugfestigkeit von 1187 bis 1288 MPa und eine Bruchdehnung von 13 bis 20 %, eine Passivierungsstromdichte in 0,5 M Schwefelsäure von 0,005 bis 0,010 mA/cm2, eine Stromdichte von 0,0024 mA/cm2 bei 400 mV und ein Durchbruchspotential bei Lochfraßprüfung in 0,5 M NaCl-Lösung von 307 mV aufweist.
  15. Nichtrostender austenitischer CrMnNi-Stahl mit folgender Zusammensetzung:
    Mn: 7,6 bis 8,7 Gew.-%;
    Cr: 16,5 bis 16,99 Gew.-%;
    Ni: 3,8 bis 4,3 Gew.-%;
    Mo: 0,51 bis 1,0 Gew.-%;
    N: 0,18 bis 0,45 Gew.-%,
    C: < 0,04 Gew.-%;
    Si: < 0,5 Gew.-%;
    P: < 0,04 Gew.-%;
    S: < 0,01 Gew.-%;
    Rest Eisen und unvermeidbare Verunreinigungen.
  16. Nichtrostender austenitischer Stahl nach Anspruch 15, dadurch gekennzeichnet, dass der Stahl im lösungsgeglühten Zustand Deltaferritanteile < 3 Vol.-% aufweist und im kaltgewalzten Zustand zusätzlich einen a'-Martensit-Anteil von bis zu 50 Vol.-% enthält.
  17. Feinblech, hergestellt aus dem Stahl gemäß der Ansprüche 15 und 16.
  18. Verwendung des gemäß des Verfahrens der Ansprüche 1 bis 14 hergestellten Feinblechs als Bauelement für Tief- und Streckziehbleche, insbesondere Platten und/oder Lamellen in Wärmetauschern.
  19. Verwendung des gemäß des Verfahrens der Ansprüche 1 bis 14 hergestellten Feinblechs für korrosiv beanspruchte Bauelemente, insbesondere Behälter und Verkleidungen.
EP16723248.7A 2015-05-05 2016-05-04 Verfahren zur herstellung von feinblech aus einem nichtrostenden, austenitischen crmnni-stahl Not-in-force EP3292223B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015005742.1A DE102015005742A1 (de) 2015-05-05 2015-05-05 Verfahren zur Herstellung von Feinblech aus einem nichtrostenden, austenitischen CrMnNi-Stahl
PCT/EP2016/000742 WO2016177473A1 (de) 2015-05-05 2016-05-04 Verfahren zur herstellung von feinblech aus einem nichtrostenden, austenitischen crmnni-stahl

Publications (2)

Publication Number Publication Date
EP3292223A1 EP3292223A1 (de) 2018-03-14
EP3292223B1 true EP3292223B1 (de) 2019-04-17

Family

ID=56014948

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16723248.7A Not-in-force EP3292223B1 (de) 2015-05-05 2016-05-04 Verfahren zur herstellung von feinblech aus einem nichtrostenden, austenitischen crmnni-stahl

Country Status (4)

Country Link
EP (1) EP3292223B1 (de)
DE (1) DE102015005742A1 (de)
ES (1) ES2735950T3 (de)
WO (1) WO2016177473A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6821097B1 (ja) * 2019-12-19 2021-01-27 日鉄ステンレス株式会社 冷間加工性に優れる高硬度・高耐食性用途のマルテンサイト系ステンレス鋼及びその製造方法
CN114045443A (zh) * 2021-11-22 2022-02-15 连云港力升金属科技有限公司 一种耐腐蚀高强高韧高导热不锈钢丝及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB936872A (en) * 1959-09-18 1963-09-18 Allegheny Ludlum Steel Improvements in or relating to a process of heat treating austenitic stainless steel and austenitic stainless steels whenever prepared by the aforesaid process
US3152934A (en) * 1962-10-03 1964-10-13 Allegheny Ludlum Steel Process for treating austenite stainless steels
JPS5856746B2 (ja) 1980-04-15 1983-12-16 日本ステンレス株式会社 プレス成形性および耐食性の良好なオ−ステナイト系ステンレス鋼
FR2780735B1 (fr) 1998-07-02 2001-06-22 Usinor Acier inoxydable austenitique comportant une basse teneur en nickel et resistant a la corrosion
DE10046181C2 (de) 2000-09-19 2002-08-01 Krupp Thyssen Nirosta Gmbh Verfahren zum Herstellen eines überwiegend aus Mn-Austenit bestehenden Stahlbands oder -blechs
DE10052745A1 (de) 2000-10-25 2002-05-02 Wolfgang Lehnert Verfahren zum Erreichen eines erhöhten Kaltumformvermögens von korrosionsbeständigen metastabilen austenitischen Stählen im Prozeß ihrer Herstellung und Weiterverarbeitung
DE10215598A1 (de) 2002-04-10 2003-10-30 Thyssenkrupp Nirosta Gmbh Nichtrostender Stahl, Verfahren zum Herstellen von spannungsrißfreien Formteilen und Formteil
DE102006033973A1 (de) * 2006-07-20 2008-01-24 Technische Universität Bergakademie Freiberg Nichtrostender austenitischer Stahlguss und seine Verwendung
US7658883B2 (en) * 2006-12-18 2010-02-09 Schlumberger Technology Corporation Interstitially strengthened high carbon and high nitrogen austenitic alloys, oilfield apparatus comprising same, and methods of making and using same
DE102007060133A1 (de) * 2007-12-13 2009-06-18 Witzenmann Gmbh Leitungsteil aus nickelarmem Stahl für eine Abgasanlage
EP2163659B1 (de) 2008-09-11 2016-06-08 Outokumpu Nirosta GmbH Nichtrostender Stahl, aus diesem Stahl hergestelltes Kaltband und Verfahren zur Herstellung eines Stahlflachprodukts aus diesem Stahl
WO2013064698A2 (de) * 2011-11-05 2013-05-10 Technische Universität Bergakademie Freiberg Verfahren zur herstellung hochfester bauteile aus stahlguss mit trip/twip eigenschaften und verwendung der hergestellten bauteile
DE112015003662A5 (de) * 2014-08-07 2017-05-11 Technische Universität Bergakademie Freiberg Hochfeste und gleichzeitig zähe Halbzeuge und Bauteile aus hochlegiertem Stahl, Verfahren zu deren Herstellung und Verwendung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3292223A1 (de) 2018-03-14
WO2016177473A1 (de) 2016-11-10
ES2735950T3 (es) 2019-12-20
DE102015005742A1 (de) 2016-11-10

Similar Documents

Publication Publication Date Title
EP2163659B1 (de) Nichtrostender Stahl, aus diesem Stahl hergestelltes Kaltband und Verfahren zur Herstellung eines Stahlflachprodukts aus diesem Stahl
EP2366035B1 (de) Manganstahlband mit erhöhtem phosphorgehalt und verfahren zur herstellung desselben
EP2690183B1 (de) Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
DE60214456T2 (de) Martensitischer rostfreier Stahl mit hoher Härte und guter Korrosionsbeständigkeit
EP3332047B1 (de) Verfahren zur herstellung eines flexibel gewalzten stahlflachprodukts und dessen verwendung
EP1918403B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem ein martensitisches Gefüge bildenden Stahl
EP2383353A2 (de) Höherfester, Mn-haltiger Stahl, Stahlflachprodukt aus einem solchen Stahl und Verfahren zu dessen Herstellung
EP3332046B1 (de) Hochfester aluminiumhaltiger manganstahl, ein verfahren zur herstellung eines stahlflachprodukts aus diesem stahl und hiernach hergestelltes stahlflachprodukt
EP2690184B1 (de) Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP2840159B1 (de) Verfahren zum Herstellen eines Stahlbauteils
EP3325678B1 (de) Umformbarer leichtbaustahl mit verbesserten mechanischen eigenschaften und verfahren zur herstellung von halbzeug aus diesem stahl
WO2008052919A1 (de) Verfahren zum herstellen von stahl-flachprodukten aus einem mit bor mikrolegierten mehrphasenstahl
DE60300561T2 (de) Verfahren zur Herstellung eines warmgewalzten Stahlbandes
WO2018036918A1 (de) Verfahren zur herstellung eines höchstfesten stahlbandes mit verbesserten eigenschaften bei der weiterverarbeitung und ein derartiges stahlband
EP2179066B1 (de) Verfahren zum herstellen eines oberflächenentkohlten warmbands
WO2008052921A1 (de) Verfahren zum herstellen von stahl-flachprodukten aus einem mit silizium legierten mehrphasenstahl
EP3292223B1 (de) Verfahren zur herstellung von feinblech aus einem nichtrostenden, austenitischen crmnni-stahl
WO2020064127A1 (de) Formgedächtnislegierung, daraus hergestelltes stahlflachprodukt mit pseudoelastischen eigenschaften und verfahren zur herstellung eines solchen stahlflachprodukts
EP1352982B1 (de) Nichtrostender Stahl, Verfahren zum Herstellen von spannungsrissfreien Formteilen und Formteil
WO2023025635A1 (de) Kaltgewalztes stahlflachprodukt und verfahren zu seiner herstellung
DE102016115618A1 (de) Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband
DE102015106780A1 (de) Verfahren zur Erzeugung eines Warm- oder Kaltbandes aus einem Stahl mit erhöhtem Kupfergehalt
DE102024104377A1 (de) Blechformteil mit verbessertem kathodischem Korrosionsschutz
EP4047105A1 (de) Warmgewalztes stahlflachprodukt und verfahren zur herstellung eines warmgewalzten stahlflachprodukts
EP3781717A1 (de) Kaltgewalztes stahlflachprodukt sowie verwendung und verfahren zur herstellung eines solchen stahlflachprodukts

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ENDERS, TORSTEN

Inventor name: SCHUBERT, VOLKER

Inventor name: GIESEL, STEFFEN

Inventor name: BOENKENDORF, MARCUS

Inventor name: SCHROEDER, CHRISTINA

Inventor name: WEISS , ANDREAS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004233

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1121608

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190417

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190718

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2735950

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004233

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

26N No opposition filed

Effective date: 20200120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20210521

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210531

Year of fee payment: 6

Ref country code: DE

Payment date: 20210520

Year of fee payment: 6

Ref country code: FI

Payment date: 20210521

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210524

Year of fee payment: 6

Ref country code: ES

Payment date: 20210601

Year of fee payment: 6

Ref country code: AT

Payment date: 20210525

Year of fee payment: 6

Ref country code: GB

Payment date: 20210522

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016004233

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1121608

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220504

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220505

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220504

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220504

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220504

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220504

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220505