EP3265732B1 - Method for drying of constructions - Google Patents

Method for drying of constructions Download PDF

Info

Publication number
EP3265732B1
EP3265732B1 EP16711160.8A EP16711160A EP3265732B1 EP 3265732 B1 EP3265732 B1 EP 3265732B1 EP 16711160 A EP16711160 A EP 16711160A EP 3265732 B1 EP3265732 B1 EP 3265732B1
Authority
EP
European Patent Office
Prior art keywords
building layer
infrared radiator
accessible
temperature
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16711160.8A
Other languages
German (de)
French (fr)
Other versions
EP3265732A2 (en
Inventor
Bertram Anderer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ires Infrarot Energiesysteme GmbH
Original Assignee
Ires Infrarot Energiesysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ires Infrarot Energiesysteme GmbH filed Critical Ires Infrarot Energiesysteme GmbH
Priority to PL16711160T priority Critical patent/PL3265732T3/en
Publication of EP3265732A2 publication Critical patent/EP3265732A2/en
Application granted granted Critical
Publication of EP3265732B1 publication Critical patent/EP3265732B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/70Drying or keeping dry, e.g. by air vents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B9/00Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards
    • F26B9/003Small self-contained devices, e.g. portable

Definitions

  • the present invention relates to a method for drying buildings, in which an accessible building layer is heated in several iterations during a heating phase by means of an infrared heater directed at it, and then moisture from deeper building layers is drawn in during a rest phase.
  • Such a device is already from the DE 698 06 000 T3 previously known.
  • an infrared heater is provided, which is mounted in a housing and is placed with this housing at a point on the floor to be dried.
  • This floor area insofar as it lies below the infrared heater, is then periodically irradiated, while the air that is located inside the housing and is heated by the infrared heater over time and the moisture-absorbing air driven out of the building is removed with the aid of a suction device.
  • drying of a material to be dried is best carried out in such a way that it is first heated and the associated expulsion of moisture takes place for a certain time and then the irradiation with heat is exposed for a period of rest. During the rest period, the temperature in the building can equalize and the moisture can also be evenly distributed. The process is then repeated, so that the moisture that has then been drawn in is again removed in the second step until, in the end, more or less all of the moisture has been removed from the structure.
  • the above-mentioned document gives the ratio of radiation time to interruption time as "approximately 2: 4". This means that the radiation time and the interruption time are chosen more or less arbitrarily, which may represent a suitable solution for the building material in question on which the development of the invention was based. The user will therefore first of all set up the device and then decide on a setting for the radiation time and the interruption time based on his feeling.
  • Building drying is essentially about drying the more or less soaked parts of the building as quickly as possible and with as little energy as possible. In this respect, it seems sensible to optimize existing processes in order to achieve greater effectiveness.
  • air dehumidifiers which regularly only process the medium of the air to be dried and thus only indirectly reach the surface of the material concerned.
  • core moisture is not eliminated in this way, or only to a small extent, because a residue of residual moisture remains, which is unavoidable due to the insufficient energy expenditure on the drying wall. Due to flow blockages, especially in corners, for example in bay windows, etc., the air remains moist in these cases and the effect is reduced even further at these points. Larger and, above all, targeted energy inputs are required in order to achieve this core moisture and thus to bring about complete, ideal drying.
  • the wall loses a large part of its actual function, namely protection against wind and weather.
  • a wet or at least partially wet wall insulates much worse than a dry wall.
  • the drying can usually be carried out after the damage has occurred after removing wallpaper, wood paneling, plaster, etc. and the wall is thus in an ideal condition before the damage is removed. If, on the other hand, the drying is not carried out completely and the protective coverings are put back in place, then some of the core moisture that is still present can slowly pull in, especially in the case of time-shifted ideal conditions such as dry and warm air in the interior, thus leading to mold formation and damage to the protective cladding from the inside.
  • EP 0 997 378 A1 discloses a method for drying buildings, in which an accessible wall first experiences a number of heating phases by an infrared radiator and then, in a resting phase, moisture can be drawn in from a deeper layer of the wall.
  • the warm-up phases and rest phases are specified.
  • US 2014/302446 A1 discloses a method of curing a curable material.
  • the hardening is initiated by hardening parameters.
  • the curing parameters are based on the material data of the material. Temperature values are periodically recorded during the curing process.
  • the curing of the material is controlled based on the curing parameters and the measured temperature values.
  • the present invention is based on the object of creating a method for drying buildings which works much more efficiently and thereby achieves better drying both in a shorter time and with less energy consumption.
  • an infrared radiator is aimed at an accessible building layer and this is first heated for a heating phase. During a resting phase, the moisture can then pull in from deeper building layers.
  • the infrared heater is equipped with a control unit, which in turn is data-linked to a database.
  • the database contains material-specific data records which, depending on the material selected, specify at least one heating time during which the infrared radiator should irradiate the building layer and at least one rest period during which the building layer should not be irradiated.
  • the moisture can easily escape on the side facing the infrared heater.
  • the wall surface also cools there, because the further heat input is temporarily stopped and the evaporation cold on the surface ensures a heat difference directed from the inside to the outside, which supports the drawing in of the moisture.
  • the time that the respective building material needs to heat an effective layer varies and depends on the material.
  • the ideal value of the heating time provides the best drying times with the lowest possible energy input and thus sets the basis for the best trailing effects. It is also necessary to choose a suitable rest period. The determination of these times and, if necessary, the intensity of the respective energy input is the subject of continuous research and empirical values from which the aforementioned database is fed.
  • the next step is to determine the correct rest time in which the moisture from the inside of the material can follow. Due to the solid barriers, porosities and capillary effects, each type of material has different times in which it allows the moisture from the inside to move into the drier, accessible building layer to the outside.
  • the dry outer layer absorbs the moisture from the inside in a similar way as a sponge absorbs water, whereby the moisture and the temperature throughout the material strive to spread evenly.
  • the control device of the infrared heater now essentially takes over the heating time and the rest time stored there from the database and will irradiate an accessible building layer while observing these times.
  • the material-specific data record can also be assigned a nominal power consumption with which the infrared heater is operated during the heating time. Accordingly, the control unit will specify a corresponding target power consumption and limit the heating power accordingly for the infrared heater as required.
  • the surface temperature of the accessible building layer can with some advantage also be recorded with the help of a temperature sensor of the infrared heater, so that not only the emitted power is in the foreground, but rather the power that also arrives in the structure.
  • a predetermined temperature of the accessible building layer can be aimed for, so that in the end a control is set up in the control device that maintains the desired temperature on the surface of the accessible building layer over time.
  • a target temperature profile can also be specified in the material-specific data record, which provides for an adjustment of the target temperature over time.
  • the control device will adapt to the target temperature curve in question over time and switch the infrared heater on and off in such a way that the surface temperature of the accessible building layer follows the target temperature curve.
  • the accessible building layer can be irradiated with a defined Performance characteristics of an irradiation, a measurement of the temperature profile on the surface is carried out permanently with the aid of a temperature sensor. Since the temperature develops characteristically with a fixed input power of the infrared heater in different building materials, a conclusion about the material used can be drawn from such a temperature profile, so that the selection of the material-specific data set automatically by the system, in particular by the Control unit, can be done. This anticipates an arbitrary selection of a material data record by a user, so that operating errors can be avoided at this point.
  • the prescribed method in such a way that the information that initially came from the database is determined directly in the control unit or an evaluation device provided for this purpose on the basis of predetermined arithmetic operations after such a test measurement.
  • the various process operations as described above can optionally be followed, that is to say a fixed setpoint power consumption, temperature control or temperature profile control can be used.
  • the heated air will be discharged with some advantage, the heated air being discharged by convection or with the aid of a flow machine.
  • the convection can be increased, for example, in that the infrared radiator is positioned at an angle opposite the accessible building layer, so that an upper edge of the infrared radiator is closer to the accessible building layer than a lower edge. In this case, there will be a chimney effect which accelerates the heated air upwards and thus quickly removes it from the heated area.
  • the discharged air can be guided along an air guiding device, which additionally has a cooling device, so that the moisture from the air will at least partially condense on the cooled air guiding device.
  • the resulting condensate can then be collected in a collecting tank and thus removed from the system.
  • FIG. 1 shows a diagram of the drying process according to the present invention, the elapsing time being plotted on the longitudinal axis, the relative humidity 3, the moisture loss 4 of the wall and the energy radiation 5 hitting the wall via the infrared heater on the vertical axis.
  • the energy radiation 5 swings quickly to a value after switching on and maintains this for as long as the infrared radiator is switched on.
  • the heating-up phase 1 the energy radiation 5 increases linearly and will remain constant at zero again in the subsequent rest phase 2.
  • a first heating phase 1 it can be determined that, on the one hand, the moisture 4 contained in the wall initially drops sharply in order to remain approximately constant in a first rest phase 2.
  • the end of the heating phase 1 and the duration of the resting phase 2 are each selected so that a given, material-dependent ideal value of the relative humidity 3 is achieved with as little power as possible in the shortest possible time.
  • a method for drying buildings is thus described above, in which a material-specific heating time and a material-specific rest time are specified in order to achieve the most effective drying possible with the aid of an infrared heater.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Trocknung von Bauwerken, bei dem in mehreren Iterationen zunächst während einer Aufheizphase eine zugängliche Bauwerksschicht mittels eines auf diese ausgerichteten Infrarotstrahlers erhitzt wird, und dann während einer Ruhephase Feuchtigkeit aus tieferen Bauwerksschichten nachzieht.The present invention relates to a method for drying buildings, in which an accessible building layer is heated in several iterations during a heating phase by means of an infrared heater directed at it, and then moisture from deeper building layers is drawn in during a rest phase.

Solch eine Vorrichtung ist bereits aus der DE 698 06 000 T3 vorbekannt. Dort ist ein Infrarotstrahler vorgesehen, welcher in einem Gehäuse montiert wird und mit diesem Gehäuse an einer zu trocknenden Stelle des Fußbodens aufgelegt wird. Dieser Fußbodenbereich, soweit er unterhalb des Infrarotstrahlers liegt, wird dann periodisch bestrahlt, während die innerhalb des Gehäuses befindliche und durch den Infrarotstrahler mit der Zeit erwärmte und die aus dem Bauwerk herausgetriebene, Feuchtigkeit aufnehmende Luft mithilfe einer Absaugvorrichtung entfernt wird.Such a device is already from the DE 698 06 000 T3 previously known. There an infrared heater is provided, which is mounted in a housing and is placed with this housing at a point on the floor to be dried. This floor area, insofar as it lies below the infrared heater, is then periodically irradiated, while the air that is located inside the housing and is heated by the infrared heater over time and the moisture-absorbing air driven out of the building is removed with the aid of a suction device.

Es ist in diesem Zusammenhang bereits bekannt, dass eine Trocknung eines zu trocknenden Materials am besten so erfolgt, dass zunächst eine Erhitzung und ein damit verbundenes Austreiben von Feuchtigkeit für eine bestimmte Zeit erfolgt und dann für eine Ruhezeit die Bestrahlung mit Wärme ausgesetzt wird. In der Ruhezeit kann dann die Temperatur in dem Bauwerk sich ausgleichen und desgleichen auch die Feuchtigkeit sich gleichmäßig verteilen. Anschließend wiederholt sich der Vorgang, so dass die dann nachgezogene Feuchtigkeit in dem zweiten Schritt wiederum entfernt wird, bis letzten Endes mehr oder minder die vollständige Feuchtigkeit aus dem Bauwerk entfernt wurde.It is already known in this context that drying of a material to be dried is best carried out in such a way that it is first heated and the associated expulsion of moisture takes place for a certain time and then the irradiation with heat is exposed for a period of rest. During the rest period, the temperature in the building can equalize and the moisture can also be evenly distributed. The process is then repeated, so that the moisture that has then been drawn in is again removed in the second step until, in the end, more or less all of the moisture has been removed from the structure.

Die obengenannte Schrift gibt das Verhältnis von Strahlungszeit zu Unterbrechungszeit mit "ungefähr 2:4" an. Das bedeutet, dass die Strahlungszeit sowie die Unterbrechungszeit mehr oder weniger willkürlich gewählt wird, was möglicherweise für den betreffenden Baustoff, welcher bei der Entwicklung der Erfindung zugrunde lag, eine geeignete Lösung darstellt. Der Benutzer wird also zunächst einmal das Gerät aufstellen und sich dann anhand seines Gefühls für eine Einstellung der Strahlungszeit und der Unterbrechungszeit entscheiden. Da jedoch die Bestrahlung nach einem Austreiben der Feuchtigkeit in den vorderen, bestrahlten Bereichen und einem ansonsten erfolgenden Zurückweichen der Feuchtigkeit tiefer in das Bauwerk hinein uneffektiv wird, bleibt es offen, ob auf diese Weise aufgrund der willkürlichen Einstellungen des Benutzers eine zu starke Bestrahlung und damit ein zu hoher Stromverbrauch und gegebenenfalls auch eine zu lange Einsatzdauer und damit eine gewisse Ineffektivität einhergeht.The above-mentioned document gives the ratio of radiation time to interruption time as "approximately 2: 4". This means that the radiation time and the interruption time are chosen more or less arbitrarily, which may represent a suitable solution for the building material in question on which the development of the invention was based. The user will therefore first of all set up the device and then decide on a setting for the radiation time and the interruption time based on his feeling. However, since the irradiation becomes ineffective after the moisture has been expelled in the front, irradiated areas and the moisture otherwise receded deeper into the structure, it remains open whether in this way, due to the arbitrary settings of the user, excessive irradiation and thus too high power consumption and possibly also too long a period of use and thus a certain ineffectiveness.

Bei der Bautrocknung geht es jedoch im Wesentlichen darum, die mehr oder weniger stark durchnässten Bauwerksteile so schnell wie möglich und mit so wenig Energie wie möglich zu trocknen. Insoweit erscheint es sinnvoll, bestehende Verfahren zu optimieren, um zu einer größeren Effektivität zu gelangen.Building drying is essentially about drying the more or less soaked parts of the building as quickly as possible and with as little energy as possible. In this respect, it seems sensible to optimize existing processes in order to achieve greater effectiveness.

Neben den oben skizzierten Infrarotstrahlern, welche den nächstliegenden Stand der Technik darstellen, sind ferner auch Luftentfeuchter, Adsorptionstrockner und Heizgebläse bekannt, welche regelmäßig lediglich das Medium der zu trocknenden Luft bearbeiten und damit nur indirekt die Oberfläche des betroffenen Materials erreichen. Die sogenannte Kernfeuchte wird so nicht, oder nur zu einem geringen Teil, beseitigt, denn es bleibt ein Rückstand an Restfeuchte, der aufgrund des nicht ausreichenden Energieaufwandes an der trocknenden Wand unvermeidlich ist. Aufgrund von Strömungsblockaden, insbesondere in Ecken, beispielsweise in Erkern usw., bleibt in diesen Fällen die Luft weiterhin feucht und die Wirkung sinkt an diesen Stellen noch weiter. Es bedarf größerer und vor allem gezielter Energieeinträge, um diese Kernfeuchte zu erreichen und damit eine vollständige, ideale Trocknung zu bewirken.In addition to the infrared radiators outlined above, which represent the closest prior art, air dehumidifiers, adsorption dryers and fan heaters are also known, which regularly only process the medium of the air to be dried and thus only indirectly reach the surface of the material concerned. The so-called core moisture is not eliminated in this way, or only to a small extent, because a residue of residual moisture remains, which is unavoidable due to the insufficient energy expenditure on the drying wall. Due to flow blockages, especially in corners, for example in bay windows, etc., the air remains moist in these cases and the effect is reduced even further at these points. Larger and, above all, targeted energy inputs are required in order to achieve this core moisture and thus to bring about complete, ideal drying.

Wird die Kernfeuchte nicht beseitigt, so verliert die Wand einen großen Teil ihrer eigentlichen Funktion, nämlich den Schutz vor Wind und Wetter. Eine nasse oder zumindest teilweise nasse Wand isoliert deutlich schlechter als eine trockene Wand. Erschwerend kommt hinzu, dass die Trocknung nach dem Schadensfall in aller Regel nach Beseitigen von Tapeten, Holzverkleidungen, Putz etc. durchgeführt werden kann und sich die Wand damit in einem idealen Zustand vor Schadensbeseitigung befindet. Wird hingegen die Trocknung nicht vollständig durchgeführt, und werden die Schutzverkleidungen wieder angebracht, dann führt das dazu, dass ein Teil der immer noch vorhanden Kernfeuchte langsam nachziehen kann, insbesondere bei zeitversetzten idealen Bedingungen wie trockener und warmer Luft im Innenraum, und so zur Schimmelbildung und Beschädigung der Schutzverkleidungen von innen führt.If the core moisture is not removed, the wall loses a large part of its actual function, namely protection against wind and weather. A wet or at least partially wet wall insulates much worse than a dry wall. A further complicating factor is that the drying can usually be carried out after the damage has occurred after removing wallpaper, wood paneling, plaster, etc. and the wall is thus in an ideal condition before the damage is removed. If, on the other hand, the drying is not carried out completely and the protective coverings are put back in place, then some of the core moisture that is still present can slowly pull in, especially in the case of time-shifted ideal conditions such as dry and warm air in the interior, thus leading to mold formation and damage to the protective cladding from the inside.

Dies wird noch weiter verschärft durch die neuen EnEV-Verordnungen, die eine bauliche Pflicht zur Anbringung von umfassender Außenisolation darstellen, und damit verhindern, dass die Kernfeuchte nach außen entweichen kann. Die meisten Isoliermaterialien stellen eine für Feuchtigkeit undurchdringliche Barriere dar, die bei deren Fehlen nach außen ausweichen könnte, so jedoch nicht durchdrungen wird. Dass die Trocknung nun ohne die Unterstützung von Außenwetterlagen zwingend nur von innen bewerkstelligt werden kann, ist eine zusätzliche Herausforderung, der die heutigen Verfahren nicht gewachsen sind.This is further exacerbated by the new EnEV ordinances, which represent a structural obligation to install comprehensive external insulation and thus prevent core moisture from escaping to the outside. Most insulation materials represent a barrier that is impermeable to moisture and which, in the absence of this, could escape to the outside, but is not penetrated in this way. The fact that drying can now only be carried out from the inside without the support of outside weather conditions is an additional challenge that today's methods are unable to cope with.

EP 0 997 378 A1 offenbart ein Verfahren zum Trocknen von Gebäuden, bei dem eine zugängliche Wand zuerst eine Anzahl von Erwärmungsphasen durch einen Infrarotstrahler erfährt und danach in einer Ruhephase Feuchtigkeit von einer tieferen Schicht der Wand nachziehen kann. Die Erwärmungsphasen und Ruhephasen sind festgelegt. EP 0 997 378 A1 discloses a method for drying buildings, in which an accessible wall first experiences a number of heating phases by an infrared radiator and then, in a resting phase, moisture can be drawn in from a deeper layer of the wall. The warm-up phases and rest phases are specified.

US 2014/302446 A1 offenbart ein Verfahren zum Aushärten eines aushärtbaren Materials. Die Aushärtung wird durch Aushärtungsparameter initiiert. Die Aushärtungsparameter basieren auf Materialdaten des Materials. Es werden periodisch Temperaturwerte während des Aushärtens aufgenommen. Das Aushärten des Materials wird basierend auf den Aushärtungsparametern und den gemessenen Temperaturwerten angesteuert. US 2014/302446 A1 discloses a method of curing a curable material. The hardening is initiated by hardening parameters. The curing parameters are based on the material data of the material. Temperature values are periodically recorded during the curing process. The curing of the material is controlled based on the curing parameters and the measured temperature values.

Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren zur Trocknung von Bauwerken zu schaffen, welches wesentlich effizienter arbeitet und dadurch sowohl in einer kürzeren Zeit als auch mit weniger Energieeinsatz eine bessere Trocknung erreicht.Against this background, the present invention is based on the object of creating a method for drying buildings which works much more efficiently and thereby achieves better drying both in a shorter time and with less energy consumption.

Gelöst wird diese Aufgabe durch ein Verfahren zur Trocknung von Bauwerken gemäß den Merkmalen des Anspruchs 1. Weitere, sinnvolle Ausgestaltungen eines solchen Verfahrens können den Unteransprüchen entnommen werden.This object is achieved by a method for drying buildings according to the features of claim 1. Further, useful embodiments of such a method can be found in the subclaims.

Erfindungsgemäß ist vorgesehen, dass ein Infrarotstrahler auf eine zugängliche Bauwerksschicht ausgerichtet und diese zunächst für eine Aufheizphase erhitzt wird. Während einer Ruhephase kann dann die Feuchtigkeit aus tieferen Bauwerksschichten nachziehen. Hierbei ist der Infrarotstrahler mit einem Steuergerät ausgerüstet, das wiederum mit einer Datenbank datenverbunden ist. Der Datenbank sind materialspezifische Datensätze entnehmbar, welche je nach gewähltem Material wenigstens eine Aufheizzeit, innerhalb derer der Infrarotstrahler die Bauwerksschicht bestrahlen soll und wenigstens eine Ruhezeit, während derer die Bauwerksschicht nicht bestrahlt werden soll, vorgibt. So kann durch eine einfache Auswahl des gewählten Materials durch das Steuergerät eine exakt ideale Bestrahlung durchgeführt werden, welche die Bestrahlung in dem Moment abbricht, in dem der Energieeintrag nur noch einen unverhältnismäßig kleinen Effekt auf die zu trocknende Bauwerksschicht erreichen kann.According to the invention it is provided that an infrared radiator is aimed at an accessible building layer and this is first heated for a heating phase. During a resting phase, the moisture can then pull in from deeper building layers. The infrared heater is equipped with a control unit, which in turn is data-linked to a database. The database contains material-specific data records which, depending on the material selected, specify at least one heating time during which the infrared radiator should irradiate the building layer and at least one rest period during which the building layer should not be irradiated. By simply selecting the selected material by the control device, an exactly ideal irradiation can be carried out, which interrupts the irradiation at the moment when the energy input only remains can have a disproportionately small effect on the building layer to be dried.

Nach Erwärmung der oberen Schicht und Abschalten der Wärmequelle kann die Feuchtigkeit an der dem Infrarotstrahler zugewandten Seite gut entweichen. Die Wandoberfläche kühlt dort auch ab, denn der weitere Wärmeeintrag ist vorübergehend gestoppt und die Verdunstungskälte an der Oberfläche sorgt für eine von innen nach außen gerichtete Wärmedifferenz, die das Nachziehen der Feuchte unterstützt. Dabei ist jedoch die Zeit, die das jeweilige Baumaterial zur Erwärmung einer wirksamen Schicht benötigt, unterschiedlich und materialabhängig. Der ideale Wert der Aufheizzeit liefert bei niedrigst möglichem Energieeintrag die besten Trocknungszeiten und setzt so die Basis für die besten Nachzieheffekte. Ebenfalls ist es erforderlich, eine geeignete Ruhezeit zu wählen. Das Ermitteln dieser Zeiten und bedarfsweise auch der Intensität des jeweiligen Energieeintrages ist Gegenstand kontinuierlicher Forschung und Erfahrungswerte, aus denen die genannte Datenbank gespeist wird.After heating the upper layer and switching off the heat source, the moisture can easily escape on the side facing the infrared heater. The wall surface also cools there, because the further heat input is temporarily stopped and the evaporation cold on the surface ensures a heat difference directed from the inside to the outside, which supports the drawing in of the moisture. However, the time that the respective building material needs to heat an effective layer varies and depends on the material. The ideal value of the heating time provides the best drying times with the lowest possible energy input and thus sets the basis for the best trailing effects. It is also necessary to choose a suitable rest period. The determination of these times and, if necessary, the intensity of the respective energy input is the subject of continuous research and empirical values from which the aforementioned database is fed.

Kennt man die Größe der Aufheizzeit und der idealen Intensität für ein Material, ist der nächste Schritt das Ermitteln der richtigen Ruhezeit, in der die Feuchte aus dem Materialinneren nachziehen kann. Bedingt durch die Feststoffbarrieren, Porositäten und Kapillarwirkungen hat jede Materialart unterschiedliche Zeiten, in denen sie die Feuchtigkeit aus dem Inneren in die trockenere, zugängliche Bauwerksschicht nach außen nachziehen lässt. Die trockene äußere Schicht nimmt dabei die Feuchtigkeit aus dem Inneren in ähnlicher Form auf wie ein Schwamm das Wasser, wobei die Feuchtigkeit wie auch die Temperatur im gesamten Material bestrebt sind, sich gleichmäßig auszubreiten.If you know the length of the heating-up time and the ideal intensity for a material, the next step is to determine the correct rest time in which the moisture from the inside of the material can follow. Due to the solid barriers, porosities and capillary effects, each type of material has different times in which it allows the moisture from the inside to move into the drier, accessible building layer to the outside. The dry outer layer absorbs the moisture from the inside in a similar way as a sponge absorbs water, whereby the moisture and the temperature throughout the material strive to spread evenly.

Neben einem thermischen Leitwert, der in der Literatur bereits bekannt ist, ist nun damit auch ein noch zu ermittelnder Feuchtigkeitsleitwert von Bedeutung, der Gegenstand aktueller Forschungen ist und noch nicht flächendeckend zur Verfügung steht. Während bei der Temperatur in der Regel bei einem größeren Unterschied eine schnellere Wärmeübertragung erfolgt, gelten bei der Feuchtigkeitsübertragung andere Limitationen, wie beispielsweise die Feststoffbarrieren, die zu überwinden sind. Diese Werte werden derzeit in praktischen Versuchen ermittelt und der obengenannten Datenbank zugeführt.In addition to a thermal conductance, which is already known in the literature, a moisture conductance that has yet to be determined is important, which is the subject of current research and is not yet widely available. While there is usually faster heat transfer with a larger difference in temperature, other limitations apply to moisture transfer, such as the solid barriers that have to be overcome are. These values are currently being determined in practical tests and added to the database mentioned above.

Aus der Datenbank übernimmt nunmehr das Steuergerät des Infrarotstrahlers im Wesentlichen die dort gespeicherte Aufheizzeit und die Ruhezeit und wird eine Bestrahlung einer zugänglichen Bauwerksschicht unter Einhaltung dieser Zeiten durchführen.The control device of the infrared heater now essentially takes over the heating time and the rest time stored there from the database and will irradiate an accessible building layer while observing these times.

Ergänzend kann dem materialspezifischen Datensatz zusätzlich eine Soll- Leistungsaufnahme zugeordnet sein, mit welcher der Infrarotstrahler während der Aufheizzeit betrieben wird. Dementsprechend wird das Steuergerät eine entsprechende Soll-Leistungsaufnahme vorgeben und die Heizleistung bedarfsweise bei dem Infrarotstrahler entsprechend begrenzen. Neben einer solcherart begrenzten, permanenten Bestrahlung mit einem vorgegebenen Wert der eingesetzten Leistung kann mit einigem Vorteil auch die Oberflächentemperatur der zugänglichen Bauwerksschicht mithilfe eines Temperatursensors des Infrarotstrahlers erfasst werden, so dass nicht nur die abgestrahlte Leistung im Vordergrund steht, sondern vielmehr diejenige Leistung, die auch in dem Bauwerk ankommt. Hierdurch kann eine vorgegebene Temperatur der zugänglichen Bauwerksschicht angestrebt werden, so dass im Steuergerät letzten Endes eine Regelung aufgebaut wird, die über die Zeit hinweg die gewünschte Temperatur an der Oberfläche der zugänglichen Bauwerksschicht hält.In addition, the material-specific data record can also be assigned a nominal power consumption with which the infrared heater is operated during the heating time. Accordingly, the control unit will specify a corresponding target power consumption and limit the heating power accordingly for the infrared heater as required. In addition to such a limited, permanent irradiation with a specified value of the power used, the surface temperature of the accessible building layer can with some advantage also be recorded with the help of a temperature sensor of the infrared heater, so that not only the emitted power is in the foreground, but rather the power that also arrives in the structure. As a result, a predetermined temperature of the accessible building layer can be aimed for, so that in the end a control is set up in the control device that maintains the desired temperature on the surface of the accessible building layer over time.

Soweit es sich als sinnvoll erweist, über die Zeit hinweg nicht eine konstante Leistungsaufnahme oder eine konstante Soll-Temperatur zu halten, kann beispielsweise auch ein Soll-Temperaturverlauf in dem materialspezifischen Datensatz vorgegeben sein, welcher eine Anpassung der Solltemperatur über die Zeit hinweg vorsieht. Hierbei wird das Steuergerät sich dem fraglichen Soll-Temperaturverlauf über die Zeit hinweg anpassen und den Infrarotstrahler derart zu- und abschalten, dass die Oberflächentemperatur der zugänglichen Bauwerksschicht dem Soll- Temperaturverlauf folgt.If it proves to be useful not to maintain a constant power consumption or a constant target temperature over time, a target temperature profile can also be specified in the material-specific data record, which provides for an adjustment of the target temperature over time. Here, the control device will adapt to the target temperature curve in question over time and switch the infrared heater on and off in such a way that the surface temperature of the accessible building layer follows the target temperature curve.

Im Zuge einer Erstermittlung der erforderlichen Aufheizzeiten und Ruhezeiten kann im Vorfeld einer Bestrahlung der zugänglichen Bauwerksschicht mit einer definierten Leistungscharakteristik eine Bestrahlung durchgeführt werden,
wobei permanent eine Messung des Temperaturverlaufs an der Oberfläche mithilfe eines Temperatursensors durchgeführt wird. Da sich bei unterschiedlichen Baumaterialien die Temperatur bei einer festen eingebrachten Leistung des Infrarotstrahlers charakteristisch entwickelt, kann aus einem solchen Temperaturverlauf ein Rückschluss über das verwendete Material gezogen werden, so dass aufgrund einer solchen Probebestrahlung die Auswahl des materialspezifischen Datensatzes selbsttätig durch das System, insbesondere durch das Steuergerät, erfolgen kann. Hiermit wird einer willkürlichen Auswahl eines Materialdatensatzes durch einen Benutzer vorgegriffen, so dass Fehlbedienungen an dieser Stelle vermieden werden können.
In the course of an initial determination of the required heating and rest times, the accessible building layer can be irradiated with a defined Performance characteristics of an irradiation,
a measurement of the temperature profile on the surface is carried out permanently with the aid of a temperature sensor. Since the temperature develops characteristically with a fixed input power of the infrared heater in different building materials, a conclusion about the material used can be drawn from such a temperature profile, so that the selection of the material-specific data set automatically by the system, in particular by the Control unit, can be done. This anticipates an arbitrary selection of a material data record by a user, so that operating errors can be avoided at this point.

Dementsprechend ist es auch möglich, das vorgeschriebene Verfahren so zu gestalten, dass die Informationen, welche zunächst aus der Datenbank gekommen sind, aufgrund von vorgegebenen Rechenoperationen nach einer derartigen Probemessung direkt im Steuergerät oder einer hierfür vorgesehenen Auswerteeinrichtung bestimmt werden. Auch im Fall einer solchen Ausgestaltung kann wahlweise nach den verschiedenen Verfahrensvorgängen wie oben beschrieben verfahren werden, also eine feste Soll-Leistungsaufnahme, eine Temperaturregelung oder eine Temperaturverlaufsregelung Einsatz finden.Accordingly, it is also possible to design the prescribed method in such a way that the information that initially came from the database is determined directly in the control unit or an evaluation device provided for this purpose on the basis of predetermined arithmetic operations after such a test measurement. In the case of such a configuration, the various process operations as described above can optionally be followed, that is to say a fixed setpoint power consumption, temperature control or temperature profile control can be used.

Mit einigem Vorteil wird bei dem eingesetzten Infrarotstrahler eine Abführung der erwärmten Luft stattfinden, wobei diese Abführung der erwärmten Luft durch Konvektion oder mithilfe einer Strömungsmaschine erfolgt. Die Konvektion kann beispielsweise dadurch verstärkt werden, dass der Infrarotstrahler schräg gegenüber der zugänglichen Bauwerksschicht angestellt wird, so dass eine Oberkante des Infrarotstrahlers näher an der zugänglichen Bauwerksschicht liegt als eine Unterkante. In diesem Fall wird sich ein Kamineffekt einstellen, welcher die erwärmte Luft nach oben hin beschleunigt und damit schnell aus dem erwärmten Bereich abführt. Die abgeführte Luft kann an einer Luftleiteinrichtung entlanggeführt werden, welche ergänzend eine Kühleinrichtung aufweist, so dass die Feuchtigkeit aus der Luft zumindest teilweise an der gekühlten Luftleiteinrichtung kondensieren wird. Das anfallende Kondensat kann dann in einem Sammelbehälter aufgefangen und somit aus dem System entfernt werden.In the case of the infrared radiator used, the heated air will be discharged with some advantage, the heated air being discharged by convection or with the aid of a flow machine. The convection can be increased, for example, in that the infrared radiator is positioned at an angle opposite the accessible building layer, so that an upper edge of the infrared radiator is closer to the accessible building layer than a lower edge. In this case, there will be a chimney effect which accelerates the heated air upwards and thus quickly removes it from the heated area. The discharged air can be guided along an air guiding device, which additionally has a cooling device, so that the moisture from the air will at least partially condense on the cooled air guiding device. The resulting condensate can then be collected in a collecting tank and thus removed from the system.

Die vorstehend beschriebene Erfindung wird im Folgenden anhand eines Ausführungsbeispiels in Figur 1 näher erläutert. Diese zeigt ein Schaubild des Trocknungsverlaufs gemäß der vorliegenden Erfindung, wobei auf der Längsachse die vergehende Zeit, auf der Hochachse die relative Feuchte 3, der Feuchtigkeitsverlust 4 der Wand und die über den Infrarotstrahler auf die Wand treffende Energieeinstrahlung 5 aufgetragen ist. Die Energieeinstrahlung 5 schwingt sich nach dem Einschalten schnell auf einen Wert ein und behält diesen etwa bei, solange der Infrarotstrahler eingeschaltet ist. In der Aufheizphase 1 steigt die Energieeinstrahlung 5 linear an und wird in der danach anschließenden Ruhephase 2 wieder konstant bei Null bleiben. Während einer ersten Aufheizphase 1 kann festgestellt werden, dass zum einen die in der Wand enthaltene Feuchte 4 zunächst stark abfällt um in einer ersten Ruhephase 2 etwa konstant zu bleiben. Dies wiederholt sich nochmals in der zweiten Aufheizphase 1. Bei der dritten Aufheizphase wird ein Inversionspunkt erreicht und es zeigt sich, dass von hier an die Feuchtigkeit hauptsächlich in den Ruhephasen 2 aus der Wand austritt, in den Aufheizphasen 1 aber konstant bleibt. Dies liegt daran, dass nach einer anfänglichen Aufheizung der zu trocknenden Wand die oberflächlich gebundene Feuchtigkeit ausgetreten ist und lediglich die tiefer sitzende Feuchtigkeit noch in der Wand verbleibt. Diese wird sich nach der oberflächlichen Trocknung insbesondere noch in der Ruhephase 2 aus der Wand bewegen, wenn die Feuchtigkeit nicht mehr der einwirkenden Wärme ausweicht. Die relative Feuchte 3 zwischen Wand und Panel stellt eine Kennlinie dar, deren Verlauf von der Beschaffenheit der Wand abhängt. Aufgrund der Daten eines materialspezifischen Datensatzes oder deren Bestimmung durch das Steuergerät wird das Ende der Aufheizphase 1 und die Dauer der Ruhephase 2 jeweils so gewählt, dass mit möglichst wenig Leistung in möglichst kurzer Zeit ein vorgegebener, materialabhängiger Idealwert der relativen Feuchte 3 erreicht wird.The invention described above is illustrated in the following on the basis of an exemplary embodiment Figure 1 explained in more detail. This shows a diagram of the drying process according to the present invention, the elapsing time being plotted on the longitudinal axis, the relative humidity 3, the moisture loss 4 of the wall and the energy radiation 5 hitting the wall via the infrared heater on the vertical axis. The energy radiation 5 swings quickly to a value after switching on and maintains this for as long as the infrared radiator is switched on. In the heating-up phase 1, the energy radiation 5 increases linearly and will remain constant at zero again in the subsequent rest phase 2. During a first heating phase 1 it can be determined that, on the one hand, the moisture 4 contained in the wall initially drops sharply in order to remain approximately constant in a first rest phase 2. This is repeated again in the second heating phase 1. In the third heating phase, an inversion point is reached and it can be seen that from here on the moisture mainly emerges from the wall in the rest phases 2, but remains constant in the heating phases 1. This is due to the fact that after the wall to be dried was initially heated, the moisture bound on the surface has escaped and only the deeper-seated moisture remains in the wall. After the superficial drying, this will move out of the wall, especially in the resting phase 2, when the moisture no longer evades the acting heat. The relative humidity 3 between the wall and the panel represents a characteristic curve, the course of which depends on the nature of the wall. Based on the data of a material-specific data set or their determination by the control unit, the end of the heating phase 1 and the duration of the resting phase 2 are each selected so that a given, material-dependent ideal value of the relative humidity 3 is achieved with as little power as possible in the shortest possible time.

Vorstehend beschrieben ist somit ein Verfahren zur Trocknung von Bauwerken, bei welchem eine materialspezifische Aufheizzeit und eine materialspezifische Ruhezeit vorgegeben werden, um eine möglichst effektive Trocknung mithilfe eines Infrarotstrahlers zu bewerkstelligen.A method for drying buildings is thus described above, in which a material-specific heating time and a material-specific rest time are specified in order to achieve the most effective drying possible with the aid of an infrared heater.

BEZUGSZEICHENLISTEREFERENCE LIST

1.1.
AufheizphaseHeating phase
2.2.
RuhephaseResting phase
3.3.
relative Feuchterelative humidity
4.4th
FeuchtigkeitsverlustMoisture loss
5.5.
EnergieeinstrahlungEnergy radiation
6.6th
Zeittime

Claims (8)

  1. A method for drying structures, in which in several iterations first during a heating phase (1) an accessible structure layer is heated by means of an infrared radiator directed towards it, and then during a rest phase (2) moisture is drawn from deeper structure layers, characterized in that the infrared radiator is associated with a control device which is data-connected to a database and which, on the basis of a selection of a material-specific data set from the database, prescribes at least one heating time within which the infrared radiator is to irradiate the building layer and at least one rest time during which the building layer is not to be irradiated, and that the selection of the material-specific data set is carried out in that, in a preceding step, the accessible building layer is irradiated with a defined power characteristic by using an infrared radiator, and a measurement of the temperature progression at the surface of the accessible building layer is carried out by means of a temperature sensor, an evaluation device records the ratio of power and temperature over time and selects the material-specific data set on the basis of this progression and/or parameters derived therefrom.
  2. The method according to claim 1, characterized in that the evaluation device additionally comprises a target power consumption with which the infrared radiator is operated during the heating time.
  3. The method according to claim 1, characterized in that the evaluation device additionally comprises a target temperature of the accessible building layer and the control device switches the infrared radiator on and off during the heating phase (1) for the heating time in such a way that a surface temperature of the accessible building layer recorded by means of a temperature sensor follows the target temperature.
  4. The method according to claim 1, characterized in that the evaluation device comprises a target temperature progression at the accessible building layer over time, wherein the control device records a surface temperature of the accessible building layer by means of a temperature sensor and switches the infrared radiator on and off in such a way that the surface temperature of the accessible building layer follows the target temperature progression.
  5. The method according to any of the preceding claims, characterized in that air located between the infrared radiator and the accessible layer of the structure is discharged.
  6. The method according to claim 5, characterized in that the air is discharged by means of a flow machine.
  7. The method according to claim 5, characterized in that the infrared radiator is positioned obliquely with respect to the accessible building layer in such a way that an upper edge of the infrared radiator lies closer to the accessible building layer than a lower edge, and the air is thereby discharged by means of the chimney effect.
  8. The method according to one of the claims 5 to 7, characterized in that the discharged air is deflected and cooled by using an air deflector device, wherein any condensate produced is collected in a collecting container.
EP16711160.8A 2015-03-06 2016-03-07 Method for drying of constructions Active EP3265732B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16711160T PL3265732T3 (en) 2015-03-06 2016-03-07 Method for drying of constructions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015103351.8A DE102015103351A1 (en) 2015-03-06 2015-03-06 Process for drying structures
PCT/EP2016/054813 WO2016142347A2 (en) 2015-03-06 2016-03-07 Method for drying building structures

Publications (2)

Publication Number Publication Date
EP3265732A2 EP3265732A2 (en) 2018-01-10
EP3265732B1 true EP3265732B1 (en) 2021-05-05

Family

ID=55588219

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16711160.8A Active EP3265732B1 (en) 2015-03-06 2016-03-07 Method for drying of constructions

Country Status (5)

Country Link
EP (1) EP3265732B1 (en)
CN (1) CN107873067B (en)
DE (1) DE102015103351A1 (en)
PL (1) PL3265732T3 (en)
WO (1) WO2016142347A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017101995U1 (en) * 2017-04-04 2017-05-02 IRES Infrarot Energie Systeme GmbH Apparatus for drying structures
EP3657110B1 (en) * 2018-11-24 2021-12-29 Sprint Sanierung GmbH Control apparatus for carrying out a process for drying an area of a structure to be dried, and process

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE882376C (en) * 1950-03-14 1954-03-08 Franz Hajek Heat treatment, in particular drying, of parts of buildings
DE3707002C1 (en) * 1987-03-05 1988-07-21 Nickel Heinrich Process for preventing water from melted ice from being precipitated on internal surface areas on external parts of buildings and devices for carrying out the process
FI905484A (en) * 1990-11-05 1992-05-06 Rakennustoimisto Jukka Napari TORKNINGSFOERFARANDE OCH -ANORDNING.
FI105950B (en) * 1997-04-09 2000-10-31 Antero Klemetti Method and apparatus for dehumidifying and / or removing mold from a structure
US6852183B2 (en) * 2002-03-14 2005-02-08 Sunaero Method of sealing a hollow structure, for example a fuel tank for an aircraft
FR2837211B1 (en) * 2002-03-14 2004-05-21 Sunaero METHOD FOR REPAIRING TANKS
JP2004044958A (en) * 2002-07-15 2004-02-12 Kyoto Kikai Kk Surface temperature controller for gas infrared ray burner
US20080090193A1 (en) * 2006-10-11 2008-04-17 Soanes Frederick A Apparatus for heat treatment of materials and process for real time controlling of a heat treatment process
JP4422783B1 (en) * 2008-04-23 2010-02-24 石の癒株式会社 Indoor environment adjustment system
US8693855B2 (en) * 2009-05-07 2014-04-08 Cambridge Engineering, Inc Infra-red heater assembly
US9631870B2 (en) * 2013-04-03 2017-04-25 The Boeing Company Cure control for curable materials
CN203810641U (en) * 2013-09-29 2014-09-03 中铁电气化局集团北京建筑工程有限公司武昌分公司 Temperature control apparatus for large-space building

Also Published As

Publication number Publication date
PL3265732T3 (en) 2021-11-08
DE102015103351A1 (en) 2016-09-08
WO2016142347A3 (en) 2016-11-03
CN107873067B (en) 2020-01-03
WO2016142347A4 (en) 2016-12-29
WO2016142347A2 (en) 2016-09-15
EP3265732A2 (en) 2018-01-10
CN107873067A (en) 2018-04-03

Similar Documents

Publication Publication Date Title
DE2806747C2 (en) Method and apparatus for drying a moisture-absorbing material
EP2876395B1 (en) Method and device for drying material to be dried
EP3608469B1 (en) Laundry dryer and method for drying laundry with a laundry dryer
EP3265732B1 (en) Method for drying of constructions
EP1921202A2 (en) Method for determining the load in a washer-drier and washer-drier
DE1729411C3 (en) Process for drying goods sensitive to dry air by means of a gaseous, heated drying agent in a chamber
EP3246454A1 (en) Tumble dryer
AT516039B1 (en) Arrangement for suppressing the formation of condensation in housings for electrical or electronic circuits
DE3049465C2 (en) Method for drying vehicles in washing systems and device for carrying out the method
AT516545A1 (en) drying device
EP2876396B1 (en) Method for drying material to be dried
DE202015106184U1 (en) System for retrofitted insulation
EP1231258B1 (en) Process for humidifying the useful space in an incubator and a controlled atmosphere incubator
DE102013202719A1 (en) Double facade used in building, has reduction unit that performs reduction of water condensation risk in facade gap, and includes heating system for increasing temperature in facade gap for limiting relative humidity in facade gap
AT391364B (en) METHOD FOR AIR CONDITIONING USING STORAGE MEDIA WORKING WITH WATER SORPTION
DE102019125408A1 (en) Control and / or regulation of a process air system
EP3147420B1 (en) Arrangement for heating, more specifically for drying a part of a building
EP3361000A1 (en) Device for dehumidification, electrical device with such a device and method for dehumidifying
EP2582873B1 (en) Washing machine and method for operation of a washing machine
EP3114420B1 (en) Method for drying bodies
DE3104499C2 (en) Method and device for drying ceramic moldings
DE962870C (en) Method and device for the treatment of moist material, in particular tobacco or tea leaves
DE102017130170A1 (en) Method and device for drying buildings, computer program and computer-readable medium
DE2247118C3 (en) Method and device for drying hides
DE3123886C2 (en) "Method and device for guiding the air to a mangle"

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170919

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190125

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1390316

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012977

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210805

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210806

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012977

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210905

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220307

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 8

Ref country code: AT

Payment date: 20230317

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230315

Year of fee payment: 8

Ref country code: PL

Payment date: 20230301

Year of fee payment: 8

Ref country code: GB

Payment date: 20230323

Year of fee payment: 8

Ref country code: DE

Payment date: 20230329

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230322

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230331

Year of fee payment: 8

Ref country code: CH

Payment date: 20230402

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240318

Year of fee payment: 9