EP3290120A1 - Rotor einer zerkleinerungsmaschine mit lösbar befestigten messerhaltern - Google Patents

Rotor einer zerkleinerungsmaschine mit lösbar befestigten messerhaltern Download PDF

Info

Publication number
EP3290120A1
EP3290120A1 EP17020397.0A EP17020397A EP3290120A1 EP 3290120 A1 EP3290120 A1 EP 3290120A1 EP 17020397 A EP17020397 A EP 17020397A EP 3290120 A1 EP3290120 A1 EP 3290120A1
Authority
EP
European Patent Office
Prior art keywords
rotor
rotation
axis
intermediate elements
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17020397.0A
Other languages
English (en)
French (fr)
Other versions
EP3290120B1 (de
Inventor
Thorsten Benner
Alexander Klär
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cutmetall Komponenten GmbH
PULS GmbH
Original Assignee
Cutmetall Komponenten GmbH
PULS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cutmetall Komponenten GmbH, PULS GmbH filed Critical Cutmetall Komponenten GmbH
Priority to PL17020397T priority Critical patent/PL3290120T3/pl
Publication of EP3290120A1 publication Critical patent/EP3290120A1/de
Application granted granted Critical
Publication of EP3290120B1 publication Critical patent/EP3290120B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C18/18Knives; Mountings thereof
    • B02C18/186Axially elongated knives

Definitions

  • the present invention is further based on a crushing machine, in particular a garbage, plastic or wood crusher, with at least one stator and at least one such rotor.
  • a crushing machine in particular a garbage, plastic or wood crusher, with at least one stator and at least one such rotor.
  • the above-mentioned objects are for example from DE 195 22 056 A1 known.
  • the from the DE 195 22 056 A1 Known crushing machine is designed as a shredder.
  • the intermediate elements are formed as straight plates.
  • the connecting elements are arranged in the region of the knife holder.
  • the crusher points a drum on. On the drum integral elements are attached. Knives are screwed onto these elements.
  • the knife holders each carry a single knife. The knife holders overlap each other in the tangential direction.
  • the rotor has a rotor shaft which is rotatable in a rotational direction about an axis of rotation.
  • a plurality of knife holders for rotor blades is mounted on the rotor.
  • the knife holders are welded to the rotor.
  • the knife holders form rows of knife holders extending in the direction of the axis of rotation, which are spaced apart from each other as viewed around the axis of rotation.
  • the from the DE 195 22 056 A1 known crusher has the advantage that it can be easily converted from one configuration to another configuration.
  • the construction of the DE 195 22 056 A1 is only suitable for relatively low loads. At high loads, such as occur in garbage shredders, the construction of the DE 195 22 056 A1 not applicable. In particular, the high loads occurring very quickly lead to breakage of the fasteners. Precisely for this reason, the knife holder in a garbage shredder - for example, in the garbage shredder "Powerkomet" Lindner Recycling Tech GmbH, but also in refuse shredders of other companies - welded onto the lateral surface of the rotor.
  • the object of the present invention is to provide ways by which on the one hand the releasable attachment of the intermediate elements can be maintained on the lateral surface of the rotor, but on the other hand can withstand high loads.
  • a simple construction should continue to be maintained.
  • the intermediate elements are thus seen from the knife holders of the respective intermediate element of tangentially around the axis of rotation around on both sides mounted on the lateral surface of the rotor.
  • the knife holders of the respective intermediate element are arranged between the two tangentially outer connecting elements or the corresponding rows of connecting elements.
  • the inner contours of the intermediate elements Due to the coordination of the lateral surface of the rotor shaft and the inner contours of the intermediate elements to one another, the inner contours of the intermediate elements continue to rest against the outer surface of the rotor shaft. As a result, in particular pressure loads of the intermediate elements can be transmitted over large areas to the lateral surface of the rotor.
  • the formation of the lateral surface as a plurality of flat surfaces further facilitates the positioning of the intermediate elements during assembly.
  • the knife holder are permanently attached to the intermediate elements.
  • the transmission of the forces acting on the blade holders to the intermediate elements continues to be via a permanent connection (i.e., a connection which is only destructible, usually a welded connection).
  • a permanent connection i.e., a connection which is only destructible, usually a welded connection.
  • the intermediate elements and the knife holder are made of a single piece. With appropriate design of the connection between the knife holder and intermediate elements, however, a releasable connection may also be possible.
  • the attachment of the rotor blades to the blade holders can - as in the prior art - be solved, in particular be designed as a screw connection.
  • the number of knife holders per intermediate element is determined such that the mass of the respective intermediate element including that on the respective intermediate element fastened knife holder is a maximum of 50 kg, in particular at a maximum of 30 kg.
  • the weight of an intermediate element with associated knife holders (and possibly also rotor knives) can be limited to an area which can still be held and positioned by a single person even without technical aids. This ensures the handling of the intermediate element with the knife holders (and possibly also the knives).
  • the connecting elements can form rows of connecting elements which run in the direction of the axis of rotation.
  • the knife holders can either form a row tangentially viewed around the axis of rotation or form a row when viewed in the direction of the axis of rotation.
  • an arrangement of a plurality of rows of blade holders is additionally possible, wherein the rows of blade holders are tangentially spaced from one another viewed around the axis of rotation and each have a plurality of blade holders arranged side by side in the direction of the axis of rotation.
  • the connecting elements move the respective intermediate element tangentially around the axis of rotation seen in addition also at a location which is arranged between the individual blade holders of the respective intermediate element, connect to the rotor shaft. Again, the formation of corresponding extending in the direction of the axis of rotation rows is possible again. It is possible that only a single connecting element or a single such row is present. In this case, the connecting elements connect the respective intermediate element tangentially around the axis of rotation as seen between the tangential to the axis of rotation around immediately consecutive knife holders each only at a single location with the rotor shaft. Under certain circumstances, however, it may be expedient to provide a plurality of connecting elements or rows, in particular two, viewed tangentially around the axis of rotation.
  • each of the two intermediate elements which are tangential to one another to be about the axis of rotation, to overlap the respective rear intermediate element.
  • the terms "front” and “rear” and equivalent terms refer to the normal direction of rotation in which the rotor is normally rotated - that is, for crushing.
  • the front intermediate element passes a certain point of the stator of the crushing machine in front of the rear intermediate element.
  • the abutment surfaces may be inclined in the direction of rotation for this purpose.
  • forces acting on rotation of the rotor in the direction of rotation on the front of the knife holders of the respective intermediate element connecting elements are partially transferred to those connecting elements, which are arranged in the direction of rotation upstream intermediate element after the knife holders.
  • the abutment surfaces have a radially outer region, a radially inner region and between them have a radially central portion adjacent to the radially outer portion and the radially inner portion, the radially outer portion and the radially inner portion are purely radial-axial, and the radially outer portion viewed in the direction of the rotation axis is behind the radially inner portion lies.
  • the connecting elements can, as already mentioned, be designed in particular as screws.
  • screw heads of the screws can be arranged completely sunk in receptacles of the intermediate elements.
  • contamination of the rotor, which inevitably occurs during operation minimized.
  • the screws can also be designed as hexagon socket screws. This configuration results in a simple and reliable way to solve the fasteners and secure.
  • the intermediate elements and the rotor shaft are positively connected with each other.
  • the intermediate elements may have recesses into which dive into corresponding projections on the rotor shaft when placing the intermediate elements on the rotor shaft.
  • the reverse embodiment is possible. It is even possible that both the intermediate elements and the rotor shaft have recesses and before fitting the intermediate elements are used on the rotor shaft in the recesses of the respective intermediate element or the rotor shaft keyways or the like.
  • the recesses may be continuous in the direction of the axis of rotation.
  • the rotor has on its lateral surface projections which have intermediate elements with the projections cooperating noses and adjacent surfaces of the projections and the lugs are oriented substantially radially.
  • Optimal in this case is a purely radial orientation of the adjoining surfaces or an orientation in which the adjoining surfaces, viewed radially outward, are inclined slightly forward are. Even a slight slope to the rear is possible.
  • a slight inclination is to be understood as an inclination of not more than 20 °, better still not more than 15 °, in particular not more than 10 °.
  • the intermediate elements each have an inner contour facing the lateral surface.
  • the inner contour is limited by boundary edges.
  • the boundary edges based on the axis of rotation, either purely tangential or purely axial.
  • the intermediate elements adjacent not only tangentially seen around the rotation axis, but also seen in the direction of the rotation axis abutting surfaces to each other, so that the intermediate elements seen in their entirety not only tangentially around the axis of rotation around, but also in the direction of the axis of rotation, the lateral surface completely cover the rotor shaft. Due to the complete coverage of the lateral surface of the rotor shaft which inevitably occurs during operation of the rotor contamination of the rotor shaft is minimized.
  • the at least one rotor is designed according to the invention, that is to say it has the intermediate elements detachably connected to the lateral surface, on which the blade holders are fastened.
  • FIG. 1 has a crushing machine - for example, a garbage, plastic or wood crusher - at least one stator 1 and at least one rotor 2.
  • the rotor 2 has a rotor shaft 2 '.
  • the rotor shaft 2 ' is usually made of steel. It is rotatable about a rotation axis 4 in a direction of rotation 3 by means of a drive, not shown. In some cases, a rotation opposite to the direction of rotation 3 is also possible.
  • Stator blades 5 are arranged on the stator 1. Knife holders to which the stator blades 5 are attached are not shown.
  • the stator knives 5 are usually made of hardened steel or another carbide.
  • Axial is a direction parallel to the axis of rotation 4.
  • Radial is a direction orthogonal to the axial direction directly on the axis of rotation 4 to or away from it.
  • Tangential is a direction that is orthogonal to the axial direction as well as orthogonal to the radial direction. Tangential is thus a direction which is directed at a constant axial position and at a constant radial distance in a circle around the axis of rotation 4 around.
  • the direction of rotation 3 further defines the terms “front” and “rear” in the tangential direction. In particular, the direction of rotation 3 points to the front.
  • a multiplicity of knife holders 6 for rotor knives 7 are arranged around a lateral surface 2 "of the rotor shaft 2.
  • the rotor knives 7 are generally made of hardened steel or another hard metal, just like the stator knives 5.
  • the knife holders 6 are generally made However, this steel is usually softer than the steel from which the rotor blades 7 are made DE 20 2016 101 582 U1 is described. However, this is not necessary.
  • FIG. 2 For the sake of clarity, only a few of the elements shown there are provided with their respective reference numbers. The same applies to the other FIG.
  • the knife holders 6 are arranged side by side in the axial direction and thus form a respective row of knife holders 6.
  • the rows of knife holders 6, however, are preferably not purely axial. Rather, the knife holder 6 of the respective row of knife holders 6 are preferably slightly offset from one another tangentially. Furthermore, the knife holder 6 can be seen to form a plurality of rows of knife holders 6, the rows of knife holders 6 being tangentially spaced from each other.
  • the knife holder 6 of the respective row of knife holders 6 are preferably slightly offset tangentially from each other and further slightly inclined tangentially with respect to a pure axial direction. The angle of inclination is usually relatively low and is usually between 3 ° and 15 °.
  • the knife holders 6 of the respective row of knife holders 6 form a uniform line.
  • the respective row of knife holders 6 may have one or more vertices.
  • the knife holder 6 are identical to each other in the rule.
  • the knife holders 6 adjacent legs may differ slightly from each other. Even in the case of differently designed knife holder 6, the knife holder 6 of the two adjacent legs, however, are generally mirror images of each other.
  • the knife holder 6 rotate spirally around the rotation axis 4. In this case, the intermediate elements 8 must be arranged correspondingly offset in the tangential direction on the rotor 2.
  • the rotor 2 may have a length L between 1 m and 4 m, for example of about 2.8 m.
  • the diameter D (see FIG. 1 ) of the rotor 2 can be between 50 cm and 1 m and in some cases even larger.
  • the specific figures are of course only a sample, but illustrate the size of the crushing machine.
  • the knife holder 6 are generally formed substantially parallelepiped, tapered, however, similar to a truncated pyramid, the greater the distance from the rotor blades 7. They often also have significant dimensions. For example, they may extend in the axial direction over 15 cm to 20 cm, in the tangential direction between 10 cm and 15 cm and in the radial direction between 7 cm and 12 cm. Again, the specific figures are only a sample.
  • the blade holders 6 are intended to be detachably connected as a result to the lateral surface 2 "of the rotor shaft 2.
  • intermediate elements 8 are releasably secured on the lateral surface 2" of the rotor shaft 2.
  • the intermediate elements 8 are formed according to the invention as a folded plates. They therefore have a central region 8a, a front region 8b and a rear region 8c.
  • the areas 8a, 8b, 8c are each straight (plane).
  • a kink is formed in each case.
  • the knife holder 6 are connected in the central region 8a with the respective intermediate element 8.
  • the intermediate elements 8 extend beyond the knife holders 6 at least in the tangential direction due to the front and rear regions 8b, 8c. They generally have a thickness of more than 2 cm in the radial direction. For example, the thickness can be between 3.5 cm and 5.5 cm, in particular between 4 cm and 5 cm. The strength is usually uniform.
  • the intermediate elements 8 are usually made of steel.
  • the attachment of the intermediate elements 8 takes place by means of connecting elements 9a, 9b.
  • the connecting elements 9a, 9b, as shown in the FIGS. 2 to 5 be designed in particular as screws. Particularly preferred is a design of the screws as hexagon socket screws. Screw heads 9 'of the screws are preferably arranged completely sunk in receptacles 10 of the intermediate elements 8. The screw heads 9 'therefore do not project beyond the radially outer side of the intermediate elements 8.
  • the intermediate elements 8 have correspondingly designed receptacles 10 for this purpose.
  • the receptacles 10 have an abutment shoulder, on which the screw heads 9 'rest, but not visible in the FIG.
  • the receptacles 10 may be formed in particular as holes.
  • the connecting elements 9a are arranged in the front region 8b, the connecting elements 9b in the rear region 8c.
  • the intermediate elements 8 extend in the tangential direction over 360 ° / n, where n - a natural number above 1 - the number of intermediate elements 8, which are seen distributed in the tangential direction over the circumference of the rotor shaft 2 'arranged.
  • the intermediate elements 8 thus extend in the tangential direction at most over 180 °.
  • the intermediate elements 8 extend over 120 ° or less, for example, at four to eight intermediate elements 8 over 90 °, 72 °, 60 °, just under 51.5 ° or 45 °.
  • the intermediate elements 8 adjoin one another in the tangential direction on abutment surfaces 15. Seen in the tangential direction, the intermediate elements 8 thus completely cover the lateral surface 2 "of the rotor shaft 2 '.
  • the number of knife holders 6 per intermediate element 8 is usually between one and four. As shown in the FIG. 2 . 5 and 6 For example, it can be two.
  • the knife holder 6 of the respective intermediate element 8 are shown in the FIG. 2 and 5 arranged axially next to one another.
  • the Knife holder 6 of the respective intermediate element 8 as shown by FIG. 6 be arranged in the tangential direction one behind the other.
  • the corresponding intermediate element 8 further areas, each adjoining each other via a bend.
  • the kinks are in FIG. 6 for the sake of clarity not shown.
  • FIG. 6 be arranged between the knife holders 6 of the respective intermediate element further connecting elements 9c.
  • the knife holders 6 can also form a plurality of tangentially spaced rows of knife holders 6, each of these rows each comprising a plurality of knife holders 6. Regardless of the number of knife holders 6 per intermediate element 8, however, the mass of the respective intermediate element 8 including the knife holder 6 fastened to the respective intermediate element 8 should preferably be at most 50 kg, in particular at a maximum of 30 kg.
  • the knife holder 6 are permanently attached to the intermediate elements 8. They may in particular be welded to the respective intermediate element 8. Corresponding welds 11 are only in FIG. 4 shown. In addition, - preferably only within the respective intermediate element 8 - axially immediately adjacent blade holder 6 may also be inextricably linked together, for example welded together. These welds are not shown in the FIG. However, other types of attachment - even detachable - conceivable. For example, a knife holder 6 may be arranged at one end in an undercut of the respective intermediate element 8 and fixed at the other end by means of a screw connection (or a plurality of screw connections).
  • the connecting elements 9a, 9b, 9c form according to the FIGS. 2 to 6 per intermediate element 8 rows of connecting elements 9a, 9b, 9c.
  • the rows of connecting elements 9a, 9b, 9c extend in the axial direction.
  • the rows each have at least two connecting elements 9a, 9b, 9c.
  • the intermediate elements 8 carry a plurality of knife holders 6, which are arranged side by side in the axial direction
  • the rows of connecting elements 9a, 9b, 9c are present as a rule.
  • they each have five connecting elements 9a, 9b, 9c per row of connecting elements 9a, 9b, 9c.
  • the rows of connecting elements 9a, 9b, 9c each extend (at least substantially) axially.
  • the "rows" could be degenerate, ie consist of only a single connecting element 9a, 9b, 9c. Therefore, as far as the present invention is explained below in connection with (genuine) rows of connecting elements 9a, 9b, 9c, this is not to be understood as restricting to genuine rows of connecting elements 9a, 9b, 9c, but generically.
  • the connecting elements 9a - i. those connecting elements 9a, which are seen in the direction of rotation 3 in front of the knife holders 6 of the respective intermediate element 8 - connect the respective intermediate element 8 at a location which is seen in the direction of rotation 3 in front of the knife holders 6 of the respective intermediate element 8, with the rotor shaft. 2 '.
  • the connecting elements 9b - i. those connecting elements 9b, which are arranged in the direction of rotation 3 behind the knife holders 6 of the respective intermediate element 8 - connect the respective intermediate element 8 in addition to a location which is seen in the direction of rotation 3 behind the knife holders 6 of the respective intermediate member 8, with the rotor shaft 2 '.
  • each have a plurality of knife holder 6 are fixed, as shown in FIG. 6 preferably also between the tangentially directly successive knife holders 6 of the corresponding Connecting element 8 in each case at least one further row of connecting elements 9c present.
  • the connecting elements 9c connect the respective intermediate element 8 thus seen in the tangential direction additionally also at a location which is arranged between the individual knife holders 6 of the respective intermediate element 8, with the rotor shaft 2 '.
  • the connecting elements 9c between the tangentially immediately successive knife holders 6 each form two rows of connecting elements 9c.
  • This may be useful, in particular, if different embodiments of intermediate elements 8 are to be usable, with only one single knife holder 6 being present in one type of intermediate elements 8 or the knife holders 6 forming a single row of knife holders in the tangential direction and in the other type seen from intermediate elements 8 in tangential direction more knife holder 6 or rows of knife holders 6 are present.
  • the connecting elements 9c each form only a single further row of connecting elements 9c between the tangentially directly successive knife holders 6c. In this case, connect the connecting elements 9c, the respective intermediate element 8 seen in the tangential direction between the tangential seen in immediate succession knife holders 6 only at a single location with the rotor shaft 2 '.
  • the lateral surface 2 "of the rotor shaft 2 'and inner contours 8' of the intermediate elements 8 abut each other only in the region of the connecting elements 9a, 9b, 9c.
  • the lateral surface 2 "of the rotor shaft 2 'and the inner contours 8' - see in particular the illustrations in the FIG. 4 and 7 - Matched so that the inner contours 8 'over the entire surface of the lateral surface 2 "rest.
  • the lateral surface 2 "has planar surfaces 12 against which the intermediate elements 8 abut with their inner contours 8 '- that is to say both with the central region 8a and with the bent regions 8b, 8c -
  • the rotor shaft 2 'as shown in FIG FIG. 8 in cross-section has a polygonal cross section. It is possible that edges 13, on which the flat surfaces 12 adjoin one another, extend from one axial end of the rotor shaft 2 'to the other axial end of the rotor shaft 2'.
  • the edges 13 preferably only extend over sections 14, which in turn only extend over part of the axial extent of the rotor shaft 2 '.
  • the rotor shaft 2 'thus has a sequence of a plurality of such sections 14 in the axial direction.
  • Two of the sections 14 are purely exemplary in FIG FIG. 2 marked as such.
  • the length of the sections 14 in the axial direction may be the same or - as out FIG. 2 visible - vary.
  • the cross section of the sections 14 is always the same as that in FIG FIG. 8 is shown purely by way of example for an octagonal cross-section.
  • the cross sections of the sections 14 are thus congruent. From section 14 to section 14, however, the cross sections are rotated relative to each other by a respective angle of rotation ⁇ .
  • the rotation angle ⁇ is usually relatively small. It may for example be at about 1 ° to about 5 °, in particular between 2 ° and 4 °.
  • the intermediate elements 8 as shown in FIGS FIGS. 2 to 7
  • the intermediate elements 8 adjoin one another not only in the tangential direction but also in the axial direction at abutment surfaces 16.
  • the abutment surfaces 16 preferably extend purely radially tangential, ie without axial component
  • the abutment surfaces 15 can extend in an analogous manner purely radially-axially, ie without a tangential component.
  • the abutment surfaces 15 are inclined (or in the tangential direction immediately successive intermediate elements 8 overlap each other or engage under others). The purpose of such embodiments will be described below in connection with the FIG. 9 and 10 explained in more detail in connection with an inclination of the abutment surfaces 15. However, the corresponding statements apply in an analogous manner even with a different overlapping or gripping.
  • the abutment surfaces 15 have a radially outer region 15a, a radially inner region 15b and a radially middle region 15c therebetween. Seen in the radial direction, the areas 15a, 15b and 15c substantially ( ⁇ 10%) with each other equal extensions.
  • the radially middle region 15c viewed in the radial direction, adjoins the radially outer region 15a and the radially inner region 15b.
  • the radially outer region 15a and the radially inner region 15b extend in the case of the embodiment according to FIG. 10 purely radial-axial. However, the radially outer region 15a is seen in the direction of rotation 3 behind the radially inner region 15b. Accordingly, only the radially middle portion 15c is inclined.
  • FIG. 10 shows still another embodiment of the present invention.
  • This embodiment is independent of the design of the abutment surfaces 15 realized.
  • the rotor 2 as shown in FIG. 10
  • the projections 19 cooperate with lugs 20, which are components of the intermediate elements 8.
  • the lugs 20 are preferably arranged in the middle region 8a, in particular in the immediate vicinity of the transition to the front region 8b
  • a positive connection of the intermediate elements 8 with the rotor 2 is effected, over which the forces acting in the tangential direction during operation of the rotor 2 tensile forces Z are transmitted to a considerable extent from the intermediate elements 8 on the rotor 2
  • the projections 19 and tabs 20 may be as shown in FIG FIG.
  • an angle ⁇ which the surfaces 20 in each case enclose with a radial plane which intersects the surfaces 20 in the middle can lie between -20 ° and + 20 °.
  • the inner contour 8 'of the intermediate elements 8 borders according to FIG. 5 at boundary edges 17 to the abutment surfaces 15 and at boundary edges 18 on the abutment surfaces 16 and generally at the boundary edges 17, 18 to the (also) extending in the radial direction surfaces 15, 16 of the intermediate elements 8 at.
  • the boundary edges 17, 18 are preferably purely tangential or purely axial.
  • the present invention has many advantages.
  • the intermediate element 8 with the worn Elements 6, 7 can then be further treated outside the crusher.
  • the rotor blades 7 can be replaced or the blade holders 6 dismantled and new blade holders 6 are mounted. During this period, the crusher can already continue to operate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Pulverization Processes (AREA)

Abstract

Ein Rotor einer Zerkleinerungsmaschine, insbesondere eines Müll-, Kunststoff- oder Holzzerkleinerers, weist eine Rotorwelle (2') auf, die in einer Drehrichtung um eine Rotationsachse (4) rotierbar ist. Auf einer Mantelfläche der Rotorwelle (2') sind mittels Verbindungselementen (9) lösbar Zwischenelemente (8) befestigt. Auf den Zwischenelementen (8) ist jeweils eine Anzahl an Messerhaltern (6) für Rotormesser (7) befestigt. Die Zwischenelemente (8) grenzen tangential um die Rotationsachse (4) herum gesehen an Stoßflächen aneinander an, so dass die Zwischenelemente (8) in ihrer Gesamtheit tangential um die Rotationsachse (4) herum gesehen die Mantelfläche der Rotorwelle (2') vollständig abdecken. Die Messerhalter (6) bilden Reihen von Messerhaltern, die um die Rotationsachse (4) herum gesehen voneinander beabstandet sind. Die Zwischenelemente (8) sind als Platten ausgebildet, die tangential um die Rotationsachse (4) herum gesehen sich über die Messerhalter (6) hinaus erstrecken und sowohl vor als auch hinter den Messerhaltern (6) jeweils einen abgeknickten Bereich (8b, 8c) aufweisen. Die Verbindungselemente (9) sind sowohl im abgeknickten Bereich (8b) vor den Messerhaltern (6) als auch im abgeknickten Bereich (8c) hinter den Messerhaltern (6) angeordnet. Die Mantelfläche weist plane Flächen auf, an denen die Zwischenelemente (8) einschließlich ihrer abgeknickten Bereiche (8b, 8c) anliegen.

Description

  • Die vorliegende Erfindung geht aus von einem Rotor einer Zerkleinerungsmaschine, insbesondere eines Müll-, Kunststoff- oder Holzzerkleinerers,
    • wobei der Rotor eine Rotorwelle aufweist, die in einer Drehrichtung um eine Rotationsachse rotierbar ist,
    • wobei um eine Mantelfläche der Rotorwelle herum eine Vielzahl von Messerhaltern für Rotormesser befestigt ist,
    • wobei die Messerhalter in Richtung der Rotationsachse verlaufende Reihen von Messerhaltern bilden, die um die Rotationsachse herum gesehen voneinander beabstandet sind,
    • wobei auf der Mantelfläche der Rotorwelle mittels Verbindungselementen lösbar Zwischenelemente befestigt sind,
    • wobei auf den Zwischenelementen jeweils eine Anzahl an Messerhaltern für Rotormesser befestigt ist und
    • wobei die Zwischenelemente tangential um die Rotationsachse herum gesehen an Stoßflächen aneinander angrenzen, so dass die Zwischenelemente in ihrer Gesamtheit tangential um die Rotationsachse herum gesehen die Mantelfläche der Rotorwelle vollständig abdecken.
  • Die vorliegende Erfindung geht weiterhin aus von einer Zerkleinerungsmaschine, insbesondere einem Müll-, Kunststoff- oder Holzzerkleinerer, mit mindestens einem Stator und mindestens einem derartigen Rotor.
  • Die obengenannten Gegenstände sind beispielsweise aus der DE 195 22 056 A1 bekannt. Die aus der DE 195 22 056 A1 bekannte Zerkleinerungsmaschine ist als Häcksler ausgebildet. Die Zwischenelemente sind als gerade Platten ausgebildet. Die Verbindungselemente sind im Bereich der Messerhalter angeordnet.
  • Aus der US 9 386 741 B2 ist ebenfalls ein Zerkleinerer im landwirtschaftlichen Bereich bekannt. Der Zerkleinerer weist eine Trommel auf. Auf der Trommel sind einstückige Elemente befestigt. Auf diese Elemente sind Messer aufgeschraubt. Die Messerhalter tragen jeweils ein einzelnes Messer. Die Messerhalter überlappen in Tangentialrichtung gesehen einander.
  • Von der Firma Lindner-Recyclingtech GmbH, Spittal/Drau (Österreich) wird unter der Bezeichnung "Powerkomet" ein Müllzerkleinerer vertrieben, dessen Rotor eine Rotorwelle aufweist, die in einer Drehrichtung um eine Rotationsachse rotierbar ist. Um eine Mantelfläche der Rotorwelle herum ist auf dem Rotor eine Vielzahl von Messerhaltern für Rotormesser befestigt. Die Messerhalter sind mit dem Rotor geschweißt. Die Messerhalter bilden in Richtung der Rotationsachse verlaufende Reihen von Messerhaltern, die um die Rotationsachse herum gesehen voneinander beabstandet sind.
  • Die aus der DE 195 22 056 A1 bekannte Zerkleinerungsmaschine bietet den Vorteil, dass sie einfach von einer Konfiguration auf eine andere Konfiguration umgerüstet werden kann. Die Konstruktion der DE 195 22 056 A1 ist jedoch nur für relativ geringe Belastungen geeignet. Bei hohen Belastungen, wie sie insbesondere bei Müllzerkleinerern auftreten, ist die Konstruktion der DE 195 22 056 A1 nicht anwendbar. Insbesondere führen die hohen auftretenden Belastungen sehr rasch zu einem Bruch der Verbindungselemente. Genau aus diesem Grund sind die Messerhalter bei einem Müllzerkleinerer - beispielsweise bei dem Müllzerkleinerer "Powerkomet" der Firma Lindner-Recyclingtech GmbH, aber auch bei Müllzerkleinerern anderer Firmen - auf die Mantelfläche des Rotors aufgeschweißt.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, Möglichkeiten zu schaffen, mittels derer einerseits die lösbare Befestigung der Zwischenelemente an der Mantelfläche des Rotors beibehalten werden kann, die aber andererseits hohen Belastungen widerstehen kann. Hierbei soll weiterhin eine einfache Konstruktion beibehalten werden.
  • Die Aufgabe wird durch einen Rotor einer Zerkleinerungsmaschine mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen des Rotors sind Gegenstand der abhängigen Ansprüche 2 bis 9.
  • Erfindungsgemäß wird ein Rotor der eingangs genannten Art dadurch ausgestaltet,
    • dass die Zwischenelemente als Platten ausgebildet sind, die tangential um die Rotationsachse herum gesehen sich über die Messerhalter hinaus erstrecken und sowohl vor als auch hinter den Messerhaltern jeweils einen abgeknickten Bereich aufweisen,
    • wobei die Verbindungselemente, mittels derer die Zwischenelemente lösbar auf der Mantelfläche der Rotorwelle befestigt sind, sowohl im abgeknickten Bereich vor den Messerhaltern als auch im abgeknickten Bereich hinter den Messerhaltern angeordnet sind und
    • wobei die Mantelfläche plane Flächen aufweist, an denen die Zwischenelemente einschließlich ihrer abgeknickten Bereiche anliegen.
  • Die Zwischenelemente sind also von den Messerhaltern des jeweiligen Zwischenelements aus tangential um die Rotationsachse herum gesehen beidseitig auf der Mantelfläche des Rotors befestigt. Umgekehrt ausgedrückt sind die Messerhalter des jeweiligen Zwischenelements zwischen den beiden tangential äußeren Verbindungselementen bzw. den entsprechenden Reihen von Verbindungselementen angeordnet.
  • Aufgrund der Abstimmung der Mantelfläche der Rotorwelle und der Innenkonturen der Zwischenelemente aufeinander liegen weiterhin die Innenkonturen der Zwischenelemente vollflächig an der Mantelfläche der Rotorwelle an. Dadurch können insbesondere Druckbelastungen der Zwischenelemente über große Flächen auf die Mantelfläche des Rotors übertragen werden.
  • Durch die erfindungsgemäße Ausgestaltung können die Zwischenelemente zwischen den Reihen von Messerhaltern mit der Mantelfläche der Rotorwelle befestigt sein. Aufgrund dieser Befestigungsorte sind Hebel- und Scherkräfte erheblich geringer als bei einer Befestigung im Bereich der Messerhalter auf der Mantelfläche des Rotors. Durch diese Ausgestaltung kann daher erreicht werden, dass die großen Belastungen, die im Betrieb der Zerkleinerungsmaschine auf die Rotormesser und über die Rotormesser auf die Messerhalter wirken, über erheblich größere Hebel auf die Verbindungselemente wirken und dadurch entsprechend geringere Kräfte auf diese ausüben. Diese entsprechend geringeren Kräfte können auch mittels lösbarer Verbindungselemente übertragen werden. Lösbare Verbindungselemente im Sinne der vorliegenden Erfindung sind Verbindungselemente, die zerstörungsfrei gelöst werden können. Ein typischer Vertreter eines lösbaren Verbindungselements ist eine Schraubverbindung.
  • Die Ausbildung der Mantelfläche als Vielzahl von planen Flächen erleichtert weiterhin die Positionierung der Zwischenelemente im Rahmen der Montage.
  • Vorzugsweise sind die Messerhalter auf den Zwischenelementen unlösbar befestigt. In diesem Fall erfolgt die Übertragung der auf die Messerhalter wirkenden Kräfte auf die Zwischenelemente weiterhin über eine unlösbare Verbindung (d.h. eine nur durch Zerstörung lösbare Verbindung, in der Regel eine Schweißverbindung). Alternativ ist es möglich, dass die Zwischenelemente und die Messerhalter aus einem einzigen Stück gefertigt sind. Bei entsprechender Ausgestaltung der Verbindung zwischen Messerhalter und Zwischenelementen kann jedoch auch eine lösbare Verbindung möglich sein.
  • Die Befestigung der Rotormesser an den Messerhaltern kann - wie im Stand der Technik auch - lösbar sein, insbesondere als Schraubverbindung ausgebildet sein.
  • Vorzugsweise ist die Anzahl an Messerhaltern pro Zwischenelement derart bestimmt, dass die Masse des jeweiligen Zwischenelements einschließlich der auf dem jeweiligen Zwischenelement befestigten Messerhalter bei maximal 50 kg liegt, insbesondere bei maximal 30 kg. Dadurch kann das Gewicht eines Zwischenelements mit zugehörigen Messerhaltern (und gegebenenfalls auch Rotormessern) auf einen Bereich begrenzt werden, der von einer einzelnen Person auch ohne technische Hilfsmittel noch gehalten und positioniert werden kann. Dies gewährleistet die Handhabbarkeit des Zwischenelements mit den Messerhaltern (und eventuell zusätzlich auch den Messern).
  • In vielen Fällen weisen bereits die Messerhalter als solche ein beträchtliches Gewicht auf. Die Kombination mit den Zwischenelementen liegt daher auch bei nur einem einzigen Messerhalter oftmals bereits im Bereich von oder sogar oberhalb von 10 kg. In derartigen Fällen beträgt die Anzahl an Messerhaltern pro Zwischenelement maximal vier.
  • Die Verbindungselemente können insbesondere Reihen von Verbindungselementen bilden, die in Richtung der Rotationsachse verlaufen.
  • Wie bereits erwähnt, ist es möglich, dass auf einem einzelnen Zwischenelement nur ein einziger Messerhalter befestigt ist. Es ist jedoch ebenso möglich, dass auf einem einzelnen Zwischenelement mehrere Messerhalter befestigt sind. In diesem Fall können die Messerhalter entweder tangential um die Rotationsachse herum gesehen eine Reihe bilden oder in Richtung der Rotationsachse gesehen eine Reihe bilden. Im Falle von mindestens vier Messerhaltern ist zusätzlich auch eine Anordnung von mehreren Reihen von Messerhaltern möglich, wobei die Reihen von Messerhaltern tangential um die Rotationsachse herum gesehen voneinander beabstandet sind und jeweils mehrere Messerhalter aufweisen, die in Richtung der Rotationsachse gesehen nebeneinander angeordnet sind.
  • Wenn auf den Zwischenelementen tangential um die Rotationsachse herum gesehen jeweils mehrere Messerhalter befestigt sind, ist es möglich, dass die Verbindungselemente das jeweilige Zwischenelement tangential um die Rotationsachse herum gesehen zusätzlich auch an einem Ort, der zwischen den einzelnen Messerhaltern des jeweiligen Zwischenelements angeordnet ist, mit der Rotorwelle verbinden. Auch hier ist wieder die Bildung von entsprechenden in Richtung der Rotationsachse verlaufenden Reihen möglich. Es ist möglich, dass nur ein einziges Verbindungselement bzw. eine einzige derartige Reihe vorhanden ist. In diesem Fall verbinden die Verbindungselemente das jeweilige Zwischenelement tangential um die Rotationsachse herum gesehen zwischen den tangential um die Rotationsachse herum gesehen unmittelbar aufeinanderfolgenden Messerhaltern jeweils nur an einem einzigen Ort mit der Rotorwelle. Unter Umständen kann es jedoch sinnvoll sein, tangential um die Rotationsachse herum gesehen mehrere - insbesondere zwei - Verbindungselemente bzw. derartige Reihen vorzusehen.
  • Es kann unter Umständen sinnvoll sein, dass bezüglich jeweils zwei tangential um die Rotationsachse herum gesehen unmittelbar aufeinanderfolgender Zwischenelemente das jeweils vordere Zwischenelement das jeweils hintere Zwischenelement übergreift. Die Begriffe "vorne" und "hinten" und äquivalente Begriffe sind auf die normale Drehrichtung bezogen, in welche der Rotor normalerweise - das heißt zum Zerkleinern - rotiert wird. Insbesondere passiert das vordere Zwischenelement einen bestimmten Punkt des Stators der Zerkleinerungsmaschine vor dem hinteren Zwischenelement.
  • Beispielsweise können zu diesem Zweck die Stoßflächen in Drehrichtung geneigt verlaufen. Insbesondere durch diese Ausgestaltung können Kräfte, die bei einem Rotieren des Rotors in der Drehrichtung auf die vor den Messerhaltern des jeweiligen Zwischenelements angeordneten Verbindungselemente wirken, teilweise auf diejenigen Verbindungselemente übertragen werden, die bei dem in Drehrichtung gesehen vorgeordneten Zwischenelement nach dessen Messerhaltern angeordnet sind.
  • Besonders bevorzugt ist es, wenn die Stoßflächen einen radial äußeren Bereich, einen radial inneren Bereich und dazwischen einen radial mittleren Bereich aufweisen, der an den radial äußeren Bereich und den radial inneren Bereich angrenzt, der radial äußere Bereich und der radial innere Bereich rein radial-axial verlaufen und der radial äußere Bereich in Richtung um die Rotationsachse herum gesehen hinter dem radial inneren Bereich liegt.
  • Die Verbindungselemente können, wie bereits erwähnt, insbesondere als Schrauben ausgebildet sein. In diesem Fall können Schraubenköpfe der Schrauben in Aufnahmen der Zwischenelemente vollständig versenkt angeordnet sein. Dadurch wird eine Verschmutzung des Rotors, die im Betrieb unvermeidlich auftritt, minimiert. Die Schrauben können weiterhin als Innensechskantschrauben ausgebildet sein. Durch diese Ausgestaltung ergibt sich eine einfache und zuverlässige Möglichkeit, die Verbindungselemente zu lösen und zu befestigen.
  • Es ist möglich, dass die Zwischenelemente und die Rotorwelle formschlüssig miteinander verbunden sind. Beispielsweise können die Zwischenelemente Ausnehmungen aufweisen, in die beim Aufsetzen der Zwischenelemente auf die Rotorwelle in entsprechende Vorsprünge auf der Rotorwelle eintauchen. Auch die umgekehrte Ausgestaltung ist möglich. Es ist sogar möglich, dass sowohl die Zwischenelemente als auch die Rotorwelle Ausnehmungen aufweisen und vor dem Aufsetzen der Zwischenelemente auf die Rotorwelle in die Ausnehmungen des jeweiligen Zwischenelements oder der Rotorwelle Passfedern oder dergleichen eingesetzt werden. Die Ausnehmungen können in Richtung der Rotationsachse gesehen durchgehend sein.
  • Besonders bevorzugt ist jedoch, dass der Rotor auf seiner Mantelfläche Vorsprünge aufweist, die Zwischenelemente mit den Vorsprüngen zusammenwirkende Nasen aufweisen und aneinander angrenzende Flächen der Vorsprünge und der Nasen im wesentlichen radial orientiert sind. Optimal ist hierbei eine rein radiale Orientierung der aneinander angrenzenden Flächen oder eine Orientierung, bei der die aneinander angrenzenden Flächen nach radial außen gesehen leicht nach vorne geneigt sind. Auch eine leichte Neigung nach hinten ist jedoch möglich. Unter einer leichten Neigung ist eine Neigung von maximal 20°, besser von nicht mehr als 15°, insbesondere von maximal 10° zu verstehen.
  • In einer besonders bevorzugten Ausgestaltung des Rotors ist vorgesehen,
    • dass die Rotorwelle in Richtung der Rotationsachse gesehen mehrere Abschnitte aufweist und
    • dass die Abschnitte in einer orthogonal zur Rotationsachse verlaufenden Ebene gesehen deckungsgleiche Querschnitte aufweisen, die Querschnitte von Abschnitt zu Abschnitt jedoch um einen jeweiligen Drehwinkel gegeneinander verdreht sind.
  • Durch diese Ausgestaltung kann einerseits erreicht werden, dass die Teilevielfalt gering gehalten werden kann und dennoch (nämlich durch eine entsprechende Anordnung der Messerhalter auf den Zwischenelementen) ein leicht um die Rotationsachse umlaufender, leicht schraubenförmiger Verlauf der Schneidkanten der Rotormesser erreicht werden kann. Der schraubenförmige Verlauf kann unter Umständen seine Drehrichtung über die Länge des Rotors gesehen einheitlich beibehalten. Alternativ ist es möglich, dass der schraubenförmige Verlauf seine Drehrichtung über die Länge des Rotors gesehen einmal oder mehrmals umkehrt. Weiterhin kann diese Ausgestaltung auch im Rahmen der Montage eine leichtere Positionierung der Zwischenelemente in Richtung der Rotationsachse gesehen ermöglichen.
  • Die Zwischenelemente weisen jeweils eine der Mantelfläche zugewandte Innenkontur auf. Die Innenkontur wird von Grenzkanten begrenzt. Vorzugsweise verlaufen die Grenzkanten, bezogen auf die Rotationsachse, entweder rein tangential oder rein axial. Durch diese Ausgestaltung können insbesondere die Gesamtkonstruktion des Rotors vereinfacht sowie die Montage und Demontage einzelner Zwischenelemente erleichtert werden.
  • Vorzugsweise grenzen die Zwischenelemente nicht nur tangential um die Rotationsachse herum gesehen, sondern auch in Richtung der Rotationsachse gesehen an Stoßflächen aneinander an, so dass die Zwischenelemente in ihrer Gesamtheit nicht nur tangential um die Rotationsachse herum gesehen, sondern auch in Richtung der Rotationsachse gesehen die Mantelfläche der Rotorwelle vollständig abdecken. Durch die vollständige Abdeckung der Mantelfläche der Rotorwelle wird die im Betrieb des Rotors unvermeidlich auftretende Verschmutzung der Rotorwelle minimiert.
  • Die Aufgabe wird weiterhin durch eine Zerkleinerungsmaschine mit den Merkmalen des Anspruchs 10 gelöst. Erfindungsgemäß ist bei einer Zerkleinerungsmaschine der eingangs genannten Art der mindestens eine Rotor erfindungsgemäß ausgebildet, weist also die lösbar mit der Mantelfläche verbundenen Zwischenelemente auf, auf denen die Messerhalter befestigt sind.
  • Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen in Verbindung mit den Zeichnungen. Es zeigen in Prinzipdarstellung:
  • FIG 1
    einen Schnitt durch eine Zerkleinerungsmaschine,
    FIG 2
    einen Rotor in perspektivischer Ansicht,
    FIG 3
    einen Querschnitt durch den Rotor von FIG 2,
    FIG 4
    eine Schnittdarstellung durch einen Teil des Rotors von FIG 2,
    FIG 5
    eine Explosionsdarstellung eines Teils des Rotors von FIG 2,
    FIG 6
    schematisch ein Zwischenelement mit Messerhaltern von der Seite,
    FIG 7
    einen Ausschnitt des Rotors von FIG 2,
    FIG 8
    eine Rotorwelle im Querschnitt,
    FIG 9
    einen Ausschnitt einer Rotorwelle im Querschnitt und
    FIG 10
    eine weitere Rotorwelle im Querschnitt.
  • Gemäß FIG 1 weist eine Zerkleinerungsmaschine - beispielsweise ein Müll-, Kunststoff- oder Holzzerkleinerer - mindestens einen Stator 1 und mindestens einen Rotor 2 auf. Der Rotor 2 weist eine Rotorwelle 2' auf. Die Rotorwelle 2' besteht in der Regel aus Stahl. Sie ist mittels eines nicht dargestellten Antriebs in einer Drehrichtung 3 um eine Rotationsachse 4 rotierbar. In manchen Fällen ist zusätzlich auch eine Rotation entgegen der Drehrichtung 3 möglich. Auf dem Stator 1 sind Statormesser 5 angeordnet. Messerhalter, an denen die Statormesser 5 befestigt sind, sind nicht mit dargestellt. Die Statormesser 5 bestehen in der Regel aus gehärtetem Stahl oder einem anderen Hartmetall.
  • Soweit nachfolgend die Begriffe "axial", "radial" und "tangential" verwendet werden, sind sie stets auf die Rotationsachse 4 bezogen. Axial ist eine Richtung parallel zur Rotationsachse 4. Radial ist eine Richtung orthogonal zur Axialrichtung direkt auf die Rotationsachse 4 zu oder von ihr weg. Tangential ist eine Richtung, die sowohl orthogonal zur Axialrichtung als auch orthogonal zur Radialrichtung verläuft. Tangential ist also eine Richtung, die bei einer konstanten Axialposition und in einem konstanten radialen Abstand kreisförmig um die Rotationsachse 4 herum gerichtet ist. Die Drehrichtung 3 definiert weiterhin in Tangentialrichtung die Begriffe "vorne" und "hinten". Insbesondere zeigt die Drehrichtung 3 nach vorne.
  • Um eine Mantelfläche 2" der Rotorwelle 2' herum ist eine Vielzahl von Messerhaltern 6 für Rotormesser 7 angeordnet. Die Rotormesser 7 bestehen in der Regel - ebenso wie die Statormesser 5 - aus gehärtetem Stahl oder einem anderen Hartmetall. Die Messerhalter 6 bestehen in der Regel ebenfalls aus Stahl. Dieser Stahl ist in der Regel jedoch weicher als der Stahl, aus dem die Rotormesser 7 bestehen. Die Messerhalter 6 können insbesondere so ausgestaltet sein, wie dies in der DE 20 2016 101 582 U1 beschrieben ist. Zwingend ist dies jedoch nicht erforderlich.
  • In FIG 2 sind der Übersichtlichkeit halber nur einige wenige der dort dargestellten Elemente mit ihrem jeweiligen Bezugszeichen versehen. Gleiches gilt für die weiteren FIG.
  • Gemäß den FIG 2 bis 4 sind die Messerhalter 6 in Axialrichtung gesehen nebeneinander angeordnet und bilden somit eine jeweilige Reihe von Messerhaltern 6. Die Reihen von Messerhaltern 6 verlaufen jedoch vorzugsweise nicht rein axial. Vielmehr sind die Messerhalter 6 der jeweiligen Reihe von Messerhaltern 6 vorzugsweise tangential leicht gegeneinander versetzt. Weiterhin bilden die Messerhalter 6 ersichtlich mehrere Reihen von Messerhaltern 6, wobei die Reihen von Messerhaltern 6 tangential voneinander beabstandet sind. Die Messerhalter 6 der jeweiligen Reihe von Messerhaltern 6 sind vorzugsweise tangential geringfügig gegeneinander versetzt und weiterhin gegenüber einer reinen Axialrichtung leicht tangential geneigt. Der Neigungswinkel ist in der Regel relativ gering und liegt meist zwischen 3° und 15°.
  • Es ist möglich, dass die Messerhalter 6 der jeweiligen Reihe von Messerhaltern 6 eine einheitliche Linie bilden. Alternativ kann die jeweilige Reihe von Messerhaltern 6 einen oder mehrere Scheitelpunkte aufweisen. Je nach Anzahl von Scheitelpunkten können die Messerhalter 6 der jeweiligen Reihe von Messerhaltern 6 dadurch beispielsweise die beiden Schenkel eines V, die drei Schenkel eines N oder - wie in FIG 2 dargestellt - die vier Schenkel eines W bilden. Innerhalb eines jeweiligen Schenkels sind die Messerhalter 6 untereinander in der Regel baugleich. Die Messerhalter 6 benachbarter Schenkel können sich jedoch geringfügig voneinander unterscheiden. Auch im Falle unterschiedlich ausgestalteter Messerhalter 6 sind die Messerhalter 6 der beiden benachbarten Schenkel jedoch in der Regel spiegelbildlich zueinander ausgebildet. Weiterhin ist es auch möglich, dass die Messerhalter 6 spiralförmig um die Rotationsachse 4 umlaufen. In diesem Fall müssen die Zwischenelemente 8 in Tangentialrichtung entsprechend versetzt auf dem Rotor 2 angeordnet sein.
  • Die Abmessungen der Zerkleinerungsmaschine sind oftmals beachtlich. So kann beispielsweise der Rotor 2 eine Länge L zwischen 1 m und 4 m aufweisen, beispielsweise von ca. 2,8 m. Der Durchmesser D (siehe FIG 1) des Rotors 2 kann zwischen 50 cm und 1 m liegen und in manchen Fällen sogar noch größer sein. Die konkreten Zahlenangaben sind selbstverständlich nur rein beispielhaft, verdeutlichen jedoch die Größenordnung der Zerkleinerungsmaschine.
  • Die Messerhalter 6 sind in der Regel im wesentlichen quaderförmig ausgebildet, verjüngen sich jedoch ähnlich einem Pyramidenstumpf, je größer der Abstand von den Rotormessern 7 wird. Sie weisen oftmals ebenfalls nennenswerte Abmessungen auf. Beispielsweise können sie sich in Axialrichtung über 15 cm bis 20 cm erstrecken, in Tangentialrichtung zwischen 10 cm und 15 cm und in Radialrichtung zwischen 7 cm und 12 cm. Auch hier sind die konkreten Zahlenangaben jedoch nur rein beispielhaft.
  • Die Messerhalter 6 sollen erfindungsgemäß im Ergebnis mit der Mantelfläche 2" der Rotorwelle 2' lösbar verbunden sein. Um dies erreichen zu können, sind auf der Mantelfläche 2" der Rotorwelle 2 lösbar Zwischenelemente 8 befestigt. Die Zwischenelemente 8 sind erfindungsgemäß als geknickte Platten ausgebildet. Sie weisen also einen mittleren Bereich 8a, einen vorderen Bereich 8b und einen hinteren Bereich 8c auf. Die Bereiche 8a, 8b, 8c sind jeweils gerade (plan). An den beiden Grenzen des mittleren Bereichs 8a zum vorderen und zum hinteren Bereich 8b, 8c ist jedoch jeweils ein Knick ausgebildet. Die Messerhalter 6 sind im mittleren Bereich 8a mit dem jeweiligen Zwischenelement 8 verbunden. Die Zwischenelemente 8 erstrecken sich aufgrund des vorderen und des hinteren Bereichs 8b, 8c zumindest in Tangentialrichtung über die Messerhalter 6 hinaus. Sie weisen in Radialrichtung in der Regel eine Stärke oberhalb von 2 cm auf. Beispielsweise kann die Stärke zwischen 3,5 cm und 5,5 cm liegen, insbesondere zwischen 4 cm und 5 cm. Die Stärke ist in der Regel einheitlich. Die Zwischenelemente 8 bestehen in der Regel aus Stahl.
  • Die Befestigung der Zwischenelemente 8 erfolgt mittels Verbindungselementen 9a, 9b. Die Verbindungselemente 9a, 9b können entsprechend der Darstellung in den FIG 2 bis 5 insbesondere als Schrauben ausgebildet sein. Besonders bevorzugt ist eine Ausbildung der Schrauben als Innensechskantschrauben. Schraubenköpfe 9' der Schrauben sind vorzugsweise in Aufnahmen 10 der Zwischenelemente 8 vollständig versenkt angeordnet. Die Schraubenköpfe 9' stehen also nicht über die radial äußere Seite der Zwischenelemente 8 über. Die Zwischenelemente 8 weisen zu diesem Zweck entsprechend ausgebildete Aufnahmen 10 auf. Insbesondere weisen die Aufnahmen 10 eine - in den FIG jedoch nicht erkennbare - Anlageschulter auf, an denen die Schraubenköpfe 9' anliegen. Die Aufnahmen 10 können insbesondere als Bohrungen ausgebildet sein. Die Verbindungselemente 9a sind im vorderen Bereich 8b angeordnet, die Verbindungselemente 9b im hinteren Bereich 8c.
  • Die Zwischenelemente 8 erstrecken sich in Tangentialrichtung über 360°/n, wobei n - eine natürliche Zahl oberhalb von 1 - die Anzahl an Zwischenelementen 8 ist, die in Tangentialrichtung gesehen über den Umfang der Rotorwelle 2' verteilt angeordnet sind. Die Zwischenelemente 8 erstrecken sich in Tangentialrichtung somit maximal über 180°. In der Regel erstrecken sich die Zwischenelemente 8 über 120° oder weniger, beispielsweise bei vier bis acht Zwischenelementen 8 über 90°, 72°, 60°, knapp 51,5° oder 45°. Die Zwischenelemente 8 grenzen in Tangentialrichtung an Stoßflächen 15 aneinander an. In Tangentialrichtung gesehen decken die Zwischenelemente 8 somit die Mantelfläche 2" der Rotorwelle 2' vollständig ab.
  • Auf den Zwischenelementen 8 ist jeweils eine Anzahl an Messerhaltern 6 befestigt. Die Anzahl an Messerhaltern 6 pro Zwischenelement 8 liegt in der Regel zwischen eins und vier. Gemäß der Darstellung in den FIG 2, 5 und 6 kann sie beispielsweise bei zwei liegen. Die Messerhalter 6 des jeweiligen Zwischenelements 8 sind gemäß der Darstellung in den FIG 2 und 5 axial nebeneinander angeordnet. Alternativ können die Messerhalter 6 des jeweiligen Zwischenelements 8 entsprechend der Darstellung von FIG 6 in Tangentialrichtung hintereinander angeordnet sein. In diesem Fall weist das entsprechende Zwischenelement 8 weitere Bereiche auf, die jeweils über einen Knick aneinander angrenzen. Die Knicke sind in FIG 6 der Übersichtlichkeit halber nicht mit dargestellt. Weiterhin können in diesem Fall entsprechend der Darstellung in FIG 6 auch zwischen den Messerhaltern 6 des jeweiligen Zwischenelements weitere Verbindungselemente 9c angeordnet sein.
  • Wenn auf dem jeweiligen Zwischenelement 8 mindestens vier Messerhalter 6 befestigt sind, können die Messerhalter 6 auch mehrere tangential voneinander beabstandete Reihen von Messerhaltern 6 bilden, wobei jede dieser Reihen jeweils mehrere Messerhalter 6 umfasst. Unabhängig von der Anzahl an Messerhaltern 6 pro Zwischenelement 8 sollte jedoch vorzugsweise die Masse des jeweiligen Zwischenelements 8 einschließlich der auf dem jeweiligen Zwischenelement 8 befestigten Messerhalter 6 bei maximal 50 kg liegen, insbesondere bei maximal 30 kg.
  • In der Regel sind die Messerhalter 6 auf den Zwischenelementen 8 unlösbar befestigt. Sie können insbesondere mit dem jeweiligen Zwischenelement 8 geschweißt sein. Entsprechende Schweißnähte 11 sind nur in FIG 4 dargestellt. Zusätzlich können - vorzugsweise nur innerhalb des jeweiligen Zwischenelements 8 - axial unmittelbar benachbarte Messerhalter 6 ebenfalls unlösbar miteinander verbunden sein, beispielsweise miteinander geschweißt sein. Diese Schweißnähte sind in den FIG nicht mit dargestellt. Es sind jedoch auch andere Arten der Befestigung - auch lösbare - denkbar. Beispielsweise kann ein Messerhalter 6 an einem Ende in einer Hinterschneidung des jeweiligen Zwischenelements 8 angeordnet sein und am anderen Ende mittels einer Schraubverbindung (oder mehreren Schraubverbindungen) festgelegt sein.
  • Die Verbindungselemente 9a, 9b, 9c bilden gemäß den FIG 2 bis 6 pro Zwischenelement 8 Reihen von Verbindungselementen 9a, 9b, 9c. Die Reihen von Verbindungselementen 9a, 9b, 9c erstrecken sich in Axialrichtung. Die Reihen weisen jeweils mindestens zwei Verbindungselemente 9a, 9b, 9c auf. Insbesondere wenn die Zwischenelemente 8 mehrere Messerhalter 6 tragen, welche in Axialrichtung gesehen nebeneinander angeordnet sind, sind in der Regel die Reihen von Verbindungselementen 9a, 9b, 9c vorhanden. Entsprechend der Darstellung in den Figur 2, 5 und 7 weisen sie beispielsweise jeweils fünf Verbindungselemente 9a, 9b, 9c pro Reihe von Verbindungselementen 9a, 9b, 9c auf. Die Reihen von Verbindungselementen 9a, 9b, 9c verlaufen jeweils (zumindest im wesentlichen) axial. In anderen Ausgestaltungen der vorliegenden Erfindung könnten die "Reihen" jedoch entartet sein, d.h. aus nur jeweils einem einzigen Verbindungselement 9a, 9b, 9c bestehen. Soweit die vorliegende Erfindung nachstehend in Verbindung mit (echten) Reihen von Verbindungselementen 9a, 9b, 9c erläutert wird, ist dies daher nicht einschränkend auf echte Reihen von Verbindungselementen 9a, 9b, 9c, sondern generisch zu verstehen.
  • Die Verbindungselemente 9a - d.h. diejenigen Verbindungselemente 9a, die in Drehrichtung 3 gesehen vor den Messerhaltern 6 des jeweiligen Zwischenelements 8 angeordnet sind - verbinden das jeweilige Zwischenelement 8 an einem Ort, der in der Drehrichtung 3 gesehen vor den Messerhaltern 6 des jeweiligen Zwischenelements 8 angeordnet ist, mit der Rotorwelle 2'. Die Verbindungselemente 9b - d.h. diejenigen Verbindungselemente 9b, die in Drehrichtung 3 gesehen hinter den Messerhaltern 6 des jeweiligen Zwischenelements 8 angeordnet sind - verbinden das jeweilige Zwischenelement 8 zusätzlich an einem Ort, der in der Drehrichtung 3 gesehen hinter den Messerhaltern 6 des jeweiligen Zwischenelements 8 angeordnet ist, mit der Rotorwelle 2'.
  • Im Falle der Ausgestaltung von FIG 6, wenn also auf den Zwischenelementen 8 in Tangentialrichtung gesehen jeweils mehrere Messerhalter 6 befestigt sind, ist entsprechend der Darstellung in FIG 6 vorzugsweise auch zwischen den tangential unmittelbar aufeinanderfolgenden Messerhaltern 6 des entsprechenden Verbindungselements 8 jeweils mindestens eine weitere Reihe von Verbindungselementen 9c vorhanden. Die Verbindungselemente 9c verbinden das jeweilige Zwischenelement 8 somit in Tangentialrichtung gesehen zusätzlich auch an einem Ort, der zwischen den einzelnen Messerhaltern 6 des jeweiligen Zwischenelements 8 angeordnet ist, mit der Rotorwelle 2'.
  • Es kann im Falle der Ausgestaltung gemäß FIG 6 im Einzelfall sinnvoll sein, wenn die Verbindungselemente 9c zwischen den tangential unmittelbar aufeinanderfolgenden Messerhaltern 6 jeweils zwei Reihen von Verbindungselementen 9c bilden. Dies kann insbesondere dann sinnvoll sein, wenn verschiedene Ausgestaltungen von Zwischenelementen 8 verwendbar sein sollen, wobei bei der einen Art von Zwischenelementen 8 nur ein einziger Messerhalter 6 vorhanden ist oder die Messerhalter 6 in Tangentialrichtung gesehen eine einzige Reihe von Messerhaltern bilden und bei der anderen Art von Zwischenelementen 8 in Tangentialrichtung gesehen mehrere Messerhalter 6 bzw. Reihen von Messerhaltern 6 vorhanden sind. In der Regel bilden die Verbindungselemente 9c zwischen den tangential unmittelbar aufeinanderfolgenden Messerhaltern 6 jedoch jeweils nur eine einzige weitere Reihe von Verbindungselementen 9c. In diesem Fall verbinden die Verbindungselemente 9c das jeweilige Zwischenelement 8 in Tangentialrichtung gesehen zwischen den in Tangentialrichtung gesehen unmittelbar aufeinanderfolgenden Messerhaltern 6 jeweils nur an einem einzigen Ort mit der Rotorwelle 2'.
  • Es ist möglich, dass die Mantelfläche 2" der Rotorwelle 2' und Innenkonturen 8' der Zwischenelemente 8 (siehe die FIG 4 und 5) nur im Bereich der Verbindungselemente 9a, 9b, 9c aneinander anliegen. Vorzugsweise sind die Mantelfläche 2" der Rotorwelle 2' und die Innenkonturen 8' jedoch - siehe insbesondere die Darstellungen in den FIG 4 und 7 - derart aufeinander abgestimmt, dass die Innenkonturen 8' vollflächig an der Mantelfläche 2" anliegen.
  • Insbesondere weist die Mantelfläche 2" plane Flächen 12 auf, an denen die Zwischenelemente 8 mit ihren Innenkonturen 8' - also sowohl mit dem mittleren Bereich 8a als auch mit den abgeknickten Bereichen 8b, 8c - anliegen. Dies ist insbesondere aus den Darstellungen in den FIG 2 bis 5 und 7 ersichtlich. In diesem Fall weist die Rotorwelle 2' entsprechend der Darstellung in FIG 8 im Querschnitt (also orthogonal zur Rotationsachse 4 gesehen) einen polygonalen Querschnitt auf. Es ist möglich, dass Kanten 13, an denen die planen Flächen 12 aneinander angrenzen, sich vom einen axialen Ende der Rotorwelle 2' bis zum anderen axialen Ende der Rotorwelle 2' erstrecken. Vorzugsweise erstrecken die Kanten 13 sich jedoch jeweils nur über Abschnitte 14, die sich ihrerseits nur über einen Teil der Axialerstreckung der Rotorwelle 2' erstrecken. Die Rotorwelle 2' weist also in Axialrichtung gesehen eine Abfolge von mehreren derartigen Abschnitten 14 auf. Zwei der Abschnitte 14 sind rein beispielhaft in FIG 2 als solche markiert. Die Länge der Abschnitte 14 in Axialrichtung kann gleich sein oder - wie aus FIG 2 ersichtlich - variieren. Der Querschnitt der Abschnitte 14 ist jedoch stets der gleiche, wie dies in FIG 8 rein beispielhaft für einen achteckigen Querschnitt dargestellt ist. Die Querschnitte der Abschnitte 14 sind also deckungsgleich (kongruent). Von Abschnitt 14 zu Abschnitt 14 sind die Querschnitte jedoch um einen jeweiligen Drehwinkel α gegeneinander verdreht. Der Drehwinkel α ist in der Regel relativ klein. Er kann beispielsweise bei ca. 1° bis ca. 5° liegen, insbesondere zwischen 2° und 4°.
  • In vielen Ausgestaltungen der vorliegenden Erfindung decken die Zwischenelemente 8 entsprechend der Darstellung in den FIG 2 bis 7 in ihrer Gesamtheit die Mantelfläche 2" der Rotorwelle 2' vollständig ab. In diesem Fall grenzen die Zwischenelemente 8 nicht nur in Tangentialrichtung gesehen an den Stoßflächen 15 aneinander an, sondern zusätzlich auch in Axialrichtung gesehen an Stoßflächen 16. Die Stoßflächen 16 verlaufen vorzugsweise rein radial-tangential, also ohne Axialkomponente. Die Stoßflächen 15 können in analoger Weise rein radial-axial verlaufen, also ohne Tangentialkomponente.
  • Dies ist beispielsweise in den FIG 3 bis 5 dargestellt. Es ist jedoch in manchen Ausgestaltungen alternativ möglich, dass die Stoßflächen 15 geneigt verlaufen (oder in Tangentialrichtung unmittelbar aufeinanderfolgende Zwischenelemente 8 einander anderweitig übergreifen bzw. untergreifen). Der Sinn und Zweck derartiger Ausgestaltungen wird nachfolgend in Verbindung mit den FIG 9 und 10 in Verbindung mit einer Neigung der Stoßflächen 15 näher erläutert. Die entsprechenden Ausführungen gelten jedoch in analoger Weise auch bei einem andersartigen Übergreifen bzw. Untergreifen.
  • So ist es entsprechend der Darstellung in FIG 9 beispielsweise möglich, dass die Stoßflächen 15 in Drehrichtung 3 geneigt verlaufen. Durch diese Ausgestaltung werden Zugkräfte Z, die aufgrund der Rotation des Rotors 2 in der Drehrichtung 3 über die Rotormesser 7 und die Messerhalter 6 des jeweiligen Zwischenelements 8 auf die Verbindungselemente 9a der vorderen Reihe von Verbindungselementen 9a wirken, zum Teil auf das vorgeordnete Zwischenelement 8 und dessen hintere Reihe von Verbindungselementen 9b übertragen. Die Verbindungselemente 9a der vorderen Reihe von Verbindungselementen 9a werden dadurch entlastet.
  • Alternativ ist es entsprechend der Darstellung in FIG 10 möglich, dass die Stoßflächen 15 einen radial äußeren Bereich 15a, einen radial inneren Bereich 15b und dazwischen einen radial mittleren Bereich 15c aufweisen. In Radialrichtung gesehen weisen die Bereiche 15a, 15b und 15c untereinander im wesentlichen (±10 %) gleiche Erstreckungen auf. Der radial mittlere Bereich 15c grenzt in Radialrichtung gesehen an den radial äußeren Bereich 15a und den radial inneren Bereich 15b an. Der radial äußere Bereich 15a und der radial innere Bereich 15b verlaufen im Falle der Ausgestaltung gemäß FIG 10 rein radial-axial. Der radial äußere Bereich 15a liegt jedoch in Drehrichtung 3 gesehen hinter dem radial inneren Bereich 15b. Dementsprechend verläuft nur der radial mittlere Bereich 15c geneigt.
  • FIG 10 zeigt noch eine weitere Ausgestaltung der vorliegenden Erfindung. Diese Ausgestaltung ist unabhängig von der Ausgestaltung der Stoßflächen 15 realisierbar. Insbesondere weist der Rotor 2 entsprechend der Darstellung in FIG 10 auf seiner Mantelfläche 2" nach radial außen ragende Vorsprünge 19 auf. Die Vorsprünge 19 wirken mit Nasen 20 zusammen, die Bestandteile der Zwischenelemente 8 sind. Vorzugsweise sind die Nasen 20 im mittleren Bereich 8a angeordnet, insbesondere in unmittelbarer Nähe zum Übergang zum vorderen Bereich 8b. Durch die Vorsprünge 19 und die Nasen 20 wird ein Formschluss der Zwischenelemente 8 mit dem Rotor 2 bewirkt, über den die beim Betrieb des Rotors 2 auftretenden, in Tangentialrichtung wirkenden Zugkräfte Z zu einem erheblichen Teil von den Zwischenelementen 8 auf den Rotor 2 übertragen werden können. Beispielsweise können die Vorsprünge 19 und die Nasen 20 entsprechend der Darstellung in FIG 10 aneinander angrenzende Flächen 21 aufweisen, die im wesentlichen radial orientiert sind. Insbesondere kann ein Winkel β, den die Flächen 20 jeweils mit einer die Flächen 20 mittig schneidenden Radialebene einschließen, zwischen -20° und +20° liegen. Vorzugsweise liegt der Winkel β sogar nur zwischen -15° und +15°, beispielsweise zwischen -10° und +10° Im Optimalfall verschwindet der Winkel β (β = 0).
  • Die Innenkontur 8' der Zwischenelemente 8 grenzt gemäß FIG 5 an Grenzkanten 17 an die Stoßflächen 15 und an Grenzkanten 18 an die Stoßflächen 16 bzw. allgemein an den Grenzkanten 17, 18 an die sich (auch) in Radialrichtung erstreckenden Flächen 15, 16 der Zwischenelemente 8 an. Unabhängig davon, ob die Stoßflächen 15 geneigt sind oder rein radial-axial verlaufen, verlaufen die Grenzkanten 17, 18 vorzugsweise rein tangential oder rein axial.
  • Die vorliegende Erfindung weist viele Vorteile auf. Insbesondere ist es möglich, im Falle eines Verschleißes von Rotormessern 7 und/oder von Messerhaltern 6 das jeweilige Zwischenelement 8 zu demontieren und durch ein neues Zwischenelement 8 zu ersetzen. Das Zwischenelement 8 mit den verschlissenen Elementen 6, 7 kann dann außerhalb der Zerkleinerungsmaschine weiter behandelt werden. Beispielsweise können die Rotormesser 7 ausgewechselt oder die Messerhalter 6 demontiert und neue Messerhalter 6 montiert werden. Während dieses Zeitraums kann die Zerkleinerungsmaschine bereits weiter betrieben werden. Auch ist es möglich, durch Austausch der Zwischenelemente 8 gegen andersartige Zwischenelemente 8 (in Verbindung mit einem entsprechenden Austausch der Statormesser 5) die Zerkleinerungsmaschine auf einen anderen Messertyp umzurüsten. Auch ist es möglich, bereits ab Werk mehrere gleichartige Rotorwellen 2' mit verschiedenen Zwischenelementen 8 auszustatten und dadurch die Typenvielfalt an Rotorwellen 2' zu reduzieren. Bei geeigneter Auslegung ist es sogar möglich, dass die ein und dieselben Zwischenelemente 8 bei einer bestimmten Axialposition in mehreren voneinander verschiedenen Tangentialpositionen mit der Rotorwelle 2' verbunden werden können. Zu diesem Zweck ist es in der Regel unter anderem erforderlich, dass die Anzahl an Aufnahmen für die Verbindungselemente 9a, 9b, 9c der Rotorwelle 2' hinreichend groß ist. Insbesondere sollte es sich in diesem Fall um ein ganzzahliges Vielfaches der Zahl N = n x m handeln, wobei n die Anzahl an Zwischenelementen 8 ist und m die Anzahl an Reihen von Verbindungselementen 9a, 9b, 9c pro Zwischenelement 8.
  • Die obige Beschreibung dient ausschließlich der Erläuterung der vorliegenden Erfindung. Der Schutzumfang der vorliegenden Erfindung soll hingegen ausschließlich durch die beigefügten Ansprüche bestimmt sein.
  • Bezugszeichenliste
  • 1
    Stator
    2
    Rotor
    2'
    Rotorwelle
    2"
    Mantelfläche
    3
    Drehrichtung
    4
    Rotationsachse
    5
    Statormesser
    6
    Messerhalter
    7
    Rotormesser
    8
    Zwischenelemente
    8'
    Innenkonturen
    8a, 8b, 8c
    Bereiche der Zwischenelemente
    9a, 9b, 9c
    Verbindungselemente
    9'
    Schraubenköpfe
    10
    Aufnahmen
    11
    Schweißnähte
    12
    plane Flächen
    13
    Kanten
    14
    Abschnitte
    15, 16
    Stoßflächen
    15a, 15b, 15c
    radiale Bereiche der Stoßflächen 15
    17, 18
    Grenzkanten
    19
    Vorsprünge
    20
    Nasen
    21
    Flächen
    D
    Durchmesser
    L
    Länge
    Z
    Zugkräfte
    α
    Drehwinkel
    β
    Winkel

Claims (10)

  1. Rotor einer Zerkleinerungsmaschine, insbesondere eines Müll-, Kunststoff- oder Holzzerkleinerers,
    - wobei der Rotor eine Rotorwelle (2') aufweist, die in einer Drehrichtung (3) um eine Rotationsachse (4) rotierbar ist,
    - wobei auf einer Mantelfläche (2") der Rotorwelle (2') mittels Verbindungselementen (9) lösbar Zwischenelemente (8) befestigt sind,
    - wobei auf den Zwischenelementen (8) jeweils eine Anzahl an Messerhaltern (6) für Rotormesser (7) befestigt ist,
    - wobei die Zwischenelemente (8) tangential um die Rotationsachse (4) herum gesehen an Stoßflächen (15) aneinander angrenzen, so dass die Zwischenelemente (8) in ihrer Gesamtheit tangential um die Rotationsachse (4) herum gesehen die Mantelfläche (2") der Rotorwelle (2') vollständig abdecken, und
    - wobei die Messerhalter (6) in Richtung der Rotationsachse (4) verlaufende Reihen von Messerhaltern (6) bilden, die um die Rotationsachse (4) herum gesehen voneinander beabstandet sind,
    - wobei die Zwischenelemente (8) als Platten ausgebildet sind, die tangential um die Rotationsachse (4) herum gesehen sich über die Messerhalter (6) hinaus erstrecken und sowohl vor als auch hinter den Messerhaltern (6) jeweils einen abgeknickten Bereich (8b, 8c) aufweisen,
    - wobei die Verbindungselemente (9), mittels derer die Zwischenelemente (8) lösbar auf der Mantelfläche (2") der Rotorwelle (2') befestigt sind, sowohl im abgeknickten Bereich (8b) vor den Messerhaltern (6) als auch im abgeknickten Bereich (8c) hinter den Messerhaltern (6) angeordnet sind und
    - wobei die Mantelfläche (2") plane Flächen (12) aufweist, an denen die Zwischenelemente (8) einschließlich ihrer abgeknickten Bereiche (8b, 8c) anliegen.
  2. Rotor nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Messerhalter (6) auf den Zwischenelementen (8) unlösbar befestigt sind.
  3. Rotor nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die Anzahl an Messerhaltern (6) pro Zwischenelement (8) derart bestimmt ist, dass die Masse des jeweiligen Zwischenelements (8) einschließlich der auf dem jeweiligen Zwischenelement (8) befestigten Messerhalter (6) bei maximal 50 kg liegt, insbesondere bei maximal 30 kg.
  4. Rotor nach Anspruch 1, 2 oder 3,
    dadurch gekennzeichnet,
    dass bezüglich jeweils zwei tangential um die Rotationsachse (4) herum gesehen unmittelbar aufeinanderfolgender Zwischenelemente (8) das jeweils vordere Zwischenelement (8) das jeweils hintere Zwischenelement (8) übergreift.
  5. Rotor nach Anspruch 4,
    dadurch gekennzeichnet,
    - dass die Stoßflächen (15) einen radial äußeren Bereich (15a), einen radial inneren Bereich (15c) und dazwischen einen radial mittleren Bereich (15b) aufweisen, der an den radial äußeren Bereich (15a) und den radial inneren Bereich (15c) angrenzt,
    - dass der radial äußere Bereich (15a) und der radial innere Bereich (15c) rein radial-axial verlaufen und
    - dass der radial äußere Bereich (15a) in Richtung um die Rotationsachse (4) herum gesehen hinter dem radial inneren Bereich (15c) liegt.
  6. Rotor nach einem der obigen Ansprüche,
    dadurch gekennzeichnet,
    dass die Zwischenelemente (8) und die Rotorwelle (2') tangential um die Rotationsachse (4) herum gesehen formschlüssig miteinander verbunden sind.
  7. Rotor nach Anspruch 6,
    dadurch gekennzeichnet,
    dass der Rotor auf seiner Mantelfläche (2") nach radial außen ragende Vorsprünge (19) aufweist und dass die Zwischenelemente (8) mit den Vorsprüngen (19) zusammenwirkende Nasen (20) aufweisen.
  8. Rotor nach Anspruch 7,
    dadurch gekennzeichnet,
    dass aneinander angrenzende Flächen (21) der Vorsprünge (19) und der Nasen (20) im wesentlichen radial orientiert sind.
  9. Rotor nach einem der obigen Ansprüche,
    dadurch gekennzeichnet,
    - dass die Rotorwelle (2') in Richtung der Rotationsachse (4) gesehen mehrere Abschnitte (14) aufweist,
    - dass die Abschnitte (14) in einer orthogonal zur Rotationsachse (4) verlaufenden Ebene gesehen deckungsgleiche Querschnitte aufweisen,
    - dass die Querschnitte von Abschnitt (14) zu Abschnitt (14) jedoch um einen jeweiligen Drehwinkel (α) gegeneinander verdreht sind.
  10. Zerkleinerungsmaschine, insbesondere Müll-, Kunststoff- oder Holzzerkleinerer, mit mindestens einem Stator (1) und mindestens einem Rotor (2), wobei der mindestens eine Rotor (2) nach einem der Ansprüche 1 bis 9 ausgebildet ist.
EP17020397.0A 2016-08-31 2017-08-29 Rotor einer zerkleinerungsmaschine mit lösbar befestigten messerhaltern Active EP3290120B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17020397T PL3290120T3 (pl) 2016-08-31 2017-08-29 Wirnik do rozdrabniacza z zdemontowalnymi uchwytami na noże

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016116193.4A DE102016116193A1 (de) 2016-08-31 2016-08-31 Rotor einer Zerkleinerungsmaschine mit lösbar befestigten Messerhaltern

Publications (2)

Publication Number Publication Date
EP3290120A1 true EP3290120A1 (de) 2018-03-07
EP3290120B1 EP3290120B1 (de) 2018-12-12

Family

ID=59745687

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17020397.0A Active EP3290120B1 (de) 2016-08-31 2017-08-29 Rotor einer zerkleinerungsmaschine mit lösbar befestigten messerhaltern

Country Status (4)

Country Link
EP (1) EP3290120B1 (de)
DE (1) DE102016116193A1 (de)
ES (1) ES2714625T3 (de)
PL (1) PL3290120T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019007191A1 (de) * 2019-10-16 2021-04-22 Vecoplan Ag Zerkleinerungsvorrichtung, umfassend einen Zerkleinerungsrotor mit schnell wechselbaren Werkzeugen sowie Zerkleinerungssystem
DE202024101866U1 (de) 2024-04-16 2024-04-30 Manuel Lindner Geschraubter Messerhalter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19522056A1 (de) * 1995-06-17 1996-12-19 Fortschritt Erntemaschinen Häckseltrommel
EP2332404A1 (de) * 2009-11-18 2011-06-15 Deere & Company Häckseltrommel für einen Feldhäcksler
US9386741B2 (en) * 2013-04-17 2016-07-12 Agco International Gmbh Cutting drum for agricultural machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016101582U1 (de) 2016-03-23 2016-04-21 Cutmetall Komponenten Gmbh Messerhalter für ein Rotormesser einer Zerkleinerungsmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19522056A1 (de) * 1995-06-17 1996-12-19 Fortschritt Erntemaschinen Häckseltrommel
EP2332404A1 (de) * 2009-11-18 2011-06-15 Deere & Company Häckseltrommel für einen Feldhäcksler
US9386741B2 (en) * 2013-04-17 2016-07-12 Agco International Gmbh Cutting drum for agricultural machine

Also Published As

Publication number Publication date
PL3290120T3 (pl) 2019-12-31
EP3290120B1 (de) 2018-12-12
DE102016116193A1 (de) 2018-03-01
ES2714625T3 (es) 2019-05-29

Similar Documents

Publication Publication Date Title
EP1789196B1 (de) Messerträger für zerkleinerungsvorrichtungen
EP1684907B1 (de) Mahlwalze für die druckzerkleinerung körnigen gutes
DE60202138T2 (de) Stumpfschleifscheibe und schneidanordnungen dafür
EP2620218B1 (de) Brechring einer Brechwalze
DE202016106367U1 (de) Zweiwellenzerkleinerer mit wechselbarem Schneidmessersatz und lösbaren Wellenenden
EP2732956B1 (de) Setzwerkzeugsystem
EP2825316B1 (de) Presswalze
EP3290120B1 (de) Rotor einer zerkleinerungsmaschine mit lösbar befestigten messerhaltern
EP3356049A1 (de) Aufbereitungsvorrichtung, sowie aufbereitungselement und wandverkleidungselement für eine derartige aufbereitungsvorrichtung
DE102010037137A1 (de) Verschleißfrei oder verschleißarm Schneiden
EP2098297B1 (de) Rotor und Vorrichtung zum Zerkleinern von Aufgabegut
DE2707842B2 (de) Raspelwerkzeug für eine Schäl- und Raspelvorrichtung zum Abtragen von Reifenlaufflächen
DE3918657C2 (de) Rotor mit Schutzkappen
DE202010002071U1 (de) Brechsegment-Befestigungsvorrichtung, Befestigungsverfahren und Brechwalze
EP3085447B1 (de) Befestigungseinheit einer rührwerkskugelmühle, rührwerkskugelmühle und ein verfahren zum lösen einer befestigungseinheit
DE202016103446U1 (de) Messer mit durchgehender Vertiefung zwischen Schneidkanten
DE892700C (de) Zahnrad
EP2549892B1 (de) Messerbett für eine vorrichtung zum zerkleinern von organischen substanzen
DE20310251U1 (de) Zerkleinerungsvorrichtung
EP2845649A1 (de) Schneideinrichtung
EP2548649B1 (de) Werkzeug für eine Zerkleinerungsvorrichtung
EP3083063A1 (de) Raspelwerkzeug
DE19634465A1 (de) Zerkleinerungswerkzeug für Shredder
DE202009016001U1 (de) Scherwellenzerkleinerungsvorrichtung
EP3440921B1 (de) Mitnehmereinheit für einen rotationsförderer, mitnahmefinger und rotationsförderer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180323

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180709

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1075238

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017000462

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2714625

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017000462

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

26N No opposition filed

Effective date: 20190913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190829

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017000462

Country of ref document: DE

Owner name: PULS GMBH, DE

Free format text: FORMER OWNERS: CUTMETALL KOMPONENTEN GMBH, 96052 BAMBERG, DE; PULS GMBH, 56459 POTTUM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017000462

Country of ref document: DE

Owner name: CUTMETALL HOLDING GMBH, DE

Free format text: FORMER OWNERS: CUTMETALL KOMPONENTEN GMBH, 96052 BAMBERG, DE; PULS GMBH, 56459 POTTUM, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CUTMETALL HOLDING GMBH

Effective date: 20220308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 1075238

Country of ref document: AT

Kind code of ref document: T

Owner name: PULS GMBH, DE

Effective date: 20220628

Ref country code: AT

Ref legal event code: HC

Ref document number: 1075238

Country of ref document: AT

Kind code of ref document: T

Owner name: CUTMETALL HOLDING GMBH, DE

Effective date: 20220628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230829

Year of fee payment: 7

Ref country code: GB

Payment date: 20230824

Year of fee payment: 7

Ref country code: ES

Payment date: 20230901

Year of fee payment: 7

Ref country code: AT

Payment date: 20230824

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230801

Year of fee payment: 7

Ref country code: FR

Payment date: 20230824

Year of fee payment: 7

Ref country code: DE

Payment date: 20230508

Year of fee payment: 7